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Abstract This article presents a fast sparse grid based space-time boundary element method for

the solution of the nonstationary heat equation. We make an indirect ansatz based on the thermal

single layer potential which yields a first kind integral equation. This integral equation is discretized

by Galerkin’s method with respect to the sparse tensor product of the spatial and temporal ansatz

spaces. By employing the H-matrix and Toeplitz structure of the resulting discretized operators, we

arrive at an algorithm which computes the approximate solution in a complexity that essentially

corresponds to that of the spatial discretization. Nevertheless, the convergence rate is nearly the

same as in case of a traditional discretization in full tensor product spaces.
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1 Introduction

The numerical solution of parabolic evolution problems arises in many applications. In case of the non-

stationary heat equation, a boundary reduction by means of boundary integral equations is possible.

Provided that the heat equation is homogeneous, only the n-dimensional surface Γ := ∂Ω needs to be

discretized instead of the spatial domain Ω ⊂ Rn+1, n = 1, 2. If one uses NΓ degrees of freedom for

discretizing functions on the surface Γ and NI degrees of freedom for discretizing functions on the

time interval I, then a traditional Galerkin discretization would have NΓ ·NI degrees of freedom. By

“traditional” we mean the discretization of functions on Γ × I in the full tensor product space. On the

other hand, by using the sparse tensor product between the spatial and temporal ansatz space, this
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number of the degrees of freedom can be considerably reduced to essentially max{NΓ , NI} degrees of

freedom, see e.g. [3,7,23]. Here and in the sequel, essentially means that the complexity estimate may

be multiplied by (poly-) logarithmic factors. In the context of space-time discretizations, this fact

has been exploited in e.g. [8,18] for finite element methods and in [5] for boundary element methods.

The nonlocality of boundary integral operators results in densely populated system matrices and

algorithms that scale at least quadratically in the number of degrees of freedom, unless fast methods

are used. Such methods have been developed recently for the layer potentials of the heat equation

when using the full tensor product space, see e.g. [19,20], but for sparse tensor product spaces this

is still an open problem.

This article presents a fast algorithm which scales essentially linearly in the number of degrees of

freedom of the sparse tensor product space. Consequently, we are able to take full advantage of the

reduction of the degrees of freedom. For further literature on boundary element methods for sparse

grid discretizations, we refer the reader to e.g. [4,9,17,21].

The rest of the article is organized as follows. Section 2 introduces the Dirichlet problem for the heat

equation and the indirect boundary integral reformulation using the thermal single layer operator.

The traditional Galerkin discretization in full tensor product spaces is discussed in Section 3. The

sparse tensor product discretization is then considered in Section 4. In particular, we show that the

convergence rate is nearly the same as for the traditional Galerkin discretization provided that the

solution offers enough smoothness in terms of Sobolev spaces of dominant mixed derivatives. Section 5

describes the numerical realization of a fast boundary element method which scales essentially linear

in the dimension of the sparse tensor product space. This algorithm heavily relies upon the fact that

the stiffness matrix is Toeplitz in time. It remains to show that the the spatial portion of the system

matrix can also be applied efficiently. This is the topic of Section 6 while the related error analysis is

derived in Section 7. Finally, numerical results obtained with our impementation of the algorithm is

presented in Section 8.

To keep the technical level of the discussion at a minimum, we focus here on the thermal single

layer potential operator. The treatment of the double layer, adjoint and hypersingular operators

is analogous which permits the solution of a wide range of inital boundary value problems of the

Heat equation. The discussion is limited to homogenous initial conditions and source terms. While

the efficient treatment of the corresponding integral operators with sparse grids is conceivable, the

implementation would likely require significant modifications of the methodology.

2 Problem formulation

Let Ω ⊂ Rn+1, n = 1, 2, be a simply connected domain with piecewise smooth boundary Γ := ∂Ω and

let I = (0, T ) be a time interval for for a given T > 0. We consider the following Dirichlet boundary

problem for the heat equation: Seek u ∈ H1(Ω)⊗ L2(I) ∩H−1(Ω)⊗H1(I), such that

∂tu−∆u = 0 in Ω × I (2.1)

with boundary condition

u = f on Γ × I (2.2)

and initial condition

u = 0 on Ω × {0}. (2.3)
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To solve the problem (2.1)–(2.3), we introduce the thermal single layer operator

Vg(x, t) =

∫ t

0

∫
Γ

G(‖x− y‖, t− τ)g(y, τ) dσy dτ (2.4)

where x ∈ Γ and G(·, ·) is the heat kernel, given by

G(r, t) =
1

(4πt)
n+1
2

exp

(
−r

2

4t

)
, t ≥ 0 (2.5)

and G(r, t) = 0 if t < 0.

In view of the continuity of the single layer potential operator at the boundary, the ansatz

u(x, t) =

∫ t

0

∫
Γ

G(‖x− y‖, t− τ)q(y, τ) dσy dτ (2.6)

amounts to the boundary integral equation

Vq = f on Γ × I. (2.7)

Once (2.7) has been solved for q, the solution u of the heat equation (2.1)–(2.3) can be computed for

all (x, t) ∈ Ω × I by means of (2.6).

To describe the mapping properties of the boundary integral operator V, let us consider for r, s ≥ 0

the anisotropic Sobolev spaces of the following form

Hr,s(Γ × I) := Hr(Γ )⊗ L2(I) ∩ L2(Γ )⊗Hs
0(I),

where the index 0 indicates that zero initial conditions at t = 0 are incorporated. The norm of

Hr,s(Γ × I) is

‖u‖Hr,s(Γ×I) = ‖u‖Hr(Γ )⊗L2(I) + ‖u‖L2(Γ )⊗Hs(I).

Moreover, if r, s < 0, the space Hr,s(Γ × I) is defined by duality, i.e., Hr,s(Γ × I) :=
(
H−r,−s(Γ × I)

)′
.

Then, in accordance with [6,16], the operator V defines a bilinear form on H−
1
2
,− 1

4 (Γ × I) which is

continuous

〈Vp, q〉L2(Γ×I) . ‖p‖H− 1
2
,− 1

4 (Γ×I)
‖q‖
H−

1
2
,− 1

4 (Γ×I)
for all p, q ∈ H−

1
2
,− 1

4 (Γ × I)

and elliptic

〈Vp, p〉L2(Γ×I) & ‖p‖
2

H−
1
2
,− 1

4 (Γ×I)
for all p ∈ H−

1
2
,− 1

4 (Γ × I).

Consequently, the boundary integral equation (2.7) is uniquely solvable provided that the right hand

side satisfies f ∈ H
1
2
, 1
4 (Γ × I).

Note that here and in the following . and & indicate that the inequalities hold up to positive

multiplicative constants. Further, a ∼ b means that a . b . a.
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3 Galerkin discretization

For the Galerkin discretization, we consider two sequences of nested spaces

V Γ0 ⊂ V Γ1 ⊂ · · · ⊂ V Γ`s ⊂ · · · ⊂ L
2(Γ ), V I0 ⊂ V I1 ⊂ · · · ⊂ V I`t ⊂ · · · ⊂ L

2(I).

We shall assume that these ansatz spaces are generated by single-scale bases ΦΓ`s = {ϕΓ`s,ks}ks∈∆Γ`s and

ΦI`t = {ϕI`t,kt}kt∈∆I`t
, respectively, that is

|∆Γ`s | = dimV Γ`s ∼ 2`sn, |∆I`t | = dimV I`t ∼ 2`t .

and

V Γ`s = spanΦΓ`s , V I`t = spanΦI`t .

