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Abstract

In this paper we investigate the numerical approximation of an analogue of the Wasser-
stein distance for optimal transport on graphs that is defined via a discrete modification of
the Benamou-Brenier formula. This approach involves the logarithmic mean of measure den-
sities on adjacent nodes of the graph. For this model a variational time discretization of the
probability densities on graph nodes and the momenta on graph edges is proposed. A robust
descent algorithm for the action functional is derived, which in particular uses a proximal
splitting with an edgewise nonlinear projection on the convex subgraph of the logarithmic
mean. Thereby, suitable chosen slack variables avoid a global coupling of probability densities
on all graph nodes in the projection step. For the time discrete action functional '-convergence
to the time continuous action is established. Numerical results for a selection of test cases show
qualitative and quantitative properties of the optimal transport on graphs. Finally, we use
our algorithm to implement a JKO scheme for the gradient flow of the entropy in the discrete
transportation distance, which is known to coincide with the underlying Markov semigroup,
and test our results against a classical backward Euler discretization of this discrete heat flow.
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1 Introduction

For a metric space (X,d) and a weighting exponent p € [1,0) optimal transport induces the
p-Wasserstein distances W, on the probability measures over X. A remarkable property of
Wasserstein distances is that they form a length space if the base space (X, d) is a length space,
inducing the so-called displacement interpolation between probability measures [McC97]. The
celebrated Benamou-Brenier formula for W, over R" [BB0O] can be interpreted as an explicit
search for the shortest path between two probability measures. In the last two decades the
geometry of metric spaces has extensively been studied by means of optimal transport. In
explicit it has been observed that the 2-Wasserstein metric over probability densities in R"
formally resembles a Riemannian manifold [Ott01] and that various diffusion-type equations
can be interpreted as gradient flows for entropy-type functionals with respect to this metric
[JKO98]. For a comprehensive introduction we refer to the monographs [Vil09, San15].

“Institute for Applied Mathematics, University of Bonn
fInstitute for Numerical Simulation, University of Bonn
Hnstitute for Applied Mathematics, University of Miinster
SInstitute for Numerical Simulation, University of Bonn



Unfortunately, this rich geometry is not directly available when the base space X is discrete,
since W, degenerates and does not admit geodesics. Maas [Maall] introduced a transport-
type Riemannian metric ‘W on probability measures over a discrete space X equipped with a
reversible Markov kernel Q, based on an adaption of the Benamou—Brenier formula. A key
ingredient in the construction is the choice of a ‘mass averaging” function O that interpolates
the amount of mass on neighbouring graph vertices. For the particular choice of 6 being the
logarithmic mean, the heat equation (with respect to the underlying Markov kernel) arises as
gradient flow of the entropy with respect to this metric [Maall, Miell], yielding a discrete
analogue of Otto’s interpretation of diffusive PDEs, see also [EM14] for a generalization to non-
linear evolution equations on discrete spaces. In analogy to the Lott-Sturm-Villani theory the
displacement interpolation on graphs has been used to introduce a notion of Ricci curvature
lower bounds for discrete spaces equipped with Markov kernels [EM12] that implies a variety
of functional inequalities in analogy to the theory of Lott-Sturm—Villani. The study of transport-
type distances on discrete domains has various connections to the original Wasserstein distances
on continuous domains. Approximating a torus with an increasingly finer toroidal graph, the
discrete transport metric W has been shown to converge to the continuous underlying 2-
Wasserstein distance on the torus in the sense of Gromov-Hausdorff [GM13]. Conversely, the
introduction of a mass averaging function for discrete spaces has in turn inspired the design of
new non-local transport-type metrics in continuous domains [Erb14].

Computing classical Wasserstein distances W, numerically is often a challenge. While the
classical Kantorovich formulation via transport couplings is a standard linear program, its naive
dense form requires (cardX)? variables which may quickly become computationally unfeasible
as X increases in size. On arbitrary metric graphs (X,d) an additional problem arises: only
local edge lengths are usually prescribed and the full distance function d : X x X — R is
in general unknown a priori. On large graphs, computing d from local edge lengths may be
computationally prohibitive or even storing d may exceed the memory capacities.

Owing to its particular structure, the 1-Wasserstein distance over a discrete graph can be refor-
mulated as a min cost flow problem along its edges, thus drastically reducing the number of
required variables if the graph is sparse and requiring no pre-computation of d, see for instance
[AMO93]. On continuous domains this corresponds to Beckmann’s problem [San15]. A numerical
scheme tailored to application on meshed surfaces is presented in [SRGB14]. A computational
approach that uses quadratic regularization to break the non-uniqueness of the optimal flow is
described in [ES17].

For the 2-Wasserstein distance on continuous domains the Benamou-Brenier formula serves
a similar purpose, see for instance [PPO14] for a numerical scheme based on proximal point
algorithms. However, this does not immediately carry over to discrete graphs, as the mass
averaging function 0 introduces a non-trivial coupling of the mass variables along graph edges.
In [SRGB16] a Benamou-Brenier-type transport distance on discrete metric graphs is developed,
similar to the construction of Maas, and a corresponding numerical scheme is developed. A
crucial design choice is that 0 is picked to be the harmonic mean which allows the application of
second-order convex cone programs for numerical optimization. This does not extend to other
choices of 0 and thus, for instance, hinders the numerical study of the gradient flow when 0 is
the logarithmic mean.

Contribution

In this article we present a scheme for the numerical approximation of the distance ‘W on dis-
crete sets X equipped with irreducible Markov kernels Q as introduced by Maas. We pick up the
Benamou-Brenier-type formulation and provide a temporal discretization of the action func-



tional to obtain a finite-dimensional convex problem and prove I'-convergence of the discretized
functional to the original problem, as well as strong convergence of the discrete geodesics to the
continuous geodesics. To overcome the strong coupling of mass variables along graph edges
caused by the mass averaging function we introduce a set of slack variables to remedy this
entanglement. This allows us to apply a robust proximal point algorithm for the optimization.
Due to the slack variables, all involved proximal mappings can be computed efficiently by ei-
ther solving a sparse linear program (if Q is sparse) or by decomposing them into independent
low-dimensional sub-problems.

In particular this numerical scheme does not depend critically on the choice of 6 and can be
quickly adapted to different variants. We provide formulas for the logarithmic and geometric
mean. For a series of numerical test cases we visualize and discuss the behaviour of the
interpolating flow. Finally, we adopt the algorithm to approximate gradient flows with respect
to the discrete transportation distance W. In particular, we test the algorithm against a classical
backward Euler discretization of the heat equation on a graph which coincides with the gradient
flow of the entropy.

Organization

The paper is organized as follows. At first we review the construction of the L?>-Wasserstein
metric on discrete spaces by Maas [Maall] in Section 2. Then, in Section 3 we will derive the
time discretization and establish I'-convergence of the time discrete action functional and the
convergence of time discrete geodesics to a continuous geodesic. Next, the proximal splitting
algorithm with suitably chosen slack variables is presented in detail in Section 4. Numerical
results are discussed in Section 5 and the experimental comparison of solutions of a JKO scheme
for the entropy and solutions of the Markov semigroup are presented in Section 6.

2 Optimal transport on graphs

In this section we briefly review the discrete transportation metric on the space of probability
measures over a graph and in particular recall the basic definitions and discuss the analogy to
the L2-Wasserstein metric on probability measures over R”. Then we derive a priori bounds on
feasible curves of measures.

2.1 The discrete transportation distance

Let X be a finite set and let Q : X x X — [0, ) be the transition rate matrix of a continuous time
Markov chain on X. Le. we have Q(x, y) > 0 for x # y and make the convention that Q(x, x) = 0
for all x € X. Then X can be interpreted as the set of vertices of a graph with directed edges
(%, y) for those (x,y) € X x X with positive weight Q(x, y). We assume the Markov chain to be
irreducible or equivalently the corresponding graph to be strongly connected. Thus, there exists
a unique stationary distribution  : X — (0, 1] of the Markov chain with >,y t(x) = 1. We
further assume that the Markov chain is reversible with respect to 7, i.e. the detailed balance
condition 7t(x)Q(x, y) = n(y)Q(y, x) holds for all x,y € X. Now, the set of probability densities
on X with respect to 7t is given by

P(X) := {p X - Ry Z n(x)p(x) = 1} .

xeX



For brevity, in the following we will write RY and R** for the spaces of real functions over X
and X x X respectively.
Next, we define the following inner products on RY and R¥*«

DW= Vo, @Wo=3 Y Ay ()

xeX x,yeX

for ¢, ¥ € RY and @, W € R¥*X. The corresponding induced norms are denoted by | - |, and
|- |o- A discrete gradient Vy : RY — RY¥*X and a discrete divergence divy : R¥** — R¥ are
given by

(Vaxp)(x,y) = (x) — (y), (divy W) (x Z Qx, y)(¥(y,x) —¥(x,y). ()

yeX

Then the duality between these two operators formulated as the discrete integration by parts
formula

(¢, divy¥V)r = —(Vx¢, W)q

can easily be verified. The associated discrete Laplace-operator Ay : RY — R¥ is given by

Ax(x) = divx(Vay)(x) = D] Q(x, y) [¥(y) — p(x)] = (Q — D)(x),

yeX

where D = diag(2,, Q(x, y))xex- The graph divergence allows to formulate a continuity equation
for time-dependent probability densities p : [0,1] — RX and momenta m : [0,1] — RX*&
describing the flow of mass along the graph edges. In explicit, we consider the following
definition of solutions to the continuity equation with boundary values at time t = 0 and t = 1.

Definition 2.1 (Continuity equation). The set CE(pa, p) of solutions of the continuity equations for
given boundary data pa, pp € P(X) is defined as the set of all pairs (p, m) with p : [0,1] x RY — Rand
m: [0,1] x R¥*X — R measurable, such that

1
A <at(P(tl ')/ p(t/ )>7‘! + <VX(P(t/ ')/ m(tr )>Q dt = <q0(1r ')r p3>ﬂ - <(P(0/ ')/ pA>T! 3)

forall p € C'([0,1], RY).

For m € L?((0,1), RX*¥) (see Lemma 2.5) one gets p € H?((0,1), RY) and thus d;p + divym = 0
holds a.e. . Furthermore, p € C%2([0,1], R¥*X) and p(1,-) = ps, p(0,-) = pa. If p(t,-) = O'is
ensured forallt € (0, 1) via afinite energy property (see (5) below), then testing with ¢ (t, x) = {(t)
implies that p(t,-) € P(X).

