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Abstract

The solution of the wave equation in a polyhedral domain in R3 admits an asymptotic singular

expansion in a neighborhood of the corners and edges. In this article we formulate boundary

and screen problems for the wave equation as equivalent boundary integral equations in time

domain, study the regularity properties of their solutions and the numerical approximation.

Guided by the theory for elliptic equations, graded meshes are shown to recover the optimal

approximation rates known for smooth solutions. Numerical experiments illustrate the theory

for screen problems. In particular, we discuss the Dirichlet and Neumann problems, as well

as the Dirichlet-to-Neumann operator and applications to the sound emission of tires.

Key words: boundary element method; screen problems; singular expansion; graded meshes; wave

equation.

1 Introduction

For solutions to elliptic or parabolic equations in a polyhedral domain, the asymptotic behavior

near the edges and corners has been studied for several decades [31]. Numerically, the explicit

singular expansions allow to recover optimal convergence rates for finite [1, 2] and boundary

element methods [36, 37].

In the case of the wave equation in domains with conical or wedge singularities, a similar

asymptotic behavior has been obtained by Plamenevskii and collaborators since the late 1990’s

[24, 26, 30, 33]. Their results imply that at a fixed time t, the solution to the wave equation

admits an explicit singular expansion with the same exponents as for elliptic equations. Recently,

Müller and Schwab have used these results to obtain optimal convergence rates for a finite element

method in polygonal domains in R
2 [32].
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The realistic scattering and diffraction of waves in R
3 is crucially affected by geometric sin-

gularities of the scatterer, with significant new challenges for both the singular and numerical

analysis. This article studies the solution of the wave equation in the most singular case, outside

a screen Γ in R
3 or, equivalently, for an opening crack. From the singular expansion we obtain

optimal convergence rates for piecewise polynomial approximations on graded meshes. Numerical

experiments using a time domain boundary element method confirm the theoretical predictions

and show their use for a real-world application in traffic noise.

To be specific, for a polyhedral screen Γ ⊂ R
3 with connected complement Ω = R

3 \ Γ this

article considers the wave equation

c−2∂2t u(t, x)−∆u(t, x) = 0 in R
+
t × Ωx (1a)

Bu = g on Γ = ∂Ω (1b)

u(0, x) = ∂tu(0, x) = 0 in Ω (1c)

where either inhomogeneous Dirichlet boundary conditions Bu = u|Γ or Neumann boundary con-

ditions Bu = ∂νu|Γ are considered on Γ. Here, c denotes the speed of sound and for simplicity,

in most of the article we choose units such that c = 1.

Based on the above-mentioned results of Plamenevskii and coauthors, we obtain a precise

description of the singularities of the solution near edges and corners. The solution u and its

normal derivative on Γ admit an asymptotic expansion with the same singular exponents as in

the elliptic case.

As in the elliptic case, the precise asymptotic description of the solution has implications for

the approximation by time domain boundary elements. We formulate (1) as a time dependent

integral equation on Γ, with either the single layer, the hypersingular or the Dirichlet-to-Neumann

operator. The Dirichlet trace u|Γ is approximated by tensor products of piecewise polynomial

functions Ṽ p,q
∆t,h on a β-graded mesh in space and a uniform mesh in time of step size ∆t. Ṽ p,q

∆t,h

is defined in (17), and its analogue V p,q
∆t,h for the approximation of the Neumann trace ∂νu|Γ in

(16). See the bottom of page 8 for the definition of the β-graded meshes. Our main result for

the approximation of the solutions to the boundary integral equations in space-time anisotropic

Sobolev spaces (Definition 2) is a consequence of:

Theorem A. Let ε > 0.

a) Let u be a strong solution to the homogeneous wave equation with inhomogeneous Neumann

boundary conditions ∂νu|Γ = g, with g smooth. Further, let φβh,∆t be the best approximation in

the norm of Hr
σ(R

+, H̃
1

2
−s(Γ)) to the Dirichlet trace u|Γ in Ṽ p,1

∆t,h on a β-graded spatial mesh with

∆t . hβ. Then ‖u− φβh,∆t‖r, 1
2
−s,Γ,∗ ≤ Cβ,εh

min{β( 1
2
+s), 3

2
+s}−ε, where s ∈ [0, 12 ] and r ∈ [0, p).

b) Let u be a strong solution to the homogeneous wave equation with inhomogeneous Dirichlet

boundary conditions u|Γ = g, with g smooth. Further, let ψβ
h,∆t be the best approximation in the

norm of Hr
σ(R

+, H̃− 1

2 (Γ)) to the Neumann trace ∂νu|Γ in V p,0
∆t,h on a β-graded spatial mesh with

∆t . hβ. Then ‖∂νu− ψβ
h,∆t‖r,− 1

2
,Γ,∗ ≤ Cβ,εh

min{β
2
, 3
2
}−ε, where r ∈ [0, p + 1).
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For the circular screen this result may be found in Theorem 15, while for the polygonal screen

it is Theorem 20 (assuming β is sufficiently large). It implies an approximation result for the so-

lution to the boundary integral formulations, see Corollary 16 for the circular screen, respectively

Corollary 21 for the polygonal screen:

Corollary B. Let ε > 0.

a) Let φ be the solution to the hypersingular integral equation Wφ = g and φβh,∆t the best approxi-

mation in the norm of Hr
σ(R

+, H̃
1

2
−s(Γ)) to φ in Ṽ p,1

∆t,h on a β-graded spatial mesh with ∆t . hβ .

Then ‖φ− φβh,∆t‖r, 1
2
−s,Γ,∗ ≤ Cβ,εh

min{β( 1
2
+s), 3

2
+s}−ε, where s ∈ [0, 12 ] and r ∈ [0, p).

b) Let ψ be the solution to the single layer integral equation V ψ = f and ψβ
h,∆t the best approx-

imation in the norm of Hr
σ(R

+, H̃− 1

2 (Γ)) to ψ in V p,0
∆t,h on a β-graded spatial mesh with ∆t . hβ .

Then ‖ψ − ψβ
h,∆t‖r,− 1

2
,Γ,∗ ≤ Cβ,εh

min{β
2
, 3
2
}−ε, where r ∈ [0, p + 1).

Indeed, on the flat screen the solutions to the integral equations are given by φ = [u] |Γ in terms

of the solution u which satisfies Neumann conditions Bu = ∂νu|Γ = g, respectively ψ = [∂νu] |Γ
in terms of the solution u which satisfies Dirichlet conditions Bu = u|Γ = f .

Note that the energy norm associated to the weak form of the single layer integral equation

(7) is weaker than the norm of H1
σ(R

+,H− 1

2 (Γ)) and stronger than the norm of H0
σ(R

+,H− 1

2 (Γ)),

according to the coercivity and continuity properties of V on screens [13]. Similarly, for the weak

form of the hypersingular integral equation (10), the energy norm is weaker than the norm of

H1
σ(R

+,H
1

2 (Γ)) and stronger than the norm of H0
σ(R

+,H
1

2 (Γ)) [15].

Remark C. Together with the a priori estimates for the time domain boundary element meth-

ods on screens [13, 15], Corollary B implies convergence rates for the Galerkin approximations,

which recover those for smooth solutions (up to an arbitrarily small ε > 0) provided the grading

parameter β is chosen sufficiently large.

We prove the approximation properties in detail on the circular screen, without corners, and

discuss the approximation of the corner singularity on polygonal screens. On the square, the

convergence rate is determined by the singularities at the edges, in spite of the smaller singular

exponents in a corner. In all cases, we show that time independent algebraically graded meshes

adapted to the singularities recover the optimal approximation rates expected for smooth solu-

tions.

Numerical experiments confirm the theoretical results for the singular exponents and achieve

the predicted convergence rates. Furthermore, they indicate the efficiency of our approach. For

the Dirichlet problem on a circular or square screen, reduced to an equation for the single layer

operator, the convergence rate in the energy norm is doubled when the uniform mesh is replaced

by a 2-graded one. Similar results are obtained for the sound pressure, which is often the crucial

quantity in applications. Even the singular exponents of the numerical solution near the edges

and corners agree with those of the exact solution. The results generalize to the formulation
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of the Neumann problem as a hypersingular integral equation, where the predicted convergence

rates and singular exponents at the edges are obtained. The main difference to the Dirichlet

problem is that the numerically computed singular exponents in the corner are in qualitative,

though no longer quantitative agreement. Beyond these model problems, we study the Dirichlet-

to-Neumann operator on screens, as relevant for dynamic interface and contact problems. The

results reflect those for the hypersingular integral equation, and the errors due to the numerical

approximation of the operator are seen to be negligible.

Finally, we show the relevance of graded meshes for a real-world question from traffic noise,

where graded meshes allow to accurately resolve the sound amplification around resonance fre-

quencies.

Graded meshes thus lead to optimal algorithms to resolve geometric singularities of the com-

putational domain. They provide a key example for efficient approximations of the solution of

transient wave equations by time-independent, adapted meshes. Such meshes also arise in adap-

tive algorithms based on time-integrated a posteriori error estimates [14].

The article is organized as follows: Section 2 recalls the boundary integral operators associated

to the wave equation as well as their mapping properties between suitable space-time anisotropic

Sobolev spaces. It concludes by reformulating the Dirichlet and Neumann problems for the

wave equation (1) as boundary integral equations in the time domain. The following Section

3 introduces graded meshes on Γ, corresponding space-time discretizations and a time domain

boundary element method to solve the integral equations. The asymptotic expansions of solutions

to the wave equation and their approximation are the content of Section 4, for circular and

polygonal screens. Section 5 discusses some algorithmic properties of the implementation, before

numerical experiments are used to confirm the theoretical predictions in Section 6. The article

concludes with a real-world application to traffic noise and computes the amplification of noise

in the singular horn geometry between a tire and the road surface.

2 Boundary integral operators and Sobolev spaces

To be specific, in R
3 let Γ be the boundary of a polyhedral domain, consisting of curved, polygonal

boundary faces, or an open polyhedral surface (screen). In R
2, Γ is the boundary of a curved

polygon, or Γ is an open polygonal curve.

We make an ansatz for the solution to (1) using the single layer potential in time domain,

u(t, x) =

∫

R+×Γ
G(t− τ, x, y) ψ(τ, y) dτ dsy , (2)

where G is a fundamental solution to the wave equation and ψ(τ, y) = 0 for τ < 0. Specifically

in 3 dimensions, we may choose

u(t, x) =
1

4π

∫

Γ

ψ(t− |x− y|, y)

|x− y|
dsy ,
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but for applications to traffic noise also different choices are relevant, see (37). Taking the Dirichlet

boundary values on Γ of the integral (2), we obtain the single layer operator,

V ψ(t, x) =

∫

R+×Γ
G(t− τ, x, y) ψ(τ, y) dτ dsy ,

It allows to reduce the wave equation (1) with Dirichlet boundary conditions, u = f on Γ, to an

equivalent integral equation

V ψ = u|Γ = f . (3)

After solving equation (3) for the density ψ, the solution to the wave equation is obtained using

equation (2).

We also require the adjoint double layer operator K ′, as obtained from the Neumann boundary

values, as well as the double layer operator K and the hypersingular operator W on Γ:

Kφ(t, x) =

∫

R+×Γ

∂G

∂ny
(t− τ, x, y) φ(τ, y) dτ dsy,

K ′φ(t, x) =

∫

R+×Γ

∂G

∂nx
(t− τ, x, y) φ(τ, y) dτ dsy , (4)

Wφ(t, x) =

∫

R+×Γ

∂2G

∂nx∂ny
(t− τ, x, y) φ(τ, y) dτ dsy .

Remark 1. For a flat screen Γ ⊂ R
2 × {0}, the normal derivative of G vanishes, and Kφ =

K ′φ = 0 in this case.

The boundary integral operators are considered between space-time anisotropic Sobolev spaces

Hr
σ(R

+, H̃s(Γ)), see [13] or [19]. To define them, if ∂Γ 6= ∅, first extend Γ to a closed, orientable

Lipschitz manifold Γ̃.

