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Abstract

In this paper we investigate the numerical approximation of an analogue of the Wasser-
stein distance for optimal transport on graphs that is defined via a discrete modification of
the Benamou–Brenier formula. This approach involves the logarithmic mean of measure den-
sities on adjacent nodes of the graph. For this model a variational time discretization of the
probability densities on graph nodes and the momenta on graph edges is proposed. A robust
descent algorithm for the action functional is derived, which in particular uses a proximal
splitting with an edgewise nonlinear projection on the convex subgraph of the logarithmic
mean. Thereby, suitable chosen slack variables avoid a global coupling of probability densities
on all graph nodes in the projection step. For the time discrete action functional Γ–convergence
to the time continuous action is established. Numerical results for a selection of test cases show
qualitative and quantitative properties of the optimal transport on graphs. Finally, we use
our algorithm to implement a JKO scheme for the gradient flow of the entropy in the discrete
transportation distance, which is known to coincide with the underlying Markov semigroup,
and test our results against a classical backward Euler discretization of this discrete heat flow.

Key Words: optimal transport on graphs, proximal splitting, gradient flows
AMS Subject Classifications: 65K10 49M29 49Q20 60J27

1 Introduction

For a metric space pX, dq and a weighting exponent p P r1,8q optimal transport induces the
p-Wasserstein distances Wp on the probability measures over X. A remarkable property of
Wasserstein distances is that they form a length space if the base space pX, dq is a length space,
inducing the so-called displacement interpolation between probability measures [McC97]. The
celebrated Benamou–Brenier formula for W2 over Rn [BB00] can be interpreted as an explicit
search for the shortest path between two probability measures. In the last two decades the
geometry of metric spaces has extensively been studied by means of optimal transport. In
explicit it has been observed that the 2-Wasserstein metric over probability densities in Rn

formally resembles a Riemannian manifold [Ott01] and that various diffusion-type equations
can be interpreted as gradient flows for entropy-type functionals with respect to this metric
[JKO98]. For a comprehensive introduction we refer to the monographs [Vil09, San15].
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Unfortunately, this rich geometry is not directly available when the base space X is discrete,
since W2 degenerates and does not admit geodesics. Maas [Maa11] introduced a transport-
type Riemannian metricW on probability measures over a discrete space X equipped with a
reversible Markov kernel Q, based on an adaption of the Benamou–Brenier formula. A key
ingredient in the construction is the choice of a ‘mass averaging’ function θ that interpolates
the amount of mass on neighbouring graph vertices. For the particular choice of θ being the
logarithmic mean, the heat equation (with respect to the underlying Markov kernel) arises as
gradient flow of the entropy with respect to this metric [Maa11, Mie11], yielding a discrete
analogue of Otto’s interpretation of diffusive PDEs, see also [EM14] for a generalization to non-
linear evolution equations on discrete spaces. In analogy to the Lott–Sturm–Villani theory the
displacement interpolation on graphs has been used to introduce a notion of Ricci curvature
lower bounds for discrete spaces equipped with Markov kernels [EM12] that implies a variety
of functional inequalities in analogy to the theory of Lott–Sturm–Villani. The study of transport-
type distances on discrete domains has various connections to the original Wasserstein distances
on continuous domains. Approximating a torus with an increasingly finer toroidal graph, the
discrete transport metric W has been shown to converge to the continuous underlying 2-
Wasserstein distance on the torus in the sense of Gromov–Hausdorff [GM13]. Conversely, the
introduction of a mass averaging function for discrete spaces has in turn inspired the design of
new non-local transport-type metrics in continuous domains [Erb14].

Computing classical Wasserstein distances W2 numerically is often a challenge. While the
classical Kantorovich formulation via transport couplings is a standard linear program, its naı̈ve
dense form requires pcardXq2 variables which may quickly become computationally unfeasible
as X increases in size. On arbitrary metric graphs pX, dq an additional problem arises: only
local edge lengths are usually prescribed and the full distance function d : X ˆ X Ñ R is
in general unknown a priori. On large graphs, computing d from local edge lengths may be
computationally prohibitive or even storing d may exceed the memory capacities.
Owing to its particular structure, the 1-Wasserstein distance over a discrete graph can be refor-
mulated as a min cost flow problem along its edges, thus drastically reducing the number of
required variables if the graph is sparse and requiring no pre-computation of d, see for instance
[AMO93]. On continuous domains this corresponds to Beckmann’s problem [San15]. A numerical
scheme tailored to application on meshed surfaces is presented in [SRGB14]. A computational
approach that uses quadratic regularization to break the non-uniqueness of the optimal flow is
described in [ES17].
For the 2-Wasserstein distance on continuous domains the Benamou–Brenier formula serves
a similar purpose, see for instance [PPO14] for a numerical scheme based on proximal point
algorithms. However, this does not immediately carry over to discrete graphs, as the mass
averaging function θ introduces a non-trivial coupling of the mass variables along graph edges.
In [SRGB16] a Benamou–Brenier-type transport distance on discrete metric graphs is developed,
similar to the construction of Maas, and a corresponding numerical scheme is developed. A
crucial design choice is that θ is picked to be the harmonic mean which allows the application of
second-order convex cone programs for numerical optimization. This does not extend to other
choices of θ and thus, for instance, hinders the numerical study of the gradient flow when θ is
the logarithmic mean.

Contribution

In this article we present a scheme for the numerical approximation of the distanceW on dis-
crete setsX equipped with irreducible Markov kernels Q as introduced by Maas. We pick up the
Benamou–Brenier-type formulation and provide a temporal discretization of the action func-
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tional to obtain a finite-dimensional convex problem and prove Γ-convergence of the discretized
functional to the original problem, as well as strong convergence of the discrete geodesics to the
continuous geodesics. To overcome the strong coupling of mass variables along graph edges
caused by the mass averaging function we introduce a set of slack variables to remedy this
entanglement. This allows us to apply a robust proximal point algorithm for the optimization.
Due to the slack variables, all involved proximal mappings can be computed efficiently by ei-
ther solving a sparse linear program (if Q is sparse) or by decomposing them into independent
low-dimensional sub-problems.
In particular this numerical scheme does not depend critically on the choice of θ and can be
quickly adapted to different variants. We provide formulas for the logarithmic and geometric
mean. For a series of numerical test cases we visualize and discuss the behaviour of the
interpolating flow. Finally, we adopt the algorithm to approximate gradient flows with respect
to the discrete transportation distanceW. In particular, we test the algorithm against a classical
backward Euler discretization of the heat equation on a graph which coincides with the gradient
flow of the entropy.

Organization

The paper is organized as follows. At first we review the construction of the L2-Wasserstein
metric on discrete spaces by Maas [Maa11] in Section 2. Then, in Section 3 we will derive the
time discretization and establish Γ-convergence of the time discrete action functional and the
convergence of time discrete geodesics to a continuous geodesic. Next, the proximal splitting
algorithm with suitably chosen slack variables is presented in detail in Section 4. Numerical
results are discussed in Section 5 and the experimental comparison of solutions of a JKO scheme
for the entropy and solutions of the Markov semigroup are presented in Section 6.

2 Optimal transport on graphs

In this section we briefly review the discrete transportation metric on the space of probability
measures over a graph and in particular recall the basic definitions and discuss the analogy to
the L2-Wasserstein metric on probability measures over Rn. Then we derive a priori bounds on
feasible curves of measures.