The Benamou-Brenier formula [BB00] asserts that the squared L2-Wasserstein distance for proba-
bility measures in IR" is the minimum of an action functional over solutions to the corresponding
continuity equation. Formally the action functional can be interpreted as a Riemannian path
length [Ott01]. To construct an analogous action functional for solutions (p, m) € CE(pa, pg) a
mass density on edges has to be deduced from the the mass densities on the edge nodes. To this
end, one defines an averaging function 6 : (R})* — R which satisfies:

0 is continuous, concave, 1-homogeneous, and symmetric, 0is C* on (0, +0)2, 0(0,s) = 0(s,0) =
0and O(s,s) = s fors € R}, 6(s,t) > 0if s > 0and t > 0, and s — 6(t,s) is monotone increasing
on R/ for fixed t € R/ .



It will be useful to consider 0 as a concave function R> — R u {—o}. Therefore, we will set
O(s,t) = —oo when min{s, t} < 0. Possible choices for 0 are for example the logarithmic mean
Olog or the geometric mean Oy, fors, t € IRS’ :

0, ifs=0ort=0
Orog(s, 1) = < s, ifs =t , Ogeo(s,t) = /st (4)
t— .
m otherwise

Note that the arithmetic mean is not admissible. Based on this averaging function one can define
the discrete transportation distance on P(X).

Definition 2.2 (Action functional and distance). The action functional for measurable functions
p:[0,1] = R¥ and m : [0,1] — R¥*X is defined as

1
Apum) = 3 [} X alp(t ) pit v mte ) Qo)
X, Y€

9’&) if O(s,t) > 0,
witha: R> > Ru {0}; (s,t,m) — 30 ifO(s,t) =0andm =0, (5)

+oo  else.
The energy is then given by

E(p,m) = A(p,m) + Lcg(pnp) (p,m),

where I g, py) 1S the indicator functional, which is zero for (p, m) in CE(pa, pp) and oo otherwise. The
induced discrete transportation distance is obtained by

W(pa, pp) = 4/infE(p,m). (6)

Note that « is convex and lower semi-continuous and C&E(pa, ps) is a convex set. Hence, (6)
is a convex optimization problem. In is shown in [Maall, Theorem 3.8] that the mapping
W : P(X) x P(X) — R defines a metric on P(X), provided

dr <.

! 1
/0 VO —11+7)

This is the case for the logarithmic mean 60,5 and the geometric mean Oge,. In [EM12, Theorem
3.2] it is shown that the infimum in (6) is attained by an optimal pair (p, ). The curve (p;)teo1]
is a constant speed geodesic for the distance ‘W, i.e. it holds W(p;, ps) = |t —s|W(pa, pz) for all
s, te[0,1].

2.2 A priori bounds

In what follows we will investigate the numerical approximation of ‘W using a suitable Galerkin
discretization in time and solving the resulting discrete convex optimization problem. Here the
the nonlinear averaging function 6 and the resulting coupling of the values of the probability
desity on neighbouring nodes will require special treatment in order to obtain a robust and
effective solution scheme. To this end, we first discuss a few simplifications of the optimization
problem (6) that will help to reduce the computational complexity.



Remark 2.3 (Sparsity of kernel Q). Let S = {(x,y) € X?>: Q(x,y) > 0} be the set of ‘edges’
indicated by non-zero transition probability. As Q is reversible, one finds (x, y) € Siff (y,x) € S.
Furthermore, divxm(t,-) and A(p, m) for m : [0,1] — R¥*¥ only depend on values of m(t, x, y)
where (x,y) € S. Hence,if the kernel Q is sparse, i.e. if S is only a small subset of X x X this
implies a considerable reduction of computational complexity.

In addition, the following Lemma allows to replace the two variables m(t, x, y) and m(t, y, x) by
one effective variable, further reducing the problem size.

Lemma 2.4 (Antisymmetry of optimal momentum). If W (pa, ps) is finite and if p : [0,1] — R¥
and m : [0,1] — RX*X are optimal for (6) then m(t,x,y) = —m(t, y, x) t-almost everywhere, whenever
(x,y) € S (see above remark for definition of S).

Proof. Let p:[0,1] - RX and m : [0,1] — R**¥X be given such that E(p, m) < 0. Now set

m(t,x,y) == —m(t,y,x).

One quickly verifies that divyxrit = divym and that thus (p, 1) € CE(pa, p) as well. Besides,
by using that Q(x, y) n(x) = Q(y,x) n(y) and a(s,t,m) = a(t,s,—m) one finds that A(p, 1) =
A(p,m). Let now = % (m + 11). Note that 7(t, x, y) is anti-symmetric in x and y. By convexity
of CE(pa, pg) one gets (p,m) € CE(pa, pp) and by convexity of A one finds

Alp, ) < 5 (Alp,m) + Alp, i) = Alp,m).

Further, the finiteness of A(p, m) implies that m(t,x,y) = 0 when 6(p(t,x), p(t,y)) = 0 and
(x,y) € S t-almost everywhere , values of m(t, x, y) for (x, y) ¢ S will have no impact on A, and
the function R 3 z — a(s, t,z) is even strictly convex for fixed s, t > 0. Hence, we observe that
A(p, m) < A(p, m) unless m already coincides with m for almost every tand all (x,y) € S. O

In the T-convergence analysis we will make use on the following L? bound for the momentum.
Let us introduce the constants

c* —maxZQx v),

xeX

Cy = , . 7

x x,yex%l(gyon(x y)m(x) @)

Lemma 2.5 (L? bound for the momentum). Let (p,m) : [0,1] — RY x RY* be a measurable

path with energy E(p,m) < E < oo. Then, m and p are uniformly bounded in L*((0,1), RX*X) and
H'2((0,1), RX) A C%2([0, 1], RY), respectively, with bounds solely depending on X and E.

Proof. Since E(p,m) < oo, we have (p,m) € CE(pa, pp), and thus for a.e. t € (0,1) the mass is
preserved, i.e. Dy p(t, X)7t(x) = X cx pa(x)m(x) = 1. In addition, p(¢, x) is non-negative for all
x € Xand a.e.te (0,1). By symmetry and concavity of 6 and since 6(s,s) = s, we can estimate

O(p(t,x), p(t,y)) = (p( x),p(t,y)) + (p(t, ), p(t,x))

- e(p(t,x) +p(ty) P(t,@ +p(t, y)) _pltx) +pty)
= 2 ’ 2 B 2




and get
1

2 0lp(t,0), p(t, QM y)m(x) < 5 3 (p(t,0Qx, y)m(x) + p(t, ¥)QY, X)7(y))
X,yEX x,ye/\’
=3 Z m(y) + p(t, y)Q(x, y)m(x)) = C* Y p(t,x)m(x) =C*.  (8)
xyeX xeX

Thus, using the Cauchy-Schwarz inequality we obtain

(2 it x Qe nn) <( X alp(t2),ptt, ), mlt,x 1)Q y)n())

x,yeX x,yeX

(X 0o, pt, Q. YIT() ) ©)

x,yeX
Integrating in time we obtain
s
[ gar= [ 3wt yrae e @< S E.
%
x,yeX
Finally, using the continuity equation (3) and m in L*((0, 1), R**¥) we obtain that
/ ||oipl)3 dt < / Z‘thxy xy / thxy Q(x, y)m(x)dt
0 Ty

This implies that p € H"?((0,1), R¥) and via the Sobolev embedding theorem we obtain that
also p € C*2((0,1),RY). i

3 Discretization

3.1 Galerkin discretization

To approximate the minimizers of (6) numerically we choose a Galerkin discretization in time.
The time interval [0,1] is divided into N subintervals I; = [t;,ti41) fori = 0,...,N — 1 with
uniform step size h = & and t; = i h. Then, we define discrete spaces
V;h {, € C°([0,1], RY) = ¢y,(")]}, is affine Vi = 0,...,N — 1},

= {5, : [0,1] - RY : ()|, is constant ¥i = 0,...,N — 1},

= {y : [0,1] — RY*X: ,(-)|; is constant Vi = 0,...,N — 1} .
For a function ¢y, € V), or V7, we will often write ¢;(t;) to refer to its value on the interval
I; = [ti, ti11). For a functlon lph e V}l the time-derivative can be interpreted as map

Or V;,h - Vg,h ’ (Onhn)(ti) = %(l/ih(fprl) —u(t;)) fori=0,...,N—1.

We pick Vrll,h x Vgh as the space for discretized masses and momenta (pj, my,). That is, discrete
masses py, are continuous and piecewise affine and the corresponding momenta mj, will be
piecewise constant. ¢;p; and divxmy, then lie in Vg,h. In analogy to Definition 2.1 we define
discrete solutions of the continuity equation.



Definition 3.1. The set of solutions to the discretized continuity equation for given boundary values
pa, ps € RY is given by

N—1
CEu(pa, ps) = {(Ph/ my) € V,lithVgh th Z (Orpn(ti, -)+divamy(ti, <), ou(ti,-))r = 0 Yoy, € VB,,M
=0

palto,x) = pa(x), pultw, ) = ps(¥)} . (10)

One can quickly verify that CE;,(pa, ps) = CE(pa, pg) N (V;Jl X Vgh) and that ¢;py, + divymy, = 0
holds for a.e. t when (py,, my,) € CE,(pa, ps)- Next, we define a fully discrete action functional in

analogy to Definition 2.2 and subsequently a discrete version of the transport metric ‘W.

Definition 3.2 (Time-discrete action and transportation distance). The averaging operator avg,
takes a measure 1 € M([0,1], RX) to its average values on time intervals I;:

avg, : M([0, 1], RY) — Vg/h, (avg, ) (t) = ¢(I;) fori=0,...,.N—1.

Analogously we declare the avg,, operator for RX**-valued measures. Note that for ;, € V! one finds

(avg, Yn)(t) = 3(n(ti) + Yu(tisr)). For (p,m) € M([0,1],RY) x M([0, 1], R**X) the discrete
approximation for the action is given by

An(p, m) = Alavg, p,avg, m)

h N—1
=5 2 2 alavg, p(ti,x),ave, p(ti, ), ave, m(ti,x,y) Qx, y)m(x).

i=0 xyeX

Finally, the time discrete energy functional is defined by En(p,m) = Ap(p,m) + Lce, (paps) (P, m) and
for the associated time discrete approximation of the transportation distance one obtains

Wh(pA/ PB) = y/il’lfgh(p,ﬂ’l). (11)

Note that the indicator function of the discrete continuity equation entails the constraint
(p,m) € Vrll/h x Vgh. These spaces can be represented by finite-dimensional vectors, the opera-
tors 0; and avg, can be represented as finite-dimensional matrices and the continuity equation
becomes a finite-dimensional affine constraint. Thus, (11) is indeed a finite-dimensional convex
optimization problem. Its numerical solution by using proximal mappings will be detailed in
Section 4.