On Γ one defines the usual Sobolev spaces of supported distributions:

H̃s(Γ) = {u ∈ Hs(Γ̃) : supp u ⊂ Γ} , s ∈ R .

Furthermore, Hs(Γ) is the quotient space Hs(Γ̃)/H̃s(Γ̃ \ Γ).

To write down an explicit family of Sobolev norms, introduce a partition of unity αi subordinate

to a covering of Γ̃ by open sets Bi. For diffeomorphisms φi mapping each Bi into the unit cube

⊂ R
n, a family of Sobolev norms is induced from R

d:

||u||s,ω,Γ̃ =

(
p∑

i=1

∫

Rn

(|ω|2 + |ξ|2)s|F
{
(αiu) ◦ φ

−1
i

}
(ξ)|2dξ

) 1

2

.

The norms for different ω ∈ C \ {0} are equivalent, and F denotes the Fourier transform.

They induce norms on Hs(Γ), ||u||s,ω,Γ = infv∈H̃s(Γ̃\Γ) ||u + v||s,ω,Γ̃, and on H̃s(Γ), ||u||s,ω,Γ,∗ =

||e+u||s,ω,Γ̃. e+ extends the distribution u by 0 from Γ to Γ̃. It is stronger than ||u||s,ω,Γ whenever

s ∈ 1
2 + Z.

We now define a class of space-time anisotropic Sobolev spaces:
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Definition 2. For r, s ∈ R and σ > 0 define

Hr
σ(R

+,Hs(Γ)) = {u ∈ D
′

+(H
s(Γ)) : e−σtu ∈ S

′

+(H
s(Γ)) and ||u||r,s,Γ <∞} ,

Hr
σ(R

+, H̃s(Γ)) = {u ∈ D
′

+(H̃
s(Γ)) : e−σtu ∈ S

′

+(H̃
s(Γ)) and ||u||r,s,Γ,∗ <∞} .

D
′

+(E) resp. S
′

+(E) denote the spaces of distributions, resp. tempered distributions, on R with

support in [0,∞), taking values in E = Hs(Γ), H̃s(Γ). The relevant norms are given by

‖u‖r,s,Γ =

(∫ +∞+iσ

−∞+iσ
|ω|2r ‖û(ω)‖2s,ω,Γ dω

) 1

2

,

‖u‖r,s,Γ,∗ =

(∫ +∞+iσ

−∞+iσ
|ω|2r ‖û(ω)‖2s,ω,Γ,∗ dω

) 1

2

.

For |s| ≤ 1 the spaces are independent of the choice of αi and φi.

A useful technical result localizes estimates for fractional Sobolev norms, extending [36,

Lemma 3.2] to space-time:

Lemma 3. Let Γ, Γj (j = 1, . . . , N) be Lipschitz domains with Γ =
N⋃
j=1

Γj, ũ ∈ Hr
σ(R

+, H̃s(Γ)), u ∈

Hr
σ(R

+,Hs(Γ)), s ∈ R. Then for all s ∈ [−1, 1], r ∈ R and σ > 0

N∑

j=1

‖u‖2r,s,Γj
≤ ‖u‖2r,s,Γ , (5)

‖ũ‖2r,s,Γ,∗ ≤
N∑

j=1

‖ũ‖2r,s,Γj ,∗ . (6)

The proof is an immediate extension of the time-independent case.

The boundary integral operators obey the following mapping properties between the space-

time Sobolev spaces:

Theorem 4 ([13]). The following operators are continuous for r ∈ R, σ > 0:

V : Hr+1
σ (R+, H̃− 1

2 (Γ)) → Hr
σ(R

+,H
1

2 (Γ)) ,

K ′ : Hr+1
σ (R+, H̃− 1

2 (Γ)) → Hr
σ(R

+,H− 1

2 (Γ)) ,

K : Hr+1
σ (R+, H̃

1

2 (Γ)) → Hr
σ(R

+,H
1

2 (Γ)) ,

W : Hr+1
σ (R+, H̃

1

2 (Γ))) → Hr
σ(R

+,H− 1

2 (Γ)) .

When Γ = R
n−1
+ , Fourier methods yield improved estimates for V and W :

Theorem 5 ([20], pp. 503-506). The following operators are continuous for r, s ∈ R, σ > 0:

V : H
r+ 1

2
σ (R+, H̃s(Γ)) → Hr

σ(R
+,Hs+1(Γ)) ,

W : Hr
σ(R

+, H̃s(Γ)) → Hr
σ(R

+,Hs−1(Γ)) .
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The space-time Sobolev spaces allow a precise statement and analysis of the weak formulation

for the Dirichlet problem (3): Find ψ ∈ H1
σ(R

+, H̃− 1

2 (Γ)) such that for all Ψ ∈ H1
σ(R

+, H̃− 1

2 (Γ))
∫ ∞

0

∫

Γ
(V ψ(t,x))∂tΨ(t,x) dsx dσt =

∫ ∞

0

∫

Γ
f(t,x)∂tΨ(t,x) dsx dσt , (7)

where dσt = e−2σtdt.

To obtain an analogous weak formulation for the Neumann problem, one starts from a double

layer potential ansatz for u:

u(t, x) =

∫

R+×Γ

∂G

∂ny
(t− τ, x, y) φ(τ, y) dτ dsy (8)

with φ(s, y) = 0 for s ≤ 0. The corresponding integral formulation is the hypersingular equation

Wφ =
∂u

∂n

∣∣∣
Γ
= g . (9)

Find φ ∈ H1
σ(R

+, H̃
1

2 (Γ)) such that for all Φ ∈ H1
σ(R

+, H̃
1

2 (Γ)) there holds:
∫

R+×Γ
(Wφ(t,x)) ∂tΦ(t,x) dσt dsx =

∫

R+×Γ
g(t,x) ∂tΦ(t,x) dt dsx . (10)

The weak formulations (7), respectively (10), for the Dirichlet and Neumann problems are

well-posed [13, 15]:

Theorem 6. Let σ > 0.

a) Assume that f ∈ H2
σ(R

+,H
1

2 (Γ)). Then there exists a unique solution ψ ∈ H1
σ(R

+, H̃− 1

2 (Γ))

of (7) and

‖ψ‖1,− 1

2
,Γ,∗ .σ ‖f‖2, 1

2
,Γ . (11)

b) Assume that g ∈ H2
σ(R

+,H− 1

2 (Γ)). Then there exists a unique solution φ ∈ H1
σ(R

+, H̃
1

2 (Γ))

of (10) and

‖φ‖1, 1
2
,Γ,∗ ≤ C‖g‖2,− 1

2
,Γ . (12)

While a theoretical analysis requires σ > 0, practical computations use σ = 0 [3, 11].

With a view towards contact problems [12], we also consider an equation for the Dirichlet-to-

Neumann operator Sσ. For σ > 0 and given boundary data uσ, we consider




(
∂
∂t + σ

)2
wσ −∆wσ = 0 , for (t, x) ∈ R× Ω ,

wσ = uσ , for (t, x) ∈ R× Γ ,

wσ = 0, for (t, x) ∈ (−∞, 0)× Ω .

(13)

The Dirichlet-to-Neumann operator is defined as

Sσuσ|Γ :=
∂wσ

∂ν

∣∣∣
Γ
, (14)

We recall from [40], p. 48:
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Theorem 7. Let h ∈ H
3

2
σ (R+,H− 1

2 (Γ)). Then there exists a unique uσ ∈ H
1

2
σ (R

+, H̃
1

2 (Γ)) such

that for all v ∈ H
− 1

2
σ (R+, H̃

1

2 (Γ)):

〈Sσuσ, v〉 = 〈h, v〉 . (15)

3 Discretization

For the time discretization we consider a uniform decomposition of the time interval [0,∞) into

subintervals [tn−1, tn) with time step ∆t, such that tn = n∆t (n = 0, 1, . . . ).

In R
3, we may assume that Γ consists of closed triangular faces Γi such that Γ = ∪iΓi. In

R
2, Γ = ∪iΓi is partitioned into line segments Γi.

We choose a basis {ξ1h, · · · , ξ
Ns
h } of the space V q

h (Γ) of piecewise polynomial functions of degree

q in space. Moreover we define Ṽ q
h (Γ) as the space V

q
h (Γ), where the polynomials vanish on ∂Γ for

q ≥ 1. For the time discretization we choose a basis {β1∆t, · · · , β
Nt
∆t} of the space V p

t of piecewise

polynomial functions of degree of p in time (continuous and vanishing at t = 0 if p ≥ 1).

Let TS = {∆1, · · · ,∆N} be a quasi-uniform triangulation of Γ and TT = {[0, t1), [t1, t2), · · · ,

[tM−1, T )} the time mesh for a finite subinterval [0, T ).

We consider the tensor product of the approximation spaces in space and time, V q
h and V p

∆t,

associated to the space-time mesh TS,T = TS × TT , and we write

V p,q
∆t,h := V p

∆t ⊗ V q
h . (16)

We analogously define

Ṽ p,q
∆t,h := V p

∆t ⊗ Ṽ q
h . (17)

For u∆t,h ∈ V p,q
∆t,h we thus may write

u∆t,h(t, x) =

Nt∑

i=0

Ns∑

j=0

cijβ
i
∆t(t)ξ

j
h(x) .

In the following we use the notation

• γn∆t(t) for the basis of piecewise constant functions in time,

• βn∆t(t) for the basis of piecewise linear functions in time,

• ψi
h(x) for the basis of piecewise constant functions in space,

• ξih(x) for the basis of piecewise linear functions in space.

The Galerkin discretization of the Dirichlet problem (7) is then given by:
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(a) (b)

Figure 1: β-graded meshes for (a) square and (b) circular screens, with β = 2

Find ψ∆t,h ∈ V p,q
∆t,h such that for all Ψ∆t,h ∈ V p,q

∆t,h

∫ ∞

0

∫

Γ
(V ψ∆t,h(t,x))∂tΨ∆t,h(t,x) dsx dσt =

∫ ∞

0

∫

Γ
f(t,x)∂tΨ∆t,h(t,x) dsx dσt . (18)

For the Neumann problem (10), we have:

Find φ∆t,h ∈ Ṽ p,q
t,h such that for all Φ∆t,h ∈ Ṽ p,q

t,h

∫ ∞

0

∫

Γ
(Wφ∆t,h(t,x))∂tΦ∆t,h(t,x) dsx dσt =

∫ ∞

0

∫

Γ
g(t,x)∂tΦ∆t,h(t,x) dsx dσt . (19)

From the weak coercivity of V , respectively W , the discretized problems (18) and (19) admit

unique solutions.

Our computations are mainly conducted on graded meshes on the square [−1, 1]2, respectively

on the circular screen {(x, y, 0) :
√
x2 + y2 ≤ 1}. To define β-graded meshes on the square, due

to symmetry, it suffices to consider a β-graded mesh on [−1, 0]. We define yk = xk = −1 + ( k
Nl
)β

for k = 1, . . . , Nl and for a constant β ≥ 0. The nodes of the β-graded mesh on the square are

therefore (xk, yl), k, l = 1, . . . , Nl. We note that for β = 1 we would have a uniform mesh.

In a general convex, polyhedral geometry graded meshes are locally modeled on this example.

In particular, on the circular screen of radius 1, for β = 1 we take a uniform mesh with nodes on

concentric circles of radius rk = 1 − k
Nl

for k = 0, . . . , Nl − 1. For the β-graded mesh, the radii

are moved to rk = 1 − ( k
Nl
)β for k = 0, . . . , Nl − 1. While the triangles become increasingly flat

near the boundary, their total number remains proportional to N2
l .

Examples of the resulting 2-graded meshes on the square and the circular screens are depicted

in Figure 1.
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While we use triangular meshes in our computations, for the ease of presentation we first

discuss the approximation properties of graded meshes with rectangular elements. Reference [36]

shows how to deduce approximation results on triangular meshes from the rectangular case.