We denote the approximation power of the ansatz spaces by ds and dt, i.e.,

inf
v`s∈V Γ`s

‖v − v`s‖L2(Γ ) . 2−`sds‖v‖Hds (Γ ), inf
v`t∈V

I
`t

‖v − v`t‖L2(I) . 2−`tdt‖v‖Hdt (I).

For example, the piecewise constant (ds = 1) or continuous piecewise linear (ds = 2) ansatz functions

on a sequence of meshes, obtained by uniform refinement, satisfy our assumptions on the spatial

ansatz spaces V Γ`s .

We choose a finest level Ls for space and Lt for time and write L := (Ls, Lt). Due to Céa’s lemma, a

Galerkin scheme for (2.7) in the tensor product space UΓ×IL := V ΓLs ⊗ V
I
Lt leads to the error estimate

‖q − qL‖H− 1
2
,− 1

4 (Γ×I)
.
(
2−

Ls
2 + 2−

Lt
4
)(

2−Lsds + 2−Ltdt
)
‖q‖Hds,dt (Γ×I), (3.8)

provided that the boundary Γ and the given Dirichlet datum f , and thus the solution q, are smooth

enough, see [6,16]. As easily seen from (3.8), in case of ds = 2dt, the optimal choice is Lt = 2Ls.

4 Sparse tensor product discretization

The tensor product space UΓ×IL = V ΓLs ⊗ V ILt contains dimV ΓLs · dimV ILt ∼ 2Lsn · 2Lt degrees of

freedom. Compared with this, finite element methods which are based on a sparse grid discretization

of the space-time cylinder offer essentially the complexity O(2Ls(n+1)), see e.g. [3,8,18] and the

references therein. This means, the time discretization comes for free, at least from a complexity

point of view. As a consequence, although algorithms are available which solve the heat equation

by layer potentials in essentially linear complexity relative to the number of unknowns in the tensor

product space UΓ×IL (cf. [14,15,19,20]), there is no gain in the use of boundary integral equations.

To overcome this obstruction, as in [5], we shall consider a Galerkin discretization in the sparse tensor

product of the ansatz spaces V ΓLs and V ILt .

The sparse space-time tensor Galerkin discretization is based on multilevel decompositions of the

ansatz spaces. To that end, we set

WΓ
`s := V Γ`s 	 V

Γ
`s−1, WΓ

`s = spanΨΓ`s ,

W I
`t := V I`t 	 V

I
`t−1, W I

`t = spanΨI`t .

The basis functions ΨΓ`s = {ψΓ`s,ks}ks∈∇Γ`s and ΨI`t = {ψI`t,kt}kt∈∇I`t
are hierarchical bases or wavelets.

Instead of a discretization in the full tensor product space

UL := V ΓLs ⊗ V
I
Lt =

⊕
`s
Ls
,
`t
Lt
≤1

WΓ
`s ⊗W

I
`t ,
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we will consider a discretization in the sparse tensor product space

ÛL := ̂V ΓLs ⊗ V
I
Lt

=
⊕

`s
Ls

+
`t
Lt
≤1

WΓ
`s ⊗W

I
`t . (4.9)

The following lemma has been proven in [7,8]. It states that the time discretization is essentially free

provided that 2Ls & Lt.

Lemma 1 For Ls = σLt →∞, where σ > 0 is fixed, the sparse tensor product space (4.9) satisfies

dim ÛL ∼

2Lsn + 2Lt , if Lsn 6= Lt,

Ls2
Lsn, if Lsn = Lt.

On the other hand, the approximation property in the sparse tensor product space is essentially the

same as in the full analogue, provided that we spend some extra smoothness in terms of the mixed

Sobolev spaces

Hr,smix(Γ × I) := Hr(Γ )⊗Hs
0(I).

In particular, we find the following result for the best approximation in the energy space under

consideration.

Lemma 2 For Ls = σLt →∞, where σ > 0 is fixed, there holds

inf
v̂L∈ÛΓ×IL

‖v − v̂L‖H− 1
2
,− 1

4 (Γ×I)
.
√
Ls2
− LsLt

4Ls+2Lt (2−Lsds + 2−Ltdt)‖v‖Hds,dtmix (Γ×I)

provided that Lsds 6= Ltdt. In case of equality, i.e., Lsds = Ltdt, an additional logarithmic factor appears:

inf
v̂L∈ÛΓ×IL

‖v − v̂L‖H− 1
2
,− 1

4 (Γ×I)
. Ls2

− LsLt
4Ls+2Lt 2−Lsds‖v‖Hds,dtmix (Γ×I).

Proof We shall denote the L2-orthogonal projection onto the sparse tensor product space ÛL by

Π̂L : L2(Γ × I)→ ÛL. Then, by a standard duality argument, we obtain

inf
v̂L∈ÛΓ×IL

‖v − v̂L‖H− 1
2
,− 1

4 (Γ×I)
≤ sup
u∈H

1
2
, 1
4 (Γ×I)

〈v − Π̂Lv, u〉L2(Γ×I)
‖u‖
H

1
2
, 1
4 (Γ×I)

= sup
u∈H

1
2
, 1
4 (Γ×I)

〈v − Π̂Lv, u− Π̂Lu〉L2(Γ×I)
‖u‖
H

1
2
, 1
4 (Γ×I)

≤ ‖v − Π̂Lv‖L2(Γ×I) sup
u∈H

1
2
, 1
4 (Γ×I)

‖u− Π̂Lu‖L2(Γ×I)
‖u‖
H

1
2
, 1
4 (Γ×I)

.

From [5, Lemma 5.2] it follows that

H
1
2
, 1
4 (Γ × I) ⊂ H

λ
2
, 1−λ

4

mix (Γ × I) for all λ ∈ [0, 1].

Hence, we conclude

inf
v̂L∈ÛΓ×IL

‖v − v̂L‖H− 1
2
,− 1

4 (Γ×I)
. ‖v − Π̂Lv‖L2(Γ×I) sup

u∈H
λ
2
, 1−λ

4
mix (Γ×I)

‖u− Π̂Lu‖L2(Γ×I)
‖u‖
H
λ
2
, 1−λ

4
mix (Γ×I)

. (4.10)

To bound the first term on the right hand side of (4.10), we use the error estimate

‖v − Π̂Lv‖L2(Γ×I) .


(
2−Lsds + 2−Ltdt

)
‖v‖Hds,dtmix (Γ×I), if Lsds 6= Ltdt,

√
Ls2
−Lsds‖v‖Hds,dtmix (Γ×I), if Lsds = Ltdt,

(4.11)
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which has been shown in [7].

To bound the second term on the right hand side of (4.10), we use again the error estimate of [7] to

arrive at

‖u− Π̂Lu‖L2(Γ×I) . (2−
λ
2
Ls + 2−

1−λ
4
Lt)‖u‖

H
λ
2
, 1−λ

4
mix (Γ×I)

for all u ∈ H
λ
2
, 1−λ

4

mix (Γ ×I), provided that 2λLs 6= (1−λ)Lt. In the case 2λLs = (1−λ)Lt, which means

that

λ =
Lt

2Ls + Lt
=

1

2σ + 1
,

an additional logarithmic factor shows up:

‖u− Π̂Lu‖L2(Γ×I) .
√
Ls2
−λ

2
Ls‖u‖

H
λ
2
, 1−λ

4
mix (Γ×I)

=
√
Ls2
− LsLt

4Ls+2Lt ‖u‖
H
λ
2
, 1−λ

4
mix (Γ×I)

. (4.12)

This choice yields the best attainable rate since the two terms 2−
λ
2
Ls and 2−

1−λ
4
Lt are balanced1.