3.2 TI'-convergence

In the following, we will prove a I'-convergence result of the discrete energy functional, which
will justify our discretization. First, we construct explicitly continuous and discrete trajectories
between an arbitrary probability distribution on X and the uniform probability density I € P(X)
given by I(x) = 1. We show that these trajectories have uniformly bounded energy, which will
be essential in the I'-lim sup inequality in Theorem 3.6. Let us define the Lagrange interpolation
operator I, : C°([0,1], RY) — V. ; p = I(p) given by

(Inp) (t,x) == p(ti,x) Vi=0,...,N.



Proposition 3.3. There is some constant C(X) < oo such that for any pa € P(X) there is a trajectory
(p,m) € CE(pa, ) with A(p, m) < C(X) and (I, p,avg, m) € CE(pa, L) with Ay(ILy p,avg,m)) <
C(X) for every h = 1/N.

Proof. For x € X let p, € P(X) be the probability density on X with all mass concentrated on x.
Thatis, p, = —L_5,, where 6, is the usual Kronecker symbol with 6,(y) = 1if x = y and 0 else.

m(x)

Construction of elementary flows: For (x,y) € X x X, x # y, with Q(x, y) > 0 we define L[x, y] €
RY*X as follows:

Q(x,yl) m(x) if (a' b) = (x/ y)/
Llx,y)(a,b) = | aepem i @ D) = (y,%),
0 else.

Then divxL[x,y] = p’ — p%. Now, for any (x,y) € X x X, x # y, there exists a path (x =
Xo,X1,...,Xk = y) with K < card X with Q(xy,x¢4+1) > 0 for k = 0,...,K — 1. We can add
the corresponding L(xk, x¢41) along these edges to construct a flow M[x, y] with divyM|x, y] =
p’ — p%- All entries of all M[x, y] are bounded (in absolute value) by C(X) := cardX/C,, where
Cy is defined in (7). For x = y, M[x, x| is simply zero.

Now assume ps = pj, for some x € X. Let mg = >, cx M[x, y] (y) . One finds

divxmy = ) (#y)éy - %6,() n(y) =1-p3.
yeX

Again, every entry of my is bounded in absolute value by C(X). Now let m(t) = 2myt, p(t) =

Y+ (divymo) 2 = (1—12) - p% + 2 - 1. We find (p, m) € CE(p’, I). One has |m(t,x,y)| < t-2C(X)

and p(t,x) > t* and using the monotonicity of a for the action A we get

1 /1 ¥ (t-2C(X))?
0

ﬂ(P/m) < 5 tz

2 Q(x, y) m(x) dt = 2C(X)*C*.

x,yeX

Construction of discrete counterparts: For fixed h = 1/N let p, = I;p and m, = avg,m. By
construction (py, my;) € CE;(p?, I). Then, one finds my,(t;, x,y) < (i + 3) h2C(X), pu(t;, x) = 212,
(avg, pn)(ti,x) = ( + i+ 3)h?, and thus

3 Q(, y) mlx) < 28(X)2C*.

NIL R AC(X)? (i + §)?
L+ l) x,yeX

1
Anpn, mn) = Alave, o, mn) < 5 Dok FICE,

i=0

Extension for arbitrary initial data: For given x € X let (p*,m*) be the (continuous) trajectory
between p, and T as constructed above. Any p4 is a superposition of various p:

pa= > pa(x)dx = . pa(x)m(x) p}
xeX xeX

By linearity of the continuity equation the trajectory (p,m) = >, .cx pa(x) t(x) - (p*, m*) then lies
in C&(pa, I). Since A is convex and 1-homogeneous, it is sub-additive. Therefore,

Alp,m) < . palx) m(x) Alp*, m*) < Y. palx) m(x) 2C(X)C* = 2C(X)*C*.
xeX xeX



For the discrete trajectory the reasoning is completely analogous. Thus the claim follows with

C(X) = 2C(X)*C*. O

Corollary 3.4. The above strategy can be used to construct trajectories between arbitrary pa, pp via I
as intermediate state. This establishes that W and W), are uniformly bounded on P(X)>.

Remark 3.5. In [Maall] it is shown that ‘W is bounded if the constant Cg := fol \/ﬁ dris

finite. Here, we assumed that 6(s,s) = s for s € R and that s — 6(s, t) is increasing on R]" for
fixed t € R} which implies that O(s, t) > min{s, t} fors, t € Rf. This is sufficient for Cg < o.
Theorem 3.6 (I-convergence of time discrete energies). Let pa, pg be fixed temporal boundary

conditions. Then, the sequence of functionals (&), T-converges for h — 0 to the functional & with
respect to the weaks topology in M([0,1], RY x RY*X),

Proof. To establish I'-convergence, we have to verify the I'-lim inf and I'-lim sup properties.

For the I'-lim inf property, we have to demonstrate that the inequality

Alp,m) + Leepaps) (prm) < Hmink Ay (pw, 1) + L e, (pa,ps) (Phs 1) (12)

holds for all sequences (py,, 1) ~= (p,m) in M([0,1], RX x R¥*X). As CE(pa, pp) is weak-+
closed and C&y,(pa, pg) = CE(pa, pp) the statement is trivial if there is no subsequence with
(pn,my) € CEL(pa, pp). Thus, we may assume that all (py, my,) fulfill the discrete continuity
equation, that (p, m) fulfills the continuous continuity equation, and all p, are non-negative.
Now, p; = p implies avg, pr, — p and Ay (pn, my) = A(avg, pp, my) . Since a is jointly convex
and lower semi-continuous in p and m, the action functional A is weak-* lower semi-continuous
and (12) holds.

To verify the T-lim sup property we need to show that for any (p,m) € M([0,1], R x R¥*¥)
there exists a recovery sequence (py, 1y,) X (p, m) with

lim sup Ay (pn, 1) + L g, (pa,ps) (Prs 1) < Alp,m) + Leg(pa,p5) (P, 1) - (13)
h—0

We may assume A(p,m) < © and (p,m) € CE(pa, pp). Using Lemma 2.5 this implies in

particular that p € C%2([0,1], R¥). For such a trajectory (p,n) we will construct a recovery
sequence in two steps: First, the continuous trajectory (p, m) is regularized, then, the regularized
still time continuous trajectory is discretized using local averaging in time. The regularization
is necessary to control the effect of the discontinuity of « at the origin, see (5).

Let (pan,max) € CE(pa,I) be the trajectory from ps to I as constructed in Proposition 3.3,
analogously let (prg,mig) € CE(L pp) be the corresponding trajectory from I to pp with
(pug, mi)(t,-) := (pgyr, —mpx)(1 —¢t,-). Then, for 6 € (0, %) and € = 6% we define

(I1—€)-pa+e-par(t/d) fort e [0,0),

ps(f) =3 (1—e€)-p((t—0)/(1—20)) +€-1I forte [6,1— 0),
(1—¢€)-pp+e-prp((t—(1-19))/0) forte[l—51]

and
€07 muy(t/d) fort e [0,0),
ms(t) = 4 (1 =€) - (1—26)1 - m((t—5)/(1 —26)) fortel[s1— o),
€61 -myp((t— (1-0))/0) forte[1-6,1].
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One finds that (ps, ms) € CE(pa, ps). To evaluate the action of (ps, m5) we decompose it into the
contributions of the time intervals [; = [0,9], I, = [6,1 — 6] and [, = [1 — §,1]:

Alps, ms) = A+ Ay + A, with Ay = ﬂim(pﬁ(t),mé(t)) dt for y € {I,m,r}.

where

AR X ROY SR U], (pm) oY) alp(), ply),mixy) Qe y) n(x)
x,yeX

AN is jointly convex and 1-homogeneous and therefore sub-additive. Moreover, it is 2-
homogeneous in the second argument. Therefore we obtain

A < %/j A (p((t—06)/(1 —208)), m((t —6)/(1 —20))) dt

_ 1 _
_ ((11 ;5)) /0 A (p(t), m(t)) dt — %ﬂ(p,m).

Further, using Proposition 3.3 we obtain A; + A, < 2C(X) .

Next, we discretize in time. Since p € C%2([0,1],IR¥X) we have |p(t,x) — p(t,x)| < g(|t — ¥|)
with g(s) := C- s for all x € X. Now let A = ¢(2h) and choose the regularization parameter
o=min{i-h: ieN,i-h> Ai}and as before e = 5. Obviously A, 5 and € — 0 as it — 0. In
particular, for i sufficiently small 2 > 1/(1 — 26) and thus A = g(2h) > g(h/(1 — 26)). Therefore,
A'is a uniform upper bound for the variation of ps on any interval of the size . We now set

pn=Tynps, my=avg,ms,

and note that (py, my) € CSh(pA,pB) As 6 — 0 one finds (ps,ms) = (p,m) and for h — 0 we
obtain (ps — pn, ms — mh) — 0. This implies that (ph,mh) (p, m).

Note that 6 was chosen to be an integer multiple of i. So the division of [0, 1] into the three
intervals [0,9], [6,1 — 6] and [1 — §,1] in the construction of (ps,ms) is compatible with the
grid discretization of step size h. Therefore, as above, the discrete action decomposes into three
contributions which we denote Ay, (o, my,) = App+ A+ Ay n. Again, using joint 1-homogeneity
and sub-additivity of «, as well as the 2-homogeneity in the second argument one obtains

€ €
Ap < < - An(Lnpayavg,man), A < < - ALy prp,aveg, mip) .

>
>

Using Proposition 3.3 we observe that
A+ Ay <2C(X) 6.

