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Abstract

The subdivision algorithm by Dellnitz and Hohmann for the com-

putation of invariant sets of dynamical systems decomposes the rele-

vant region of the state space into boxes and analyzes the induced box

dynamics. Its convergence is proved in an idealized setting, assuming

that the exact time evolution of these boxes can be computed.

In the present article, we show that slightly modified, directly im-

plementable versions of the original algorithm are convergent under

very mild assumptions on the dynamical system. In particular, we de-

monastrate that neither a fine net of sample points nor very accurate

approximations of the precise dynamics are necessary to guarantee

convergence of the overall scheme.

Keywords: subdivision algorithm, computation of invariant sets, guaran-
teed convergence, overapproximation
AMS classification numbers: 37N30, 65L70

1 Introduction

The software package GAIO for the computation of invariant objects is based
on the subdivision algorithm, which was proposed in the research article [3]
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in 1997. The basic idea of this algorithm is to cover the relevant region of the
state space with boxes, to analyze the dynamics induced on the box cover and
to refine the cover successively in such a way that a neat overapproximation
of the desired object is obtained with manageable computational effort.

Today, twenty years later, the subdivision algorithm and the GAIO pack-
age are firmly established. Their applications include the computation of
invariant manifolds of autonomous (see the original article [3]) and nonau-
tonomous dynamical systems (see [14]), the solution of global optimization
problems (see [15]), the approximation of Pareto sets in multiobjective opti-
mization (see [7]), the computation of optimal stabilizing feedback laws (see
[10]), the approximation of almost invariant sets (see [4]), the identification
of coherent structures in 3d fluid flows (see [9]), the design of space mis-
sions (see [5] and [12]), the computation of rigorous bounds in uncertainty
quantification (see [6]), and the analysis of the formation of prices in quan-
titative finance (see [2]). The package is also used in the context of rigorous
computations in dynamics (see [13]), and, in combination with Monte-Carlo
methods, subdivision techniques have been established as a major tool in
computational molecular dynamics (see [8] and later work of the authors).

It was noted in [11] that convergence of the subdivision algorithm had
been proved under idealized conditions. It is, indeed, assumed in [3], that
precise images of boxes in state space under the action of the dynamical sys-
tem can be computed, which is not possible in a concrete implementation.
Therefore, it was proposed in [11] in the context of discrete-time systems
to work with numerical overapproximations of the precise images of boxes,
which yields rigorous enclosures of the desired invariant objects. The ques-
tion, whether the enclosures converge to these objects, remained open.

It became common practice to evolve large sets of sample points in ev-
ery box and to hope that the resulting discrete image induced the correct
dynamics on the box cover. This approach is computationally expensive, in
particular for continuous-time dynamics, where large ensembles of trajecto-
ries are integrated with high precision. At the same time, the strategy is
potentially dangerous, because it is well-known that invariant sets can react
in an extremely sensitive way to discretization errors.

The aim of the present article is to prove that enclosures of invariant
objects, which are generated by numerical overapproximations in the spirit
of [11], do converge. For discrete as well as for continuous-time systems,
we establish sufficient conditions for overapproximations to yield an overall
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convergent subdivision algorithm. We keep these conditions fairly general,
hoping that most variants of the subdivision algorithm, which are in current
use, can be discussed in this framework.

The organization of and the logic behind the sections on discrete-time
and continuous-time systems is quite similar. At first, we prove some useful
properties of the global relative attractor, then we discuss the convergence
of a global discretization scheme, and in the end, we prove that the output
of the subdivision algorithm is sandwiched between the exact object and the
output of the global discretization scheme.

2 Setting and notation

Let R+ denote the set of all nonnegative real numbers, and consider a vector
norm ‖ · ‖ : Rd → R+. For any X, Y ⊂ Rd, the quantities

diam(X) := sup
x∈X

sup
y∈X

‖x− y‖ and dist(X, Y ) := sup
x∈X

inf
y∈Y
‖x− y‖

are called the diameter of X and the semidistance between X and Y .

For the spatial discretization of a dynamical system on a given compact
set Q ⊂ Rd, we introduce the notion of a cover.

Definition 1. Given ρ > 0, a collection Ω = {Di ⊂ R
d : i ∈ I} is called a

ρ-cover of Q if the index set I is finite, if Q = ∪i∈IDi, if Di 6= ∅ for all i ∈ I
and if diam(Di) ≤ ρ for all i ∈ I.