2.1 The discrete transportation distance

LetX be a finite set and let Q : XˆXÑ r0,8q be the transition rate matrix of a continuous time
Markov chain on X. I.e. we have Qpx, yq ě 0 for x , y and make the convention that Qpx, xq “ 0
for all x P X. Then X can be interpreted as the set of vertices of a graph with directed edges
px, yq for those px, yq P X ˆ X with positive weight Qpx, yq. We assume the Markov chain to be
irreducible or equivalently the corresponding graph to be strongly connected. Thus, there exists
a unique stationary distribution π : X Ñ p0, 1s of the Markov chain with

ř

xPX πpxq “ 1. We
further assume that the Markov chain is reversible with respect to π, i.e. the detailed balance
condition πpxqQpx, yq “ πpyqQpy, xq holds for all x, y P X. Now, the set of probability densities
on Xwith respect to π is given by

PpXq :“

#

ρ : XÑ R`0 :
ÿ

xPX

πpxqρpxq “ 1

+

.
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For brevity, in the following we will write RX and RXˆX for the spaces of real functions over X
and XˆX respectively.
Next, we define the following inner products on RX and RXˆX

xφ,ψyπ :“
ÿ

xPX

φpxqψpxqπpxq, xΦ,ΨyQ :“
1
2

ÿ

x,yPX

Φpx, yqΨpx, yqQpx, yqπpxq (1)

for φ, ψ P RX and Φ, Ψ P RXˆX. The corresponding induced norms are denoted by } ¨ }π and
} ¨ }Q. A discrete gradient ∇X : RX Ñ RXˆX and a discrete divergence divX : RXˆX Ñ RX are
given by

p∇Xψqpx, yq :“ ψpxq ´ ψpyq, pdivXΨqpxq :“
1
2

ÿ

yPX

Qpx, yqpΨpy, xq ´Ψpx, yqq. (2)

Then the duality between these two operators formulated as the discrete integration by parts
formula

xφ,divXΨyπ “ ´x∇Xφ,ΨyQ

can easily be verified. The associated discrete Laplace-operator ∆X : RX Ñ RX is given by

∆Xψpxq :“ divXp∇Xψqpxq “
ÿ

yPX

Qpx, yq rψpyq ´ ψpxqs “ pQ´Dqψpxq ,

where D “ diagp
ř

y Qpx, yqqxPX. The graph divergence allows to formulate a continuity equation
for time-dependent probability densities ρ : r0, 1s Ñ RX and momenta m : r0, 1s Ñ RXˆX

describing the flow of mass along the graph edges. In explicit, we consider the following
definition of solutions to the continuity equation with boundary values at time t “ 0 and t “ 1.

Definition 2.1 (Continuity equation). The set CEpρA, ρBq of solutions of the continuity equations for
given boundary data ρA, ρB P PpXq is defined as the set of all pairs pρ,mq with ρ : r0, 1s ˆRX Ñ R and
m : r0, 1s ˆRXˆX Ñ R measurable, such that

ˆ 1

0
xBtϕpt, ¨q, ρpt, ¨qyπ ` x∇Xϕpt, ¨q,mpt, ¨qyQ dt “ xϕp1, ¨q, ρByπ ´ xϕp0, ¨q, ρAyπ (3)

for all ϕ P C1pr0, 1s,RXq.

For m P L2pp0, 1q,RXˆXq (see Lemma 2.5) one gets ρ P H1,2pp0, 1q,RXq and thus Btρ` divXm “ 0
holds a.e. . Furthermore, ρ P C0, 1

2 pr0, 1s,RXˆXq and ρp1, ¨q “ ρB, ρp0, ¨q “ ρA. If ρpt, ¨q ě 0 is
ensured for all t P p0, 1qvia a finite energy property (see (5) below), then testing withϕpt, xq “ ζptq
implies that ρpt, ¨q P PpXq.
The Benamou–Brenier formula [BB00] asserts that the squared L2-Wasserstein distance for proba-
bility measures inRn is the minimum of an action functional over solutions to the corresponding
continuity equation. Formally the action functional can be interpreted as a Riemannian path
length [Ott01]. To construct an analogous action functional for solutions pρ,mq P CEpρA, ρBq a
mass density on edges has to be deduced from the the mass densities on the edge nodes. To this
end, one defines an averaging function θ : pR`0 q

2 Ñ R`0 which satisfies:

θ is continuous, concave, 1-homogeneous, and symmetric,θ is C8 on p0,`8q2,θp0, sq “ θps, 0q “
0 and θps, sq “ s for s P R`0 , θps, tq ą 0 if s ą 0 and t ą 0, and s ÞÑ θpt, sq is monotone increasing
on R`0 for fixed t P R`0 .
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It will be useful to consider θ as a concave function R2 Ñ R Y t´8u. Therefore, we will set
θps, tq “ ´8 when mints, tu ă 0. Possible choices for θ are for example the logarithmic mean
θlog or the geometric mean θgeo for s, t P R`0 :

θlogps, tq “

$

’

&

’

%

0, if s “ 0 or t “ 0
s, if s “ t

t´s
logptq´logpsq otherwise

, θgeops, tq “
?

st . (4)

Note that the arithmetic mean is not admissible. Based on this averaging function one can define
the discrete transportation distance on PpXq.

Definition 2.2 (Action functional and distance). The action functional for measurable functions
ρ : r0, 1s Ñ RX and m : r0, 1s Ñ RXˆX is defined as

Apρ,mq “
1
2

ˆ 1

0

ÿ

x,yPX

α
`

ρpt, xq, ρpt, yq,mpt, x, yq
˘

Qpx, yqπpxq dt

with α : R3 Ñ RY t8u; ps, t,mq ÞÑ

$

’

&

’

%

m2

θps,tq if θps, tq ą 0,
0 if θps, tq “ 0 and m “ 0,
`8 else.

(5)

The energy is then given by

Epρ,mq “ Apρ,mq ` ICEpρA,ρBqpρ,mq ,

where ICEpρA,ρBq is the indicator functional, which is zero for pρ,mq in CEpρA, ρBq and8 otherwise. The
induced discrete transportation distance is obtained by

WpρA, ρBq “

b

infEpρ,mq . (6)

Note that α is convex and lower semi-continuous and CEpρA, ρBq is a convex set. Hence, (6)
is a convex optimization problem. In is shown in [Maa11, Theorem 3.8] that the mapping
W : PpXq ˆPpXq Ñ R defines a metric on PpXq, provided

ˆ 1

0

1
a

θp1´ r, 1` rq
dr ă 8 .

This is the case for the logarithmic mean θlog and the geometric mean θgeo. In [EM12, Theorem
3.2] it is shown that the infimum in (6) is attained by an optimal pair pρ, ψq. The curve pρtqtPr0,1s
is a constant speed geodesic for the distanceW, i.e. it holdsWpρt, ρsq “ |t´ s|WpρA, ρBq for all
s, t P r0, 1s.