Plugging the estimates (4.11) and (4.12) into the duality argument (4.10) yields finally the desired

result. �

Remark 1 Along the lines of [5–7], we can determine the best cost complexity of the tensor product

approximation and the sparse tensor product approximation, respectively, as Ls = σLt → ∞. If we

consider piecewise linear ansatz function in space, i.e., ds = 2, and piecewise constant ansatz function

in time, i.e., dt = 1, we obtain the best cost complexity for the discretization in the tensor product

space UL for the choice Ls = 2Lt: When using N degrees of freedom for the discretization, it follows

‖q − qL‖H− 1
2
,− 1

4 (Γ×I)
.

N−
5
6 ‖q‖H2,1(Γ×I), if n = 1,

N−
5
8 ‖q‖H2,1(Γ×I), if n = 2.

Compared with this, the best cost complexity for the Galerkin discretization with respect to the

sparse tensor product space ÛL is given by equilibrating the degrees of freedom in V ΓLs and V ILt . For

N degrees of freedom, we find then the estimate

‖q − qL‖H− 1
2
,− 1

4 (Γ×I)
.

N
− 7

6 (logN)
7
6
+ 1

2 ‖q‖H2,1
mix(Γ×I), if n = 1 and Ls = Lt,

N−
9
8 (logN)

9
8
+1‖q‖H2,1

mix(Γ×I), if n = 2 and 2Ls = Lt.

We see that the cost complexity is nearly doubled when using the sparse tensor product discretization

in n = 2 dimensions. Moreover, for n = 1 dimensions, the piecewise linear discretization in space does

not pay off since the choice ds = 1 would essentially give the same cost complexity.

5 Algorithms

5.1 Fast matrix-vector multiplication

Throughout the article, the basis in ÛL will be denoted by

Ψ̂L :=

{
ψ̂`,k = ψΓ`s,ks ⊗ ψ

I
`t,kt : k = (ks, kt) ∈ ∇` := ∇Γ`s ×∇

I
`t ,

`s
Ls

+
`t
Lt
≤ 1

}
.

1 By balancing these terms, we obtain an improvement of the results in [5].
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Then, the Galerkin matrix V̂L = 〈VΨ̂L, Ψ̂L〉L2(Γ×I) consists of the block matrices

V`,`′ := 〈V(ΨΓ`′s ⊗ Ψ
I
`′t

), ΨΓ`s ⊗ Ψ
I
`t〉L2(Γ×I) (5.13)

where `s
Ls

+ `t
Lt
,
`′s
Ls

+
`′t
Lt
≤ 1. Here, the block V`,`′ has asymptotically the dimension 2`sn+`t×2`

′
sn+`′t .

Obviously, by writing ûL = [u`] `s
Ls

+
`t
Lt
≤1

, the matrix-vector multiplication ŵL = V̂LûL can be block

wise computed by

ŵL = [w`] `s
Ls

+
`t
Lt
≤1

=

[ ∑
`′s
Ls

+
`′t
Lt
≤1

V`,`′u`′

]
`s
Ls

+
`t
Lt
≤1

= V̂LûL. (5.14)

Lemma 3 Assume that the block matrix-vector product V`,`′u`′ is computable in complexity O
(
M ·

2max{`sn+`t,`
′
sn+`′t}

)
. Then, the matrix-vector product ŵL = V̂LûL is of complexity O

(
MLsLt dim(ÛL)

)
.

Proof The assertion follows immediately from (5.14) and∑
`s
Ls

+
`t
Lt
,
`′s
Ls

+
`′t
Lt
≤1

M · 2max{`sn+`t,`
′
sn+`′t}

=
∑

`s
Ls

+
`t
Lt
≤1

M ·

( ∑
`′s
Ls

+
`′t
Lt
≤1

`sn+`t≤`′sn+`′t

2`
′
sn+`′t +

∑
`′s
Ls

+
`′t
Lt
≤1

`sn+`t>`
′
sn+`′t

2`sn+`t

)

.
∑

`s
Ls

+
`t
Lt
≤1

M ·
(

dim(ÛL) + 2`sn+`tLsLt

)
.MLsLt dim(ÛL).

�

5.2 Restrictions and prolongations

Since it is algorithmically difficult to compute matrices in wavelet coordinates and with ansatz and test

functions on different levels, we use restrictions and prolongations to realize matrix vector products

with V`,`′ in single-scale spaces.

Because WΓ
`s
⊂ V Γ`′s

for any `s ≤ `′s, we can represent a given function u`s ∈ W
Γ
`s

in the space V Γ`′s .

Such a prolongation will be denoted by J
`′s
`s

. Its discrete counterpart J
`′s
`s

can obviously be applied to

a given vector u`s in complexity O
(
2`
′
sn
)
. Vice versa, a function u`′s in V Γ`′s

can be restricted to the

space WΓ
`s

which we denote by J`s`′s
. The cost of the corresponding discrete operation J

`′s
`s

u`′s is of the

order O
(
2`
′
sn
)
. Note that

(
J`s`′s

)T
= J

`′s
`s

.

Likewise, due to W I
`t
⊂ V I`′t

for any `t ≤ `′t, corresponding operators I
`′t
`t

and I`t
`′t

exist with respect to

the time. Their discrete counterparts are denoted by I
`′t
`t

and I`t
`′t

, where the application to a vector

costs O
(
2`
′
t
)

operations.

In the following, we will use the notational convention

˜̀s := max{`s, `′s} and ˜̀t := max{`t, `′t}.
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w`s,`t = B`s,`′s

u`′s,`
′
t

AT
`t,`
′
t

Fig. 5.1 Visualization of the matrix-vector product in (5.18). Here, it is cheaper to perform first the multiplication

B`s,`′s
u`′s,`

′
t

and then the multiplication of the result with AT
`t,`
′
t
.

Thus, we obtain the representation in the single-scale spaces

V`,`′ =
(
I`t˜̀
t
⊗ J`s˜̀

s

)
V˜̀,˜̀

(
I
˜̀
t

`′t
⊗ J

˜̀
s

`′s

)
(5.15)

where ˜̀= (˜̀s, ˜̀t) and

V˜̀,˜̀
:= 〈V(ΦΓ˜̀

s
⊗ ΦI˜̀

t
), ΦΓ˜̀

s
⊗ ΦI˜̀

t
〉L2(Γ×I) (5.16)

Remark 2 The dimension of the matrix V˜̀,˜̀
is asymptotically 2max{`t,`′t}n+max{`s,`′s} which is, in

general, larger than the dimensions of V`,`′ . In fact, it turns out that it is not possible to compute

a matrix-vector product with V̂L in the desired O
(
MLsLt dim(ÛL)

)
complexity, if the factors are

evaluated in the sequence suggested by (5.15), even if the application of V˜̀,˜̀
has linear complexity.

However, we will show below that V˜̀,˜̀
can be approximated by a sum of Kronecker products, which

will lead to an algorithm with log-linear complexity in dim(ÛL).

5.3 Block matrix-vector multiplication

To get a guideline for the realization of an essentially optimal block matrix-vector multiplication, let

us assume from now on that V`,`′ is approximated by a sum of tensor products

V`,`′ ≈
M∑
i=1

A
(i)
`t,`′t
⊗B

(i)
`s,`′s

. (5.17)

Such a representation is also called low-rank approximation. Provided that for all i = 1, . . . ,M the

application of the matrices A
(i)
`t,`′t

and B
(i)
`s,`′s

to a vector can be evaluated in O
(
2max{`t,`′t}

)
and

O
(
2max{`s,`′s}n

)
operations, respectively, then the matrix-vector product

w` = V`,`′u`′ ≈
M∑
i=1

(
A

(i)
`t,`′t
⊗B

(i)
`s,`′s

)
u`′

is computable within the complexity O
(
M · 2max{`sn+`t,`

′
sn+`′t}

)
. We will show this in the remainder

of this section.