For any index set I, the symbol 2I will represent the collection of all
subsets of I, including the empty set.

The definition of nested covers formalizes the idea of a successively refined
sequence of discretizations.

Definition 2. Let (ρn)
∞

n=0 be a sequence with ρn ց 0 as n → ∞. Then
a sequence (Ωn)

∞

n=0 of ρn-covers given by Ωn = {Dn
i ⊂ R

d : i ∈ In} is
called nested if for every n ∈ N and i ∈ In+1, there exists j ∈ In such that
Dn+1

i ⊂ Dn
j .

The paper is essentially self-contained. The only external resources that
are used are Theorems 0.3.4 and 1.4.1 from [1], which summarize well-known
arguments from the proof of the Cauchy-Peano theorem we do not wish to
repeat explicitly.
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3 Discrete-time dynamics

Consider an autonomous dynamical system

xk+1 = f(kn), k ∈ N, (1)

induced by a homeomorphism f : Rd → R

d. We will be interested in the
dynamics near a compact set Q ⊂ Rd. The object we wish to approximate
is the global relative attractor.

Definition 3. The global attractor of the dynamical system (1) relative to Q
is the set

AQ := ∩k∈Nf
k(Q). (2)

Some characteristics of this attractor are immediate consequences of its
definition.

Lemma 4. The set AQ is compact and has the following properties.

(a) We have AQ = {x ∈ Rd : f−k(x) ∈ Q ∀ k ∈ N}.

(b) The inclusion f−k(AQ) ⊂ AQ holds for all k ∈ N.

(c) If Q̃ ⊂ Q is compact and AQ ⊂ Q̃, then AQ = AQ̃.

Proof. Since f is continuous, the set AQ is an intersection of compact sets
and hence compact. Statement (a) is a reformulation of the definition (2).

(b) Let k ∈ N and x ∈ AQ be given. By part (a), whe have

f−l(f−k(x)) = f−(k+l)(x) ∈ Q ∀l ∈ N,

so again by part (a), we have f−k(x) ∈ AQ.
(c) Since Q̃ ⊂ Q, we have

AQ̃ = ∩k∈Nf
k(Q̃) ⊂ ∩k∈Nf

k(Q) = AQ.

Now let x ∈ AQ. By part (b), we have

f−k(x) ∈ AQ ⊂ Q̃ ∀ k ∈ N,

so part (a) applied to Q̃ instead of Q implies x ∈ AQ̃.
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3.1 A global discretization scheme

We overapproximate the dynamics that the mapping f−1 induces on a cover
Ω ofQ by a multivalued mapping ϕ acting on its index set I. This abstraction
provides a clear picture of the principles that are at work and leaves a lot
of freedom for the design of concrete implementations. Let us define the
discrete analog of AQ.

Definition 5. Let Ω = {Di ⊂ R

d : i ∈ I} be a ρ-cover of Q, and let
ϕ : I → 2I be a mapping. Then we define

IϕΩ := {i ∈ I : ϕk(i) 6= ∅ ∀ k ∈ N}

and call Aϕ
Ω := ∪i∈Iϕ

Ω
Di the discrete global attractor of (Ω, ϕ).

The index set IϕΩ and hence Aϕ
Ω can be computed using Algorithm 1,

which can be considered a variant of Dijkstra’s algorithm. In the following,
we show that the discrete attractors computed by this algorithm converge to
AQ as ρ tends to zero. In a first step, we show that the exact global attractor
AQ is always contained in the numerical approximation.

Proposition 6. If Ω = {Di ⊂ R
d : i ∈ I} is a ρ-cover of Q, and a mapping

ϕ : I → 2I satisfies
(

f−1(Di) ∩Q
)

⊂
(

∪j∈ϕ(i) Dj

)

∀i ∈ I, (3)

then AQ ⊂ Aϕ
Ω.

Proof. Fix x ∈ AQ. Since Ω is a cover of Q, there exists i0 ∈ I such that
x ∈ Di0 . Let us prove by induction that for all k ∈ N,

there exists ik ∈ ϕk(i0) with f−k(x) ∈ Dik . (4)

Since ϕ0(i0) = {i0} and f 0(x) = x, the statement is true for k = 0. Now
assume that statement (4) is true for some k ∈ N. By Lemma 4 part (a), we
have f−(k+1)(x) ∈ Q, and since, in addition, f−(k+1)(x) ∈ f−1(Dik), it follows
from condition (3) that

f−(k+1)(x) ∈
(

∪j∈ϕ(ik) Dj

)

.

