Skip to main content
Log in

Robust equilibrated a posteriori error estimator for higher order finite element approximations to diffusion problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present a patch-based equilibrated flux recovery procedure for the conforming finite element approximation to diffusion problems. The recovered flux is computed as the solution to a local constraint-free minimization problem on each patch. The approach is valid for higher order conforming elements in both two and three dimensions. The resulting estimator admits guaranteed reliability and the robust local efficiency is proved under the quasi-monotonicity condition of the diffusion coefficient. Numerical experiments are given to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, Wiley (2000)

    Book  Google Scholar 

  2. Bank, R., Xu, J., Zheng, B.: Superconvergent derivative recovery for Lagrange triangular elements of degree p on unstructured grids. SIAM J. Numer. Anal. 45(5), 2032–2046 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85(4), 579–608 (2000)

    Article  MathSciNet  Google Scholar 

  4. Boffi, D., Fortin, M., Brezzi, F.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer, Berlin (2013)

    Book  Google Scholar 

  5. Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  6. Braess, D., Pillwein, V., Schöberl, J.: Equilibrated residual error estimates are p-robust. Comput. Methods Appl. Mech. Eng. 198(13), 1189–1197 (2009)

    Article  MathSciNet  Google Scholar 

  7. Braess, D., Schöberl, J.: Equilibrated residual error estimator for edge elements. Math. Comput. 77(262), 651–672 (2008)

    Article  MathSciNet  Google Scholar 

  8. Braess, D., Verfürth, R.: A posteriori error estimators for the Raviart–Thomas element. SIAM J. Numer. Anal. 33(6), 2431–2444 (1996)

    Article  MathSciNet  Google Scholar 

  9. Cai, D., Cai, Z.: A hybrid a posteriori error estimator for conforming finite element approximations. Comput. Methods Appl. Mech. Eng. 339, 320–340 (2018)

    Article  MathSciNet  Google Scholar 

  10. Cai, Z., Zhang, S.: Recovery-based error estimator for interface problems: conforming linear elements. SIAM J. Numer. Anal. 47(3), 2132–2156 (2009)

    Article  MathSciNet  Google Scholar 

  11. Cai, Z., Zhang, S.: Flux recovery and a posteriori error estimators: conforming elements for scalar elliptic equations. SIAM J. Numer. Anal. 48(2), 578–602 (2010)

    Article  MathSciNet  Google Scholar 

  12. Cai, Z., Zhang, S.: Robust equilibrated residual error estimator for diffusion problems: conforming elements. SIAM J. Numer. Anal. 50(1), 151–170 (2012)

    Article  MathSciNet  Google Scholar 

  13. Cochez-Dhondt, S., Nicaise, S.: Equilibrated error estimators for discontinuous Galerkin methods. Numer. Methods Partial Differ. Equ. 24(5), 1236–1252 (2008)

    Article  MathSciNet  Google Scholar 

  14. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)

    Article  MathSciNet  Google Scholar 

  15. Ern, A., Vohralík, M.: Stable broken $H^1$ and ${\bf H}({\rm div})$ polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions. ArXiv e-prints (2017)

  16. Kellogg, R.B.: On the Poisson equation with intersecting interfaces. Appl. Anal. 4(2), 101–129 (1974)

    Article  MathSciNet  Google Scholar 

  17. Ladeveze, P., Leguillon, D.: Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20(3), 485–509 (1983)

    Article  MathSciNet  Google Scholar 

  18. Luce, R., Wohlmuth, B.: A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal. 42(4), 1394–1414 (2004)

    Article  MathSciNet  Google Scholar 

  19. Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44(4), 631–658 (2002)

    Article  MathSciNet  Google Scholar 

  20. Naga, A., Zhang, Z.: The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete Contin. Dyn. Syst. Ser. B 5(3), 769 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16(1), 47–75 (2002)

    Article  MathSciNet  Google Scholar 

  22. Prager, W., Synge, J.L.: Approximations in elasticity based on the concept of function space. Q. Appl. Math. 5, 241–269 (1947)

    Article  MathSciNet  Google Scholar 

  23. Sewell, E.G.: Automatic generation of triangulations for piecewise polynomial approximation. Ph.D. thesis, Purdue University, West Lafayette, IN (1972)

  24. Verfürth, R.: A note on constant-free a posteriori error estimates. SIAM J. Numer. Anal. 47(4), 3180–3194 (2009)

    Article  MathSciNet  Google Scholar 

  25. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. OUP, Oxford (2013)

    Book  Google Scholar 

  26. Ziegler, G.M.: Lectures on Polytopes, vol. 152. Springer, New York (2012)

    MATH  Google Scholar 

  27. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineerng analysis. Int. J. Numer. Methods Eng. 24(2), 337–357 (1987)

    Article  Google Scholar 

  28. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part 1. The recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331–1364 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhiqiang Cai: This work was supported in part by the National Science Foundation under Grant DMS-1522707. Shun Zhang: This work was supported in part by Hong Kong Research Grants Council under the GRF Grant Project No. 11305319, CityU 9042090.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, D., Cai, Z. & Zhang, S. Robust equilibrated a posteriori error estimator for higher order finite element approximations to diffusion problems. Numer. Math. 144, 1–21 (2020). https://doi.org/10.1007/s00211-019-01075-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01075-1

Mathematics Subject Classification

Navigation