2.2 A priori bounds

In what follows we will investigate the numerical approximation ofW using a suitable Galerkin
discretization in time and solving the resulting discrete convex optimization problem. Here the
the nonlinear averaging function θ and the resulting coupling of the values of the probability
desity on neighbouring nodes will require special treatment in order to obtain a robust and
effective solution scheme. To this end, we first discuss a few simplifications of the optimization
problem (6) that will help to reduce the computational complexity.
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Remark 2.3 (Sparsity of kernel Q). Let S “ tpx, yq P X2 : Qpx, yq ą 0u be the set of ‘edges’
indicated by non-zero transition probability. As Q is reversible, one finds px, yq P S iff py, xq P S.
Furthermore, divXmpt, ¨q andApρ,mq for m : r0, 1s Ñ RXˆX only depend on values of mpt, x, yq
where px, yq P S. Hence,if the kernel Q is sparse, i.e. if S is only a small subset of X ˆ X this
implies a considerable reduction of computational complexity.

In addition, the following Lemma allows to replace the two variables mpt, x, yq and mpt, y, xq by
one effective variable, further reducing the problem size.

Lemma 2.4 (Antisymmetry of optimal momentum). IfWpρA, ρBq is finite and if ρ : r0, 1s Ñ RX

and m : r0, 1s Ñ RXˆX are optimal for (6) then mpt, x, yq “ ´mpt, y, xq t-almost everywhere, whenever
px, yq P S (see above remark for definition of S).

Proof. Let ρ : r0, 1s Ñ RX and m : r0, 1s Ñ RXˆX be given such that Epρ,mq ă 8. Now set

m̂pt, x, yq :“ ´mpt, y, xq .

One quickly verifies that divXm̂ “ divXm and that thus pρ, m̂q P CEpρA, ρBq as well. Besides,
by using that Qpx, yqπpxq “ Qpy, xqπpyq and αps, t,mq “ αpt, s,´mq one finds that Apρ, m̂q “
Apρ,mq. Let now m “ 1

2 pm` m̂q. Note that mpt, x, yq is anti-symmetric in x and y. By convexity
of CEpρA, ρBq one gets pρ,mq P CEpρA, ρBq and by convexity ofA one finds

Apρ,mq ď
1
2
pApρ,mq `Apρ, m̂qq “ Apρ,mq .

Further, the finiteness of Apρ,mq implies that mpt, x, yq “ 0 when θpρpt, xq, ρpt, yqq “ 0 and
px, yq P S t-almost everywhere , values of mpt, x, yq for px, yq < S will have no impact onA, and
the function R Q z ÞÑ αps, t, zq is even strictly convex for fixed s, t ą 0. Hence, we observe that
Apρ,mq ă Apρ,mq unless m already coincides with m for almost every t and all px, yq P S. �

In the Γ-convergence analysis we will make use on the following L2 bound for the momentum.
Let us introduce the constants

C˚ :“max
xPX

ÿ

y
Qpx, yq ,

C˚ :“ min
x,yPX,Qpx,yqą0

Qpx, yqπpxq . (7)

Lemma 2.5 (L2 bound for the momentum). Let pρ,mq : r0, 1s Ñ RX ˆ RXˆX be a measurable
path with energy Epρ,mq ď sE ă 8. Then, m and ρ are uniformly bounded in L2pp0, 1q,RXˆXq and
H1,2pp0, 1q,RXq X C0, 1

2 pr0, 1s,RXq, respectively, with bounds solely depending on X and sE.

Proof. Since Epρ,mq ă 8, we have pρ,mq P CEpρA, ρBq, and thus for a.e. t P p0, 1q the mass is
preserved, i.e.

ř

xPX ρpt, xqπpxq “
ř

xPX ρApxqπpxq “ 1. In addition, ρpt, xq is non-negative for all
x P X and a.e. t P p0, 1q. By symmetry and concavity of θ and since θps, sq “ s, we can estimate

θpρpt, xq, ρpt, yqq “
1
2
θpρpt, xq, ρpt, yqq `

1
2
θpρpt, yq, ρpt, xqq

ď θ
´ρpt, xq ` ρpt, yq

2
,
ρpt, xq ` ρpt, yq

2

¯

“
ρpt, xq ` ρpt, yq

2
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and get
ÿ

x,yPX

θpρpt, xq, ρpt, yqqQpx, yqπpxq ď
1
2

ÿ

x,yPX

pρpt, xqQpx, yqπpxq ` ρpt, yqQpy, xqπpyqq

“
1
2

ÿ

x,yPX

pρpt, xqQpy, xqπpyq ` ρpt, yqQpx, yqπpxqq “ C˚
ÿ

xPX

ρpt, xqπpxq “ C˚ . (8)

Thus, using the Cauchy–Schwarz inequality we obtain
´

ÿ

x,yPX

|mpt, x, yq|Qpx, yqπpxq
¯2
ď

´

ÿ

x,yPX

αpρpt, xq, ρpt, yq,mpt, x, yqqQpx, yqπpxq
¯

¨

´

ÿ

x,yPX

θpρpt, xq, ρpt, yqQpx, yqπpxq
¯

. (9)

Integrating in time we obtain
ˆ 1

0
||mpt, ¨, ¨q||2Q dt “

ˆ 1

0

ÿ

x,yPX

mpt, x, yq2Qpx, yqπpxq dt ď
C˚

C˚
sE .

Finally, using the continuity equation (3) and m in L2pp0, 1q,RXˆXqwe obtain that
ˆ 1

0
||Btρ||

2
π dt ď

ˆ 1

0

ÿ

x

ˇ

ˇ

ˇ

ÿ

y
mpt, x, yqQpx, yq

ˇ

ˇ

ˇ

2
πpxqdt ď C˚

ˆ 1

0

ÿ

x,y
mpt, x, yq2Qpx, yqπpxqdt .

This implies that ρ P H1,2pp0, 1q,RXq and via the Sobolev embedding theorem we obtain that
also ρ P C0, 1

2 pp0, 1q,RXq. �

3 Discretization

3.1 Galerkin discretization

To approximate the minimizers of (6) numerically we choose a Galerkin discretization in time.
The time interval r0, 1s is divided into N subintervals Ii “ rti, ti`1q for i “ 0, . . . ,N ´ 1 with
uniform step size h “ 1

N and ti “ i h. Then, we define discrete spaces

V1
n,h “ tψh P C0pr0, 1s,RXq : ψhp¨q|Ii is affine @i “ 0, . . . ,N ´ 1u ,

V0
n,h “ tψh : r0, 1s Ñ RX : ψhp¨q|Ii is constant @i “ 0, . . . ,N ´ 1u ,

V0
e,h “ tψh : r0, 1s Ñ RXˆX : ψhp¨q|Ii is constant @i “ 0, . . . ,N ´ 1u .

For a function ψh P V0
n,h or V0

e,h we will often write ψhptiq to refer to its value on the interval
Ii “ rti, ti`1q. For a function ψh P V1

n,h the time-derivative can be interpreted as map

Bt : V1
n,h Ñ V0

n,h , pBtψhqptiq “
1
h
pψhpti`1q ´ ψhptiqq for i “ 0, . . . ,N ´ 1 .

