Skip to main content
Log in

Generalized block anti-Gauss quadrature rules

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Golub and Meurant describe how pairs of Gauss and Gauss–Radau quadrature rules can be applied to determine inexpensively computable upper and lower bounds for certain real-valued matrix functionals defined by a symmetric matrix. However, there are many matrix functionals for which their technique is not guaranteed to furnish upper and lower bounds. In this situation, it may be possible to determine upper and lower bounds by evaluating pairs of Gauss and anti-Gauss rules. Unfortunately, it is difficult to ascertain whether the values determined by Gauss and anti-Gauss rules bracket the value of the given real-valued matrix functional. Therefore, generalizations of anti-Gauss rules have recently been described, such that pairs of Gauss and generalized anti-Gauss rules may determine upper and lower bounds for real-valued matrix functionals also when pairs of Gauss and (standard) anti-Gauss rules do not. The available generalization requires the matrix that defines the functional to be real and symmetric. The present paper reviews available anti-Gauss and generalized anti-Gauss rules and extends them in several ways that allow applications in new situations. In particular, the genarlized anti-Gauss rules for a real-valued non-negative measure described in Pranić and Reichel (J Comput Appl Math 284:235–243, 2015) are extended to allow the estimation of the error in matrix functionals defined by a non-symmetric matrix, as well as to matrix-valued matrix functions. Modifications that give simpler formulas and thereby make the application of the rules both easier and applicable to a larger class of problems also are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alex Arenas’s data sets. http://deim.urv.cat/~aarenas/data/welcome.htm. Accessed Jan 2018

  2. Alqahtani, H., Reichel, L.: Simplified anti-Gauss quadrature rules with applications in linear algebra. Numer. Algorithms 77, 577–602 (2018)

    Article  MathSciNet  Google Scholar 

  3. Baglama, J., Fenu, C., Reichel, L., Rodriguez, G.: Analysis of directed networks via partial singular value decomposition and Gauss quadrature. Linear Algebra Appl. 456, 93–121 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bai, Z., Day, D., Ye, Q.: ABLE: an adaptive block Lanczos method for non-Hermitian eigenvalue problems. SIAM J. Matrix Anal. Appl. 20, 1060–1082 (1999)

    Article  MathSciNet  Google Scholar 

  5. Batagelj, V., Mrvar, A.: Pajek data sets (2006). http://vlado.fmf.uni-lj.si/pub/networks/data/. Accessed Jan 2018

  6. Benzi, M., Boito, P.: Quadrature rule-based bounds for functions of adjacency matrices. Linear Algebra Appl. 433, 637–652 (2010)

    Article  MathSciNet  Google Scholar 

  7. Benzi, M., Klymko, C.: Total communicability as a centrality measure. J. Complex Netw. 1, 1–26 (2013)

    Article  Google Scholar 

  8. Brezinski, C., Redivo Zaglia, M., Sadok, H.: Avoiding breakdown and near-breakdown in Lanczos type algorithms. Numer. Algorithms 1, 261–284 (1991)

    Article  MathSciNet  Google Scholar 

  9. Brezinski, C., Redivo Zaglia, M., Sadok, H.: Addendum to “Avoiding breakdown and near-breakdown in Lanczos type algorithms”. Numer. Algorithms 2, 133–136 (1992)

    Article  MathSciNet  Google Scholar 

  10. Calvetti, D., Reichel, L.: Tikhonov regularization of large linear problems. BIT 43, 263–283 (2003)

    Article  MathSciNet  Google Scholar 

  11. Calvetti, D., Reichel, L., Sgallari, F.: Application of anti-Gauss quadrature rules in linear algebra. In: Gautschi, W., Golub, G.H., Opfer, G. (eds.) Applications and Computation of Orthogonal Polynomials, pp. 41–56. Basel, Birkhäuser (1999)

    Chapter  Google Scholar 

  12. Chihara, T.S.: An Introdution to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    Google Scholar 

  13. Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)