For a matrix X ∈ Rm×n, vec(X) ∈ Rnm is the vector that is obtained by stacking the columns of X.

From the identity

vec(w
(i)
` ) = (A

(i)
`t,`′t
⊗B

(i)
`s,`′s

) vec(u`′)⇐⇒ w
(i)
` = B

(i)
`s,`′s

u`′
(
A

(i)
`t,`′t

)T
(5.18)
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we conclude that, for `sn+ `′t ≤ `′sn+ `t, it is cheaper to compute the vector w
(i)
` in the order

z = B
(i)
`s,`′s

u`′ , w
(i)
` =

(
A

(i)
`t,`′t

zT
)T
. (5.19)

(we refer to Fig. 5.1 for a corresponding visualization). Here, the evaluation of z is of complexity

O
(
2`
′
t · 2max{`s,`′s}n

)
and thus the complexity for computing w

(i)
` via (5.19) is

O
(
2`
′
t · 2max{`s,`′s}n + 2`sn · 2max{`t,`′t}

)
= O

(
2max{`sn+`t,`

′
sn+`′t,`sn+`′t}

)
.

Due to the supposition `sn+ `′t ≤ `′sn+ `t, we have

`sn+ `′t ≤ (`′sn+ `′t)− `′t + (`sn+ `t)− `sn

and thus

2(`sn+ `′t) ≤ (`′sn+ `′t) + (`sn+ `t) ≤ 2 max{`sn+ `t, `
′
sn+ `′t}.

Therefore, the complexity for the matrix-vector multiplication (5.19) is O
(
2max{`sn+`t,`

′
sn+`′t}

)
which

is order optimal.

If `sn+ `′t > `′sn+ `t, we change the order of multiplication in (5.18) and compute

z = A
(i)
`t,`′t

uT`′ , w
(i)
` = B

(i)
`s,`′s

zT (5.20)

By using arguments analogous to above, one readily infers that the complexity of computing w
(i)
` via

(5.20) is also of order optimal complexity O
(
2max{`sn+`t,`

′
sn+`′t}

)
.

Remark 3 One logarithmic factor in the cost complexity of the matrix-vector product described here

can be removed by using the unidirectional principle, see e.g. [1,2,22]. Nevertheless, we have not

exploited this approach for sake of simplicity in representation.

5.4 Tensor product representation of V`,`′

In this section we show how to compute the approximation (5.17) using the factorization in (5.15). To

keep the technical level of the discussion at a minimum, we assume that the temporal spaces V I`t consist

of piecewise constant ansatz functions on a uniform subdivision of I = [0, T ] into 2`tnt intervals, where

nt is a small integer. Thus, the temporal basis functions ϕI`t,kt are scaled and translated versions of

the box function.

The coefficients of the matrix V˜̀,˜̀
in (5.16) are given by

[
V˜̀,˜̀

]
(ks,kt)(k′s,k

′
t)

=

∫ T

0

∫ T

0

{∫
Γ

∫
Γ

G(‖x− y‖, t− τ)ϕΓ˜̀
s,ks

(x)ϕΓ˜̀
s,k′s

(y) dσy dσx

}
× ϕI˜̀

t,kt
(t)ϕI˜̀

t,k′t
(τ) dτ dt,

An ordering of the indices (ks, kt), where ks runs fast and kt runs slow, results in a block-Toeplitz

structure of V˜̀,˜̀
, because the integrals only depend on the difference of the indices kt and k′t. In

addition, the matrix is block lower triangular because the kernel vanishes for τ > t.

We now generate an H-matrix pattern of the matrix V˜̀,˜̀
, see, [10,11]. To this end, we subdivde the

interval I = [0, T ] into 2m equal length sub-intervals

Im,k :=
[
k2−mT, (k + 1)2−mT

]
, k = 0, 1, . . . , 2m − 1, m = 0, 1, . . . , ˜̀t,
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Fig. 5.2 Partitioning of V˜̀,˜̀ for the case that ˜̀
t = 5.

and define the index sets of level-˜̀t temporal basis functions with support in Im,k

Im,k :=
{
kt ∈ ∆I˜̀

t
: supp ϕI˜̀

t,kt
⊂ Im,k

}
.

These sets are larger for smaller values of m. Moreover, for a given m they form a disjoint union of

∆I˜̀
t

because each ϕI˜̀
t,kt

is supported in exactly one Im,k.

Since the kernel is less peaked for a larger separation of the time variables we call Im,k × Im,k′
admissible if d := k − k′ ≥ 2. Mind that k ≥ k′, because the matrix is block lower triangular. The

H-matrix pattern is obtained by dividing the matrix into admissible blocks where the size of the

blocks increases with the distance to the diagonal, see Fig. 5.2.

Here, the blocks cdm are given by

cdm =
[
V˜̀,˜̀

]
(ks,kt)∈∆Γ˜̀s×Imd
(k′s,k

′
t)∈∆

Γ
˜̀s
×Im0

. (5.21)

Since V˜̀,˜̀
is block-Toeplitz, it suffices to consider the cases d = 2 and d = 3 for the off-diagonal

blocks where 2 ≤ m ≤ ˜̀t. These correspond to admissible index sets and will be referred to as the

temporal far field. In addition, the blocks c0
˜̀
t

and c1
˜̀
t

appear on and near the diagonal, and will be

referred to as the temporal nearfield.
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The H pattern suggests to write V˜̀,˜̀
as a sum of 2˜̀t block-Toeplitz matrices that contain the identical

blocks. To that end, define the (2m × 2m)-matrices

H0
m =


1

1

. . .

1

 , H1
m =


0

1 0

. . .
. . .

1 0

 , H2
m =



0

0 0

1 0 0

. . .
. . .

. . .

1 0 0


(5.22)

and

H3
m =



0

0 0

0 0 0

1 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

. . .
. . .

. . .
. . .

1 0 0 0


. (5.23)

Note that the ones and zeros in the third subdiagonal of H3
m alternate because of the pattern in

which the blocks c3
m appear in the matrix V˜̀,˜̀

.

With these notations, one obtains the decomposition

V˜̀,˜̀
=

∑
d∈{0,1}

Hd
˜̀
t
⊗ cd˜̀

t
+

∑
m∈{2,..., ˜̀t}
d∈{2,3}

Hd
m ⊗ cdm . (5.24)

Temporal far-field.

Consider the block cdm in the temporal far-field where the ansatz- and test functions ϕI˜̀
t,kt

and ϕI˜̀
t,k′t

have support inside Im,d and Im,0, respectively. Since d ∈ {2, 3}, the kernel is smooth and can be well

approximated by a degenerate kernel expansion. Such an expansion can be obtained, for instance,

by interpolation. This is most conveniently achieved in the local coordinates t′, τ ′ of the respective

intervals. For t ∈ Im,d and τ ∈ Im,0 they are given by

t = T2−m
(
d+

t′

2
+

1

2

)
, τ = T2−m

(
τ ′

2
+

1

2

)
. − 1 ≤ τ ′, t′ ≤ 1, (5.25)

Thus, setting r̃ = r/
√
T2−m, it follows that

G
(
‖r‖,t− τ

)
= (T2−m)−

n+1
2 G

(
‖r̃‖, d+

1

2
(t′ − τ ′)

)
,

= (T2−m)−
n+1
2


pt∑

i,i′=0

G

(
‖r̃‖, d+

1

2
(ω(i) − ω(i′))

)
Li(t

′)Li′(τ
′) + Ept

(
‖r̃‖
)

=

pt∑
i,i′=0

G
(
‖r‖, t(i) − τ (i′)

)
Li(t

′)Li′(τ
′) + (T2−m)−

n+1
2 Ept

(
‖r̃‖
)
. (5.26)

Here, ω(i) and ω(i′) are interpolation nodes in (−1, 1), t(i), τ (i′) are their images under the transfor-

mation (5.25), Li are Lagrange polynomials and pt is the interpolation order. The error Ept(r) will

be analyzed in section 7.
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Neglecting Ept(r) and substituting the series of (5.26) in (5.21) results in a decomposition into

Kronecker products. It follows that

cdm ≈
pt∑

i,i′=0

a(m,i)
(
a(m,i′)

)T
⊗ b

(m,d,i,i′)
`s

, (5.27)

where [
a(m,i)

]
kt

=

∫
Im,0

Li(τ
′)ΦI˜̀

t,kt
(τ)dτ ,[

b
(m,d,i,i′)
˜̀
s

]
ks,k′s

=

∫
Γ

∫
Γ

G(‖x− y‖, t(i) − τ (i′))ΦΓ˜̀
s,ks

(x)ΦΓ˜̀
s,k′s

(y) dσy dσx .