We pick V1
n,h ˆ V0

e,h as the space for discretized masses and momenta pρh,mhq. That is, discrete
masses ρh are continuous and piecewise affine and the corresponding momenta mh will be
piecewise constant. Btρh and divXmh then lie in V0

n,h. In analogy to Definition 2.1 we define
discrete solutions of the continuity equation.
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Definition 3.1. The set of solutions to the discretized continuity equation for given boundary values
ρA, ρB P RX is given by

CEhpρA, ρBq “

!

pρh,mhq P V1
n,hˆV0

e,h : h
N´1
ÿ

i“0

xBtρhpti, ¨q`divXmhpti, ¨q, ϕhpti, ¨qyπ “ 0 @ϕh P V0
n,h ,

ρhpt0, xq “ ρApxq , ρhptN, xq “ ρBpxq
)

. (10)

One can quickly verify that CEhpρA, ρBq “ CEpρA, ρBq X pV1
n,h ˆV0

e,hq and that Btρh ` divXmh “ 0
holds for a.e. t when pρh,mhq P CEhpρA, ρBq. Next, we define a fully discrete action functional in
analogy to Definition 2.2 and subsequently a discrete version of the transport metricW.

Definition 3.2 (Time-discrete action and transportation distance). The averaging operator avgh
takes a measure ψ PMpr0, 1s,RXq to its average values on time intervals Ii:

avgh :Mpr0, 1s,RXq Ñ V0
n,h , pavgh ψqptiq “ ψpIiq for i “ 0, . . . ,N ´ 1 .

Analogously we declare the avgh operator for RXˆX-valued measures. Note that for ψh P V1
n,h one finds

pavgh ψhqptiq “
1
2 pψhptiq ` ψhpti`1qq . For pρ,mq P Mpr0, 1s,RXq ˆMpr0, 1s,RXˆXq the discrete

approximation for the action is given by

Ahpρ,mq “ Apavgh ρ, avgh mq

“
h
2

N´1
ÿ

i“0

ÿ

x,yPX

α
`

avgh ρpti, xq, avgh ρpti, yq, avgh mpti, x, yq
˘

Qpx, yqπpxq .

Finally, the time discrete energy functional is defined by Ehpρ,mq “ Ahpρ,mq ` ICEhpρA,ρBqpρ,mq and
for the associated time discrete approximation of the transportation distance one obtains

WhpρA, ρBq “

b

infEhpρ,mq . (11)

Note that the indicator function of the discrete continuity equation entails the constraint
pρ,mq P V1

n,h ˆ V0
e,h. These spaces can be represented by finite-dimensional vectors, the opera-

tors Bt and avgh can be represented as finite-dimensional matrices and the continuity equation
becomes a finite-dimensional affine constraint. Thus, (11) is indeed a finite-dimensional convex
optimization problem. Its numerical solution by using proximal mappings will be detailed in
Section 4.

3.2 Γ-convergence

In the following, we will prove a Γ-convergence result of the discrete energy functional, which
will justify our discretization. First, we construct explicitly continuous and discrete trajectories
between an arbitrary probability distribution onX and the uniform probability density I P PpXq
given by Ipxq “ 1. We show that these trajectories have uniformly bounded energy, which will
be essential in the Γ-lim sup inequality in Theorem 3.6. Let us define the Lagrange interpolation
operator Ih : C0pr0, 1s,RXq Ñ V1

n,h;ρ ÞÑ Ihpρq given by

pIh ρq pti, xq :“ ρpti, xq @i “ 0, . . . ,N .

8



Proposition 3.3. There is some constant CpXq ă 8 such that for any ρA P PpXq there is a trajectory
pρ,mq P CEpρA, Iq withApρ,mq ď CpXq and pIh ρ, avgh mq P CEhpρA, Iq withAhpIh ρ, avgh mqq ď
CpXq for every h “ 1{N.

Proof. For x P X let ρx
A P PpXq be the probability density on X with all mass concentrated on x.

That is, ρx
A “

1
πpxqδx, where δx is the usual Kronecker symbol with δxpyq “ 1 if x “ y and 0 else.

Construction of elementary flows: For px, yq P X ˆ X, x , y, with Qpx, yq ą 0 we define Lrx, ys P
RXˆX as follows:

Lrx, yspa, bq “

$

’

&

’

%

1
Qpx,yqπpxq if pa, bq “ px, yq,

´1
Qpx,yqπpxq if pa, bq “ py, xq,
0 else.

Then divXLrx, ys “ ρy
A ´ ρx

A. Now, for any px, yq P X ˆ X, x , y, there exists a path px “
x0, x1, . . . , xK “ yq with K ă cardX with Qpxk, xk`1q ą 0 for k “ 0, . . . ,K ´ 1. We can add
the corresponding Lpxk, xk`1q along these edges to construct a flow Mrx, ys with divXMrx, ys “
ρy

A ´ ρ
x
A. All entries of all Mrx, ys are bounded (in absolute value) by rCpXq :“ cardX{C˚, where

C˚ is defined in (7). For x “ y, Mrx, xs is simply zero.
Now assume ρA “ ρx

A for some x P X. Let m0 “
ř

yPXMrx, ysπpyq . One finds

divXm0 “
ÿ

yPX

´

1
πpyqδy ´

1
πpxqδx

¯

πpyq “ I´ ρx
A .

Again, every entry of m0 is bounded in absolute value by rCpXq. Now let mptq “ 2 m0 t, ρptq “
ρx

A`pdivXm0q t2 “ p1´ t2q ¨ρx
A` t2 ¨ I . We find pρ,mq P CEpρx

A, Iq. One has |mpt, x, yq| ď t ¨2rCpXq
and ρpt, xq ě t2 and using the monotonicity of α for the actionAwe get

Apρ,mq ď
1
2

ˆ 1

0

ÿ

x,yPX

pt ¨ 2rCpXqq2

t2 Qpx, yqπpxq dt “ 2rCpXq2C˚ .

Construction of discrete counterparts: For fixed h “ 1{N let ρh “ Ih ρ and mh “ avgh m. By
construction pρh,mhq P CEhpρx

A, Iq. Then, one finds mhpti, x, yq ď pi` 1
2 q h 2rCpXq, ρhpti, xq ě i2 h2,

pavgh ρhqpti, xq ě pi2 ` i` 1
2 q h2 , and thus

Ahpρh,mhq “ Apavgh ρh,mhq ď
1
2

N´1
ÿ

i“0

h
h2 4rCpXq2 pi` 1

2 q
2

h2pi2 ` i` 1
2 q

ÿ

x,yPX

Qpx, yqπpxq ď 2rCpXq2C˚ .

Extension for arbitrary initial data: For given x P X let pρx,mxq be the (continuous) trajectory
between ρx

A and I as constructed above. Any ρA is a superposition of various ρx
A:

ρA “
ÿ

xPX

ρApxq δx “
ÿ

xPX

ρApxqπpxqρx
A

By linearity of the continuity equation the trajectory pρ,mq “
ř

xPX ρApxqπpxq ¨ pρx,mxq then lies
in CEpρA, Iq. SinceA is convex and 1-homogeneous, it is sub-additive. Therefore,

Apρ,mq ď
ÿ

xPX

ρApxqπpxqApρx,mxq ď
ÿ

xPX

ρApxqπpxq 2 rCpXq2C˚ “ 2 rCpXq2C˚ .
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For the discrete trajectory the reasoning is completely analogous. Thus the claim follows with
CpXq “ 2 rCpXq2C˚. �

Corollary 3.4. The above strategy can be used to construct trajectories between arbitrary ρA, ρB via I
as intermediate state. This establishes thatW andWh are uniformly bounded on PpXq2.

Remark 3.5. In [Maa11] it is shown thatW is bounded if the constant Cθ :“
´ 1

0
1?

θp1´r,1`rq
dr is

finite. Here, we assumed that θps, sq “ s for s P R`0 and that s ÞÑ θps, tq is increasing on R`0 for
fixed t P R`0 which implies that θps, tq ě mints, tu for s, t P R`0 . This is sufficient for Cθ ă 8.