Hence there exists ik+1 ∈ ϕ(ik) ⊂ ϕk+1(i0) with f−(k+1)(x) ∈ Dik+1
. By

induction, statement (4) holds. In particular, ϕk(i0) 6= ∅ for all k ∈ N, and
hence i0 ∈ IϕΩ and x ∈ Aϕ

Ω.
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Now we prove that the numerical approximation Aϕ
Ω shrinks down to AQ

if the cover of Q and the discrete mapping ϕ are refined appropriately.

Proposition 7. If (ρn)n ⊂ R+ is a sequence with limn→∞ ρn = 0, if the
collections Ωn = {Dn

i ⊂ R
d : i ∈ In} are ρn-covers of Q, and if the mappings

ϕn : In → 2In satisfy

lim
n→∞

sup
i∈In

dist(∪j∈ϕn(i)D
n
j , f

−1(Dn
i )) = 0, (5)

then limn→∞ dist(Aϕn

Ωn
, AQ) = 0.

Proof. If the statement is false, then there exist ε > 0 and in0 ∈ IρnΩn
, n ∈ N,

such that, after passing to a subsequence, we have

dist(Dn
in
0
, AQ) ≥ ε ∀n ∈ N.

By definition of IρnΩn
, for all n ∈ N there exist sequences (ink)

∞

k=1 ⊂ In with

ink+1 ∈ ϕn(i
n
k) ∀ k ∈ N.

Pick arbitrary points xn
k ∈ Dn

in
k
for k, n ∈ N and split

‖xn
k+1 − f−1(xn

k)‖ ≤ dist(xn
k+1,∪j∈ϕn(ink )

Dn
j )

+ dist(∪j∈ϕn(ink )
Dn

j , f
−1(Dn

in
k
)) + dist(f−1(Dn

in
k
), f−1(xn

k)).

Because of xn
k+1 ∈ ∪j∈ϕn(ink )

Dn
j , by (5), since f−1 is uniformly continuous on

Q and since dist(Dn
in
k
, xn

k) ≤ ρn, we conclude that

‖xn
k+1 − f−1(xn

k)‖ → 0 as n→∞. (6)

Now we construct a trajectory of (1) using induction on k. Since Q is com-
pact, we may pass to a subsequence to obtain

x0 := lim
n→∞

xn
in
0
∈ Q.

If points (xj)
k
j=0 ⊂ Q with

xj = lim
n→∞

xn
inj
, j = 0, . . . , k, (7)

xj+1 = f−1(xj), j = 0, . . . , k − 1, (8)
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have been constructed, we may pass to a subsequence again to obtain

xk+1 := lim
n→∞

xn
in
k+1
∈ Q. (9)

By (6), (7), (9) and continuity of f−1, it follows that

‖xk+1 − f−1(xk)‖ ≤‖xk+1 − xn
in
k+1
‖+ ‖xn

in
k+1
− f−1(xn

in
k
)‖

+ ‖f−1(xn
in
k
)− f−1(xk)‖ → 0 as n→∞,

so xk+1 = f−1(xk). By induction, we obtain a sequence (xk)
∞

k=0 ⊂ Q with

xk+1 = f−1(xk), k ∈ N.

Lemma 4(a) yields x0 ∈ AQ. This, however, is impossible, since

dist(x0, AQ) = dist( lim
n→∞

xn
in
0
, AQ) = lim

n→∞

dist(xn
in
0
, AQ) ≥ ε.

3.2 A subdivision scheme

Let us prove that the index sets Jn generated by Algorithm 2 encode subsets
∪j∈JnD

n
j ⊂ Q converging to AQ.

Proposition 8. Let (ρn)
∞

n=0 be a sequence with ρn ց 0 as n → ∞, and let
(Ωn)

∞

n=0 given by Ωn = {Dn
i ⊂ R

d : i ∈ In} be a nested sequence of ρn-covers
of Q. If the mappings ϕn : In → 2In satisfy

(

f−1(Dn
i ) ∩Q

)

⊂
(

∪j∈ϕn(i) D
n
j

)

∀ i ∈ In, n ∈ N (10)

and condition (5), then the index sets Jn computed by Algorithm 2 satisfy

AQ ⊂
(

∪j∈Jn Dn
j

)

⊂ Aϕn

Ωn
. (11)

In particular, the sets ∪j∈JnD
n
j converge to AQ from above.