In view of (14), it remains to estimate A,,; by a suitable constant times A,,. To this end, let
Sm < {0,...,N — 1} the the set of discrete indices such that I; < I, for i € S;,. Then A,, is given

by

=‘2 2 [/ a(ps(t,x), po(t, y), ms(t,x,y)) di | Q(x, y) m(x).

i€Sy x,yeX
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Since a is convex, by Jensen’s inequality one finds

/ Oé(pé(t, X), pé(t' y)rm(t/ X, y)) dt = h- Oé((anh pé)(ti/ X), (anh Pé)(th y)/ (anh mé)(tir X, y)) .

The discretized action A, is a weighted sum of the form

A =5 3 3 - al(avey, Tn po) i), (avy, T po)i, y), vy mo) (6,5, 1)Qx, 1) ().

i€Sy x,yeX

By construction ps is bounded from below by € on I, on all nodes and its variation within each
discretization interval is bounded by A. Therefore, for any i € S, z € X one finds

(anh pé)(ti, Z) < (anh Ih pé)(ti, Z) + A, (anh Ih pé)(ti, Z) = €.
Due to the monotonicity of s — —; we obtain

(avg, L1 ps)(ti, z) - (avg, L ps)(ti, z) __€
(avg, ps)(ti, 2) - (avg, Iups)(ti,z) + A T e+ A

Taking into account the joint 1-homogeneity of 6 and the monotonicity of 6 in each single
argument this implies for all x, y € X that

0((ave, Lnpo)(ti, %), (ave, Lnpo)(tvy)) e 1
0((avg, ps)(ti, x), (avg, ps)(ti, y)) T e+ A 1+A
Hence,
(avg, ms)?(ti, x, y)
Z;‘ xéx ((avgy, Tn ps)(ti, x), (avg, In ps)(ti, y)) QL y)m(x)
<1 (avgy, ms)* (i, X, y) B
<z +A/e) l; x;)( ((avgy, ps)(ti, x), (avg,, ps)(ti, y)) Qi y)ma) = L+ 4/e)A

Our choice of 6 implies that € = 6* > A? and thus Afe < e. Altogether, we obtain for h
sufficiently small

1-
ﬂh(ph,mh) =HAin + Apn + Arp <2CX)o+(1 —|—€) 1= 25 (p,m).
Since 6 — 0, € — 0 as h — 0, this establishes the I'-lim sup property. ]

Next, we establish convergence of the discrete optimizers to a continuous solution. To establish
compactness we first show a uniform bound for the L2 norm of the discrete momenta, in analogy
to Lemma 2.5.

Lemma 3.7 (L? bound for the discrete momentum). Let (py,, my) € V1., x VO, with discrete energy

En(pn,my) < E < 0. Then, there exists a constant M < oo only depending on (X, Q, 7t) and E (and not
on ), such that |[my| ;2o 1) rxxx) < M.

12



Proof. The proof works in complete analogy to Lemma 2.5. We bound

(3 itz )1Qe () < (3 alavs, pult ), av, pult, v), mits ) Q(x y)m(x))

x,yeX x,yeX

(1Y 0ave, pult ), ave, plt, ) Qlx, y)m(x) )

x,yeX

and

> 0(avg, pu(ti, x),avg, p(t, v)) Qlx, y)m(x) < C*,
x,yeX

where C* is defined in (7). Here, we have used that (py, my,) € CE(pa, pg) which implies that
mass is preserved, i.e. Y.y avg, pn(t, X)m(x) = Yex pu(ti + L x)m(x) = Y cx pa(x)m(x) = 1 for
alli =0,...,N — 1, and that since Ay (py, my) < o0 one has avg, p, > 0. Now, once more using
that X is finite and integrating (or summing) in time establishes the bound. o

Theorem 3.8 (Convergence of discrete geodesics). For fixed temporal boundary conditions pa, ps
any sequence (py,, my,) of minimizers of &, is uniformly bounded in C%2([0,1],IRY) x L2((0,1), R¥*¥X)
for b — 0. Up to selection of a subsequence, py, — p strongly in C*([0,1],RY) for any a € 0, %) and
my, — m weakly in L with (p, m) being a minimizer of the energy &.

Proof. For a sequence of minimizers (pj, my,) the discrete energy &y,(py, my,) is uniformly bounded
by Corollary 3.4 . Since (p, my) € CE(pa, pp) the total variation of all pj is uniformly bounded.
Further, by Lemma 3.7 the L? norm 11, 2o 17, rxx) is uniformly bounded. Hence, the sequence
(pn, my)n has a weakly= (in the sense of measures) convergent subsequence, which by Theorem
3.6 and a standard consequence of I' convergence theory converges weakly to some minimizer
(p,m) of &E).

Using the continuity equation this convergence can be strengthened. We already know that
(pn, my) solves the continuity equation 6;p, = —divymy,. Thus, the uniform bound for my, in
L?((0,1), R¥*X) implies that pj is uniformly bounded in H*(R¥). From this we obtain by
the Sobolev embedding theorem that (pj);, is uniformly bounded in C%2(R¥) and compact in

Co(RX) foralla € [0, ). i

4 Optimization with Proximal Splitting

4.1 Slack Variables and Proximal Splitting

The computation of the discrete transportation distance (11) and the associated transport path
require the solution of a finite-dimensional non-smooth convex optimization problem. To this
end, we apply a proximal splitting approach with suitably choosen slack variables. The proximal
mapping of a convex and lower semi-continuous function f : H — R u {00} on a Hilbert space
H with norm | - |z is defined as

.1
prox;(x) = arg min 3 bx — yl; + f(). (14)
ye
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Furthermore, the indicator function of a closed convex set K c H is given by Tx(x) = 0 for
x € Kand o elsewise. In particular, prox; = projy, where projy is the projection onto K. For a
function f : H — R u {oo} its Fenchel conjugate is given by

f*y) = sup Cy, n = f(x). (15)

If f(x) < oo for some x € H, then f* is convex and lower semi-continuous. For more details and
an introduction to convex analysis see e.g. [BC11]. The practical applicability of proximal split-
ting schemes depends on whether the objective can be split into terms such that the proximal
mapping for each term can be computed efficiently. In [PPO14] a spatiotemporal discretization
with staggered grids of the classical Benamou—Brenier formulation [BB00] of optimal transport
of Lebesgue densities on R" was presented and several proximal splitting methods were con-
sidered to solve the discrete problem. However, this approach can not directly be transfered to
problem (11) since the action A couples the variables p and m in a non-linear way via the terms
a(m(t;, x,y),avg, p(t, x),avg, p(t, y)) spatially over the whole graph according to the transition
kernel Q and temporally via the averaging operator avg,. Thus, the proximal mapping of the
A-term is not separable in space or time and thus requires the solution of a fully coupled,
nonlinear minimization problem. As a remedy, we propose to introduce auxiliary variables to
decouple the variables and rewrite the action A with terms where variables only interact locally,
thus leading to separable, hence simpler, proximal mappings.

Lemma 4.1. For (p,m) e V! < V° onefinds

An(p,m) = Alavg, p,m) = 1nf{ (8,m) + Iy, (avg,p,9): S € Vgh} (16)
with the convex set

Koore := {(p,S) eV, x Vo, 0<3(ty,x,y) < 0(p(ti,x), p(tiy)) Vi =0,..., N—1, Vx,y € X}

(17)
and the edge-based action
=3 [ 3 @m0 o a 18)
x,yeX
%2 if9>0,
with O, m):=<0 if (m,9) = (0,0),
+oo  else.

Note that @ is the integrand of the Benamou-Brenier action functional and that a(s,t,m) =
D(O(s, t),m).

Proof. The first equality is merely the definition of A, and using the fact that avg, m = m
for m € V?,. For the second equality note that for any 8 € V?, with (p,9) € Kpre one
has d(t;, x, y) 0(p(ti, x), p(t;, y)). By monotonicity of @ in its f1rst argument this implies
DO((ti, x, y), m(ti,x,y)) = a(p(ti,x), p(ti, y), m(t, x,y)) and hence

Alp,m) < inf {ﬂ(s m) + I (5,9): 9 € ]RXXX} . (19)

pre

Further, we obviously have that S(t;,x,y) := 0(p(t,x),p(t;, y)) satisties (p,9) € Kpre and
ﬁl(g,m) = A(p, m). Hence, we have equality in (19). ]
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The proximal mapping of the function A can be computed separately for each time interval
and graph edge. However, the set Kp. still couples the variables avg, p and ¥ according to the
graph structure and the averaging operator avg, couples the variables of p in time. To resolve
this, we introduce a second set of auxiliary variables.

Lemma 4.2. For p € R¥, 8 € RV one finds

T, (avg, p,8) = inf { T, (p, p) + L. (P ) + T (4, p™,p%) + Ticlp™,p*, 9) :

(P p™ %) € (V2 x (V) (20)

where
Tuug = {(pP) € V3, x VO, : p = avg, o, 1)
T-={(pa) e (VO p=af, (22)
Te={@ 007 € V0 x (V) - altx) = p~ (b xy), qlty) = p* (tixy)}, (29)
K= {(p,p*,9) € (V)" + (p (), p* (1%, ), (ki %, y)) € K, (24)

with
={(pp" 9 eR : 0<9<0(p~,p")}. (25)

Proof. For fixed p € V;/h there is precisely one tuple (p,q, p~, p*) such that

(0,P) € Tavg, (p,q) € J=, and @p ,p")eT+,

givenby p = avg, p,q = p, p~ (ti, x,y) = q(ti, x), p* (ti, x,y) = q(t;, y). For this (p~, p*) one finds
(p~,p*,9) e Kif and only if (avg, p, ¥) € Kpre. O

The function 7 g, relates the values of p on time nodes to the average values on the adjacent
time intervals, 7 4, communicates the values of g on graph nodes to the adjacent graph edges
and 74 ensures the mass averaging via the function 0. The additional splitting via 7 4_ will
later simplify partition of the final optimization problem into primal and dual component. The
sets Juwg, J=, J+ and K are all products of simpler low-dimensional sets, implying simpler
computation of the relevant proximal mappings and projections.