Theorem 3.6 (Γ-convergence of time discrete energies). Let ρA, ρB be fixed temporal boundary
conditions. Then, the sequence of functionals pEhqh Γ-converges for h Ñ 0 to the functional E with
respect to the weak˚ topology inMpr0, 1s,RX ˆRXˆXq.

Proof. To establish Γ-convergence, we have to verify the Γ-lim inf and Γ-lim sup properties.

For the Γ-lim inf property, we have to demonstrate that the inequality

Apρ,mq ` ICEpρA,ρBqpρ,mq ď lim inf
hÑ0

Ahpρh,mhq ` ICEhpρA,ρBqpρh,mhq (12)

holds for all sequences pρh,mhq
˚
á pρ,mq in Mpr0, 1s,RX ˆ RXˆXq. As CEpρA, ρBq is weak-˚

closed and CEhpρA, ρBq Ă CEpρA, ρBq the statement is trivial if there is no subsequence with
pρh,mhq P CEhpρA, ρBq. Thus, we may assume that all pρh,mhq fulfill the discrete continuity
equation, that pρ,mq fulfills the continuous continuity equation, and all ρh are non-negative.
Now, ρh

˚
á ρ implies avgh ρh

˚
á ρ and Ahpρh,mhq “ Apavgh ρh,mhq . Since α is jointly convex

and lower semi-continuous in ρ and m, the action functionalA is weak-˚ lower semi-continuous
and (12) holds.

To verify the Γ-lim sup property we need to show that for any pρ,mq P Mpr0, 1s,RX ˆ RXˆXq
there exists a recovery sequence pρh,mhq

˚
á pρ,mqwith

lim sup
hÑ0

Ahpρh,mhq ` ICEhpρA,ρBqpρh,mhq ď Apρ,mq ` ICEpρA,ρBqpρ,mq . (13)

We may assume Apρ,mq ă 8 and pρ,mq P CEpρA, ρBq. Using Lemma 2.5 this implies in
particular that ρ P C0, 1

2 pr0, 1s,RXq. For such a trajectory pρ,mq we will construct a recovery
sequence in two steps: First, the continuous trajectory pρ,mq is regularized, then, the regularized
still time continuous trajectory is discretized using local averaging in time. The regularization
is necessary to control the effect of the discontinuity of α at the origin, see (5).

Let pρA,I,mA,Iq P CEpρA, Iq be the trajectory from ρA to I as constructed in Proposition 3.3,
analogously let pρI,B,mI,Bq P CEpI, ρBq be the corresponding trajectory from I to ρB with
pρI,B,mI,Bqpt, ¨q :“ pρB,I,´mB,Iqp1´ t, ¨q. Then, for δ P p0, 1

2 q and ε “ δ2 we define

ρδptq “

$

’

&

’

%

p1´ εq ¨ ρA ` ε ¨ ρA,Ipt{δq for t P r0, δq,
p1´ εq ¨ ρppt´ δq{p1´ 2δqq ` ε ¨ I for t P rδ, 1´ δq,

p1´ εq ¨ ρB ` ε ¨ ρI,Bppt´ p1´ δqq{δq for t P r1´ δ, 1s

and

mδptq “

$

’

&

’

%

ε ¨ δ´1 ¨mA,Ipt{δq for t P r0, δq,
p1´ εq ¨ p1´ 2δq´1 ¨mppt´ δq{p1´ 2δqq for t P rδ, 1´ δq,

ε ¨ δ´1 ¨mI,Bppt´ p1´ δqq{δq for t P r1´ δ, 1s .
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One finds that pρδ,mδq P CEpρA, ρBq. To evaluate the action of pρδ,mδqwe decompose it into the
contributions of the time intervals Il “ r0, δs, Im “ rδ, 1´ δs and Ir “ r1´ δ, 1s:

Apρδ,mδq “ Al `Am `Ar with Aχ “

ˆ
Iχ
A

intpρδptq,mδptqq dt for χ P tl,m, ru .

where

A
int : RX ˆRXˆX Ñ RY t8u, pρ,mq ÞÑ

1
2

ÿ

x,yPX

α
`

ρpxq, ρpyq,mpx, yq
˘

Qpx, yqπpxq .

A
int is jointly convex and 1-homogeneous and therefore sub-additive. Moreover, it is 2-

homogeneous in the second argument. Therefore we obtain

Am ď
p1´ εq
p1´ 2δq2

ˆ
Im

A
int`ρppt´ δq{p1´ 2δqq,mppt´ δq{p1´ 2δqq

˘

dt

“
p1´ εq
p1´ 2δq

ˆ 1

0
A

int`ρptq,mptq
˘

dt “
p1´ εq
p1´ 2δq

Apρ,mq .

Further, using Proposition 3.3 we obtainAl `Ar ď 2 CpXq δ.

Next, we discretize in time. Since ρ P C0, 1
2 pr0, 1s,RXq we have |ρpt, xq ´ ρpt1, xq| ď gp|t ´ t1|q

with gpsq :“ C ¨ s
1
2 for all x P X. Now let ∆ “ gp2hq and choose the regularization parameter

δ “ minti ¨ h : i P N, i ¨ h ě ∆
1
4 u and as before ε “ δ2. Obviously ∆, δ and ε Ñ 0 as h Ñ 0. In

particular, for h sufficiently small 2 ě 1{p1´ 2δq and thus ∆ “ gp2hq ě gph{p1´ 2δqq. Therefore,
∆ is a uniform upper bound for the variation of ρδ on any interval of the size h. We now set

ρh “ Ih ρδ, mh “ avgh mδ ,

and note that pρh,mhq P CEhpρA, ρBq. As δ Ñ 0 one finds pρδ,mδq
˚
á pρ,mq and for h Ñ 0 we

obtain pρδ ´ ρh,mδ ´mhq
˚
á 0. This implies that pρh,mhq

˚
á pρ,mq.

Note that δ was chosen to be an integer multiple of h. So the division of r0, 1s into the three
intervals r0, δs, rδ, 1 ´ δs and r1 ´ δ, 1s in the construction of pρδ,mδq is compatible with the
grid discretization of step size h. Therefore, as above, the discrete action decomposes into three
contributions which we denoteAhpρh,mhq “ Al,h`Am,h`Ar,h. Again, using joint 1-homogeneity
and sub-additivity of α, as well as the 2-homogeneity in the second argument one obtains

Al,h ď
ε
δ
¨AhpIh ρA,I, avgh mA,Iq, Ar,h ď

ε
δ
¨AhpIh ρI,B, avgh mI,Bq .

Using Proposition 3.3 we observe that

Al,h `Ar,h ď 2 CpXq δ .

In view of (14), it remains to estimate Am,h by a suitable constant times Am. To this end, let
Sm Ă t0, . . . ,N ´ 1u the the set of discrete indices such that Ii Ă Im for i P Sm. ThenAm is given
by

Am “
1
2

ÿ

iPSm

ÿ

x,yPX

„ˆ
Ii

α
`

ρδpt, xq, ρδpt, yq,mδpt, x, yq
˘

dt


Qpx, yqπpxq .
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Since α is convex, by Jensen’s inequality one finds
ˆ

Ii

α
`

ρδpt, xq, ρδpt, yq,mpt, x, yq
˘

dt ě h ¨ α
`

pavgh ρδqpti, xq, pavgh ρδqpti, yq, pavgh mδqpti, x, yq
˘

.