Key ingredients in our analysis are projections from L2(Γ) onto V p
h on the graded mesh. We

collect some key approximation properties used below:

An analogon of [36, Lemma 3.3] reads:

Lemma 8. Let r ≥ 0, 0 ≤ s1, s2 ≤ 1, Ij = [0, hj ], f2 ∈ H̃−s2(I2), f1 ∈ H̃r
σ(R

+,H−s1(I1)). Then

there holds

‖f1(t, x)f2(y)‖r,−s1−s2,I1×I2,∗ ≤ ‖f1‖r,−s1,I1,∗‖f2‖H̃−s2 (I2)
.

Proof. This is a consequence of the estimate

(σ2 + |ω|2 + ξ21 + ξ22)
−(s1+s2)/2 . (σ2 + |ω|2 + ξ21)

−s1/2(1 + ξ22)
−s2/2

in Fourier space.

We have a similar result for positive Sobolev indices:

Lemma 9. Let r ≥ 0, 0 ≤ s ≤ 1, Ij = [0, hj ], f2 ∈ H̃s(I2), f1 ∈ Hr
σ(R

+, H̃s(I1)). Then there

holds

‖f1(t, x)f2(y)‖r,s,I1×I2,∗ ≤ ‖f1‖r,s,I1,∗‖f2‖H̃s(I2)
.

Proof. This is a consequence of the estimate

(σ2 + |ω|2 + ξ21 + ξ22)
s/2 . (σ2 + |ω|2 + ξ21)

s/2(1 + ξ22)
s/2

in Fourier space.

Next we approximate H̃s-functions on rectangles by constants, as in [36, Lemma 3.4]. The

proof is a combination with [16, Proposition 3.54 and 3.57], see also [13] for screens. The formula-

tion localizes from R
+ to a single time interval [0,∆t], and uses the restriction Hr

σ([0,∆t],H
s(R))

of Hr
σ(R

+,Hs(R)).

Lemma 10. Let −1 ≤ s ≤ 0, 0 ≤ r ≤ ρ ≤ p+ 1, R = [0, h1] × [0, h2], u ∈ Hρ
σ([0,∆t],H1(R)),

Πp
tu the orthogonal projection onto piecewise polynomials in t of order p, Π0

x,yu = 1
h1h2

∫
R

u(t, x, y)dy dx.

Then for U = Πp
tΠ

0
x,yu we have

‖u− U‖r,s,R,∗ . (∆t)ρ−rmax{h1, h2,∆t}
−s‖∂ρt u‖L2([0,∆t]×R) (20)

+ max{h1, h2,∆t}
−s
(
h1‖ux‖L2([0,∆t]×R) + h2‖uy‖L2([0,∆t]×R)

)
.

If u(t, x, y) = u1(t, x)u2(y), u1 ∈ H
ρ
σ([0,∆t],H1([0, h1])), u2 ∈ H1([0, h2]) then

‖u− U‖r,s,R,∗ . (∆t)ρ−rmax{h1,∆t}
−s‖∂ρt u‖L2([0,∆t]×R)

+
(
h1−s
1 ‖ux‖L2([0,∆t]×R) + h1−s

2 ‖uy‖L2([0,∆t]×R)

)
.
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Proof. As the proof is similar to the time-independent case, [36, Lemma 3.4], we only show (20)

for r = 0, s = −1. First note that

‖u− U‖0,0,R,∗ . (∆t)‖∂tu‖0,0,R + h1‖ux‖0,0,R + h2‖uy‖0,0,R . (21)

By the Hahn-Banach theorem we have

‖u− U‖0,−1,R,∗ = sup
v∈H0

σ([0,∆t],H1(R))

|〈u− U, v〉|

‖v‖0,1,R

= sup
v∈H0

σ([0,∆t],H1(R))

|〈u− U, v − Z〉|

‖v‖0,1,R

≤ ‖u− U‖0,0,R sup
v∈H0

σ([0,∆t],H1(R))

‖v − Z‖0,0,R
‖v‖0,1,R

,

for any constant Z. Using (21) on the right hand side, we obtain

‖u− U‖0,−1,R,∗ . ((∆t)‖∂tu‖0,0,R + h1‖ux‖0,0,R + h2‖uy‖0,0,R)

sup
v∈H0

σ([0,∆t],H1(R))

(∆t)‖∂tv‖0,0,R + h1‖vx‖0,0,R + h2‖vy‖0,0,R
‖v‖0,1,R

. ((∆t)‖∂tu‖0,0,R + h1‖ux‖0,0,R + h2‖uy‖0,0,R)max{h1, h2,∆t} .

The general case of (20) follows by interpolation and by using the higher smoothness in t.

The proof of the second inequality applies these arguments and Lemma 8 to the factorization

u− U = (u1 − U1)(u2 − U2). Here U = U1U2, with U1 = Πp
tΠ

0
xu1 and U2 = Π0

yu2.

An analogous result holds for bilinear interpolants on rectangles, as in [36, Lemma 3.14].

Lemma 11. Let Q = [0, h1]× [0, h2], u ∈ H3
σ([0,∆t] ×Q), U the bilinear interpolant of u at the

vertices of Q. Then there holds for r ≥ 0

‖u− U‖r,0,[0,∆t)×Q . max{h1,∆t}
2‖uxx‖r,0,[0,∆t)×Q +max{h2,∆t}

2‖uyy‖r,0,[0,∆t)×Q

+ (max{h1,∆t}
2 +max{h2,∆t}

2)‖utt‖r,0,[0,∆t)×Q

+max{h1,∆t}
2 max{h2,∆t}‖uxxy‖r,0,[0,∆t)×Q , (22)

‖(u− U)x‖r,0,[0,∆t)×Q . max{h1,∆t}‖uxx‖r,0,[0,∆t)×Q +max{h1,∆t}‖uxt‖r,0,[0,∆t)×Q

+max{h2,∆t}
2‖uxyy‖L2(Q) . (23)

The proofs of the following results are given in [36, Satz 3.7, Satz 3.10].

Lemma 12. For a > 0 and s ∈ [−1,−a+ 1
2) there holds with the piecewise constant interpolant

Π0
yy

−a of y−a on the β-graded mesh

‖y−a −Π0
yy

−a‖H̃s([0,1]) . hmin{β(−a−s+ 1

2
),1−s}−ε.

Lemma 13. For a > 0 and s ∈ [0, a + 1
2) there holds with the linear interpolant Π1

yy
a of ya on

the β-graded mesh

‖ya −Π1
yy

a‖H̃s([0,1]) . hmin{β(a−s+ 1

2
),2−s}−ε.
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4 Asymptotic expansions and numerical approximation

4.1 Asymptotic expansion of solutions to the wave equation in a wedge

Solutions of the Laplace and Helmholtz equations exhibit well-known singularities at non-smooth

boundary points of the domain. In this section we describe a similar decomposition of the solution

to the wave equation with Dirichlet or Neumann boundary conditions near an edge or a corner,

into a leading part given by explicit singular functions plus less singular terms. The strategy

of translating the results from the Helmholtz equation to the time-dependent wave or Lamé

equations has been studied in a series of papers by Plamenevskii and coauthors [24, 26, 30, 33].

We here recall their key result for a wedge.

To be specific, let 0 ≤ d ≤ n−2 and K ⊂ R
n−d an open cone with vertex at 0, smooth outside

the vertex. We denote by K = K × R
d the wedge over K and consider the wave equation in K:

∂2t u(t, x)−∆u(t, x) = 0 in R
+
t ×Kx , (24a)

Bu = g on Γ = ∂K , (24b)

u(0, x) = ∂tu(0, x) = 0 in K, (24c)

where either inhomogeneous Dirichlet boundary conditions Bu = u|Γ or Neumann boundary

conditions Bu = ∂νu|Γ are considered on Γ. We will describe the asymptotic behavior of a

solution to the wave equation with Dirichlet or Neumann boundary conditions in K near {0}×R
d.

Locally, the edge of a screen in R
3 corresponds to d = 1, a cone point to d = 0.

The analysis uses the Fourier-Laplace transformation in time to reduce the time dependent

problem to the Helmholtz equation with frequency ω. Then a Fourier transform is applied chang-

ing z ∈ R
d into ζ ∈ R

d. Using polar coordinates, the conical variable y ∈ K is transformed into

the radius r and the spherical variable θ. A series expansion is applied, where the eigenfunctions

are determined by separation of variables.

More concretely, the Fourier-Laplace transform leads to the Helmholtz equation:

ω2û(ω, x) + ∆û(ω, x) = 0, x ∈ K ,

Bû = ĝ on Γ . (25)

In this case a singular decomposition of the solution is known for every complex frequency ω.

Doing a separation of variables near the edge of K, we consider the operator AB(λ) = (iλ)2 +

i(n − d − 2)λ −∆S with B = D for Dirichlet and B = N for Neumann boundary conditions in

the subset Ξ = K ∩ Sn−d−1 of the sphere. Here ∆S denotes the Laplace operator on Sn−d−1.

Denoting the eigenvalues of ∆S in Ξ by {µk,B}
∞
k=0, the eigenvalues of AB(λ) are given by λ±k,B =

i(n−d−2)
2 ∓ iνk,B with νk,B =

((n−d−2)2+4µk,B)1/2

2 . The associated orthogonal eigenfunctions Φk,B

of the angular variables θ are normalized as ‖Φk,B‖
2
L2(Ξ) = ν−1

k,B.

For d = 1, n = 3, the nonzero eigenvalues λ±k,B = ∓kπ
α are simple if kπ

α 6∈ N, and have

multiplicity 2 otherwise. For k > 0 Φk,N(θ) = (kπ)−
1

2 cos(kπθ/α), Φk,D(θ) = (kπ)−
1

2 sin(kπθ/α).

For Neumann boundary conditions, the eigenvalue λ0,N = 0 has multiplicity 2. Here, α denotes

the opening angle of K ⊂ R
2.

12



We recover a screen with flat boundary as α tends to 2π−, and the discussion can be adapted

to circular edges as in [39]. In this case λ±k,B = ∓kπ
α .

The asymptotic expansion involves special solutions of the Dirichlet or Neumann problem in

K, see [25, (3.5)], respectively [24, (4.4)]:

w−k,B(y, ω, ζ) =
21−νk,B

Γ(νk,B)
(i|y|

√
−|ζ|2 + ω2)νk,BKνk,B (i|y|

√
−|ζ|2 + ω2)|y|iλ−k,BΦk,B(y/|y|) .

Here Kν is the modified Bessel function of the third kind.

One then transforms back into the time domain. Explicit formulas for the inverse Fourier

transform F−1
(ω,ζ)→(t,z)w−k,B(y, ω, ζ) can be found in Lemma 8.1 of [24].

The main theorem for the inhomogeneous wave equation involves an expansion in terms of

singular functions. We refer to [24, Theorem 7.4 and Remark 7.5] for the details in the case of

the Neumann problem in a wedge, respectively [25, Theorem 4.1] for the Dirichlet problem in a

cone.

Theorem 14. Let β ≤ 1 and assume that the line Im λ = β − 1 + n−d−2
2 does not intersect the

spectrum of AB. Further, define

Jβ,B =

{
j :

n− d− 2

2
> Im λj,B > β − 1 +

n− d− 2

2

}
,

if n− d > 2, and

Jβ,B = {j : 0 > Im λj,B > β − 1} ∪A ,

with A = {0} for β ≤ 0 and A = ∅ otherwise.

If u is a strong solution to the inhomogeneous wave equation with right hand side f and homoge-

neous Dirichlet or Neumann boundary conditions (B = D, resp. N) in K near {0} × R
d, then u

is of the form

∑

j∈Jβ,B

Γ(1 + νj,B)|y|
iλj,BΦj,B(θ)

Nj∑

m=0

(∂2t −∆z)
m(i|y|)2m

22mm!Γ(m+ νj,B + 1)
F−1
(ω,ζ)→(t,z)cj,B + v̌(y, t, z) ,

assuming that iλj,B 6∈ N. Here Nj is sufficiently large, and cj,B(ω, ζ) = 〈f̂(·, ω, ζ), w−j,B(·, ω, ζ)〉L2(K);

its regularity is determined by the right hand side. The remainder v̌ is less singular, in the sense

that ‖v̌‖DVβ,q(K×R;γ) . ‖f‖RHβ,q(K×R,γ), γ > 0, q ∈ N0. We refer to [24] for the definition of the

weighted spaces DVβ(K × R, γ), RHβ,q(K × R, γ), γ > 0, q ∈ N0.