Proof. By definition of the discrete global attractor, by construction of the
index set Jn, and since J+

n ⊂ In, the inclusion
(

∪j∈Jn Dn
j

)

⊂ Aϕn

Ωn
is correct

for any n ∈ N.
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Since J0 = Iϕ0

Ω0
, it follows from condition (10) and Proposition 6 that

AQ ⊂
(

∪j∈J0 D
0
j

)

= Aϕ0

Ω0
.

Assume that (11) holds for some n ∈ N. Then Ω̃ := {Dn+1
j : j ∈ J+

n+1} is a

ρn+1-cover of the set Q̃ := ∪j∈JnD
n
j , and condition (10) implies that

(

f−1(Dn+1
i ) ∩ Q̃

)

⊂
(

∪j∈ϕn(i) D
n+1
j

)

∀ i ∈ J+
n+1.

Thus Lemma 4 part (c) and Proposition 6 applied to Q̃ and ϕn+1 restricted
to J+

n+1 yield
AQ = AQ̃ ⊂

(

∪j∈Jn+1
Dn+1

j

)

.

By induction, inclusion (11) holds for all n ∈ N.
In view of Propositions 6 and 7, the sets ∪j∈JnD

n
j converge to AQ from

above.

3.3 A provably convergent implementation

For simplicity, we assume that the mapping f−1 is L-Lipschitz, and we limit
ourselves to an implementation which does not exploit higher order Taylor
terms of f−1. For more elaborate overapproximations, which can be treated
in a similar way, we refer to [11].

Let Q be a box, let ρ0 := diam(Q), and set Ω0 := {D0
0} with D0

0 = Q
and I0 = {0}. We define a nested sequence of box covers by induction. Let
Ωn = {Dn

i : i ∈ In} with index set In = {0, . . . , 2nd − 1} be a ρn-cover of Q
consisting of boxes Dn

i . Subdivide each Dn
i into 2d commensurate subboxes

Dn+1
i2d

, . . . , Dn+1
(i+1)2d−1

, define In+1 := {0, . . . , 2
(n+1)d − 1} and set ρn+1 :=

1
2
ρn.

Then Ωn+1 = {D
n+1
i : i ∈ In+1} is ρn+1-cover of Q consisting of boxes Dn+1

i .
To construct an overapproximation of f−1(Dn

i ) for a given Dn
i ∈ Ωn, we

choose M ∈ N1 and decompose each Dn
i into Md commensurate subboxes

Ei,n
0 , . . . , Ei,n

Md−1
with centers zi,n0 , . . . , zi,n

Md−1
and diameter ̺n := ρn/M . Now

we define the discrete dynamics by

ϕn(i) := {j ∈ In : ∪M
d
−1

l=0 {f
−1(zi,nl )}+BL̺n(0) ∩Dn

j 6= ∅} (12)

and verify that they satisfy our sufficient conditions for convergence of the
resulting numerical method.
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Algorithm 1: A global scheme for the approximation of AQ.

Input: index set I, mapping ϕ
Output: index set IϕΩ

/* initialize removed, critical and noncritical indices */

Jr ← {i ∈ I : ϕ(i) = ∅}
Jc ← {i ∈ I : ϕ(i) ∩ Jr 6= ∅}
Jnc ← I \ (Jr ∪ Jc)

/* remove indices i with ϕk(i) = ∅ for some k recursively */

while ∃i ∈ Jc : ϕ(i) ∩ (Jc ∪ Jnc) = ∅ do
Jc ← Jc \ {i}
Jr ← Jr ∪ {i}
for j ∈ Jnc do

if i ∈ ϕ(j) then
Jnc ← Jnc \ {j}
Jc ← Jc ∪ {j}

end

end

end

return Jc ∪ Jnc

Algorithm 2: A subdivision scheme for the approximation of AQ.