Note that a(m,i) is a vector of length 2−m
∣∣∣∆˜̀

t

∣∣∣ and b
(m,d,i,i′)
˜̀
s

is a square matrix of size
∣∣∣∆˜̀

s

∣∣∣. Since

the interpolation points and ansatz functions in Im,d are obtained by shifting 2−mTd units from the

interval I0
m the vector a(m,i) is the same for t- and the τ -variable.

Temporal near-field.

Because of the uniform time discretization, the matrices cd˜̀
t
, d ∈ {0, 1}, in (5.24) have the block-

Toeplitz structure

c0
˜̀
t

=



b
(˜̀
t,0)

˜̀
s

b
(˜̀
t,1)

˜̀
s

. . .

...
. . .

. . .

b
(˜̀
t,nt−1)

˜̀
s

· · · b
(˜̀
t,1)

˜̀
s

b
(˜̀
t,0)

˜̀
s


and c1

˜̀
t

=



b
(˜̀
t,nt)

˜̀
s

b
(˜̀
t,nt−1)

˜̀
s

· · · b
(˜̀
t,1)

˜̀
s

b
(˜̀
t,nt+1)

˜̀
s

. . .
. . .

...

...
. . .

. . . b
(˜̀
t,nt+1)

˜̀
s

b
(˜̀
t,2nt−1)

˜̀
s

· · · b
(˜̀
t,nt+1)

˜̀
s

b
(˜̀
t,nt)

˜̀
s


,

where nt = dimV I0 and[
b

(l̃t,i)
˜̀
s

]
ks,k′s

=

∫
Γ

∫
Γ

G˜̀
t,i

(‖x− y‖)ΦΓ˜̀
s,ks

(x)ΦΓ˜̀
s,k′s

(y) dσy dσx . (5.28)

Here, the kernel contains integration with the ansatz functions in time

G˜̀
t,i

(‖r‖) =

∫ T

0

∫ T

0

G(‖r‖, t− τ)ΦI˜̀
t,0

(τ)ΦI˜̀
t,i

(t) dτ dt. (5.29)

The kernel can be expressed in closed form. For the case i = 0, the kernel has a O(1/‖r‖) singularity,

for i = 1 the singularity is O(‖r‖), and for i ≥ 2 the kernel is smooth. For the singular cases the

spatial integration of the coefficients of (5.28) can be computed with generalized Duffy transforms,

similar to the those used for elliptic boundary integral operators, see [14].

Define the shift-matrices

s
(i)
n =



0

. . .

1
. . .

. . .
. . .

1 0


,

where n indicates the dimension and i the position of the sub-diagonal. Moreover, define

S
(i)
˜̀
t

=

s
(i)

nt2
˜̀
t
, 0 ≤ i ≤ nt − 1,

H1
˜̀
t
⊗ s

(i−nt)
nt , nt ≤ i ≤ 2nt − 1.
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Then, the near-field in (5.24) can be written as

∑
d∈{0,1}

Hd
˜̀
t
⊗ cd˜̀

t
=

2nt−1∑
i=0

S
(i)
˜̀
t
⊗ b

(˜̀
t,i)

˜̀
s

. (5.30)

Tensor product form of V`,`′ .

The approximation of V`,`′ in the form of (5.17) can now be obtained by combining (5.15), (5.24),

(5.27) and (5.30). Using the multiplication rules of the Kronecker product, we conclude that

V`,`′ ≈
2nt−1∑
i=0

A
(i)
`t,`′t
⊗B

(˜̀
t,i)

`s,`′s
+

∑
m∈{2,..., ˜̀t}
d∈{2,3}

i,i′∈{0,...,pt}

A
(m,d,i,i′)
`t,`′t

⊗B
(m,d,i,i′)
`s,`′s

, (5.31)

where
A

(i)
`t,`′t

= I`t˜̀
t
S

(i)
˜̀
t

I
˜̀
t

`′t
,

A
(m,d,i,i′)
`t,`′t

= I`t˜̀
t

(
Hd
m ⊗ a

(i)
m

(
a

(i)
m

)T)
I
˜̀
t

`′t
,

B
(˜̀
t,i)

`s,`′s
= J`s˜̀

s
b

(˜̀
t,i)

˜̀
s

J
˜̀
s

`′s
,

B
(m,d,i,i′)
`s,`′s

= J`s˜̀
s
b

(m,d,i,i′)
˜̀
s

J
˜̀
s

`′s
.

Clearly, the matrices A
(i)
`t,`′t

and A
(m,d,i,i′)
`t,`′t

can be applied with order 2
˜̀
t operations. Note that the

order in which the Kronecker product in the second matrix is evaluated is irrelevant, because both

factors are square. In the following section, we will show that the matrices b
(`t,i)
˜̀
s

and b
(m,d,i,i′)
˜̀
s

can

be applied with order L7
s2
n˜̀
s complexity. Then it follows easily that B

(i)
`s,`′s

and B
(m,d,i,i′)
`s,`′s

can be

applied with the same order of operations.

This, together with Lemma 3 and the fact that pt ∼ Lt in (5.26) implies that the matrix V̂L can be

applied with O
(
L8
sL

3
t dim(ÛL)

)
cost. Thus the complexity of the algorithm described in Section 5 is

log-linear in dim(ÛL).

6 Fast evaluation of the Matrices b
(˜̀t,i)
˜̀
s

and b
(m,d,i,i′)
˜̀
s

In this section, we show that the spatial matrices b
(˜̀
t,i)

˜̀
s

and b
(m,d,i,i′)
˜̀
s

are H-matrices and describe

an algorithm to compute matrix vector products in O
(
L7
s2

2˜̀
s
)

complexity. To simplify the discussion

we restrict ourselves to the more important case of a two dimensional surface in three-space, that is,

n = 2 in (2.5). The modifications for the case n = 1 are trivial and will result in lower powers of Ls

in the complexity estimate.

Since the calculus with H-matrices is well known, see [10,11], we only present a high-level description

of the algorithm mainly to set the stage for the ensuing error analysis. There, we will show how the

parameters of the algorithm can be selected such that error and complexity bounds can be obtained

that are independent of the parameters ˜̀t, m and d, i, i′.

We first give more detail on how the spatial finite element spaces V Γ`s are generated. To that end,

assume that the surface Γ is given by a number of parameterizations of the reference triangle σ̂ =

{(x̂1, x̂2) : 0 ≤ x̂2 ≤ x̂1 ≤ 1}
xν : σ̂ → Γν , ν ∈ P(0) ,
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where P(0) is an index set for the initial triangular patches. We assume that the interiors of Γν are

disjoint and that common sides of two adjacent Γν ’s are parametrized in a consistent manner.