If iλj,B ∈ N additional terms |y|iλj,B log(|y|) appear.

Further information can be obtained from the singular functionsW−j,B(y, t, z) = F−1
(ζ,ω)→(t,z)w−j,B,

using the convolution representation

F−1
(ω,ζ)→(t,z)cj,B =

∫

Rd

dz1

∫

R

dt1

∫

K
dyf(y, z1, t1)W−j,B(y, t− t1, z − z1)

of the asymptotic expansion in Theorem 14. Because the singular support of W−j,B lies on

the lightcone {(y, t, z) ∈ R
n+1 : t =

√
|y|2 + |z|2} emanating from the edge, we note that

F−1
(ω,ζ)→(t,z)cj,B is smooth in

{(t, z) ∈ R
d+1 : t > sup{t1 +

√
|y|2 + |z − z1|2 : (y, z1, t1) ∈ singsupp f}} .
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In particular, if f is smooth, singsupp f = ∅ and F−1
(ω,ζ)→(t,z)cj,B is smooth everywhere.

Theorem 14 can be translated into a result for inhomogeneous boundary conditions, as for

elliptic problems [38, Section 5]. If Bu = g on R
+
t ×∂K, choose a function g̃ in R

+
t ×K such that

Bg̃ = g on R
+
t ×∂K. The function U = u− g̃ satisfies homogeneous boundary conditions BU = 0,

and ∂2tU −∆U = f − ∂2t g̃ +∆g̃. According to Theorem 14, U admits an asymptotic expansion,

and therefore so does u = U + g̃.

For the analysis of the solutions to the boundary integral formulations of the wave equation,

the resulting asymptotic expansions of the boundary values u|Γ and ∂νu|Γ will be crucial. They are

directly obtained from the expansion in the interior. In particular, for iλj,B 6∈ N the singularities of

u|Γ are proportional to |y|iλj,B+2m, and the singularities of ∂νu|Γ are proportional to |y|iλj,B+2m−1.

When iλj,B ∈ N, additional terms |y|iλj,B+2m log(|y|), respectively |y|iλj,B+2m−1 log(|y|) appear.

4.2 Singularities for circular screens and approximation

We first illustrate the above results for the exterior of a circular wedge with exterior opening angle

α. For α → 2π−, the wedge degenerates into the circular screen {(x1, x2, 0) ∈ R
3 : x21 + x22 ≤ 1}.

Near the edge {(x1, x2, 0) ∈ R
3 : x21 + x22 = 1} we use the coordinates (y, z, θ), where in polar

coordinates in the x1−x2-plane y = r−1, z = θ. Using [39], an analogous expansion to Theorem

14 also holds in this curved geometry, with the same leading singular term |y|iλ, where λ → − i
2

as α→ 2π−:

u(y, t, z)|Γ = a(t, z)|y|1/2 + v̌(y, t, z) , (26)

∂νu(y, t, z)|Γ = b(t, z)|y|−
1

2 + ṽ(y, z, t) . (27)

Here a and b are smooth for smooth data.

From these decompositions we obtain optimal approximation properties on the graded mesh.

Here we show how the analysis performed by T. von Petersdorff in [36] may be extended to the

hyperbolic case. The results are derived for the h-version on graded meshes and contain auto-

matically the case of a quasi-uniform mesh by setting the grading parameter β = 1.

Theorem 15. Let ε > 0. a) Let u be a strong solution to the homogeneous wave equation with

inhomogeneous Neumann boundary conditions ∂νu|Γ = g, with g smooth. Further, let φβh,∆t be

the best approximation in the norm of Hr
σ(R

+, H̃
1

2
−s(Γ)) to the Dirichlet trace u|Γ in Ṽ p,1

∆t,h on a

β-graded spatial mesh with ∆t . hβ . Then ‖u − φβh,∆t‖r, 1
2
−s,Γ,∗ ≤ Cβ,εh

min{β( 1
2
+s), 3

2
+s}−ε, where

s ∈ [0, 12 ] and r ∈ [0, p).

b) Let u be a strong solution to the homogeneous wave equation with inhomogeneous Dirichlet

boundary conditions u|Γ = g, with g smooth. Further, let ψβ
h,∆t be the best approximation in the

norm of Hr
σ(R

+, H̃− 1

2 (Γ)) to the Neumann trace ∂νu|Γ in V p,0
∆t,h on a β-graded spatial mesh with

∆t . hβ. Then ‖∂νu− ψβ
h,∆t‖r,− 1

2
,Γ,∗ ≤ Cβ,εh

min{β
2
, 3
2
}−ε, where r ∈ [0, p + 1).

Theorem 15 implies a corresponding result for the solutions of the single layer and hypersin-

gular integral equations on the screen:
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Corollary 16. Let ε > 0. a) Let φ be the solution to the hypersingular integral equation (9)

and φβh,∆t the best approximation in the norm of Hr
σ(R

+, H̃
1

2
−s(Γ)) to φ in Ṽ p,1

∆t,h on a β-graded

spatial mesh with ∆t . hβ. Then ‖φ − φβh,∆t‖r, 1
2
−s,Γ,∗ ≤ Cβ,εh

min{β( 1
2
+s), 3

2
+s}−ε, where s ∈ [0, 12 ]

and r ∈ [0, p).

b) Let ψ be the solution to the single layer integral equation (3) and ψβ
h,∆t the best approxi-

mation in the norm of Hr
σ(R

+, H̃− 1

2 (Γ)) to ψ in V p,0
∆t,h on a β-graded spatial mesh with ∆t . hβ .

Then ‖ψ − ψβ
h,∆t‖r,− 1

2
,Γ,∗ ≤ Cβ,εh

min{β
2
, 3
2
}−ε, where r ∈ [0, p + 1).

Indeed, on the flat screen the solutions to the integral equations are given by φ = [u] |Γ in terms

of the solution u which satisfies Neumann conditions Bu = ∂νu|Γ = g, respectively ψ = [∂νu] |Γ
in terms of the solution u which satisfies Dirichlet conditions Bu = u|Γ = f .

The proof of Theorem 15 relies on the auxiliary results in Section 3. We first consider the

approximation of the Neumann trace.

Theorem 17. Under the assumptions of Theorem 15, there holds ‖∂νu − Π0
xΠ

p
t ∂νu‖r,− 1

2
,Γ,∗ .

hmin{β/2, 3
2
}−ε.

As before, our results extend from rectangular to triangular elements as in reference [36].

Proof. Using the decomposition (27) for ∂νu, we can separate the singular and regular parts on

the rectangular mesh:

‖∂νu−Π0
xΠ

p
t ∂νu‖r,− 1

2
,Γ,∗ ≤ ‖b(t, z)|y|−

1

2 −Πp
tΠ

0
xb(t, z)|y|

− 1

2‖r,− 1

2
,Γ,∗ + ‖ṽ −Πp

tΠ
0
xṽ‖r,− 1

2
,Γ,∗

≤ ‖b(t, z)|y|−
1

2 −Πp
t b(t, z)|y|

− 1

2 ‖r,− 1

2
,Γ,∗ + ‖Πp

t b(t, z)|y|
− 1

2 −Πp
tΠ

0
xb(t, z)|y|

− 1

2‖r,− 1

2
,Γ,∗

+ ‖ṽ −Πp
tΠ

0
xṽ‖r,− 1

2
,Γ,∗

≤ ‖b(t, z) −Πp
t b(t, z)‖r,ǫ− 1

2

‖|y|−
1

2‖H̃−ε(I) + ‖Πp
t b(t, z)|y|

− 1

2 −Πp
tΠ

0
zb(t, z)|y|

− 1

2‖r,− 1

2
,Γ,∗

+ ‖Πp
tΠ

0
zb(t, z)|y|

− 1

2 −Πp
tΠ

0
zb(t, z)Π

0
y |y|

− 1

2 ‖r,− 1

2
,Γ,∗ + ‖ṽ −Πp

tΠ
0
xṽ‖r,− 1

2
,Γ,∗ .

Here, for the first term we have used Lemma 8, and for the second Π0
x = Π0

zΠ
0
y. We note that the

first term is bounded by

‖b(t, z) −Πp
t b(t, z)‖r,ǫ− 1

2

. (∆t)p+1−r max{h1,∆t}
1

2
−ǫ‖b(t, z)‖p+1,0 .

The second and third terms we obtain with Lemma 8:

‖Πp
t b(t, z)|y|

− 1

2 −Πp
tΠ

0
zb(t, z)|y|

− 1

2 ‖r,− 1

2
,Γ,∗ + ‖Πp

tΠ
0
zb(t, z)|y|

− 1

2 −Πp
tΠ

0
zb(t, z)Π

0
y |y|

− 1

2 ‖r,− 1

2
,Γ,∗

. ‖Πp
t b(t, z) −Πp

tΠ
0
zb(t, z)‖r,ε− 1

2

‖|y|−
1

2 ‖H̃−ε(I) + ‖Πp
tΠ

0
zb(t, z)‖r,0‖|y|

− 1

2 −Π0
y|y|

− 1

2‖
H̃− 1

2 (I)
.

From Lemma 12 we have ‖|y|−
1

2−Π0
y|y|

− 1

2 ‖
H̃− 1

2 (I)
. hmin{β

2
, 3
2
}−ε and ‖Πp

t b(t, z)−Πp
tΠ

0
zb(t, z)‖r,ε− 1

2

.

h3/2‖Πp
t b‖r,1+ε.
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After possibly expanding finitely many terms, which may be treated as above, we may assume

that the regular part ṽ in (27) is H1 in space. Localizing in space and time to the space-time

elements (tj, tj+1]×Rkl, as in Figure 2,

‖ṽ −Πp
tΠ

0
xṽ‖r,− 1

2
,Γ,∗ .

∑

j

∑

k,l

‖ṽ −Πp
tΠ

0
xṽ‖r,− 1

2
,(tj ,tj+1]×Rkl,∗

and using Lemma 10 for ṽ and Lemma 3,

‖ṽ −Π0
xΠ

p
t ṽ‖r,− 1

2
,(tj ,tj+1]×Rkl,∗

.σ (∆t)p+1−r max{h1, h2,∆t}
1/2‖∂p+1

t ṽ‖L2([tj ,tj+1]×Rkl)

+max{h1, h2,∆t}
1

2

(
h1‖ṽx‖L2([tj ,tj+1]×Rkl) + h2‖ṽy‖L2([tj ,tj+1]×Rkl)

)
.

By summing over all rectangles Rkl of the mesh of the screen and noting the exponential weight

e−2σt, we conclude that for ∆t . min{h1, h2} we have ‖∂νu− ΠxΠt∂νu‖r,− 1

2
,Γ,∗ . hmin{β/2, 3

2
}−ε.

4.2.1 Approximation of the trace

We now consider the approximation of the solution u to the wave equation on the screen, with

expansion (26), or equivalently the solution to the hypersingular integral equation. Apart from

the energy norm, here the L2-norm is of interest, and we state the result for general Sobolev

indices:

Theorem 18. For r ∈ [0, p) and s ∈ [0, 12 ] there holds ‖u−Π1
xΠ

p
tu‖r, 1

2
−s,Γ,∗ . hmin{β( 1

2
+s), 3

2
+s}−ε.

Proof. Similarly to above, one estimates on every rectangle R of the mesh:

‖Πp
tu−Π1

xΠ
p
tu‖r, 1

2
,(tk ,tk+1]×R,∗ ≤ ‖Πp

t a(t, z)|y|
1/2 −Πp

tΠ
1
xa(t, z)|y|

1/2‖r, 1
2
,(tk ,tk+1]×R,∗

+ ‖Πp
t v̌ −Π1

xΠ
p
t v̌‖r, 1

2
,(tk ,tk+1]×R,∗ .