Input: mappings ϕn, nested Ωn = {Dn
i ⊂ R

d : i ∈ In}, n ∈ N
Output: index set Jn

J+
0 ← I0

for n← 0 to ∞ do

/* compute discrete attractor at current level */

Jn ← Algorithm 1 applied to (J+
n , ϕn)

break upon user request
/* refine cover of current discrete attractor */

J+
n+1 ← {i ∈ In+1 : D

n+1
i ⊂ Dn

j for some j ∈ Jn}

end

return Jn

9



Proposition 9. The discrete mappings ϕn constructed in (12) satisfy con-
ditions (5) and (10).

Proof. For every x ∈ Dn
i and Dn

i ∈ Ωn , there exists some l ∈ {0, . . . ,Md−1}
with x ∈ Ei,n

l . Since

‖f−1(x)− f−1(zi,nl )‖ ≤ L‖x− zi,nl ‖ ≤ L̺n,

condition (10) holds. By definition of the mappings ϕn, we have

lim
n→∞

sup
i∈In

dist(∪j∈ϕn(i)D
n
j , f

−1(Dn
i )) ≤ lim

n→∞

(L+ 1)̺n = 0,

which is (5).

Taking M = 1 in the above, we obtain a provably convergent algorithm
that only needs a single evaluation of f−1 per box.

4 Continuous-time dynamics

Consider an autonomous ordinary differential equation

ẋ(t) = g(x(t)), t ∈ R, (13)

with continuous right-hand side g : Rd → R

d. Again, we will only be inter-
ested in the dynamics near a compact set Q ⊂ Rd, and we assume throughout
this section that the solution map φ : R × Rd → R

d of (13) is well-defined
and continuous.

Definition 10. The global attractor relative to Q is the set

AQ := ∩t∈R+
φ(t, Q). (14)

As in the discrete-time case, some characteristics of the attractor are
immediate.

Lemma 11. The set AQ is compact and has the following properties.

(a) We have AQ = {x ∈ Rd : φ(−t, x) ∈ Q ∀ t ∈ R+}.

(b) We have φ(−t, AQ) ⊂ AQ ∀ t ∈ R+.
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(c) If Q̃ ⊂ Q is compact and AQ ⊂ Q̃, then AQ = AQ̃.

Proof. For any t ∈ R+, the mapping x 7→ φ(t, x) is continuous, so φ(t, Q)
is compact, and hence the intersection AQ of these sets is compact as well.
Statement (a) is a reformulation of the definition given in (14).

(b) Let t ∈ R+ and x ∈ AQ be given. By part (a), we have

φ(−s, φ(−t, x)) = φ(−(s+ t), x) ∈ Q ∀s ∈ R+,

so that φ(−t, x) ∈ AQ follows from part (a).
(c) It is clear that

AQ̃ = ∩t∈R+
φ(t, Q̃) ⊂ ∩t∈R+

φ(t, Q) = AQ.

Now let x ∈ AQ. By part (b), we have

φ(−t, x) ∈ AQ ⊂ Q̃ ∀ t ∈ R+,

so part (a) implies x ∈ AQ̃.

4.1 A global discretization scheme

We reduce the continuous-time dynamics to a discrete-time system by con-
sidering the time-h map f(x) := φ(h, x) with inverse f−1(x) = φ(−h, x).
The discrete global attractors are then computed by applying Algorithm 1
to covers Ω and discrete maps ϕ as in the discrete-time case. The following
result and its proof are identical with Proposition 6 up to notation.

Proposition 12. Fix an arbitrary h > 0. If Ω = {Di ⊂ R
d : i ∈ I} is a

ρ-cover of Q, and if the mapping ϕ : I → 2I satisfies

(

φ(−h,Di) ∩Q
)

⊂
(

∪j∈ϕ(i) Dj

)

∀i ∈ I, (15)

then AQ ⊂ Aϕ
Ω.

Now we prove an analog of Proposition 7.

Proposition 13. Let (hn)
∞

n=0, (ρn)
∞

n=0 ⊂ R+ be sequences with

lim
n→∞

hn = lim
n→∞

ρn = 0.

11



If Ωn = {Dn
i ⊂ R

d : i ∈ In} are ρn-covers of Q, and if ϕn : In → 2In are
mappings such that

lim
n→∞

sup
i∈In

sup
j∈ϕn(i)

dist(Dn
j , D

n
i ) = 0, (16)

lim
n→∞

sup
i∈In

sup
j∈ϕn(i)

sup
x∈Dn

j

sup
z∈Dn

i

‖h−1
n (x− z) + g(z)‖ = 0, (17)

then limn→∞ dist(Aϕn

Ωn
, AQ) = 0.