The coarsest space V Γ0 consists of functions whose preimage in σ̂ is a polynomial. The spaces V Γ`s
consist of functions whose preimages are piecewise polynomials on the `s-th uniform refinement of

σ̂. Every `s-th level refined triangle parameterizes a triangular patch Γν , ν ∈ P(`s) which in turn

generates a sequence of triangularizations of Γ

Γ =
⋃

ν∈P(`s)

Γν .

The uniform refinement implies a tree structure in the sense that every triangular patch Γν , ν ∈ P(`s)

is the union of four triangular patches in level `s + 1, denoted as the four children K(ν) of ν

Γν =
⋃

ν′∈K(ν)

Γν′ .

Moreover, every patch ν in level `s > 0 has a parent π(ν) in level `s − 1.

The neighbors N (ν) of a patch ν ∈ P(`s) are given by

N (ν) =

ν′ ∈ P(`s) : min
x∈Γν
y∈Γ

ν′

‖x− y‖ ≤ SL
1
2
s 2−`s

 . (6.32)

Here, S > 0 is a predetermined constant. The factor L
1
2
s implies that the neighbor list is expanded

as the mesh is refined and is necessary to ensure convergence of the method. We assume that the

constants are such that all patches in level zero are neighbors of each other. The interaction list I(ν)

of a patch ν ∈ P(`s) is the set of patches whose parents are neighbors, but who are not neighbors

themselves:

I(ν) =
{
ν′ ∈ P(`s) : π(ν′) ∈ N

(
π(ν)

)
and ν′ 6∈ N (ν)

}
.

Because of the uniform subdivision, the number of neighbors and the number of patches in interactions

list are O(Ls).

The definition of neighbors and interaction lists implies the subdivision

Γ × Γ =
⋃

ν∈P(˜̀s)

ν′∈N(ν)

Γν × Γν′ ∪
˜̀
s⋃

`s=0

⋃
ν∈P(`s)

ν′∈I(ν)

Γν × Γν′ , (6.33)

where the number of terms is O
(
Ls2

2˜̀
s
)
.

Let b˜̀
s

be one of the spatial matrices b
(`t,i)
˜̀
s

or b
(m,d,i,i′)
˜̀
s

and let G(·) denote its kernel. Since we

will introduce additional superscipts below, we omit the kernel identifying superscripts for notational

convenience. From the subdivision (6.33), we obtain the decomposition

b˜̀
s

= bnear
˜̀
s

+

˜̀
s∑

`s=0

b
(`s)
˜̀
s
, (6.34)

where ks, k
′
s ∈ ∆˜̀

s
and[

bnear
˜̀
s

]
ks,k′s

=
∑

ν∈P(˜̀s)
ν∈N(ν)

∫
Γν

∫
Γν′

G(‖x− y‖)ϕΓ˜̀
s,ks

(x)ϕΓ˜̀
s,k′s

(y) dσy dσx ,

[
b

(`s)
˜̀
s

]
ks,k′s

=
∑

ν∈P(`s)

ν′∈I(ν)

∫
Γν

∫
Γν′

G(‖x− y‖)ϕΓ˜̀
s,ks

(x)ϕΓ˜̀
s,k′s

(y) dσy dσx .
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Since the number of basis functions in level ˜̀s that overlap with a patch in level ˜̀s are bounded, the

matrix bnear
˜̀
s

has O
(
Ls2

2˜̀
s
)

nonvanishing entries. Of course, the matrices b
(`s)
˜̀
s

become increasingly

populated as the level `s decreases, but since the integrals are over patches in interaction lists, the

kernels are smooth functions. Thus, we can approximate the kernel by a degenerate expansion which

will lead to a factorization that can be evaluated with O
(
Ls2

2˜̀
s
)

complexity.

To that end, we enclose every patch Γν in P(`s) by an axiparallel cube with sidelength S12−`s and

center xν . The constant S1 is chosen such that the cubes will contain the patch Γν tightly which is

possible for all `s with the same S1 because of the uniform refinement scheme. Then any point in the

enclosing cube has local coordinates in [−1, 1]3, that is,

x = 2−`sS1

(
xν +

1

2
x̂

)
, where x̂ ∈ [−1, 1]3. (6.35)

For two points x ∈ Γν , y ∈ Γν′ , where ν ∈ P(`s) and ν′ ∈ I(ν), the kernel can be expanded into a

Chebyshev series in the local coordiates, that is,

G(‖x− y‖) ≈
∑
|α|≤ps
|β|≤ps

Eν,ν
′

α,βTα(x̂)Tβ(ŷ) (6.36)

where α,β are multiindices and Tα(·) are the Chebyshev polynomials. In section 7 we will show that

for suitable expansion order the error can be neglected. Then replacing the kernel by the expansion

leads to[
b

(`s)
˜̀
s

]
ks,k′s

≈
∑

ν∈P(`s)

ν′∈I(ν)

∑
|α|≤ps
|β|≤ps

Eν,ν
′

α,β

∫
Γν

Tα(x̂)ϕΓ˜̀
s,ks

(x) dσx

∫
Γν′

Tβ(ŷ)ϕΓ˜̀
s,k′s

(y) dσy . (6.37)

In matrix form, this can be expressed as the factorization

b
(`s)
˜̀
s
≈ b̃

(`s)
˜̀
s

=
(
M

(`s)
˜̀
s

)T
E(`s)M

(`s)
˜̀
s

where the the matrices M
(`s)
˜̀
s

contain the moments, i.e., the integrals in (6.37), and the matrices E(`s)

contain the expansion coefficients Eν,ν
′

α,β . It is not hard to see that these matrices can be evaluated

with O
(
Lsp

3
s2

2˜̀
s
)

and O
(
Lsp

6
s2

2`s
)

complexity.

Finally, we note that all kernels G(·) decay exponentially at infinity. Since interaction lists in the

coarser levels contain increasingly distant pairs of patches, it is not necessary to evaluate all terms

in the sum (6.34). Instead, we select a minimal level ¯̀s and evaluate the approximation

b˜̀
s
≈ b̃˜̀

s
= bnear

˜̀
s

+

˜̀
s∑

`s=¯̀
s

b̃
(`s)
˜̀
s
. (6.38)

In the following section we will show that the choice of parameters

ps ∼ Ls and ¯̀s =


˜̀
t
2 when b˜̀

s
= b

(˜̀
t,i)

˜̀
s

,

m
2 when b˜̀

s
= b

(m,d,i,i′)
˜̀
s

,
(6.39)

will be sufficent to ensure that the approximation error does not affect the asymptotic convergence

of the discretization error. Thus the complexity of a matrix vector product of b˜̀
s

using the approxi-

mation (6.38) is O
(
L7
s2
n˜̀
s
)
.

Note that the introduction of the minimal level ¯̀s does not reduce the asymptotic cost of the matrix-

vector product, but ensures the accuracy of the degenerate kernel expansion (6.36). This will become

clear in the following error analysis.
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7 Error Analysis

We analyse the errors introduced by the low-rank approximation in (5.26) and the fast evaluation

of the spatial matrices in (6.38). In both cases, numerical efficiency is achieved by replacing the

heat kernel with its interpolate at the Chebyshev nodes. For an analytic function, the interpolation

error exhibits exponential convergence and with the Strang lemma it can be concluded that this

approximation results in an exponentially small error of the Galerkin solution. Since the convergence

of the discretization method is algebraic, the discretization error dominates the error of the fast

method as long as the interpolation order grows linearly with the refinement level. This kind of

argument is commonly used in the analysis of fast methods for integral equations, see, e.g. [15] in the

context of the heat equation and the space-time fast multipole method. For the sparse grid method of

this article it remains to ensure that the interpolations have convergence rates that are independent

of the various space time levels. This will be discussed below. Our argument is based on the following

approximation result for Chebyshev interpolation, which is well known for single-variate functions,

see, e.g. [13, Lemma 6.6], but appears to be hard to find for the multivariate case.