For the first term we note with Lemma 9:

‖Πp
t a(t, z)|y|

1/2 −Πp
tΠ

1
xa(t, z)|y|

1/2‖r, 1
2
,(tk ,tk+1]×R,∗

≤ ‖Πp
t a(t, z)|y|

1/2 −Πp
tΠ

1
za(t, z)|y|

1

2 +Πp
tΠ

1
za(t, z)|y|

1

2 −Πp
tΠ

1
za(t, z)Π

1
y|y|

1/2‖r, 1
2
,(tk ,tk+1]×R,∗

≤ ‖Πp
t a(t, z)−Πp

tΠ
1
za(t, z)‖r, 1

2
,(tk,tk+1]×I,∗‖|y|

1

2‖
H̃

1
2 (I)

+ ‖Πp
tΠ

1
za(t, z)‖r, 1

2
,(tk ,tk+1]×I,∗‖|y|

1/2 −Π1
y|y|

1

2 ‖
H̃

1
2 (I)

.

Now note that

‖Πp
t a(t, z) −Πp

tΠ
1
za(t, z)‖r, 1

2
,(tk ,tk+1]×I,∗ ≤ C‖Πp

t a(t, z)‖r,2,(tk ,tk+1]×Ih
3

2

and, from Lemma 13,

‖|y|1/2 −Π1
y|y|

1

2 ‖
H̃

1
2 (I)

. hmin{β
2
, 3
2
}−ε .

After possibly expanding finitely many terms, which may be treated as above, we may assume

that the regular part v̌ in (26) is in H3 in space.
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To approximate the regular part v̌, we let U denote the interpolant of v̌ in space and time

on the graded mesh and use Lemma 11. On Q := [0, 1] × [0, 1], decomposed into rectangles

Rjk := [xj−1, xj ]× [yk−1, yk] with side length hj, hk,

‖v̌ − U‖2r,0,Q =
∑

l

N∑

j,k=1

‖v̌ − U‖2r,0,[tl,tl+1)×Rjk

.
∑

l

N∑

j,k=1

(
max{hj ,∆t}

4‖v̌xx‖
2
r,0,[tl,tl+1)×Rjk

+max{hk,∆t}
4‖v̌yy‖

2
r,0,[tl,tl+1)×Rjk

+ (max{hj ,∆t}
4 +max{hk,∆t}

4)‖v̌tt‖
2
r,0,[tl,tl+1)×Rjk

+max{hj ,∆t}
4 max{hk,∆t}

2‖v̌xxy‖r,0,[tl,tl+1)2×Rjk

)

. max{h,∆t}4‖v̌‖2r,3,Q

and

‖v̌ − U‖2r,1,Q =
∑

l

N∑

j,k=1

‖v̌ − U‖2r,1,[tl,tl+1)×Rjk

.
∑

l

N∑

j,k=1

(
max{hj ,∆t}

2‖v̌xx‖
2
r,0,[tl,tl+1)×Rjk

+max{hk,∆t}
2‖v̌yy‖

2
r,0,[tl,tl+1)×Rjk

+max{hj ,∆t}
2‖v̌xt‖

2
r,0,[tl,tl+1)×Rjk

+max{hk,∆t}
4‖v̌xxy‖

2
r,0,[tl,tl+1)×Rjk

+max{hk,∆t}
2‖v̌xyy‖

2
r,0,[tl,tl+1)×Rjk

)

. max{h,∆t}2‖v̌‖2r,3,Q .

Here we have used hk ≤ β h and used the restriction ‖ · ‖r,0,[tl,tl+1)×Rjk
of the Hr

σ(R
+,H0(Rjk))

to the time interval [tl, tl+1). Interpolation yields ‖v̌ − U‖r, 1
2
,Q,∗ . max{h,∆t}

3

2
−ε‖v̌‖r,3,Q.

The approximation argument extends from rectangular to triangular elements as in [36].

4.3 Singularities for polygonal screens and approximation

We consider the singular expansion of the solution to the wave equation (24) with Dirichlet or

Neumann boundary conditions on a polygonal screen Γ. Additional singularities now arise from

the corners of the screen. For simplicity, we restrict ourselves to the model case of a square screen

Γ = (0, 1) × (0, 1) × {0} ∈ R
3. In this geometry, for elliptic problems asymptotic expansions and

their implications for the numerical approximation are discussed in [28, 37].

The following result gives a decomposition of the solution to the Helmholtz equation and its

normal derivative on Γ near the vertex (0, 0), in terms of polar coordinates (r, θ) centered at this

point. Note that we have two boundary values, û±, from the upper and lower sides of the screen.

Theorem 19. For fixed ω 6= 0 with Im ω ≥ 0, let ûω be the solution to the Helmholtz equation

ω2û(ω, x)−∆û(ω, x) = 0, x ∈ R
n \ Γ ,

Bû(ω, x) = ĝ(ω, x), x ∈ Γ , (28)
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where ĝ is sufficiently smooth. a) Assume Bu = ∂νu|Γ. If ĝ ∈ H1(Γ), then

û(ω, x)|+ = χ(r)rγαω(θ) + χ̃(θ)b1,ω(r)(sin(θ))
1

2 (29)

+ χ̃(
π

2
− θ)b2,ω(r)(cos(θ))

1

2 + û0,ω(r, θ) ,

where for all ǫ > 0 we have û0,ω ∈ H̃2−ǫ(Γ), αω ∈ H2−ǫ[0, π2 ], bi,ω = ci,ω,1r
γ− 1

2 + ci,ω,2r
λ− 1

2 +

di,ω(r), di,ω(r) ∈ H
3

2
−ε(R+) with r

3

2
−εdi,ω(r) ∈ L2(R+), ci,ω,j ∈ R. Here χ, χ̃ ∈ C∞

c are cut-off

functions, χ, χ̃ = 1 in a neighborhood of 0.

b) Assume Bu = u|Γ. If ĝ ∈ H2(Γ), then

∂ν û(ω, x)|+ = χ(r)rγ−1αω(θ) + χ̃(θ)b1,ω(r)r
−1(sin(θ))−

1

2

+ χ̃(
π

2
− θ)b2,ω(r)r

−1(cos(θ))−
1

2 + ψ̂0,ω(r, θ) ,

where for all ǫ > 0 we have ψ̂0,ω ∈ H1−ǫ(Γ), αω ∈ H1−ǫ[0, π2 ], bi,ω = ci,ωr
γ +di,ω(r), r

− 1

2di,ω(r) ∈

H1(R+), r−
3

2di,ω(r) ∈ L2(R
+), ci,ω ∈ R. Here χ, χ̃ ∈ C∞

c are cut-off functions, χ, χ̃ = 1 in a

neighborhood of 0.

In fact, if ĝ is a Schwartz function of ω, the decomposition depends smoothly on this variable.

For the square screen γ ≈ 0.2966 and λ ≈ 1.426 are determined by the lowest eigenvalues of the

operator AB on S2 \ (R2
+ × {0}). For the proof of Theorem 19, see [23], p. 108-109.

As above, in analogy with the work of Plamenevskii and coauthors, the asymptotic expansion

translates into the time domain:

u(t, x)|+ = v0(t, r, θ) + χ(r)rγα(t, θ) + χ̃(θ)b1(t, r)(sin(θ))
1

2

+ χ̃(π2 − θ)b2(t, r)(cos(θ))
1

2 , (30)

∂νu(t, x)|+ = ψ0(t, r, θ) + χ(r)rγ−1α(t, θ) + χ̃(θ)b1(t, r)r
−1(sin(θ))−

1

2

+ χ̃(π2 − θ)b2(t, r)r
−1(cos(θ))−

1

2 . (31)

To control the remainder terms in these formal computations requires elliptic a priori weighted

estimates near the singularities, as discussed in [30].

From the decomposition, similar to Theorem 15 we obtain optimal approximation properties

on the graded mesh, where the error is dominated by the edge singularities, not the corners. The

beta needs to be chosen large enough, depending on the singular exponent γ in (30), (31). See

[36, 37] for similar results in the time-independent case.

Theorem 20. Let ε > 0. a) Let u be a strong solution to the homogeneous wave equation with

inhomogeneous Neumann boundary conditions ∂νu|Γ = g, with g smooth. Further, let φβh,∆t be the

best approximation in the norm of Hr
σ(R

+, H̃
1

2
−s(Γ)) to the Dirichlet trace u|Γ in Ṽ p,1

∆t,h on a β-

graded spatial mesh with ∆t . hβ and β ≥ 3
2(γ+ 1

2
)
. Then ‖u−φβh,∆t‖r, 1

2
−s,Γ,∗ ≤ Cβ,εh

min{β
2
, 3
2
}+s−ε,

where s ∈ [0, 12 ] and r ∈ [0, p).

b) Let u be a strong solution to the homogeneous wave equation with inhomogeneous Dirichlet

boundary conditions u|Γ = g, with g smooth. Further, let ψβ
h,∆t be the best approximation in the

18



norm of Hr
σ(R

+, H̃− 1

2 (Γ)) to the Neumann trace ∂νu|Γ in V p,0
∆t,h on a β-graded spatial mesh with

∆t . hβ and β ≥ 3
2(γ+ 1

2
)
. Then ‖∂νu− ψβ

h,∆t‖r,− 1

2
,Γ,∗ ≤ Cβ,εh

min{β
2
, 3
2
}−ε, where r ∈ [0, p + 1).

The theorem again implies a corresponding result for the solutions of the single layer and

hypersingular integral equations on the screen:

Corollary 21. Let ε > 0. a) Let φ be the solution to the hypersingular integral equation (9) and

φβh,∆t the best approximation in the norm of Hr
σ(R

+, H̃
1

2
−s(Γ)) to φ in Ṽ p,1

∆t,h on a β-graded spatial

mesh with ∆t . hβ and and β ≥ 3
2(γ+ 1

2
)
. Then ‖φ − φβh,∆t‖r, 1

2
−s,Γ,∗ ≤ Cβ,εh

min{β( 1
2
+s), 3

2
+s}−ε,

where s ∈ [0, 12 ] and r ∈ [0, p).

b) Let ψ be the solution to the single layer integral equation (3) and ψβ
h,∆t the best approxi-

mation in the norm of Hr
σ(R

+, H̃− 1

2 (Γ)) to ψ in V p,0
∆t,h on a β-graded spatial mesh with ∆t . hβ

and and β ≥ 3
2(γ+ 1

2
)
. Then ‖ψ − ψβ

h,∆t‖r,− 1

2
,Γ,∗ ≤ Cβ,εh

min{β
2
, 3
2
}−ε, where r ∈ [0, p + 1).

The proof of Theorem 20 and Corollary 21 relies on arguments by von Petersdorff [36]. We

refer to this reference for a detailed analysis in the time-independent case.

We recall a key elliptic result from [37], proven there for closed polyhedral surfaces:

Theorem 22. Let ψ ∈ H̃− 1

2 (Γ) have a singular decomposition like the one in Theorem 19 near

every corner of Γ. Then we can approximate ψ for β ≥ 1 on the graded mesh in the following

way: With φh = Π0
xψ we have for all ǫ > 0

‖ψ − φh‖
H̃− 1

2 (Γ)
≤ Cβ,εh

min{β
2
, 3
2
}−ε .

Proof. (of Theorem 20 b) For simplicity, let Γ be the square Q = [0, 1]2. As the approximation

of the regular part ψ0 and the regular edge functions of (31) are already considered in the proof

for the circular screen, it remains to analyze the approximation of the corner singularity and

the corner edge singularity of the expansion (31). In the following we approximate the corner

singularity:

In every space-time element we estimate

‖rγ−1α(t, θ)−Πp
tΠ

0
x,yr

γ−1α(t, θ)‖ ≤ ‖rγ−1α(t, θ)−Πp
t r

γ−1α(t, θ)‖

+ ‖rγ−1Πp
tα(t, θ)−Π0

x,yr
γ−1Πp

tα(t, θ)‖ .