This gives us an equivalent formulation for the discrete minimization problem (11):

Wi(pa, p)* = inf {(7’ + G) (o, M, S, 0y, 0 Prr )
(pu 11, S0, 301 P i) € V3, x (VO (V2,)2 (26)
with

T(Ph/ my, Sh/ Ph_/ pz_/ ph/qh) = ‘%(Sh’mh) + Ijir (qh’ ph_’ plj) + Ijﬂvg(ph’ ﬁh)’
G(on 1, 1, 03,1 034 1 P @) = Lt (paps) (O 1) + Lac(py, s 01+ Sn) + Lg_ (P, qn)-
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The structure of this optimization problem is well suited for the first order primal-dual algorithm
presented in [CP11]. We consider the Hilbert space H = V!, x (V?,)* x (V? )? composed of
tuples of functions in space and time with the scalar product

<(Ph,1/ My, ‘9;1,1/ phrlr ph,-l/ Pn, Qh,l) s (Ph,Zr My, Sh,Z/ phrzl phrzr Ph,2r %,2) >H

N N—-1
=Y Lpna (i), pua(tis Vom + 10 (i), P2t )om + Qna(tis ), dna(tin )
i=0 i=0
N—1
+h Y (), mia (ks -)a + Ona(ti ), Snalti )
i=0
N—-1
+h Z <p;:1(ti/ ')/ phjz(ti/ )>Q + <p;lr,1(ti/ ')/ P;:rrz(ti/ )>Q : (27)

i=0
and the induced norm denoted by | - [|. Then applying [CP11, Algorithm 1] to solve problem
(26) with ¥, G : H — R U {0} amounts to iteratively compute for initial data (a(©,b()) e H?
and 2(® = 4©
b = prox, 4 (0 + 0a'?),
alth — prong(a(f) — D), (28)
(D) — g+ L)L (g _ g0y,

where 7,0 > 0, A € [0,1] . As demonstrated in [CP11] the iterates converge to a minimizer in
(26) if T - 0 < 1. For some (py,, my, Sy, ph_,p;,ph, gn) € H one finds

¢*(Ph,m}1, Sh/ ph_/ P;/ ph/qh) = ﬁ*(sh/ mh) + I\*Ti (qh/ ph_r P;) + Ijkjavg(ph/ ph)

and the proximal mapping (o}, m", 9, pF", p.7P", pP", gP") = prox_ s (on, i, Su, 05, P} Pis )

decomposes as follows:
(1951', mgr) = ProX, Zx (Sh/ mh) ,

(q];r, ph*Pr, p;Pr) _ prOXUI§+ (qh, p;, p;) ,
(o} Py ) = proX, rx (P i) -

avg

Likewise, for (pi’r, mﬁr, Sfr, p;pr, p;[pr, ﬁgr, qi’r) = prox, g(pn, M, S, py, P, Pn,qn) one finds

(pl}jr' mﬁr) = PT0lce, (paps) (Pn, M),
(P57 PR ) = projucp, o ) s

(P, ") = projg_ (P, ) -

Each of the proximal maps is performed with respect to the norm | - ||y restricted to the relevant
variables.

In what follows, we will study these maps in detail. In fact, we will observe that prox, and
projy can be separated into low-dimensional problems over each time-step and edge (x,y) €

X x X, prox Tk, splits into low-dimensional problems for each time-step and node x € X, prox;
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is a simple pointwise update, prox,« decouples for each node x € X to a sparse linear system
Javg

in time, and projcg, (,, ,,) can be computed solving a linear system, which is sparse if Q is sparse.

Consequently, prox and proxg can be computed efficiently and ensure that the above scheme

is well-suited to solve (26).

4.2 Projection onto CE;,(pa, p5)

For given (py, my) € V}l W X Vg , we need to solve the following problem:

PrOjcg, (o pp) (Ph- 1) = argmin > Z lo}" (ti, ) — pulti, )% + Z [ (8, ) — m(t, )1
(py, 1y )ECEL(pa, PB)
(29)
To this end we take into account the following dual formulation.
Proposition 4.3. The solution (p} ,m;") to (29) is given by
(i, — @n(ti-1, .
PP (%) = pulti, x) + Pulti ) hqo’( 1%y, N1, (30a)
Pgr(tO/ X) = PA(X) ’ Pgr(tN/ x) = pB(x) ’ (30b)
mgr(ti, x,y) = my(ti, x,y) + Vxou(ti,x,y), Vi=1,...,N—1. (30c)
where @y, solves the space time elliptic equation
t,x) — to, t,x) — X .
n(x)goh( 1,%) 7 #ulto, ) + 1t(x) Axpn(to, x) = —m(x) <—ph( ! )h palx) + dlvmh(to,x)> ,
- ‘lt -1,X)+ IN— X
() —2nN- )hz PuN-2%) | o) nxn(tnn, %)
_ fN_1,
= —1(x) (PB(X) phh( N-1,%) + divmh(tN_l,x)>
tir1, -2 ti, ti1,
n(x)qoh( +1,3) (ph}(lz X) & Pultizt, ) + 1(x) Axpn(ti, x)
1 7 ti/
- _n(x )(ph( R )h pulti; ) +divmh(ti,x)> (31)

fori=1,...,N—2andx € X.
The factors m(x) in (31) could be canceled but they will simplify further analysis.

Proof. We define the Lagrangian corresponding to (29) as

Llpy" my", on, Aa, Ap] = ZHP ) = pulti, )%+ Z iy (8, ) — ma(t, )

S Y pult) (p i (t"“’x)h_ B e e, x)) ()

i=0 xeX

+ 2 (As(@) (pa(tn, x) = ps(x)) + Aa (@) (palto, x) = pa(x))) m(x)

xeX
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where A4, Ap are the Lagrange multipliers for the boundary conditions py(to, -) = pa, pn(tn, ) =
ps. The optimality condition in p;, and my directly imply (30a) and (30c). (30b) reflects the
boundary conditions, which are to be ensured in CEj,(pa, pg). Inserting these relations into the
continuity equation ¢ pfr + divmir = 0 leads to the system of equations (31). |

The Lagrange multiplier ¢, in Proposition 4.3 lives in V0, which can be identified with RN
We equip this space with the canonical basis

(@1 )i=0...N-1,xex Where (@I")(tj,y) = 0;; - Oxy

and the standard Euclidean inner product with respect to this basis. Then the elliptic equation
(31) can be written as a linear system SZ = F for a coordinate vector Z = (@ (t;, x))i=0,.N—1,xeX,
a matrix § € R(NcardX)x(NeardX) and a vector F € RN X The matrix S is symmetric since
n(x)Q(x,y) = m(y)Q(y,x) and the matrix representation of Ay is Q — diag(>,, Q(,y)). Fur-
thermore, S is sparse if Q is sparse. However, the matrix S is not invertible, its kernel is
spanned by functions that are constant in space and time. To see this, assume that a non
constant Z is in the kernel of S and denote by ¢, the associated function in Vg/h. Now, let
Iy(p) =={@,x) € {0,...,N =1} x X : ¢(i,x) > pu} for p = min ¢ (i, x) and define ¢, € Vg/h via
Y(t, x) = 1if (i,x) € I, (u) and ¢y (t;, x) = 0 else. Let W be the associated nodal vector to ¢. By
assumption on Z the set I, (1) is non empty and thus it is easy to see that W' SZ < 0 and thus Z
can not be in the kernel of S, which proves the claim.

We impose the add1t10na1 constraint Z 0. er x @n(ti, x) = 0 to remove this ambiguity. This can
be written as w " ¢;, = 0 where w € RN card is the vector with entries w™* = 1leading to the linear

9600

This system is uniquely solvable and the solution implies A = 0if F L w (in the Euclidean sense),
which is true because p4 and pp are assumed to be of equal mass.

4.3 Proximal Mapping of A

The function A is convex and 1-homogeneous, hence its Fenchel conjugate is the indicator
function of a convex set and the proximal mapping of A* is a projection. For (9,m) € (Vgh)2
one has

19 m —hZ Z tzrx y (ti/x/y))Q(x/y)T(<x)'
i=0 x,yeX
Following [BB00] a direct calculation for (p, q) € (V?,)? yields
R N-1
Ap,q) = sup kY [pltie), Sl D + it ) mit Do
(Sme(Ve)? =0
1
—5 2 @(S(txy),mlt ) Qx,y) m()|
xy)eXxX

h

=5 D Dt xy),q(txy) Qy)n(x) = Y. Tslp(t,x,y),q(t,x,y))
E):;SE,/Q];}( éx,?)eg\(’xz{’
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with ®* = Igfor B = {(p,q) e R* : p+ é < 0}. Thus the proximal mapping separates into
two-dimensional problems for each time interval and graph edge and (pP*, gF*) = prox_ z« (p, q)
precisely if

(PP (ti,x, y), 47 (8, %, ) = projg(p(ti, x, 1), 4(t, %, y)),
where proj is the projection with respect to the standard Euclidean distance on R? and a Newton
scheme in IR can be used to solve for this projection. Since this proximal mapping is a projection,
it is in particular independent of the step size o.
4.4 Projection onto K

For given (p—, p*,9) € (V? )3 we need to solve

- S _ .
projy(p=,p",9) = argmin > Z (Hp P i) = p~ (b )G + 1o (i) — pF (8 )
( —pPr 4Ppr 9pr 2 _
p= P ptHOPeK < =
9Pt ) = St ) -
Recall that K is a product of the tree-dimensional closed convex set K, as indicated in (24).

Therefore (p=F", p*P", 9P) = proj,(p~, p™,9) decouples into the edgewise projection in each
time step, i.e.

(o~ (ti, x, ), p " (i, %, ), 9P (ti, x,y)) = proj(p™ (£, %, ), p™ (ti, x, ), 9(ti, x, y))

where this projection is with respect to the standard Euclidean distance on R>. Let us denote
by 0+ 6(x) the super-differential of 0 at x € R?, which is the analogue of the sub-differential for
concave functions. More precisely, 07 6(x) = —9(—0)(x), where 0(—0)(x) is the sub-differential
of the convex function x — —06(x) at x. Then the projection pP* = proji(p) of p € R? is
characterized by [BC11, Prop. 6.46]

p—pP e Nk(pP") := {ze R® : (z,g — pP") < 0Vq e K}, (32)

where Nk (pP") is the normal cone of K at pP*. To solve this inclusion we distinguish the following
cases:

Lemma 4.4. For an averaging function 0 : R*> — R fulfilling the assumptions listed in Section 1 and
for K:= {peR>: 0 < ps < O(p1,p2)} the normal cone Nx(pF*) for pP* € K is given by:

(i) Trivial projection: p = pP* € int K={(p1,p2,p3) € R® : 0<p3 <O(p1,p2)}, then Nx(pP*) = {0}.
(ii) Projection onto ‘bottom facet’ of K: pP* € (0, +00) x (0, +00) x {0}, then Ny (pF*) = {0} x {0} xR
(iii) Projection onto coordinate axis: pP* = (p¥",0,0) for p** € (0, +0), then
Ne(pP") = {0} x Ry < Ry {(0,q2,45) € {0} x Ry x (0, +50) : (0, ~42/q5) € 97 O(",0)}.