The discretized actionAm,h is a weighted sum of the form

Am,h “
1
2

ÿ

iPSm

ÿ

x,yPX

h ¨ α
`

pavgh Ih ρδqpti, xq, pavgh Ih ρδqpi, yq, avgh mδqpti, x, yqQpx, yqπpxq .

By construction ρδ is bounded from below by ε on Im on all nodes and its variation within each
discretization interval is bounded by ∆. Therefore, for any i P Sm, z P X one finds

pavgh ρδqpti, zq ď pavgh Ih ρδqpti, zq ` ∆ , pavgh Ih ρδqpti, zq ě ε .

Due to the monotonicity of s Ñ s
s`∆ we obtain

pavgh Ih ρδqpti, zq
pavgh ρδqpti, zq

ě
pavgh Ih ρδqpti, zq

pavgh Ih ρδqpti, zq ` ∆
ě

ε
ε` ∆

.

Taking into account the joint 1-homogeneity of θ and the monotonicity of θ in each single
argument this implies for all x, y P X that

θ
`

pavgh Ih ρδqpti, xq, pavgh Ih ρδqpti, yq
˘

θ
`

pavgh ρδqpti, xq, pavgh ρδqpti, yq
˘ ě

ε
ε` ∆

“
1

1` ∆{ε
.

Hence,

Am,h “
1
2

ÿ

iPSm

ÿ

x,yPX

h ¨
pavgh mδq

2pti, x, yq
θppavgh Ih ρδqpti, xq, pavgh Ih ρδqpti, yqq

Qpx, yqπpxq

ď
1
2
p1` ∆{εq

ÿ

iPSm

ÿ

x,yPX

h ¨
pavgh mδq

2pti, x, yq
θppavgh ρδqpti, xq, pavgh ρδqpti, yqq

Qpx, yqπpxq “ p1` ∆{εqAm .

Our choice of δ implies that ε “ δ2 ě ∆
1
2 and thus ∆{ε ď ε. Altogether, we obtain for h

sufficiently small

Ahpρh,mhq “ Al,h `Am,h `Ar,h ď 2 CpXq δ` p1` εq
1´ ε

1´ 2δ
Apρ,mq .

Since δÑ 0, εÑ 0 as h Ñ 0, this establishes the Γ-lim sup property. �

Next, we establish convergence of the discrete optimizers to a continuous solution. To establish
compactness we first show a uniform bound for the L2 norm of the discrete momenta, in analogy
to Lemma 2.5.

Lemma 3.7 (L2 bound for the discrete momentum). Let pρh,mhq P V1
n,h ˆ V0

e,h with discrete energy

Ehpρh,mhq ď E ă 8. Then, there exists a constant M ă 8 only depending on pX,Q, πq and E (and not
on h), such that }mh}L2pr0,1s,RXˆXq ď M.
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Proof. The proof works in complete analogy to Lemma 2.5. We bound

´

ÿ

x,yPX

|mhpti, x, yq|Qpx, yqπpxq
¯2
ď

´

ÿ

x,yPX

αpavgh ρhpti, xq, avgh ρhpti, yq,mpti, x, yqqQpx, yqπpxq
¯

¨

´

ÿ

x,yPX

θpavgh ρhpti, xq, avgh ρpti, yqqQpx, yqπpxq
¯

and
ÿ

x,yPX

θpavgh ρhpti, xq, avgh ρpti, yqqQpx, yqπpxq ď C˚ ,

where C˚ is defined in (7). Here, we have used that pρh,mhq P CEpρA, ρBq which implies that
mass is preserved, i.e.

ř

xPX avgh ρhpti, xqπpxq “
ř

xPX ρhpti `
h
2 , xqπpxq “

ř

xPX ρApxqπpxq “ 1 for
all i “ 0, . . . ,N ´ 1, and that since Ahpρh,mhq ă 8 one has avgh ρh ě 0. Now, once more using
that X is finite and integrating (or summing) in time establishes the bound. �

Theorem 3.8 (Convergence of discrete geodesics). For fixed temporal boundary conditions ρA, ρB

any sequence pρh,mhq of minimizers of Eh is uniformly bounded in C0, 1
2 pr0, 1s,RXq ˆ L2pp0, 1q,RXˆXq

for h Ñ 0. Up to selection of a subsequence, ρh Ñ ρ strongly in C0,αpr0, 1s,RXq for any α P 0, 1
2 q and

mh Ñ m weakly in L2 with pρ,mq being a minimizer of the energy E.

Proof. For a sequence of minimizers pρh,mhq the discrete energyEhpρh,mhq is uniformly bounded
by Corollary 3.4 . Since pρh,mhq P CEpρA, ρBq the total variation of all ρh is uniformly bounded.
Further, by Lemma 3.7 the L2 norm }mh}L2pr0,1s,RXˆXq is uniformly bounded. Hence, the sequence
pρh,mhqh has a weakly˚ (in the sense of measures) convergent subsequence, which by Theorem
3.6 and a standard consequence of Γ convergence theory converges weakly˚ to some minimizer
pρ,mq of E).

Using the continuity equation this convergence can be strengthened. We already know that
pρh,mhq solves the continuity equation Btρh “ ´divXmh. Thus, the uniform bound for mh in
L2pp0, 1q,RXˆXq implies that ρh is uniformly bounded in H1,2pRXq. From this we obtain by
the Sobolev embedding theorem that pρhqh is uniformly bounded in C0, 1

2 pRXq and compact in
C0,αpRXq for all α P r0, 1

2 q. �

4 Optimization with Proximal Splitting

4.1 Slack Variables and Proximal Splitting

The computation of the discrete transportation distance (11) and the associated transport path
require the solution of a finite-dimensional non-smooth convex optimization problem. To this
end, we apply a proximal splitting approach with suitably choosen slack variables. The proximal
mapping of a convex and lower semi-continuous function f : H Ñ RY t8u on a Hilbert space
H with norm } ¨ }H is defined as

prox f pxq “ arg min
yPH

1
2
}x´ y}2

H ` f pyq . (14)
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Furthermore, the indicator function of a closed convex set K Ă H is given by IKpxq “ 0 for
x P K and 8 elsewise. In particular, prox

IK
“ projK, where projK is the projection onto K. For a

function f : H ÞÑ RY t8u its Fenchel conjugate is given by

f˚pyq “ sup
xPH

xy, xyH ´ f pxq . (15)

If f pxq ă 8 for some x P H, then f˚ is convex and lower semi-continuous. For more details and
an introduction to convex analysis see e.g. [BC11]. The practical applicability of proximal split-
ting schemes depends on whether the objective can be split into terms such that the proximal
mapping for each term can be computed efficiently. In [PPO14] a spatiotemporal discretization
with staggered grids of the classical Benamou–Brenier formulation [BB00] of optimal transport
of Lebesgue densities on Rn was presented and several proximal splitting methods were con-
sidered to solve the discrete problem. However, this approach can not directly be transfered to
problem (11) since the actionA couples the variables ρ and m in a non-linear way via the terms
αpmpti, x, yq, avgh ρpti, xq, avgh ρpti, yqq spatially over the whole graph according to the transition
kernel Q and temporally via the averaging operator avgh. Thus, the proximal mapping of the
A-term is not separable in space or time and thus requires the solution of a fully coupled,
nonlinear minimization problem. As a remedy, we propose to introduce auxiliary variables to
decouple the variables and rewrite the actionAwith terms where variables only interact locally,
thus leading to separable, hence simpler, proximal mappings.