Πtα(t, θ) is of the same form as the singular function α(θ) in the elliptic case. One may therefore

adapt the elliptic approximation results to ‖(1 −Πx,y)r
γ−1Πtα(t, θ)‖. This is then summed over

all elements. We consider

‖rγ−1Πp
tα−Π0

xyr
γ−1Πp

tα‖ = ‖(1 −Π0
xy)r

γ−1Πp
tα(t, θ)‖

Let Πp
tα(t, θ) =

∑p
m=0 t

mαm(θ) and fm(x, y) = rγ−1αm(θ) on [tl, tl+1).
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With U |Rkl
=
∑p

m=0
tm

hkhl

∫
Rkl

fm(x, y)dydx one obtains from (20)

‖rγ−1Πp
tα−Π0

x,yr
γ−1Πp

tα‖
2
r,− 1

2
,Q,∗

.
∑

j

N∑

k,l=1

max{∆t, hk, hl}

(h2k‖∂x(r
γ−1Πp

tα)‖
2
r,0,[tj ,tj+1)×Rkl

+ h2l ‖∂y(r
γ−1Πp

tα)‖
2
r,0,[tj ,tj+1)×Rkl

)

+ ‖rγ−1Πp
tα−Π0

x,yr
γ−1Πp

tα‖
2
r,− 1

2
,R11

.

The individual summands are estimated for different ranges of k, l:

0 1x1 x2 x3

x1

x2

x3

1

x

y

R11 R21 R31

R22R12

R13

Figure 2: Mesh on a square

Estimate for k > 2, l > 2: Note for k > 2, x ∈ [xk−1, xk] there holds |hk| ≤ β2βγ̃hxγ̃ with

γ̃ = 1− 1
β > 0. Therefore, if ∆t ≤ hk for all k

max{hk, hl,∆t}h
2
k‖∂x(r

γ−1Πtα)‖
2
r,0,[tj ,tj+1)×Rkl

. h3‖∂x(r
γ−1Πp

tα)max{xγ̃ , yγ̃}1/2xγ̃‖2r,0,[tj ,tj+1)×Rkl

and

‖rγ−1Πp
tα−Π0

x,yr
γ−1Πp

tα‖
2
r,− 1

2
,
⋃

k≥2,l≥2
Rkl,∗

. h3‖∂x(r
γ−1Πp

tα)max{xγ̃ , yγ̃}1/2xγ̃‖2r,0,Q (32)

+h3‖∂y(r
γ−1Πp

tα)max{xγ̃ , yγ̃}1/2yγ̃‖2r,0,Q .

As |∂x(r
γ−1Πtα)| . rγ−2α̃(t, θ) for some α̃ square-integrable in θ and piecewise polynomial in t,

and max{xγ̃ , yγ̃} ≤ rγ̃ , the right hand side of (32) is finite if

β >
3

2(γ + 1/2)
. (33)

Therefore

‖rγ−1Πp
tα−Π0

x,yr
γ−1Πp

tα‖
2
r,− 1

2
,
⋃

k≥2,l≥2 Rkl,∗
. h3 ,

provided ∆t ≤ hk for all k.
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Estimate for k = 1, l > 1 (analogously k > 1, l = 1): With f(x, y) = rγ−1α(θ)

∑

j

N∑

l=2

‖(1−Π0
xy)Π

p
t f‖

2
r,− 1

2
,[tj ,tj+1)×Rk,l,∗

≤
∑

j

N∑

l=2

max{∆t, hk, hl}
(
h21‖∂x(r

γ−1Πtα)‖
2
r,0,[tj ,tj+1)×Rk,l,∗

+ h2l ‖∂y(r
γ−1Πtα)‖

2
r,0,[tj ,tj+1)×Rk,l,∗

)
.

Proceed as in (32) to see that also this term is bounded for β > 3
2(γ+ 1

2
)
.

Estimate for k = 1, l = 1: rγ−1 ∈ L2(R11) because γ > 0, so the L2-error on R11 is ≤ h31.

‖rγ−1Πp
tα−Πp

tΠ
0
x,yr

γ−1Πp
tα(t, θ)‖

2
r,− 1

2
,R11,∗

. ‖(1−Π0
xy)r

γ−1Πp
tα(t, θ)‖r,−1,R11,∗‖(1−Π0

xy)r
γ−1Πp

tα(t, θ)‖r,0,R11,∗ .

The second term is ≤ hγ . For the first term we obtain

‖(1 −Π0
xy)r

γ−1Πp
tα(t, θ)‖r,−1,R11,∗ ≡ sup

g∈H−1(R+,H̃1(R11))

〈(1−Π0
xy)r

γ−1Πp
tα(t, θ), g〉

‖g‖−r,1,R11

.

Replacing g by g −G, where G is the H−r(R+,H0(R11))-projection of g, we obtain for ∆t ≤ h1:

‖(1−Π0
xy)r

γ−1Πp
tα(t, θ)‖r,−1,R11,∗ ≤ ‖(1−Π0

xy)r
γ−1Πp

tα(t, θ)‖r,0,R11
sup
g

‖g −G‖−r,0,R11

‖g‖−r,1,R11

≤ hγ1h1 .

We conclude

‖rγ−1Πp
tα−Πp

tΠ
0
x,yr

γ−1Πp
tα(t, θ)‖

2
r,− 1

2
,R11,∗

. h2γ+1
1 ≤ h3 .

The approximation of the corner-edge singularities r−1(sin(θ))−
1

2 are similarly obtained from

the elliptic results. For brevity we omit the details.

The proof of Theorem 20 a) uses the following the key elliptic result in [37] for the trace u|Γ
and follows analogously to the above case. It was proven there for closed polyhedral surfaces.

Theorem 23. Let u ∈ H̃
1

2 (Γ) have a singular decomposition like the one in Theorem 19 near

every corner of Γ. Then we can approximate u by piecewise linear functions on the β-graded mesh

for β ≥ 1 in the following way:

For uh = Π1
xψ, we have for all ǫ > 0 and all s ∈ [0, 12 ]

‖u− uh‖Hs(Γ) ≤ Cβ,εh
min{β(1−s),2−s}−ε .
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5 Algorithmic considerations

On the left hand side of (18), we use ansatz functions ψ∆t,h(t, x) =
∑

m,i ψ
m
i γ

m
∆t(t)ψ

i
h(x) ∈ V 0,0

h,∆t

and test functions Ψn,l(t, x) = γ∆t(t)ψ
l
h(x)(x) ∈ V 0,0

h,∆t to obtain for the single layer potential:

∫ ∞

0
〈V ψ∆t,h, γ̇

n
∆tψ

l
h〉dt =

∑

m,i

ψm
i

1

4π

∫ ∞

0

∫

Γ×Γ

1

|x− y|
γm∆t(t− |x− y|)ψi

h(y)γ̇
n
∆t(t)ψ

l
h(x)dsxdsydt

=
∑

m,i

ψm
i

1

4π

∫

Γ×Γ

ψi
h(y)ψ

l
h(x)

|x− y|

∫ ∞

0
γm∆t(t− |x− y|)γ̇n∆t(t)dt dsxdsy

=
∑

m,i

ψm
i

1

4π

∫

Γ×Γ

ψi
h(y)ψ

l
h(x)

|x− y|
(χEn−m−1

(x, y)− χEn−m(x, y)) dsxdsy

=
∑

m,i

ψm
i

1

4π
[

∫

En−m−1

ψi
h(y)ψ

l
h(x)

|x− y|
dsxdsy −

∫

En−m

ψi
h(y)ψ

l
h(x)

|x− y|
dsxdsy]

for all n = 1, ..., Nt and l = 1, ..., Ns. Here the light cone El is defined as

El := {(x, y) ∈ Γ× Γ : tl ≤ |x− y| ≤ tl+1} ,

and its indicator function is defined as χEl
(x, y) = 1 if (x, y) ∈ El, and χEl

(x, y) = 0 otherwise.

The integrals are evaluated using a composite hp-graded quadrature [11].

For piecewise constant test functions in time, the Galerkin discretization leads to a block–

lower–triangular system of equations, which can be solved by blockwise forward substitution. For

the Dirichlet problem (18) we obtain an algebraic system of the form

n∑
m=1

V n−mψm = fn−1 − fn ,

where ψm is the vector with components ψm
i of the the ansatz function ψ∆t,h(t, x) and fn =∫

Γ f(tn, x) dsx. Forward substitution gives rise to the marching-in-on-time (MOT) scheme

V 0ψn = fn−1 − fn −
n−1∑
m=1

V n−mψm . (34)

The resulting algorithm is given as Algorithm 1.

We remark that for a bounded surface Γ the matrices V n−m vanish whenever the time differ-

ence l = n−m satisfies l >
[
diamΓ
∆t

]
, i.e. the light cone has passed the entire surface Γ.

The implementation of W is based on the weak form (19) and the formula

∫

R+×Γ
(Wφ) ∂tΦ dt dsx =

1

2π

∫ ∞

0

∫

Γ×Γ

{−nx · ny
|x− y|

φ̇(τ, y)Φ̈(t, x)

+
(∇Γφ)(τ, y) · (∇ΓΦ̇)(t, x)

|x− y|

}
dsy dsx dt ,

22



Algorithm 1 Marching-on-in-time algorithm.

for n = 1, 2, . . . do

if n− 1 >
[
diamΓ
∆t

]
then

V n−1 = 0

else

Compute and store

(V n−1)il =
1

4π

∫

En−1

ψi
h(y)ψ

l
h(x)

|x− y|
dsxdsy, i, l = 1, . . . , Ns

end if

Compute right hand side fn−1 − fn −
∑n−1

m=1 V
n−mψm

Solve system of linear equations (34)

Store solution ψn

end for

see [15] for details. We use ansatz functions in Ṽ 1,1
h,∆t. To obtain an MOT scheme the test functions

Φ̇h,∆t(t, x) ∈ Ṽ 0,1
h,∆t are piecewise constant in time and piecewise linear in space.

Similar formulas hold for the operators K,K ′, and variants of the discretizations for V , W .

The resulting MOT schemes are described in [5]. They can be combined into a stable scheme

for the Dirichlet-to-Neumann operator S from (14), with σ = 0, using the representation S =

W − (K ′ − 1
2I)V

−1(K − 1
2I) in terms of layer potentials. As in [12], the Dirichlet-to-Neumann

equation (15), Su = h, is equivalently reformulated as follows:

For given h ∈ H
3

2
σ (R+,H− 1

2 (Γ)), find φ ∈ H
1

2
σ (R+, H̃

1

2 (Γ)), ψ ∈ H
1

2
σ (R+, H̃− 1

2 (Γ)) such that

∞∫

0

〈Wφ− (K ′ − 1
2)ψ,Φ〉Γ dt =

∞∫
0

〈h,Φ〉Γ dt , (35)

∞∫

0

[〈V ψ, ∂tΨ〉Γ − 〈(K − 1
2)φ, ∂tΨ〉Γ] dt = 0, (36)

holds for all Φ ∈ H
1

2
σ (R+, H̃

1

2 (Γ)),Ψ ∈ H
1

2
σ (R+, H̃− 1

2 (Γ)).

For the discretization, we look for φ∆t,h ∈ Ṽ 1,1
∆t,h, ψ∆t,h ∈ V 1,1

∆t,h linear in space and time. To obtain

a marching-on-in-time scheme we test the first equation against constant test functions in time

and the second equation against the time derivative of constant test functions.

6 Numerical experiments

6.1 Single layer potential

Example 1. Using the discretization from Section 3, we compute the solution to the integral

equation V ψ = f on R
+
t × Γ with the circular screen Γ = {(x, y, 0) : 0 ≤

√
x2 + y2 ≤ 1} depicted

in Figure 1. We use the weak form (18) with constant test and ansatz functions in space and time.
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The right hand side is given by f(t, x) = cos(|k|t− k ·x) exp(−1/(10t2)), where k = (0.2, 0.2, 0.2).