Note that (0,9) € 0% 0(pt",0) is equivalent to q > limz~ o 020(p", z) and that o+O(p",0) is
empty if imz~ 0 %20(pY", z) = 0. The analogous representation holds for the second axis.

(iv) Projection onto origin: pP* = (0,0,0), then

Nk(pP) = (Ry)> U {(q1,92,93) € Ry x Ry x (0,+0) : (41/43,42/q3) € =07 6(0)}.
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(v) Projection onto ‘upper surface’ of K: pP* = (b, pb*, 00", p")) for (p", p7) € (0, +00)?, then
Ni(pP") = {A - (=010(pt", p5"), 0.0 (", p5'), 1) : A e R},

Proof. For pP* € intK one finds Ng(pP*) = {0} and thus pP" = p, which implies (i).

In case (ii) the set R x R x {0} is obviously the only supporting plane of K that contains pP".
Thus the normal cone is just the ray in direction (0,0, —1).

Assume pP* = (p",0,0), pi" > 0. Then there is some ¢ > 0 such that {(p}" + ¢,0,0), (p}" —
&,0,0), (plfr, ¢,0)} < K. Therefore Nk (pP") = {0} x R; x R. Since R x {0} x Rand R x R x {0} are
supporting planes of K that contain pP*, one must have {0} x R x R = Nx(pF*). Moreover, for
lim. o 20(pt", z) < w0 letz = (z1,22) € a7 O(p",0). One must have z; = 0 and z; € 07 f(0) with
auxiliary function f : t — O(p!", ). Then {g € R® : {g—pP", (0, —z2,1)) = 0} is a supporting plane
of K and consequently (0, —z,1) € Ng(pP"). Conversely, from z; ¢ o f(0) follows (0, —z5,1) ¢
NK(ppr). So

Ng(pP*) = {0} x Ry x Ry w{(0,=A-2,A) : ze 07 f(0),A € (0, +0)}.

The auxiliary function f is concave and by monotonicity of the super-differential we find
0T f(0) = [limyp &26(}7?,2), +00). With this characterization we arrive at the expression for
Nk (pP') as given in (iii). The proof for the second axis is analogous.

For pP* = (0,0,0) we find (R;)? < Ng(0) ¢ Ry x R; x R with arguments analogous to
those in case (iii). For every z = (z1,22) € d*0(0) a supporting plane through 0 is given by
{ge R3:{g,(~z1,—22,1)) = 0} and hence (—z1, —z2,1) € Nk (0). Conversely,z = (z1,2) ¢ 0 6(0)
implies (—z1, —z,1) ¢ Nk(0). With this, one obtains the expression for Nx(0) given in (iv).
Finally, we consider pP* = (p!", p5", 0(p!", p5")) with (p™",p5") € (0, +00)%. In a neighbourhood
of pP", K is the subgraph of a concave, differentiable function. The unique supporting plane
of K through pP is given by {g € R® : (g — ppr,(—ﬁle(pfr,pgr),—626(;95“,;9};),1)} = 0} and
(—619(;911”, Py, —829(;911”, p5'), 1) is the unique associated outer normal as stated in (v). O

Using Lemma 4.4 one can devise an algorithm for the projection onto K. Forp = (p1,p2,p3) € R3
the projection pP" = proj, (p) can be determined as follows:

function ProjectK(p1,p2,73)
if 0 < p3 < O(py, p2) return (p1, p2, p3)
if p3 < 0 return (max{p;,0}, max{p, 0},0)
if (p1 > 0) A (p2 <0) then
if —po/ps = lim,~ o 20(p1, z) return (p;,0,0)
end if
if (71 <0) A (p2 > 0) then
if —p1/p3 = lim,~ o 016(z, p2) return (0, p,,0)
end if
if (p1 <0) A (PZ < 0) then
if (—p1/p3, —p2/p3) € 01 6(0) return (0,0,0)
end if
return ProjectKTor(p1,p2,p3)
end function

The function ProjectKTor(p1,p2,p3) in the above algorithm corresponds to case (v) of Lemma
4.4, where pP" lies on the ‘upper surface’ of K, defined by the graph surface of 0. It will be
described in more detail below. In the following we will occasionally use the curve ¢ : (0, 0) —
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R?%; g — (g7'/2,4"/?) to parametrize orientations in (0, 0)2. Due to the 1-homogeneity of 0, often
it suffices to look at its values at 9(c(g)). Alternative choices for c are feasible as well.

Lemma 4.5 (Projection onto ‘upper surface’ of K). Let p € R® with projection on K given by
PP = (P p5, 0p) py))) with (B, py) € (0, +00)%. Further, let w(q) = (q",q7"?,0(q"/2,q7'/2))
be a parametrized curve on the ‘upper surface’ and n(q) = (—010(q"/2,q=2), —0,0(q"/2,47/),1) be
the corresponding normal. Then there exists a unique (q,7) € (0,00)? s.t. pP* = tw(q). We have that q

is the unique root of q — (p,w(q) x n(q)y and © = {p, % :

Proof. Since 0 is 1-homogeneous, any pP* of the form (b, p*, 0", p")), (", p5") € (0, +0)?,
can be written as pP* = 7 - w(q) for unique g € (0, +) and 7 € (0, +0). In explicit, g = pfr/pgr
and 7 = (pi" - pb") 2. Now, n1(q) is orthogonal on the graph of 6 and outward pointing. Hence, p
lies in the plane spanned by w(q) and n(q). This is equivalent to (p, w(q) x n(q)) = 0. Since pP*
is unique, this must be the unique root of ¢ — {p,w(q) x n(q)). Once g is determined, we know
the ray on which pP* lies. To find 7, one must solve the remaining one-dimensional projection
onto the ray. Consequently, 7 is the unique minimizer of 7 — 1 |p — 7 - w(g)|? which concludes
the proof. ]

For case (iv) of Lemma 4.4 we need to characterize the super-differential of 0 at the origin.

Lemma 4.6. The super-differential of O at the origin is given by

070(0) = {VO(g71/2,9') : g€ (0, )} + (R])*.
Proof. Due to the 1-homogeneity of 6
O(p +er) — 0(p)

0(A —0(A
( (p+€7’€)) (Ap) _ AMim = = A(VO(p), 1)

(VO(Ap), Ar) = lim

for p € (0,+)%, A > 0, and all r € R?, which leads to VO(Ap) = VO(p) for p € (0, +0)? and
A > 0. Thus, for the curve ¢ : (0,0) — R% g — (q7'/2,4'/2) the set of tangent planes at
(c(g),6(c(q))) spanned by (VO(c(g)),1) and (c(s),0(c(q))) for g € (0, o0) is already the complete
set of affine tangent planes to the graph of 6 over (0,00)2. Thus, by continuity of 6 on [0, )?
we get 0(0) + (r,p) = O(p) for r € {VO(c(q)) : q € (0,00)}. From this we deduce that 076(0) >
{VO(c(q)) : g€ (0,00)} + (Rf)?. Since 0+ 6(0) is a closed set [BC11, Prop. 16.3], this implies

)
070(0) o {VO(c(s)) : g€ (0,00)} + (lRSr)z.
Furthermore, for any w € IR?\{0} with w;, w, < 0 there exists a p’ with 0(0) + {(r +w), p) < 6(p)
Since 6(z) = 0forz e ({0} x R]) U (IRJ x {0}) and 6(z) = —o0 outside [0, 20)? we finally obtain
that 6(0) + (r,p) = O(p) if and only if r € {VO(c(q)) : g€ (0,50)} + (R)?, which proves the

claim. O

Logarithmic Mean. Now, we turn to the specific case when 0 = 0,4 is the logarithmic mean
(4). For s > 0 limp o 010(t,s) = limp 9 020(s, ) = +co. That is, Nk(s,0,0) = {0} x R x R and
analogous Nk (0,s,0) = R; x {0} x R;. Consequently, the algorithm simplifies as follows:

function ProjectK(p1,p2,93)
if 0 < p3 < O(p1,p2) return (p1, p2, p3)
if p3 < 0 return (max{p;, 0}, max{p,,0},0)
if (p1 <0) A (p2 <0) A (—=p1/p3, —P2/p3) € 07 6(0) return (0,0,0)
return ProjectKTor(p1,p2,p3)
end function
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The inclusion in 07 6(0) can be tested as follows.

Lemma 4.7. Let z = (z1,22) € R% If min{zy, 2z} < 0 then z ¢ 07 6(0). Otherwise, there is a unique
—1/2 1/

g1 € (0, +00) such that 010(q, '~,q,") = z1 and then z € 0+ 6(0) if and only if zp > 3:0(q~"/%,q"/?).
Proof. Note that for the logarithmic mean 0t60(0) = (0,+o0)? and therefore z ¢ 076(0) if
min{zi,z;) < 0. One finds that

q—1—log(q)

ale(q_l/zl ql/z) = logZ(q)

is monotone increasing with 0;0(g~'/2,4'/?) — 0asq — 0and 6;0(q~"/2,4"/?) — +0asq — +o.
Indeed, for B(q) = &10(q~/2,q"/?) with B(1) := 1 we obtain a continuous extension on (0, %0).
2(1—9)+log(g)(1+9)

qlog’ ()
verify that 2(1 — g) + log(q)(1 + g) is negative for 4 < 1 and positive for and q > 1. This implies
that 8/(q) > 0. Furthermore, by symmetry we obtain that 3,0(q~"/2,4"/?) is monotone decreasing
with 0,0(qg~"2,4"?) — +o0 as g — 0 and 0,0(q3"/2,4"/?) — 0 as ¢ — +o0. By Lemma 4.6

Furthermore, we consider p'(q) = with continuous extension % forqg = 1 and

00(0) = {VO(q7'%,4"%) : g (0,+0)} + (Ry).