Lemma 4 If f : [−1, 1]d → R has a complex extension which, for some µ > 0, is analytic in every variable

within the ellipse

Eµ :=
{
z ∈ C : z = cos

(
θ + iµ

)
, θ ∈ [0, 2π]

}
,

then the multivariate Chebyshev interpolate of degree N − 1 satisfies the error estimate

|f(x)− p(x)| ≤ C max
zi∈Eµ

|f(z)| sinh−1(Nµ).

Proof The proof for the one dimensional case (d = 1) is well known and is based on the contour

integral representation of the interpolate and the remainder

p(x) =
1

2πi

∫
Eµ

(
1− TN (x)

TN (z)

)
f(z)

z − x dz,

f(x)− p(x) =
1

2πi

∫
Eµ

TN (x)

TN (z)

f(z)

z − x dz,

where TN (x) = cos(N arccos(x)) is the N-th Chebyshev polynomial. This implies that the contour

integral formula for the multivariate interpolate is

p(x) =
1

(2πi)d

∫
Eµ

. . .

∫
Eµ

(
1− TN (x1)

TN (z1)

)
. . .

(
1− TN (xd)

TN (zd)

)
f(z)

(z1 − x1) . . . (zd − xd)
dzd . . . dz1.

For x ∈ [−1, 1] real, |TN (x)| ≤ 1, whereas |TN (z)| ≥ sinh(Nµ) for z ∈ Eµ. Multiplying out the

TN -terms in the above integral gives

p(x) = f(x)− 1

(2πi)d

∫
Eµ

. . .

∫
Eµ

(
TN (x1)

TN (z1)
+ . . .+

TN (xd)

TN (zd)

)
f(z)

(z1 − x1) . . . (zd − xd)
dzd . . . dz1 + lot(x).

Here, the term f(x) follows from Cauchy’s integral formula and lot(x) denotes terms of order

sinh−2(Nµ). Estimating the remaining integral in the obvious way gives the assertion. �

The estimate for the interpolation error is a direct application of the above lemma.
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Lemma 5 For 1 < η < d +
√
d2 − 1 there is a constant Cη > 0, independent of r and m, such that the

interpolation error in (5.26) is bounded by

Ept
(
‖r̃‖
)
≤ Cη2

3
2
Ltη−pt .

Proof Recall that in the local coordinates (5.25) the heat kernel is

G(t′, τ ′) :=
2

3
2
m

T
3
2

(
d+ 1

2 (t′ − τ ′)
) exp

(
− ‖r̃‖2

4
(
d+ 1

2 (t′ − τ ′)
)) .

This function satisfies the assumptions of lemma 4 when coshµ < d which is equivalent to eµ <

d+
√
d2 − 1. Since m ≤ Lt we see that

max
t′,τ ′∈Eµ

∣∣G(t′, τ ′)
∣∣ ≤ Cµ2

3
2
Lt .

This bound is independent of ‖r̃‖ because Re d+ 1
2 (t′ − τ ′) > 0, so the argument to the exponential

function has negative real part. We estimate the hyperbolic sine in lemma 4 by sinh(ptµ) > (eµ)pt /4,

thus for any η < d+
√
d2 − 1 the assertion follows. �

Remark 4 The estimate in the above lemma makes clear that any exponential rate of convergence

can be achieved if pt ∼ Lt and the proportionality constant is sufficiently large.

We now turn to the error of the fast evaluation method in section 6. There are two error sources in this

algorithm, namely replacing the kernel by zero in levels `s < ¯̀s, and the Chebyshev approximation in

levels ¯̀s ≤ `s ≤ ˜̀s. For points x ∈ Γν and y ∈ Γν′ on the patches in the subdivision (6.33) the kernel

of the matrix b˜̀
s

in (6.38) is given by

G̃(x,y) =


G(‖x− y‖), ν ∈ P(˜̀s), ν

′ ∈ N (ν),

Gps(x,y), ν ∈ P(`s), ν
′ ∈ I(ν), ¯̀s ≤ `s ≤ ˜̀s,

0, ν ∈ P(`s), ν
′ ∈ I(ν), 0 ≤ `s < ¯̀s,

where Gps is the truncated series expansion in (6.36).

Lemma 6 For ps and ¯̀s given by (6.39), there are constants C > 0, η > 1, independent of ˜̀s, ˜̀t, m, d,

i and i′, such that ∣∣∣G(‖x− y‖)− G̃(x,y)
∣∣∣ ≤ Cη−Ls . (7.40)

Proof We begin with the far-field truncation for b
(m,d,i,i′)
˜̀
s

. The kernel of the matrix is

G(‖x− y‖) = exp

(
−‖x− y‖2

2−mδ

)
,

where δ = d + 1
2 (ω(i) − ω(i′)) is in the interval [1, 4]. For the points x ∈ Γν and y ∈ Γν′ , ν ∈ P(`s)

and ν′ ∈ I(ν) the distance satisfies ‖x− y‖ ≥ SL
1
2
s 2−`s because ν′ and ν are not neighbors. Thus the

estimate

G(‖x− y‖) ≤ exp

(
−2m−2`sLs

S2

δ

)
≤ exp

(
−Ls

S2

δ

)
holds when `s <

m
2 and the bound in (7.40) is established for η = exp

(
S2
)
.
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We now consider the far-field truncation error for the matrices b
(˜̀
t,i)

˜̀
s

. A simple change of variables

in (5.29) shows that the kernel is

G(‖x− y‖) = h
1
2
t gi

(
‖x− y‖√

ht

)
.

where gi is given by

gi(r) =


∫ 1

0

∫ t

0

1

(t− τ)
3
2

exp

(
− r2

4(t− τ)

)
dτ dt, i = 0,∫ 1

0

∫ 1

0

1

(d+ t− τ)
3
2

exp

(
− r2

4(i+ t− τ)

)
dτ dt, 0 < i < dim(V I0 ).

From their closed expression in [14] it can be seen that they satisfy the estmate gi(r) ≤ C
r2 exp

(
− r2

i+1

)
.

As before, it follows for x ∈ Γν and y ∈ Γν′ , where ν ∈ P(`s), ν
′ ∈ I(ν) and ˜̀s <

˜̀
t
2 , that G(‖x−y‖) ≤

C exp
(
−Ls S

2

i+1

)
holds. This is the bound in (7.40).

We now turn to the Chebyshev approximation error of the matrices b
(m,d,i,i′)
˜̀
s

. For x ∈ Γν , y ∈ Γν′ ,
ν ∈ P(`s), ν

′ ∈ I(ν), the kernel is

G(‖x− y‖) = exp

(
− S2

12m−2`s

d+ 1
2 (ωi − ωi′)

‖rν,ν′ + x̂− ŷ‖2
)
,

where rν,ν′ = xν − xν′ and x̂, ŷ ∈ [−1, 1]3 are the local coordinates defined in (6.35). The scaling of

the enclosing cubes and the definition of the neighbors and interaction lists implies that ‖rν,ν′‖ > 3

if S and Ls are sufficiently large. In view of lemma 4 the function (x̂, ŷ)→ ‖rν,ν′ + x̂− ŷ‖2 is strictly

positive in [−1, 1]6 and, for some µ > 0 can be extended to E6
µ such that real part of the image

remains positive. It follows that the interpolation error decays exponentially at a rate that can be

bounded independently of all of the paramenters m, `s, i, i
′ and d. If we let ps ∼ Ls, we obtain bound

(7.40).