The time discretization errors are negligibly small in this numerical experiment, when the time

step is chosen to be ∆t = 0.005. We compute the solution up to T = 1. The finest graded mesh

consists of 2662 triangles, and we use the solution on this mesh as reference solution using the

same ∆t = 0.005.

Figure 3 shows the density along a cross-section on a β-graded mesh with β=2 and 2662 tri-

angles at time T = 0.5. The figure exhibits the edge singularities predicted by the decomposition

in equation (27) and illustrates the qualitative behavior of the solution.

Figure 3: Solution of the single layer equation at T = 0.5 along y = 0 on the circular screen,

Example 1

Figure 4 examines the detailed singular behavior near the outer edge at (1, 0). It plots the

numerical density at times T = 0.5, 0.75, 1.0 against the distance to the edge along x-axis. In

the log-log plot the slope of the curve near 0 corresponds to the edge exponent in decomposition

(27).

The numerical solution exhibits edge singularities in close agreement with (27). Numerically, the

singular exponents are within 8% of the theoretical value of −1
2 for the edge at these times. Note

that the convergence of our boundary element method in the energy norm does not a priori imply

convergence for the numerically computed singular exponents.

For Example 1, we finally consider the error compared to the benchmark solution on the

2-graded mesh. Because of the low spatial regularity of the solution, the numerical solutions

cannot be expected to converge in L2([0, T ] × Γ). As a weaker measure, we consider the energy

norm defined by the single layer operator, which is computed from the stiffness matrix V and

the solution vector u as E(ψ) = 1
2ψ

⊤V ψ − ψ⊤f . It is comparable or weaker than the norm

of H0
σ(R

+,H− 1

2 (Γ)). For the error as a function of the degrees of freedom, Figure 5 shows

convergence in the energy norm with a rate −0.52 on the 2-graded mesh, respectively −0.26 on

the uniform mesh. The error therefore behaves in agreement with the approximation properties

proportional to ∼ h (equivalently, ∼ DOF− 1

2 ) on the 2-graded mesh, while the convergence is
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∼ h1/2 (∼ DOF−1/4) on a uniform mesh.
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Figure 4: Asymptotic behavior of the solution to the single layer equation near edge along y = 0,

Example 1
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Figure 5: Energy error for single layer equation on circular screen, Example 1

Example 2. Using the discretization from Section 3, we compute the solution to the integral

equation V ψ = f on R
+
t × Γ with the square screen Γ = [−1, 1]2 × {0} using the weak form

(18), with constant test and ansatz functions in space and time. The right hand side is given by

f(t, x) = cos(|k|t− k · x) exp(−1/(10t2)), where k = (0.2, 0.2, 0.2). The time discretization errors

are negligibly small in this numerical experiment, when the time step is chosen to be ∆t = 0.005.

We compute the solution up to T = 1. The finest graded mesh consists of 2312 triangles, and we

use the solution on this mesh as reference solution using the same ∆t = 0.005.

Figures 6 and 7 show the density along a cross-section and along a longitudinal section on a

β-graded mesh with β=2 and 2312 triangles at time T = 0.5. Both figures exhibit the corner and
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edge singularities predicted by the decomposition (31) and illustrate the qualitative behavior of

the solution. Figure 8 compares the solution along the cross-section on a 2-graded mesh against

the solution on two uniform meshes. We see that the 2-graded mesh yields a higher resolution of

the corner singularities compared to the uniform meshes.
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Figure 6: Solution of the single layer equation at T = 0.5 along y = x on the square screen,

Example 2
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Figure 7: Solution of the single layer equation at T = 0.5 along y = 0 on the square screen,

Example 2
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Figure 8: Numerical computation of the corner singularity along diagonal from (−1,−1) to (1, 1)

at time T = 0.5, Example 2

Figure 9 examines the detailed singular behavior near the corner (1, 1). It plots the numerical

density at times T = 0.5, 0.75, 1.0 against the distance to the corner along the diagonal of the

screen. In the log-log plot the slope of the curve near 0 corresponds to the corner exponent

in decomposition (31). Similarly, Figure 10 shows the density as a function of x for y = 0,

perpendicular to the edge, at the same times.

After a short computational time, the numerical solution exhibits edge and corner singularities

corresponding to (31). Numerically, the singular exponents at large enough times T = 0.5, 0.75, 1

are within 2% of the theoretical value of −1
2 for the edge, while they are around −0.78 for the

corner, approximately 10% higher than the theoretical exponent γ−1. Note that the convergence

of our boundary element method in the energy norm does not a priori imply convergence for the

numerically computed singular exponents.
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Figure 9: Asymptotic behavior of the solution to the single layer equation near corner along

y = x, Example 2
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Figure 10: Asymptotic behavior of the solution to the single layer equation near edge along y = 0,

Example 2
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Figure 11: Energy error norm for single layer equation on square screen, Example 2

For Example 2, we finally consider the error compared to the benchmark solution on the 2-

graded mesh. Like in Example 1, we consider the energy norm defined by the single layer operator.

Figure 11 shows convergence of the norm with rates −0.54 on the 2-graded mesh, respectively

−0.27 on the uniform mesh in terms of degrees of freedom. These closely mirror the approximation

results, which predict an approximation error proportional to ∼ h (equivalently, ∼ DOF− 1

2 ) on

the 2-graded mesh, while the approximation error is ∼ h
1

2 (∼ DOF− 1

4 ) on a uniform mesh. In

particular, compared to Example 1, the corner singularities of the square screen do not affect the

convergence rate.

To further probe the effect of the corners we also consider the L2 norm in time of the sound

pressure evaluated in a point. For applications the approximation of the sound pressure away

from the screen is often the most relevant measure. We evaluate the sound pressure by substi-

tuting the density ψ∆t,h into the single layer potential, p∆t,h = Sψ∆t,h, and use a tensor product

Gaussian quadrature with 400 nodes per triangle to evaluate the integral. Figure 12 shows the L2

error in time of the sound pressure evaluated in three points outside of the screen, (1, 1, 0.004),

(0.75, 0.75, 1) and (1, 1.25, 0.25). In each of the points, the convergence is proportional to ∼ h2,

resp. ∼ h, as for the energy norm. However, while the convergence rate is in agreement with the

energy norm, the error in the sound pressure strongly depends on the location of the point. In

(1, 1, 0.004), at distance 0.004 from the corner of the screen, the error is an order of magnitude

higher than in the points (0.75, 0.75, 1) and (1, 1.25, 0.25), which are at a distance of order 1.
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Figure 12: L2([0, T ]) error for the sound pressure in three points outside square screen, computed

from single layer equation, Example 2

6.2 Hypersingular operator

Example 3. Using the discretization from Section 3, we compute the solution to the integral

equation Wφ = g on R
+
t × Γ with the circular screen Γ = {(x, y, 0) : 0 ≤

√
x2 + y2 ≤ 1} depicted

in Figure 1. We use the weak form (19) with linear ansatz and test functions in space, linear

ansatz and constant test functions in time. Here,

g(t, x) = (−3
4 + cos(π2 (4− t)) + π

2 sin(
π
2 (4− t))− 1

4(cos(π(4 − t)) + π sin(π(4− t))))

× [H(4 − t)−H(−t)],

where H is the Heaviside function. The time discretization errors are negligibly small in this

numerical experiment, when the time step is chosen to be ∆t = 0.01. We compute the solution

up to T = 4. The finest graded mesh consists of 2662 triangles, and we use the solution on this

mesh as reference solution using the same ∆t = 0.01.
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Figure 13: Solution of the hypersingular equation at T = 2 along y = 0 on the circular screen,

Example 3

Figure 13 shows the density along a cross-section on a β-graded mesh with β=2 and 2662

triangles at time T = 2. The figure exhibits the edge singularities predicted by the decomposition

(26) and illustrates the qualitative behavior of the solution.
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Figure 14: Asymptotic behavior of the solution to the hypersingular equation near edge along

y = 0, Example 3

Figure 14 examines the detailed singular behavior at the circular edge along the x-axis near

the point (1, 0). It plots the numerical density at times up to T = 2.5 against the distance to

the edge. For the singular exponents, we numerically obtain values within 5% of the theoretical

value of 1
2 , except at the earliest time T = 0.5, when compute an exponent 0.41.
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Figure 15: L2([0, T ], L2(Γ)) and energy error for hypersingular equation on circular screen, Ex-

ample 3

Finally, Figure 15 shows the error in both the energy and L2([0, T ], L2(Γ)) norms with respect

to the benchmark solution. The convergence rate in terms of the degrees of freedom on the

2-graded mesh is −0.47 in energy and −0.93 in L2. It is in close agreement with a convergence

proportional to ∼ h (equivalently, ∼ DOF−1/2) predicted by the approximation properties in the

energy norm, and ∼ h2 (equivalently, ∼ DOF−1) in L2. On the uniform mesh the rate is −0.18

in energy and −0.33 in L2.

Example 4. Using the discretization from Section 3, with test and ansatz functions as in Example

3, we compute the solution to the integral equation Wφ = g on R
+
t × Γ with the square screen

Γ = [−1, 1]2 × {0}. We prescribe the right hand side

g(t, x) = (−
3

4
+ cos(

π

2
(4− t)) +

π

2
sin(

π

2
(4− t))−

1

4
(cos(π(4− t)) + π sin(π(4 − t))))

× [H(4− t)−H(−t)],

where H is the Heaviside function, and set ∆t = 0.01, T = 4. The finest graded mesh consists

of 2312 triangles, and we use the solution on this mesh as reference solution using the same

∆t = 0.01.

The density along the diagonal x = y, respectively along y = 0, exhibit the corner and

edge singularities predicted by the decomposition (30). The qualitative behavior of the solution

at T = 2 along the diagonal y = x of the square screen is shown in Figure 16, illustrating the

singularity in the corners. Figure 17 shows the behaviour along y = 0, with the edge singularity at

the boundary of the screen. As the solution to the hypersingular equation lies in H
1

2
σ (R

+, H̃
1

2 (Γ)),

its conforming numerical approximation tends to zero at both edges and corners.
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Figure 16: Solution of the hypersingular equation at T = 2 along y = x on the square screen,

Example 4

Figure 17: Solution of the hypersingular equation at T = 2 along y = 0 on the square screen,

Example 4

Figure 18 examines the detailed singular behavior near the corner (1, 1). It plots the numerical

density at times up to T = 2.5 against the distance to the corner along the diagonal of the

screen. The numerically computed singular exponents in the corner of around 0.67 do not show

good agreement with the exact corner exponent γ. The density as a function of x for y = 0,

perpendicular to the edge, is shown in Figure 19 at the same times. Unlike for the corner

exponent, the numerically computed singular exponent at the edge, around 0.48, is witin 8% of

the exact value 1
2 for early times, and within 4% for T ≥ 1.5.
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Figure 18: Asymptotic behavior of the solution to the hypersingular equation near corner along

y = x, Example 3
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Figure 19: Asymptotic behavior of the solution to the hypersingular equation near edge along

y = 0, Example 3
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Figure 20: L2([0, T ], L2(Γ)) and energy error for hypersingular equation on square screen, Exam-

ple 4

Finally, Figure 20 shows the error in both the energy and L2([0, T ], L2(Γ)) norms with respect

to the benchmark solution. The convergence rate in terms of the degrees of freedom on the 2-

graded mesh is −0.51 in energy and −1.05 in L2. On the uniform mesh the rate is −0.26 in energy

and −0.50 in L2. The rates on the 2-graded meshes are in close agreement with a convergence

proportional to ∼ h (equivalently, ∼ DOF−1/2) predicted by the approximation properties in the

energy norm, and ∼ h1/2 (∼ DOF−1/4) on uniform meshes. Also in L2 norm, the convergence

corresponds to the expected rates: Approximately ∼ h2 (equivalently, ∼ DOF−1) on 2-graded

meshes, ∼ h (equivalently, ∼ DOF−1/2) on uniform meshes. In all cases the convergence is twice

as fast on the 2-graded compared to the uniform meshes.