Proof. If this statement is false, then there exist ε > 0 and in0 ∈ Iϕn

Ωn
, n ∈ N,

such that, after passing to a subsequence, we have

dist(Dn
in
0
, AQ) ≥ ε ∀n ∈ N.

By definition of Iϕn

Ωn
, for every n ∈ N, there exists (ink)

∞

k=1 ⊂ In with

ink+1 ∈ ϕ(ink) ∀ k ∈ N.

Fix arbitrary xn
k ∈ Dn

in
k
for all k, n ∈ N and define continuous piecewise linear

functions yn : (−∞, 0]→ Rd by

yn(t) :=
t+ (k + 1)hn

hn

xn
k −

t + khn

hn

xn
k+1 ∀t ∈ [−(k + 1)hn,−khn], k ∈ N.

By condition (16), and since for all k ∈ N, we have

‖yn(t)− xn
k‖ ≤ ‖x

n
k+1 − xn

k‖ ≤ dist(Dn
j , D

n
i ) + ρn ∀ t ∈ [−(k + 1)hn,−khn],

these functions satisfy

lim
n→∞

sup
k∈N

sup
t∈[−(k+1)hn,−khn]

‖yn(t)− xn
k‖ = 0. (18)

Because of condition (17), we find

lim
n→∞

sup
k∈N

sup
t∈(−(k+1)hn,−khn)

‖y′n(t) + g(xn
k)‖

= lim
n→∞

sup
k∈N

sup
t∈(−(k+1)hn,−khn)

‖h−1
n (xn

k − xn
k+1) + g(xn

k)‖ = 0.











(19)

Since maxx∈Q ‖g(x)‖ <∞, we may conclude from this statement that

sup
n∈N

ess supt∈(−∞,0] ‖y
′

n(t)‖ <∞, (20)
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and by construction, we have

sup
n∈N

sup
t∈(−∞,0]

‖yn(t)‖ ≤ max
x∈Q
‖x‖ <∞. (21)

Because of estimates (18), (19), (20) and (21) and Theorems 0.3.4 and 1.4.1
in [1], there exists an absolutely continuous function y : (−∞, 0]→ R

d with

y′(t) = g(y(t)) for almost every t ∈ (−∞, 0]

and such that, along a subsequence, yn(t) → y(t) holds for all t ∈ (−∞, 0].
Since g is continuous and y is absolutely continuous, it follows that y′ pos-
sesses a continuous representation and y is a C1 solution of (13). Moreover,
it follows from (18) and xn

k ∈ Q for all k, n ∈ N that

lim
n→∞

sup
t∈(−∞,0]

dist(yn(t), Q) = 0,

and since Q is compact, we have

y(t) ∈ Q ∀t ∈ (−∞, 0].

Hence y(0) ∈ AQ by Lemma 11 part (a). On the other hand, we have

dist(y(0), AQ) = lim
n→∞

dist(yn(0), AQ) ≥ ε,

which is a contradiction.

4.2 A subdivision algorithm

The discrete-time subdivision algorithm given as Algorithm 2 can be applied
to nested covers Ωn and the discrete maps ϕn discussed above. The proof
of the following convergence result is completely analogous to that of Propo-
sition 8 with f−1 being replaced by φ(−hn, ·) and Propositions 12 and 13
being invoked instead of Propositions 6 and 7.

Proposition 14. Let (hn)
∞

n=0, (ρn)
∞

n=0 ⊂ R+ be sequences with hn, ρn ց 0
as n → ∞, and let (Ωn)

∞

n=0 given by Ωn = {Dn
i ⊂ R

d : i ∈ In} be a nested
sequence of ρn-covers of Q. If ϕn : In → 2In are mappings satisfying

(

φ(−hn, D
n
i ) ∩Q

)

⊂
(

∪j∈ϕn(i) D
n
j

)

∀i ∈ In (22)

and conditions (16) and (17), then the index sets Jn ⊂ In computed by
Algorithm 2 satisfy

AQ ⊂
(

∪j∈Jn Dn
j

)

⊂ Aϕn

Ωn
.