It remains to estimate the truncation error in b
(˜̀
t,d)

˜̀
s

. The argument is based on a similar scaling. In

local coordinates, the kernel is

G(‖x− y‖) =
√
T2

˜̀
t
2 gd

(
‖x− y‖
√
T2

˜̀
t
2

)
=
√
T2

˜̀
t
2 gd

(
2

˜̀
t
2
−`s S1√

T
‖rν,ν′ + x̂− ŷ‖

)
The above definition implies that the functions r → gi(r) are analytic and uniformly bounded for

Re{r} ≥ r0 > 0. As before, there is µ > 0 such that the function (x̂, ŷ)→ ‖rν,ν′ + x̂− ŷ‖2 has positive

real part in E6
µ. However, to get uniform bounds of G in E6

µ the factor 2
˜̀
t
2
−`s must be bounded away

from zero. Fortunately, this is the case, because in the sum (6.39) we have `s ≥ 1
2

˜̀t. This establishes

(7.40) for ps ∼ Ls + Lt. �

8 A Numerical Example

To illustrate the theory presented in this work, we discuss numerical results obtained with an im-

plementation of the method. We solve the indirect integral formulation (2.7) where Γ is the unit

sphere and I = [0, 1]. The right hand side f(x, t) is chosen such that the solution is given by

g(x, t) = t2(3x2
3 − 1). The spaces V Γ`s are the continuous, piecewise linear functions (i.e., ds = 2),

subject to a triangulation of the sphere. The coarsest triangulation is obtained by radial projection

of the tetrahedron onto the sphere. The spaces V I`t are the piecewise constants (i.e., dt = 1), subject
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Ls Lt dimUL fac dim ÛL fac error fac

1 2 2.00e+2 1.10e+2 3.77e−1

2 4 2.72e+3 13.6 5.60e+2 5.09 2.87e−1 0.762

3 6 4.16e+4 15.2 2.72e+3 4.86 6.96e−2 0.242

4 8 6.58e+5 15.8 1.28e+5 4.71 1.82e−2 0.261

5 10 1.05e+7 16.0 5.89e+5 4.60 4.81e−3 0.264

6 12 1.68e+8 16.0 2.66e+6 4.52 1.38e−3 0.286

Table 8.1 Numerical results obtained with sparse grid implementation.

to a uniform subdivision of the unit interval, where initial space has five intervals. The relationship

between the finest spatial and temporal resolution is Lt = 2Ls.

In Section 6 we have described how matrix vector products with the spatial matrices in (6.34) can

be evaluated efficiently using H-matrix calculus. For a fully discrete algorithm, the coefficients of the

matices bnear
˜̀
s

must be computed by numerical quadrature. Since the kernels have in the worst case a

O
(

1
r

)
-singularity, one can use the singularity removing transformations of [12] combined with Gauss

quadrature. However, for coarse spatial and fine time scales the kernels can become very peaked and

an additional space refinement is necessary to ensure rapid convergence of the Gauss rules. In this

process, one can exploit that computations for fixed values of ˜̀t and m can be re-used for different

values of ˜̀s. We do not describe this algorithm in detail and only note that the numerical quadrature

introduces additional logarithmic factors in the overall complexity estimate of the method.

Table 8.1 displays the dimensions of the full and sparse spaces as well as the L2-error ‖g− ĝL‖L2(Γ×I)
of the solution. For comparison, we also include results obtained with the full grid method with no

fast evaluation techniques in table 8.3.

As apparent from table 8.1 the convergence order is not O(2−2Ls) as in case of the full method. This

can be explained as follows. We have Lsds = Ltdt, so that in view of Lemma 2 the convergence rate

with respect to the energy norm is

‖g − ĝL‖H− 1
2
,− 1

4 (Γ×I)
. Ls2

− LsLt
4Ls+2Lt 2−Lsds‖g‖Hds,dtmix (Γ×I).

Hence, inserting the L2-orthogonal projection Π̂L onto the space ÛL, we find by the inverse inequality

‖g − ĝL‖L2(Γ×I) ≤ ‖(I − Π̂L)g‖L2(Γ×I) + ‖Π̂Lg − ĝL‖L2(Γ×I)

.
√
Ls2
−Lsds‖g‖Hds,dtmix (Γ×I) + (2Ls/2 + 2Lt/4)‖Π̂Lg − ĝL‖H− 1

2
,− 1

4 (Γ×I)

. Ls(2
Ls/2 + 2Lt/4)2−

LsLt
4Ls+2Lt 2−Lsds‖g‖Hds,dtmix (Γ×I).

If we insert ds = 2, dt = 1, and 2Ls = Lt, then we obtain

‖g − ĝL‖L2(Γ×I) . Ls2
−Ls(ds−1/4)‖g‖Hds,dtmix (Γ×I) ∼ Ls2

− 7
4
Ls‖g‖H2,1

mix(Γ×I).

In Table 8.1, it can be seen that the error indeed closely reproduces the O(Ls2
− 7

4
Ls) convergence.

Also, the dimensions of the sparse tensor product spaces dim ÛL reproduce the O(Ls2
2Ls) estimate

of Lemma 1 well. Note that for the finer meshes the dimensions of the sparse spaces are dramatically

smaller than the full tensor product spaces.

Table 8.2 displays complexity results with our implementation. Our code precomputes the matrices

bnear
˜̀
s

in (6.34) and the coefficients Eν,ν
′

α,β in (6.36) and store them in memory. We have parallelized

this aspect in OpenMP using 16 threads and the timings are reported as setup time. The major cost

of the iterative solver is in the computation of the matrix vector product. This aspect of the code is
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Ls setup(s) fac apply(s) fac coeffs fac

1 6.00e−4 4.68e+3

2 3.00e+0 7.99e−3 13.3 1.27e+5 27.1

3 3.60e+1 12.0 1.69e−1 21.2 2.57e+6 20.2

4 5.57e+2 15.5 3.56e+0 21.0 4.61e+7 17.9

5 1.19e+4 21.3 7.81e+1 21.9 8.20e+8 17.8

6 1.48e+5 12.4 1.24e+3 15.9 9.24e+9 11.3

Table 8.2 Timings in seconds and number of stored coefficients for the sparse grid method.

Ls error fac setup(s) fac apply(s) fac coeffs fac

1 2.24e−1 1.60e−5 2.00e+3 25.0

2 2.86e−1 1.28 2.00e+0 3.20e−3 200 9.25e+4 46.2

3 5.48e−2 0.191 1.00e+2 50 2.09e+0 654 5.41e+6 58.4

4 1.24e−2 0.226 6.30e+3 63 4.83e+2 231 3.38e+8 62.5

Table 8.3 L2-errors and timings for the full method.

run in serial on a single thread and reported as the apply time. The table also displays the number

of stored matrix- and translation coefficients.

From the shown data it is apparent that in most cases the magnification factors obtained are signifi-

cantly smaller than 16. This shows that the sparse grid method has an improved complexity over any

method that is based on the full grid discretization, even if that method has optimal complexity in

dimUL, such as the methods of [19] and [15]. The results displayed in table 8.3 is for the full method,

where the theoretical factors are 64 for the setup and 256 for the solution.

For the smaller values of Ls the observed memory allocation and cpu-times for the sparse grid method

grow much faster than the theroretical dim ÛL rate. The reason is that most of the computing

resources are consumed by the many b˜̀
s
-matrices in (6.34). Since these matrices are relatively small

for the values of ˜̀s that we computed, the H-format does not yield high compression rates, because

the asymptotic rates of Section 6 have not been reached. Only for the largest number of refinements

the complexity curves level out and suggest that a nearly dim ÛL complexity is indeed possible.
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