    Article  MathSciNet  Google Scholar 

  14. Duch, J., Arenas, A.: Community identification using extremal optimization. Phys. Rev. E 72, 027104 (2005)

    Article  Google Scholar 

  15. Estrada, E.: The Structure of Complex Networks. Oxford University Press, Oxford (2012)

    MATH  Google Scholar 

  16. Estrada, E., Higham, D.J.: Network properties revealed through matrix functions. SIAM Rev. 52, 696–714 (2010)

    Article  MathSciNet  Google Scholar 

  17. Fenu, C., Martin, D., Reichel, L., Rodriguez, G.: Network analysis via partial spectral factorization and Gauss quadrature. SIAM J. Sci. Comput. 35, A2046–A2068 (2013)

    Article  MathSciNet  Google Scholar 

  18. Fenu, C., Martin, D., Reichel, L., Rodriguez, G.: Block Gauss and anti-Gauss quadrature with application to networks. SIAM J. Matrix Anal. Appl. 34, 1655–1684 (2013)

    Article  MathSciNet  Google Scholar 

  19. Freund, R.W., Gutknecht, M.H., Nachtigal, N.M.: An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comput. 14, 137–158 (1993)

    Article  MathSciNet  Google Scholar 

  20. Gautschi, W.: The interplay between classical analysis and (numerical) linear algebra—a tribute to Gene H. Golub. Electron. Trans. Numer. Anal. 13, 119–147 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Gautschi, W.: Orthogonal Polynomials: Approximation and Computation. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  22. Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  23. Gragg, W.B.: Matrix interpretations and applications of the continued fraction algorithm. Rocky Mt. J. Math. 4, 213–225 (1974)

    Article  MathSciNet  Google Scholar 

  24. Gutknecht, M.H.: A completed theory of the unsymmetric Lanczos process and related algorithms, part I. SIAM J. Matrix Anal. Appl. 13, 594–639 (1992)

    Article  MathSciNet  Google Scholar 

  25. Gutknecht, M.H.: A completed theory of the unsymmetric Lanczos process and related algorithms, part II. SIAM J. Matrix Anal. Appl. 15, 15–58 (1994)

    Article  MathSciNet  Google Scholar 

  26. Gutknecht, M.H., Strakoš, Z.: Accuracy of two three-term and three two-term recurrences for Krylov space solvers. SIAM J. Matrix Anal. 22, 213–229 (2000)

    Article  MathSciNet  Google Scholar 

  27. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  28. Jeong, H., Mason, S., Barabási, A.-L., Oltvai, Z.N.: Lethality and centrality of protein networks. Nature 411, 41–42 (2001)

    Article  Google Scholar 

  29. Lambers, J.V.: Enhancement of Krylov subspace spectral methods by block Lanczos iteration. Electron. Trans. Numer. Anal. 31, 86–109 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Laurie, D.P.: Anti-Gauss quadrature formulas. Math. Comput. 65, 739–747 (1996)

    Article  Google Scholar 

  31. Laurie, D.P.: Computation of Gauss-type quadrature formulas. J. Comput. Appl. Math. 127, 201–217 (2001)

    Article  MathSciNet  Google Scholar 

  32. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  33. Notaris, S.: Gauss–Kronrod quadrature formulae—a survey of fifty years of research. Electron. Trans. Numer. Anal. 45, 371–404 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Pozza, S., Pranić, M.S., Strakoš, Z.: Gauss quadrature for quasi-definite linear functionals. IMA J. Numer. Anal. 37, 1468–1495 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Pozza, S., Pranić, M.S., Strakoš, Z.: The Lanczos algorithm and complex Gauss quadrature. Electron. Trans. Numer. Anal. 50, 1–19 (2018)

    Article  MathSciNet  Google Scholar 

  36. Pranić, M., Reichel, L.: Generalized anti-Gauss quadrature rules. J. Comput. Appl. Math. 284, 235–243 (2015)

    Article  MathSciNet  Google Scholar 

  37. Sun, S., Ling, L., Zhang, N., Li, G., Chen, R.: Topological structure analysis of the protein–protein interaction network in budding yeast. Nucleic Acids Res. 31, 2443–2450 (2003)

    Article  Google Scholar 

  38. Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Miroslav Pranić and the referees for comments that lead to improvements of the presentation. This research is supported in part by NSF Grants DMS-1720259 and DMS-1729509.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Reichel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqahtani, H., Reichel, L. Generalized block anti-Gauss quadrature rules. Numer. Math. 143, 605–648 (2019). https://doi.org/10.1007/s00211-019-01069-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01069-z

Mathematics Subject Classification

Navigation