In particular, the sets ∪j∈JnD
n
j converge to AQ from above.
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4.3 A provably convergent implementation

For simplicity, assume that g is globally P -bounded and L-Lipschitz, i.e. that

‖g(x)‖ ≤ P and ‖g(x)− g(z)‖ ≤ L‖x− z‖ ∀ x, z ∈ Rd, (23)

which, in view of the Picard-Lindelöf theorem and the Gronwall lemma,
implies that the standing assumptions of this section hold.

Consider the nested sequence (Ωn)
∞

n=0 of ρn-covers Ωn = {Dn
i : i ∈ In} of

a box Q defined in paragraph 3.3, as well as a decomposition Ei,n
0 , . . . , Ei,n

Md−1

of each Dn
i into Md commensurate subboxes with centers zi,n0 , . . . , zi,n

Md−1
and

diameter ̺n := ρn/M . Choose a sequence (hn)
∞

n=0 ⊂ R+ of temporal step-
sizes with limn→∞ hn = 0 and limn→∞ h−1

n ρn = 0.
In contrast to the discrete-time case, the mapping x 7→ φ(−hn, x) is not

explicitly available, so we approximate it by N steps of Euler’s scheme with
a finer step-size θn := hn/N , which is given in terms of the initial value
φE(0, x) := x and the iteration

φE(−(k + 1)θn, x) := φE(−kθn, x)− θng(φE(−kθn, x)), k = 0, . . . , N − 1.

We define the discrete overapproximating dynamics by

ϕn(i) := {j ∈ In : ∪M
d
−1

l=0 {φE(−hn, z
i,n
l )}+Brn(0)∩D

n
j 6= ∅}, i ∈ In, (24)

with parameter
rn := eLhn̺n +

1
2N

Phn(e
Lhn − 1)

and check that this choice induces an overall convergent subdivision algo-
rithm. We begin by collecting some information on Euler’s scheme in the
setting (23).

Lemma 15. For any k ∈ N and x, y, z ∈ Rd, Euler’s scheme satisfies the
following estimates:

‖φE(−hn, x)− x‖ ≤ Phn, (25)

‖φE(−hn, y)− φE(−hn, z)‖ ≤ eLhn‖y − z‖, (26)

‖φ(−hn, x)− φE(−hn, x)‖ ≤
1
2N

Phn(e
Lhn − 1), (27)

‖h−1
n (φE(−hn, x)− x) + g(x)‖ ≤ 1

2
LPhn. (28)
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Proof. First note that for every x ∈ Rd, t ∈ R+ and k ∈ N, we have bounds

‖φ(−t, x)− x‖ ≤

∫ 0

−t

‖g(s)‖ds ≤ P |t|, (29)

‖φE(−kθn, x)− x‖ ≤ θn

k−1
∑

j=0

‖g(φE(−jθn, x))‖ ≤ Pkθn, (30)

which is inequality (25). For all y, z ∈ Rd, we have

‖φE(−θn, y)− φE(−θn, z)‖ = ‖(y − θng(y))− (z − θng(z))‖

≤ (1 + Lθn)‖y − z‖,

}

(31)

and a simple induction yields

‖φE(−kθn, y)− φE(−kθn, z)‖ ≤ (1 + Lθn)
k‖y − z‖ ≤ (1 + Lhn

N
)N‖y − z‖,

which gives inequality (26). Using inequality (29), we obtain the bound

‖φ(−θn, x)−φE(−θn, x)‖ = ‖
(

x−

∫ 0

−θn

g(φ(t, x))dt
)

−
(

x− θng(x)
)

‖

≤

∫ 0

−θn

‖g(φ(t, x))dt− g(x)‖dt ≤ L

∫ 0

−θn

‖φ(t, x)− x‖dt ≤ 1
2
LPθ2n



















(32)
for the local error of Euler’s scheme. Let us prove the estimate

‖φ(−kθn, x)− φE(−kθn, x)‖ ≤
1
2
LPθ2n

k−1
∑

j=0

(1 + Lθn)
j. (33)

by induction. For k = 0, the statement is trivially satisfied. Now assume
that (33) holds for some k ∈ N. Using inequalities (31) and (32) as well as
the induction hypothesis, we obtain