Lemma 4.1. For pρ,mq P V1
n,h ˆ V0

e,h one finds

Ahpρ,mq “ Apavgh ρ,mq “ inf
!

pApϑ,mq ` IKprepavgh ρ, ϑq : ϑ P V0
e,h

)

(16)

with the convex set

Kpre :“
!

pρ̄, ϑq P V0
n,h ˆ V0

e,h : 0 ď ϑpti, x, yq ď θpρ̄pti, xq, ρ̄ptiyqq @i “ 0, . . . ,N ´ 1, @x, y P X
)

(17)

and the edge-based action

pApϑ,mq :“
1
2

ˆ 1

0

ÿ

x,yPX

Φpϑpt, x, yq,mpt, x, yqqQpx, yqπpxq dt (18)

with Φpϑ,mq :“

$

’

&

’

%

m2

ϑ if ϑ ą 0,
0 if pm, ϑq “ p0, 0q,
`8 else.

Note that Φ is the integrand of the Benamou–Brenier action functional and that αps, t,mq “
Φpθps, tq,mq.

Proof. The first equality is merely the definition of Ah and using the fact that avgh m “ m
for m P V0

e,h. For the second equality note that for any ϑ P V0
e,h with pρ̄, ϑq P Kpre one

has ϑpti, x, yq ď θpρ̄pti, xq, ρ̄pti, yqq. By monotonicity of Φ in its first argument this implies
Φpϑpti, x, yq,mpti, x, yqq ě αpρ̄pti, xq, ρ̄pti, yq,mpti, x, yqq and hence

Apρ̄,mq ď inf
!

pApϑ,mq ` IKprepρ̄, ϑq : ϑ P RXˆX
)

. (19)

Further, we obviously have that ϑ̄pti, x, yq :“ θpρ̄pti, xq, ρ̄pti, yqq satisfies pρ̄, ϑq P Kpre and
pApϑ̄,mq “ Apρ̄,mq. Hence, we have equality in (19). �
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The proximal mapping of the function pA can be computed separately for each time interval
and graph edge. However, the set Kpre still couples the variables avgh ρ and ϑ according to the
graph structure and the averaging operator avgh couples the variables of ρ in time. To resolve
this, we introduce a second set of auxiliary variables.

Lemma 4.2. For ρ̄ P RX, ϑ P RXˆX one finds

IKprepavgh ρ, ϑq “ inf
!

IJavgpρ, ρ̄q ` IJ“pρ̄, qq ` IJ˘pq, ρ
´, ρ`q ` IK pρ

´, ρ`, ϑq :

pρ̄, q, ρ´, ρ`q P pV0
n,hq

2 ˆ pV0
e,hq

2
)

(20)

where

Javg :“
!

pρ, ρ̄q P V1
n,h ˆ V0

n,h : ρ̄ “ avgh ρ
)

, (21)

J“ :“
!

pρ̄, qq P pV0
n,hq

2 : ρ̄ “ q
)

, (22)

J˘ :“
!

pq, ρ´, ρ`q P V0
n,h ˆ pV

0
e,hq

2 : qpti, xq “ ρ´pti, x, yq, qpti, yq “ ρ`pti, x, yq
)

, (23)

K :“
!

pρ´, ρ`, ϑq P pV0
e,hq

3 : pρ´pti, x, yq, ρ`pti, x, yq, ϑpti, x, yqq P K
)

, (24)

with

K :“ tpρ´, ρ`, ϑq P R3 : 0 ď ϑ ď θpρ´, ρ`qu. (25)

Proof. For fixed ρ P V1
n,h there is precisely one tuple pρ̄, q, ρ´, ρ`q such that

pρ, ρ̄q P Javg, pρ̄, qq P J“, and pq, ρ´, ρ`q P J˘ ,

given by ρ̄ “ avgh ρ, q “ ρ̄, ρ´pti, x, yq “ qpti, xq, ρ`pti, x, yq “ qpti, yq. For this pρ´, ρ`q one finds
pρ´, ρ`, ϑq P K if and only if pavgh ρ, ϑq P Kpre. �

The function IJavg relates the values of ρ on time nodes to the average values on the adjacent
time intervals, IJ˘ communicates the values of q on graph nodes to the adjacent graph edges
and IK ensures the mass averaging via the function θ. The additional splitting via IJ“ will
later simplify partition of the final optimization problem into primal and dual component. The
sets Javg, J“, J˘ and K are all products of simpler low-dimensional sets, implying simpler
computation of the relevant proximal mappings and projections.
This gives us an equivalent formulation for the discrete minimization problem (11):

Whpρ̄A, ρ̄Bq
2 “ inf

!

pF `Gqpρh,mh, ϑh, ρ
´

h , ρ
`

h , ρ̄h, qhq :

pρh,mh, ϑh, ρ
´

h , ρ
`

h , ρ̄h, qhq P V1
n,h ˆ pV

0
e,hq

4 ˆ pV0
n,hq

2
)

(26)

with

F pρh,mh, ϑh, ρ
´

h , ρ
`

h , ρ̄h, qhq :“ pApϑh,mhq ` IJ˘pqh, ρ
´

h , ρ
`

h q ` IJavgpρh, ρ̄hq,

Gpρh,mh, ϑh, ρ
´

h , ρ
`

h , ρ̄h, qhq :“ ICEhpρA,ρBqpρh,mhq ` IK pρ
´

h , ρ
`

h , ϑhq ` IJ“pρ̄h, qhq.

15



The structure of this optimization problem is well suited for the first order primal-dual algorithm
presented in [CP11]. We consider the Hilbert space H “ V1

n,h ˆ pV
0
e,hq

4 ˆ pV0
n,hq

2 composed of
tuples of functions in space and time with the scalar product

x

´

ρh,1,mh,1, ϑh,1, ρ
´

h,1, ρ
`

h,1, ρ̄h,1, qh,1

¯

,
´

ρh,2,mh,2, ϑh,2, ρ
´

h,2, ρ
`

h,2, ρ̄h,2, qh,2

¯

yH

:“ h
N
ÿ

i“0

xρh,1pti, ¨q, ρh,2pti, ¨qyπ ` h
N´1
ÿ

i“0

xρ̄h,1pti, ¨q, ρ̄h,2pti, ¨qyπ ` xqh,1pti, ¨q, qh,2pti, ¨qyπ

` h
N´1
ÿ

i“0

xmh,1pti, ¨q,mh,2pti, ¨qyQ ` xϑh,1pti, ¨q, ϑh,2pti, ¨qyQ

` h
N´1
ÿ

i“0

xρ´h,1pti, ¨q, ρ
´

h,2pti, ¨qyQ ` xρ
`

h,1pti, ¨q, ρ
`

h,2pti, ¨qyQ . (27)

and the induced norm denoted by } ¨ }H. Then applying [CP11, Algorithm 1] to solve problem
(26) with F , G : H Ñ R Y t8u amounts to iteratively compute for initial data pap0q, bp0qq P H2

and sap0q “ ap0q

bp``1q “ proxσF˚pb
p`q ` σsap`qq,

ap``1q “ proxτGpa
p`q ´ τ bp``1qq, (28)

sap``1q “ ap``1q ` λ ¨ pap``1q ´ ap`qq.