6.3 Dirichlet-to-Neumann operator

In addition to the single layer and hypersingular operators in the previous subsections, we also

consider the Dirichlet-to-Neumann operator on the screen. Compared to the hypersingular opera-

tor, the Dirichlet-to-Neumann operator is not available in closed form and requires approximation.

It is of interest to see the influence of the approximation of the operator on the numerical solution.

Example 5. Using the discretization from Section 3, we compute the solution to the integral

equation Su = h on R
+
t × Γ with Γ = [−1, 1]2 × {0}. We prescribe the right hand side

h(t, x) = (−3
4 + cos(π2 (4− t)) + π

2 sin(
π
2 (4− t))− 1

4(cos(π(4− t)) + π sin(π(4− t))))

× [H(4− t)−H(−t)],

where H is the Heaviside function, and set ∆t = 0.01, T = 0.65. The finest graded mesh consists

of 2312 triangles, and we use the solution on this mesh as reference solution using the same

∆t = 0.01.

Figures 21 and 22 show the density along a cross-section and along a longitudinal section on

a β-graded mesh with β=2 and 2312 triangles at time T = 0.5. Both figures exhibit the corner
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and edge singularities predicted by the decomposition 30 and illustrate the qualitative behavior

of the solution. As the solution to the Dirichlet-to-Neumann equation lies in H
1

2
σ (R

+, H̃
1

2 (Γ)), its

conforming numerical approximation is zero at the boundary of the screen.

Figure 23 examines the detailed singular behavior near the corner (1, 1). It plots the numerical

density at times T = 0.25, 0.5, 0.6, 0.65 against the distance to the corner along the diagonal of

the screen. In the log-log plot the slope of the curve near 0 corresponds to the corner exponent in

the singular expansion. Similarly, Figure 24 shows the density as a function of y for x = −0.8754,

perpendicular to the edge, at the same times. The numerically computed singular exponents

of the edge, around 0.4, are in qualitative agreement with the exact value 1
2 . For the corner,

the computed value above 0.6 differs significantly from the exact value γ. A similar difference

was observed in the previous section for the hypersingular operator, so that the approximation

involved in computing the Dirichlet-to-Neumann operator is not the source of this discrepancy.
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Figure 21: Solution of the Dirichlet-to-Neumann equation at T = 0.65 along y = x on the square

screen, Example 5
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Figure 22: Solution of the Dirichlet-to-Neumann equation at T = 0.65 along x = −0.8754 on the

square screen, Example 5
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Figure 23: Asymptotic behavior of the solution to the Dirichlet-to-Neumann equation near corner

along y = x, Example 5
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Figure 24: Asymptotic behavior of the solution to the Dirichlet-to-Neumann equation near edge

along x = −0.8754, Example 5
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Figure 25: Error in L2([0, T ], L2(Γ)) norm for Dirichlet-to-Neumann equation on square screen,

Example 5

Figure 25 shows the error in L2([0, T ] × Γ) compared to the benchmark solution. The con-

vergence in this norm is proportional to ∼ h2 (equivalently, ∼ DOF−1) on the 2-graded mesh,

while the convergence is ∼ h1 (∼ DOF− 1

2 ) on a uniform mesh. This coincides with the rates

expected from the approximation property of the graded, respectively uniform meshes, and it is

also in agreement with the rates obtained for the hypersingular operator on the square screen in

the previous section.
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7 Applications to traffic noise: Horn effect

For applications in traffic noise, the natural (simplified) geometry is that of a half-space R
3
+ with

a tire, as displayed in Figure 26. The horn like geometry between the tire and the street amplifies

sound sources close to the contact patch, and it is of interest to compute the amplification for a

broad band of frequencies. See also [5, 27]. See [21, 22] for the complementary problem of the

tire dynamics in contact with the road.

We consider the wave equation for the sound pressure scattered by the tire, with homogeneous

Neumann conditions on the street Γ∞ = R
2 × {0} and inhomogeneous Neumann conditions on

the tire. Note that the boundary conditions jump in the cuspidal geometry between the tire and

the road surface. The relevant Green’s function in R
3
+ is given by

G(t, x, y) =
δ(t− |x− y|)

4π|x− y|
+
δ(t− |x− y′|)

4π|x− y′|
, (37)

where y′ is the reflection of y on Γ∞. We use it in a single layer potential ansatz for a sound

pressure scattered by the tire,

p(t, x) =
1

4π

∫

Γ

φ(t− |x− y|, y)

|x− y|
dsy +

1

4π

∫

Γ

φ(t− |x− y′|, y)

|x− y′|
dsy , (38)

with φ(s, y) = 0 for s ≤ 0. The Neumann problem for the scattered sound translates into an

integral equation for φ:

(
−I +K ′

)
φ(t, x) = 2

∂p

∂n
(t, x) = −2

∂pI

∂n
(t, x) , (39)

with pI the incoming wave and the adjoint double layer operator K ′ from (4),

K ′φ(t, x) =
1

2π

∫

Γ

n⊤x (y − x)

|x− y|

(
φ(t− |x− y|, y)

|x− y|2
+
φ̇(t− |x− y|, y)

|x− y|

)
dsy

+
1

2π

∫

Γ

n⊤x (y
′ − x)

|x− y′|

(
φ(t− |x− y′|, y)

|x− y′|2
+
φ̇(t− |x− y′|, y)

|x− y′|

)
dsy.

The weak formulation reads:

Find φ ∈ H
1

2
σ (R+, H̃− 1

2 (Γ)) such that for all test functions ψ ∈ H
1

2
σ (R+,H− 1

2 (Γ))

∫ ∞

0

∫

Γ

(
−I +K ′

)
φ ψ dsx dσt = −2

∫ ∞

0

∫

Γ

∂pI

∂n
ψ dsx dσt . (40)

It is discretized with piecewise constant ansatz and test functions ψh
i (x)γ

n
∆t(t) ∈ V 0,0

t,h in space

and time.

To obtain the sound amplification for the entire frequency spectrum in one time domain

computation, we consider the sound emitted by a Dirac point source. It is located in the point

ysrc = (0.08, 0, 0) near the horn,

pI =
δ(t− |x− ysrc|)

4π|x− ysrc|
+
δ(t − |x− y′src|)

4π|x− y′src|
. (41)
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Figure 26: Cross section of geometrical setup for horn effect.

The right hand side of the discretization of the integral equation (40) is calculated to be [5]

− 2

∫ ∞

0

∫

Γ

∂pI

∂n
ψh
i γ

n
∆t dsx dt = −

∫

Ti∩E(ysrc)

n⊤x (ysrc − x)

π|x− ysrc|3
dsx + n⊤x (ysrc − x)

{
ζ(tn−1)

πt2n−1

−
ζ(tn)

πt2n

}
.

The first term is an integral over the domain of influence E(ysrc)= {x ∈ Γ : tn−1 ≤ |x− ysrc| ≤ tn}

of ysrc, intersected with Ti = supp ψh
i , and it is computed in the same way as the entries of the

Galerkin matrix. In the second term, ζ(t) denotes the length of the curve segment Ti∩{|x−ysrc| =

t} inside the triangle Ti.

After solving the discretization of (40) for the density φ, we obtain the sound pressure p in

the receiver point xfp = (1, 0, 0) from (38). From [27, Eq. 7], the amplification factor is given by:

∆LH(ω) = 20 log10

(
|p̂(ω, xfp) + p̂I(ω, xfp)|

|p̂I(ω, xfp)|

)
.

Here, p̂ and p̂I denote the Fourier transformed incident and scattered sound pressure fields. The

Fourier transformation is calculated using a discrete FFT, where the time step size is the same

as for the computation of the density.

In the geometry given by Figure 26, we compute the sound amplification in standard units for

a grown slick 205/55R16 tire at 2 bar pressure. It is subject to 3415N axle load at 50 km/h on a

street with an ISO 10844 surface, and a mesh with 6027 nodes is depicted in Figure 27. We use

this and a refined graded mesh and consider the sound amplification for frequencies between 200

and 2000 Hz. The total time interval is T = 24 and the time step sizes ∆t = 0.005, 0.01, 0.04.

For smaller time step sizes more reflections in the horn can be resolved, and these are responsible

for the sound amplification.

We compare the results for the uniform mesh with a refined, graded-like mesh with grading

parameter β = 2, see Figure 27. Figure 28 shows approximations of the amplification factor in

the horn geometry, discretized using the graded mesh, across the frequency range for the time

step sizes ∆t = 0.005, 0.01, 0.04. We also show the approximation given by the uniform tire

mesh for ∆t = 0.005. The figure, in particular, exhibits several resonances between 1000 and

2000 Hz, at which the different approximations lead to significant differences in the computed

amplification factors.

The differences between the computed amplification factors are depicted in Figure 29. The

first subfigure considers the differences between the graded and uniform meshes for a given time
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step size, ∆t = 0.005, 0.01, 0.04. Outside the resonance frequencies the differences are negligible.

Especially in the strong resonances around 1300 and 1900 Hz, however, the difference between

graded and uniform meshes becomes more and more relevant for smaller ∆t, as the small time

step allows to resolve the reflections in the horn geometry more accurately. The second subfigure

of Figure 29 compares the computed amplification for graded meshes for different ∆t. As before,

the differences are mostly relevant near resonance frequencies, and the discretization error for a

fixed mesh decreases with ∆t. For ∆t = 0.005 the differences between the spatial, resp. temporal

discretizations in Figure 29 are both around 6 dB near 1300 Hz. Such differences in sound pres-

sure are significant to the human perception. They indicate the relevance of graded meshes for

computations of traffic noise.

(a) (b)

Figure 27: Mesh of (a) slick 205/55R16 tire and (b) graded refinement.
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[2] I. Babuška, R. B. Kellogg, J. Pitkäranta, Direct and inverse error estimates for finite ele-

ments with mesh refinements, Numer. Math. 33 (1979), 447-471.

42



[3] A. Bamberger, T. Ha Duong, Formulation variationnelle espace-temps pour le calcul par

potentiel retarde d’une onde acoustique, Math. Meth. Appl. Sci. 8 (1986), 405-435 and 598-

608.

[4] L. Banjai, Time-domain Dirichlet-to-Neumann map and its discretization, IMA J. Numer.

Anal. 34 (2014), 1136-1155.

[5] L. Banz, H. Gimperlein, Z. Nezhi, E. P. Stephan, Time domain BEM for sound radiation of

tires, Computational Mechanics 58 (2016), 45-57.

[6] E. Becache, T. Ha-Duong, A space-time variational formulation for the boundary integral

equation in a 2d elastic crack problem, RAIRO 28 (1994), 141-176.

[7] M. Costabel, Time-dependent problems with the boundary integral equation method, Ency-

clopedia of Computational Mechanics (2004), 1-25.

[8] M. Dauge, Elliptic boundary value problems in corner domains, Lecture Notes in Mathe-

matics 1341, Springer-Verlag, 1988.

[9] V. Ervin, E. P. Stephan, A boundary-element method with mesh refinement for a weakly

singular integral equation, Communications in Applied Numerical Methods 7 (1991), 273-

280.

[10] V. Ervin, E. P. Stephan, An improved boundary element method for the charge density of

a thin electrified plate in R
3, Mathematical Methods in the Applied Sciences 13 (1990),

291-303.

[11] H. Gimperlein, M. Maischak, E. P. Stephan, Adaptive time domain boundary element methods

and engineering applications, Journal of Integral Equations and Applications 29 (2017), 75-

105.

[12] H. Gimperlein, F. Meyer, C. Oezdemir, E. P. Stephan, Time domain boundary elements

for dynamic contact problems, Computer Methods in Applied Mechanics and Engineering

(2018), to appear.

[13] H. Gimperlein, Z. Nezhi, E. P. Stephan, A priori error estimates for a time-dependent bound-

ary element method for the acoustic wave equation in a half-space, Mathematical Methods

in the Applied Sciences 40 (2017), 448-462.

[14] H. Gimperlein, C. Oezdemir, D. Stark, E. P. Stephan, A residual a posteriori estimate for

the time-domain boundary element method, preprint.
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