‖φ(−(k + 1)θn, x)− φE(−(k + 1)θn, x)‖

≤ ‖φ(−θn, φ(−kθn, x))− φE(−θn, φ(−kθn, x))‖

+ ‖φE(−θn, φ(−kθn, x))− φE(−θn, φE(−kθn, x))‖

≤ 1
2
LPθ2n + (1 + Lθn)

1
2
LPθ2n

k−1
∑

j=0

(1 + Lθn)
j = 1

2
LPθ2n

k
∑

j=0

(1 + Lθn)
j,
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so the representation (33) of the global error of Euler’s scheme is correct.
Now inequality (27) follows from

‖φ(−hn, x)− φE(−hn, x)‖ ≤
1
2
LPθ2n

N−1
∑

j=0

(1 + Lθn)
j

= 1
2
LPθ2n

(1 + Lθn)
N − 1

Lθn
=

1

2N
Phn((1 +

Lhn

N
)N − 1) ≤

1

2N
Phn(e

Lhn − 1).

Finally, use inequality (30) to estimate

‖(kθn)
−1(φE(−kθn, x)− x) + g(x)‖ ≤ k−1

k−1
∑

j=0

‖g(φE(−jθn, x))− g(x)‖

≤ k−1

k−1
∑

j=0

L‖φE(−jθn, x)− x‖ ≤ k−1LPθn

k−1
∑

j=0

j ≤ 1
2
LPkθn,

which proves inequality (28).

Now we prove that for any fixed N ∈ N1, the overapproximations ϕn

defined in (24) yield an overall convergent subdivision algorithm.

Proposition 16. The mappings ϕn constructed in (24) satisfy conditions
(16), (17) and (22).

Proof. We use estimate (25) to compute

lim
n→∞

sup
i∈In

sup
j∈ϕn(i)

dist(Dn
j , D

n
i )

≤ lim
n→∞

sup
i∈In

sup
j∈ϕn(i)

{

dist(Dn
j ,∪

Md
−1

l=0 {φE(−hn, z
i,n
l )})

+ max
l=0,...,Md−1

‖φE(−hn, z
i,n
l )− zi,nl )‖

≤ lim
n→∞

(ρn + rn + Phn) = 0,

which is condition (16). Using estimate (28), we obtain for arbitrary n ∈ N,
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i ∈ In, j ∈ ϕn(i), x ∈ Dn
j and z ∈ Dn

i a uniform bound

‖h−1
n (x− z) + g(z)‖

≤ inf
y∈Dn

i

h−1
n ‖x− φE(−hn, y)‖+ sup

y∈Dn
i

‖h−1
n (φE(−hn, y)− y) + g(y)‖

+ sup
y∈Dn

i

h−1
n ‖y − z‖ + sup

y∈Dn
i

‖g(z)− g(y)‖

≤ h−1
n (ρn + rn) +

1
2
LPhn + h−1

n ρn + Lρn,

so (17) holds. Finally, estimates (26) and (27) imply for any x ∈ Dn
i that

dist(φ(−hn, x),∪
Md

−1
l=0 {φE(−hn, z

i,n
l )}‖

≤ |φ(−hn, x)− φE(−hn, x)‖+ dist(φE(−hn, x),∪
Md

−1
l=0 {φE(−hn, z

i,n
l )})

≤ 1
2N

Phn(e
Lhn − 1) + eLhn dist(x,∪M

d
−1

l=0 {z
i,n
l }) ≤ rn,

which proves (22).

Taking M = 1 and N = 1 in the above, we obtain a provably convergent
algorithm that only needs a single Euler step per box.

5 Conclusion

We proved that modifications of the subdivision algorithm in the spirit of
the paper [11] are convergent and verified the usefulness of this approach. It
turns out that the overall algorithm is so robust that a single evaluation of
the dynamical system per box in discrete time and a single Euler step per
box in continuous time suffice to generate a convergent numerical method.

It would be desirable to know which choices of discretizations and param-
eters yield optimal performance of the implementations we presented. The
basic tradeoff is easy to understand. Accurate overapproximations of the
exact dynamics make the construction of the mappings ϕn very costly, but
accelerate the graph theoretical part of the algorithm and may also lead to
a reduction of complexity by eliminating larger irrelevant regions at a coarse
level. As it is, even under idealized conditions, very difficult to prove quan-
titative results about approximations of invariant sets, we believe that the
question, how these two effects can be balanced in an optimal way, cannot
be expected to be answered rigorously.
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