Thus, for every z € (0, +00)? there is a unique q; € (0, +0o0) such that 0,60(q, Y 2, qi/ 2) = z; and
z1 = 10(q~Y/2,4"/?) if and only if g < g1. Furthermore, there is a unique g, € (0, +o0) such that
0“26({12_1/2, qé/z) = zp and z; > 3,0(q~'/?,4"/?) if and only if g > g,. Hence, z € 0+ 0(0) if and only
if 4o < g1, which is equivalent to z, > 026(q;1/2, qi/z). O
Remark 4.8 (Comments on Numerical Implementation). The sought-after 4 in Lemma 4.7 can
be determined with a one-dimensional Newton iteration. The function g — ;0(q7"/2,4"/?)
becomes increasingly steep as § — 0 which leads to increasingly unstable Newton iterations
as z1 approaches 0. On g € [1, +®) the function is rather flat and easy to invert numerically.
To avoid these numerical problems, note that the roles of z; and z; in Lemma 4.7 can easily be
swapped which corresponds to the transformation g < qil. Moreover, for max{zy,z;} < % one
has z ¢ 07 0(0). With this rule and by swapping the values of z; and 2, if z; < z, one can always
remain in the regime g € [1,+00). Additionally, we recommend to replace the function (s, t)
and its derivatives by a local Taylor expansion near the numerically unstable diagonal s = .

Geometric Mean. Furthermre, let us consider the case where 6 = 0Oy, is the geometric mean
(4). For s > 0 we again find limp o 010(f,5) = limps o 620(s,t) = +00 and consequently the
same simplification of the algorithm applies as in the case of the logarithmic mean. For the test
of the inclusion z = (z1,22) € 076(0), we argue as in the proof of Lemma 4.7. The functions
10(g712,4'?) = 143 and 0,0(q7/2,9"/%) = 137 have the same monotonicity properties as for
the logarithmic mean. Therefore, if min{z;,z,} < 0 then z ¢ 076(0). Otherwise, q; = 4z% and

thus the condition 829(q1_ v 2, qi/ 2) < zp is equivalent to z1 - z, > }1. To summarize, we have

obtained

0v0(0) = {zeR?: z1 -z > } Amin{z, 2z} > 0} .

22



4.5 Proximal Mapping of 17

Note that 74, is a 1-homogeneous function. Hence, I i‘kh will once again be an indicator
function and prox;« a projection. Consequently, the proximal mapping is independent of the
T+
step size o, i.e. prox, rx = proxﬂ< . To compute prox;« we use Moreau’s decomposition
J+ T+

[BC11, Thm. 14.3] that implies

proxzx = id —prox Iy, = id —projg, (33)
. T +

where id is the identity map on V0 X (Vgh) . To compute proj;, (p,p~,p") for a point

(p,p~,p*) € V), x (V,)? one has to fmd the minimizer (pP*, p~"", p**") € T4 of

N—-1
Z 107" (ti,-) = p(ti, ) + o~ (b1, ) = p~ (b, G + I+ (ki) = p™ (i, ) -

Recall that for any pP* € V9, there is precisely one pair (p=,p**") e (V?,)* such that
(pP", p~ P, p*P") € T4, see (23). Therefore, one has to find pP* € V?, which minimizes

N-1
DT TPk, x) — p(ti,x) P(x) +% DT 1P (ki x) — p (%, y)PQ(x, y) (%)

i=0 xeX (x,y)eX?
1 T
+5 2 Pt y) = ot (2 y) PR y)m(x).
(xyex?

The optimality condition in pP* in combination with the reversibility Q(x, y)m(x) = Q(y, x)7(y)
yieldsfori =0,... N—1,xe X

) 1 1w,

PP (ki x) = 5 (p(ti,x) +35 Do~ (tix,y) + pT (£, y,2)Q(x, y))
yeX

and subsequently p~""(t;, x,y) = pP*(t;,x), p*P (ti, x,y) = pP*(t;, y) for (x ( y) e X x X. Fmally,

for (p™, p~, p*™") = projy, (p,p~, p*) using (33) one gets proxzx (p,p~,p") = (p.p™,p") -

(pP", p=", p* ).

4.6 Proximal Mapping of 17, -

Once more, we use Moreau’s decomposition, (33), to compute the proximal mapping of I }w

via the projection onto J,,s. Note that the original problem (26) does not change if we add the
constraint py(to,-) = pa and pp(tn,-) = pp to the set Jse. That is, we consider the projection
onto the set

jtwg = {(Ph/ph € javg : ph(tOI') = PA, Ph(tNr') = PB} .

To compute the projection we have to solve

NI*—‘

arg min —Zth (ti, ) — pi(t;, )
(G )GJW i=0xeX

N—
ZE "(ti, %) — pn (£, %) [P1e(x) .
i=0 xeX
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Thus, we introduce a Lagrange multiplier A € VS , and define the corresponding Lagrangian

r _pr ].
L(p} A} Ar) Z 2 oy ()= pult, ) Pre(x) + 5 Z 22 157 (6 x) = pult, x) ()
i=0xeX i=0 xeX
- Z > Ault x) (v, pb (8 %) — F (8, %)) ()

i=0 xeX

We know directly from the added boundary constraints that
Py (to,x) = pa, pr(tn, x) = p.

The optimality condition in pgr for all x € X and for interior time stepsi =1,...,N — 1 reads as

pir(ti, x) = pu(ti, x) + %(/\h(t,‘,L x) + Ap(ti, x)) . (34)
Further, the optimality condition in pgr implies that on each interval
pir(ti,x) = ph(t,-,x) — )\h(ti,x) . (35)

Combining both with the constraint avg, pgr(ti, x) = ﬁlsr(ti, x), we obtain

pu(ti, x) — Au(ti, x) = py, (;,x) = avg, pr (t;, x)
= avg Ph(ti/ x) + i(/\h(ti,hx) + 2/\h(ti/ x) + )\h(tiﬂ,x))

for all interior elements I; with i = 1,...,N — 2 and for all x € X. Analogously, using the
boundary conditions we get

Pu(to, x) — A(to, x) = 2(pa(x) + pu(t1,x)) + 2(Au(to, x) + An(t1, x))
pr(tn—1,%) — Ap(tn—1,%) = 3(pB(x) + prtn—1,%)) + 5 (An(tn—2,%) + An(tn-1,X)) .
Thus, for each x € X the Lagrange multiplier A; satisfies the linear system of equations
1(5An(to, %) + Au(t1, %)) = pulto, x) — 3(pa(x) + palts, x))
TAn(tima, %) + 65 (ti, X) + An(tiyr, %)) = pulti x) — 5(pn(tisr, x) + pu(ti,x)) Vi=1,...,N—2
F(An(tn—2,x) + 5An(tn-1,%)) = pu(tn-1,%) — 3(pa(x) + pa(tn-1,%))

This system is solvable, since the corresponding matrix with diagonal (5,6,...,6,5) and off-
diagonal 1 is strictly diagonal dominant. Then, given the Lagrange multiplier A;, the solution
of the projection problem is given by (34) and (35). Finally, the proximal map of 77 ., can be

computed by Moreau’s identity, (33). Thus, to compute the proximal mapping of I *  one
azq
must solve a sparse system in time for each graph node separately. Since the involved matrix is

constant, it can be pre-factored.

4.7 Proximal Mapping of 7 4_

The proximal map of 7 4_ is given by the projection

o . 1, 'S o ;
proj;_ (P, qn) = argmin S 2 (\Ph — P+ lan — q) IZ) Q(x, y)m(x)
7y 4y )EVO ngh oy =y i=0 x,yeX

1, _ _
= E(Ph + Gn, P+ qGn) -

24



5 Numerical Results

In what follows we compare the numerical solution based on our discretization with the ex-
plicitly known solution for a simple model with just two nodes. Furthermore, we apply our
method to a set of characteristic test cases to study the qualitative and quantitative behaviour
of the discrete transportation distance.

Comparison with the exact solution for the 2-node case. Consider a two pointgraph X = {a, b}
with Markov chain and stationary distribution

Q=(O ”>, n=<%>,
q 0 P

where p, g € (0,1]. For this case, Maas [Maall] constructed an explicit solution for the geodesic
from py = (’%, O) to pp = (0, ’%). Note that every probability measures on X can be
described by a single parameter r € [—1,1] via

plr) = (a0 putr) = (1T AL

Especially, we have py = p(—1) and pg = p(1). Using this representation, Maas showed that for
—1 < @ < B < 1 the optimal transport distance is given by

1 /1 1 [P 1
W(p(a),p(B) = > \/;/a m dr (36)
(a)

and the optimal transport geodesic from p(a
satisfies the differential equation

to p(B) is given by p(y(t)) for t € [0, 1], where y

/ P9
Y'(t) = 2(p —a)W(p(a), p(p)) MQ(P(%(f))/Pb(V(f)) : (37)
For the special case, where 6 is the logarithmic mean 0,,; and p = g, one obtains that
Orog (Pa(r), pb(r)) = arc+nh(r) and consequently the discrete transport distance is given by
W(p(a),p(B f P y/ 22 4y Furthermore, the optimal transport geodesic from p(a)

to p(p) is given by p()/( ) for t € [0,1], where y satisfies the differential equation y'(t) =
\V2p(B — a)W(p(a),p(B)) 1/ % . For this two point graph we numerically compute the

optimal transport geodesic. This allows us to evaluate directly the distance ‘W, which we can
compare with a numerical quadrature of (36). Using the approximation of ‘W, we use an explicit
Euler scheme to compute the solution p]?DE of the ODE (37). For the case p = ¢ = 1 we compare
our numerical solution to the Euler approximation for the ODE for N = 2000 in Fig. 1.

Geodesics on some selected graphs. Let us consider four different graphs whose nodes and
edges form a triangle, the 3 x 3 lattice, a cube, and a hypercube, respectively. Figure 2 depicts
these graphs with labeled nodes and edges. In all cases, we set for each node x with m outgoing
edges m(x) = T EI and Q(x,y) = n(xl)‘ 7 Figure 3 shows numerically computed geodesic paths.

The underlying time step size is h = 7&. The solution (p,m) is displayed at intermediate time
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Figure 1: The mass distribution at b is plotted over time ¢ € [0,1]. Left: Numerical solution
for a 2-point graph X = {a,b} for the logarithmic (red) and geometric (green). The black line
represents the diagonal, which is the solution in the case of the (non admissible) arithmetic
averaging. Right: Difference of the numerical solution for the logarithmic (red) and geometric
(green) mean with the Euler scheme solution pSDE for the logarithmic mean.

Figure 2: Labeling of nodes and edges for four different graphs: a triangle, the 3x3 lattice, a
cube, and a hypercube.
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steps indicated on the arrow in the first row. For each of these time steps, blue discs and red
arrows superimposed over the graph display mass and momentum at nodes and on edges,
respectively. The area of a disc is proportional to the mass p(x)m(x). A red arrow connecting
nodes x and y renders the momentum m(x, ). The direction of the arrow indicates the direction
of the flow, i.e. it points from x to y if m(x, y) = —m(y, x) > 0 (cf. Lemma 2.4). The thickness of an
arrow is proportional to [m(x, y)|Q(x, y)7(x). Underneath these graph drawings both, mass and
the momentum on nodes and edges, are plotted in histograms. The numbering of the columns
in these plots refers to the numbering of nodes and edges in Figure 2. The plots associated with
t = 0 and t = 1 show the prescribed boundary conditions in time. As the stopping criteria

for the iterative algorithm in (28) we choose [ p**! — p¥|2 dt with threshold 10~1, where k
denotes the iteration step. Figure 4 visualizes in the same fashion an optimal transport path
on the graph of the hypercube. Note that for the cube, the hypercube, and the 3 x 3 lattice the
computed solutions are symmetric. In explicit, mass and momentum at time ¢ equal the mass
and the momentum at time 1 — f on point reflected nodes and edges, respectively. Furthermore,
for the cube and the hypercube the distribution of mass is constant on all nodes at time ¢ = 1.
Finally, in Figure 5 we depict an example of graph with four nodes, which shows that the sign
of the momentum variable on a fixed edge may change along a geodesic path.

Experimental results related to the Gromov-Hausdorff convergence for simple graphs. In
[GM13] it was shown that for the d-dimensional torus T the discrete transportation distance
W on a discretized torus T¢, with uniform mesh size 7; converges in the Gromov-Hausdorff
metric to the classical L2-Wasserstein distance on T". In fact, the optimal transport with respect
to the classical L2-Wasserstein distance between two point masses is a point mass travelling
along the connecting straight line. Concerning the expected concentration of the transport
along this line we perform the following numerical experiments for d = 1, 2. We first consider
for d = 1 the unit interval I = [0,1] and a sequence of space discretizations Xy = {xo, ..., xm}
with uniform mesh size 7; with M € N. The corresponding Markov kernel Qu for Xy is defined
by Qum(xi, xi41) = Qm(xi, xi—1) = % fori=1,...,xm-1 and Qum(xo,x1) = 1 = Qum(xpm, Xxpm—1). The
continuous L?>-Wasserstein geodesic connecting p4 = 6 and pg = 61 is given by the transport of
the Dirac measure with constant speed:

p(t,x) = O4(x).

In Figure 6 we plot the density distribution of the discrete optimal transport geodesic at time
t = 1 for different grid sizes ;. One observes the onset of mass concentration in space at that
time at the location x = 1 for increasing M. For d = 2 we consider a square lattice of uniform grid
size ; with M € N and nodes Xy = {(i/M, j/M) : i,j€ (0,...,M)}. The weights of the Markov
kernel Q are proportional to the number of adjacent edges. Now, we investigate a discrete
geodesic connecting the Dirac masses 0(o,) and 0(;,1y. One expects that for increasing M mass
on bands parallel to the space diagonal will decrease. In Figure 7 we plot for decreasing mesh
size 1 the in time accumulated density values along the diagonal and the off-diagonals bands
of nodes. More precisely, we define the bands of nodes lj\/{ ={(x1, %) e Xy xXm @ X2 =21+ ALA}

(i = 0 being the diagonal) and compare the values fol ZXE% p(t, x)m(x) dt.

Discrete geodesics on an internet network of Europe. In Figure 8 we apply the investigated
optimal transport model to a coarse scale internet network of Europe and show experimental
results with masses (data packages) transported from Dublin, Lisbon, and Madrid to Athens,
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Figure 3: Numerically computed geodesics on a triangle, a square lattice and a cube for pre-
scribed boundary conditions at time 0 and 1. Note in particular the symmetry under time
reversal and the spreading of mass at intermediate times (equidistribution att = 1 for the cube).
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Figure 4: Top: Numerically computed geodesic on a hypercube. Bottom: Distribution of mass

and momentum, note again the symmetry under time reversal and the spreading of mass, with
equidistribution at time ¢ = 1.
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Figure 5: Numerically computed geodesic on a graph with four nodes. Note that the sign of m
for edge 2 changes (cf. t = 1 and t = 32).
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Figure 6: Linearly interpolated densities for the ‘W geodesic on a one dimensional chain graph
between a Dirac mass at the beginning and the end, at f = 0.5 with M = 2 (blue), 4 (red), 8
(green), 16 (orange), 32 (yellow), and 64 (black).
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Figure 7: Geodesics in the distance ‘W on a two dimensional grid graph between Dirac masses
at diagonally opposite ends. We show accumulated densities along the diagonal and the off-
diagonals (see text for details). From left to right: M = 4, 8, 16, 32. The width of the bars is
scaled with the number of lines.
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Figure 8: Extraction of a discrete optimal transport geodesic.

Stockholm, and Kiev. Also here, we set for each node x with m outgoing edges m(x) = 17 and

Qx,y) = n(x)| F with |E| the total number of (directed) edges.

6 Simulation of the gradient flow of the entropy

The entropy functional on P(X) is given by

Z p(x)log(p(x))m(x).

xeX

with the usual convention ‘0log0 = 0’. Maas [Maall] proved that for the logarithmic mean
Olog(+,-) and p € P(X) the heat flow t — ¢'*¥p is a gradient flow trajectory for the entropy H(p)
with respect to the discrete transportation distance W. In [EM14] it was shown that a similar
result holds true for the Renyi entropy

Hn(p _12;)

xeX

In fact, for m = % and the gradient flow of H,, with respect to the metric ‘W constructed with 6
being the geometric mean Ogeom (-, -) is given by the Fokker-Planck equation d;p = Axp™.

To verify this property numerically, we consider a line of five points with stationary distri-
bution © = %(1,2, 2,2,1), Markov kernel Q(x,y) = 1071 o) for x, y adjacent, and initial mass

p= 11—0(1, 1,5,1,1). Following [JKO98, AGS08], for an initial density py € P(X) and a time step
size T > 0 an implicit time-discrete gradient flow scheme for H can be defined by

1
Pk+1 = argmin E(Wh(pk' p3)2 +7-H(pp) (38)
PB

with an inner time step size h appearing in the discretization ‘W), of ‘W. To minimize this
functional numerically, we simultaneously carry out the external optimization over p and the
internal optimization within ‘W), . To this end, we define a discrete continuity equation with
one free endpoint. For initial datum ps € P(X) let

Cé&n(pa) = {(Ph/ my, pp) € Vi, x VO x RY < (py,my) € CSh(PArPB)} :
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Analogous to (26), problem (38) can be written as

min {T(phr my, 19h/ Ph_/ P;/ p_hr Qh/ PB) + Q(Phr my, Sh/ ph_r P;/ p_h/ th PB) :
(phlmh/ Sh/ p;/ p;/ p_h/th PB) € V},,h X (Vg,h)4 X (Vgrh)z X RX}

with

F (Pns 1, S0, 05,5 05+ P Gis PB) =AYy, my) + Tg (anpy, . p;) + L, (pns pn) + 27 - H(ps),
G (o, M, S, 034 3+ Pns G PB) =L e, (p0) (P 10, 8) + Lac(py 0+ S0) + L7 (Pn, 1) -

Again, this is amenable for algorithm (28). We extend the space H by a factor R¥ and adapt
the scalar product on H (27) adding the term 1 {pp1(-), pp2(-))= With respect or the additional
variable pg. The proximal step of ¥ * then entails an additional proximal step of (27 - H)* with
respect to 1| - || and in the proximal step of G the projection onto CE;(p4, ps) is replaced by a
projection onto CEy(px). Next, we detail these modifications.

Let us recall that the proximal mapping of (y - H)* and y - H are linked by Moreau’s decompo-
sition, cf. (33). The computation of the the proximal mapping for y - H decouples in space and
the resulting one dimensional problem can be solved via Newton’s method. This decoupling is
possible since we do not enforce the constraint pg € P(X) in the formulation of H but enforce it
via the discrete continuity equation constraint.

To implement the projection

PrOjce, (p,) (P, p5) = argmin -ZHP i) = puti )%
(pP‘,mPf,pgr)GCSh(pA) i=0

hN ;
+5 Z ) = m(ti, )3 + —||p§ —pslx (39)

onto the set CE;(pa) of solutions of the discrete continuity equation with initial data p4 the
following modifications apply. Analogous to Proposition 4.3, a space time discrete elliptic
equation

h t 7 - t ’ t 7 -
en(t, x) - P (to, x) + axgn(fo, x) = — (M + divmh(to,x)) ,

—3pn(tn=1,%) — Pu(tn-2,x)
2

+ Axpn(tn—1,X)

. <( L(p(x) + pu(tn, x)) — pultn-1,%)

7 + divmh(tNl,x)> ,

On(tiv1, x) — 2@u(t, x) + @u(ti—1, x)
hZ

+ A,\/(ph(ti, x)

(Ph(ti+1,x) — pn(ti, x)
h

+ divmh(ti, x))

withi = 1,...,N —2and x € X has to be solved for the Lagrange multiplier ¢, € V°,. Note
that this system is no longer degenerate due to the additional freedom of pp and thus no
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Figure 9: Numerical solution of the heat flow (top) and the Fokker-Planck equation (bottom)
based on an explicit Euler scheme (blue) with time step size 10~ and for the gradient flow
of the associated entropy using the logarithmic mean (red) and the geometric mean (green),
respectively, with T = 1072 and h = 100. Panels on the left show the mass distributions on the
graph at different times, panels on the right show the values of the entropies over time.

regularization as before is required. Then the solution (pP", mPT, pf") to (39) is given by

Py (X) = % (Ph(fN,x) + pp(x) — W(tNTl’x)) ,
Pulti, x) — pu(ti1, x)

Py (ti,x) = pa(ti,x) + p /
Py (to,X) = pa(x), py (tn,x) = pf (x),
mgr(ti, x,y) = my(ti, x, ) + Vxn(ti, x, y)
foralli =1,...,N—2and x,y € X. In Figure 9 we compare the numerical results for this
natural discretization of the gradient flow of the entropy to the flow computed numerically

with a simple explicit Euler discretization applied to the heat equation and the Fokker-Planck
equation, respectively, with respect to the underlying Markov kernel.
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