where τ, σ ą 0, λ P r0, 1s . As demonstrated in [CP11] the iterates converge to a minimizer in
(26) if τ ¨ σ ă 1. For some pρh,mh, ϑh, ρ

´

h , ρ
`

h , ρ̄h, qhq P H one finds

F
˚pρh,mh, ϑh, ρ

´

h , ρ
`

h , ρ̄h, qhq “ pA
˚pϑh,mhq ` I

˚

J˘
pqh, ρ

´

h , ρ
`

h q ` I
˚

Javg
pρh, ρ̄hq

and the proximal mapping pρpr
h ,m

pr
h , ϑ

pr
h , ρ

´

h
pr
, ρ`h

pr
, ρ̄

pr
h , q

pr
h q “ proxσF˚pρh,mh, ϑh, ρ

´

h , ρ
`

h , ρ̄h, qhq

decomposes as follows:

pϑ
pr
h ,m

pr
h q “ proxσ pA˚

pϑh,mhq ,

pqpr
h , ρ

´

h
pr
, ρ´h

pr
q “ proxσI˚

J˘

pqh, ρ
´

h , ρ
`

h q ,

pρ
pr
h , ρ̄

pr
h q “ proxσI˚

Javg
pρh, ρ̄hq .

Likewise, for pρpr
h ,m

pr
h , ϑ

pr
h , ρ

´

h
pr
, ρ`h

pr
, ρ̄

pr
h , q

pr
h q “ proxτGpρh,mh, ϑh, ρ

´

h , ρ
`

h , ρ̄h, qhq one finds

pρ
pr
h ,m

pr
h q “ proj

CEhpρA,ρBq
pρh,mhq ,

pρ´
pr
h , ρ

`pr
h , ϑhq “ proj

K
pρ´h , ρ

`

h , ϑhq ,

pρ̄
pr
h , q

pr
h q “ proj

J“
pρ̄h, qhq .

Each of the proximal maps is performed with respect to the norm } ¨ }H restricted to the relevant
variables.

In what follows, we will study these maps in detail. In fact, we will observe that prox
pA˚

and
proj

K
can be separated into low-dimensional problems over each time-step and edge px, yq P

XˆX, prox
I
˚

J˘

splits into low-dimensional problems for each time-step and node x P X, prox
IJ“
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is a simple pointwise update, prox
I
˚

Javg
decouples for each node x P X to a sparse linear system

in time, and proj
CEhpρA,ρBq

can be computed solving a linear system, which is sparse if Q is sparse.
Consequently, prox

F˚
and prox

G
can be computed efficiently and ensure that the above scheme

is well-suited to solve (26).

4.2 Projection onto CEhpρA, ρBq

For given pρh,mhq P V1
n,h ˆ V0

e,h we need to solve the following problem:

proj
CEhpρA,ρBq

pρh,mhq “ arg min
pρ

pr
h ,m

pr
h qPCEhpρA,ρBq

h
2

N
ÿ

i“0

}ρ
pr
h pti, ¨q ´ ρhpti, ¨q}

2
π `

h
2

N´1
ÿ

i“0

}mpr
h pti, ¨q ´mhpti, ¨q}

2
Q

(29)

To this end we take into account the following dual formulation.

Proposition 4.3. The solution pρpr
h ,m

pr
h q to (29) is given by

ρ
pr
h pti, xq “ ρhpti, xq `

ϕhpti, xq ´ ϕhpti´1, xq
h

, @i “ 1, . . . ,N ´ 1 , (30a)

ρ
pr
h pt0, xq “ ρApxq , ρ

pr
h ptN, xq “ ρBpxq , (30b)

mpr
h pti, x, yq “ mhpti, x, yq ` ∇Xϕhpti, x, yq , @i “ 1, . . . ,N ´ 1 . (30c)

where ϕh solves the space time elliptic equation

πpxq
ϕhpt1, xq ´ ϕhpt0, xq

h2 ` πpxq4Xϕhpt0, xq “ ´πpxq
ˆ

ρhpt1, xq ´ ρApxq
h

` divmhpt0, xq
˙

,

πpxq
´ϕhptN´1, xq ` ϕhptN´2, xq

h2 ` πpxq4XϕhptN´1, xq

“ ´πpxq
ˆ

ρBpxq ´ ρhptN´1, xq
h

` divmhptN´1, xq
˙

πpxq
ϕhpti`1, xq ´ 2ϕhpti, xq ` ϕhpti´1, xq

h2 ` πpxq4Xϕhpti, xq

“ ´πpxq
ˆ

ρhpti`1, xq ´ ρhpti, xq
h

` divmhpti, xq
˙

(31)

for i “ 1, . . . ,N ´ 2 and x P X.

The factors πpxq in (31) could be canceled but they will simplify further analysis.

Proof. We define the Lagrangian corresponding to (29) as

Lrρpr
h ,m

pr
h , ϕh, λA, λBs “

h
2

N
ÿ

i“0

}ρ
pr
h pti, ¨q ´ ρhpti, ¨q}

2
π `

h
2

N´1
ÿ

i“0

}mpr
h pti, ¨q ´mhpti, ¨q}

2
Q

` h
N´1
ÿ

i“0

ÿ

xPX

ϕhpti, xq

˜

ρ
pr
h pti`1, xq ´ ρ

pr
h pti, xq

h
` divXmpr

h pti, xq

¸

πpxq

`
ÿ

xPX

pλBpxqpρhptN, xq ´ ρBpxqq ` λApxqpρhpt0, xq ´ ρApxqqqπpxq

17



where λA, λB are the Lagrange multipliers for the boundary conditions ρhpt0, ¨q “ ρA, ρhptN, ¨q “
ρB. The optimality condition in ρh and mh directly imply (30a) and (30c). (30b) reflects the
boundary conditions, which are to be ensured in CEhpρA, ρBq. Inserting these relations into the
continuity equation Btρ

pr
h ` divmpr

h “ 0 leads to the system of equations (31). �

The Lagrange multiplier ϕh in Proposition 4.3 lives in V0
n,h which can be identified withRNcardX.

We equip this space with the canonical basis

pϕi,x
h qi“0,...,N´1, xPX where pϕi,x

h qpt j, yq “ δi, j ¨ δx,y

and the standard Euclidean inner product with respect to this basis. Then the elliptic equation
(31) can be written as a linear system SZ “ F for a coordinate vector Z “ pϕhpti, xqqi“0,...N´1, xPX,
a matrix S P RpNcardXqˆpNcardXq and a vector F P RNcardX. The matrix S is symmetric since
πpxqQpx, yq “ πpyqQpy, xq and the matrix representation of 4X is Q ´ diagp

ř

y Qp¨, yqq. Fur-
thermore, S is sparse if Q is sparse. However, the matrix S is not invertible, its kernel is
spanned by functions that are constant in space and time. To see this, assume that a non
constant Z is in the kernel of S and denote by φh the associated function in V0

n,h. Now, let
I`pµq :“ tpi, xq P t0, . . . ,N ´ 1u ˆX : φhpi, xq ą µu for µ “ minφhpi, xq and define ψh P V0

n,h via
ψpti, xq “ 1 if pi, xq P I`pµq and ψhpti, xq “ 0 else. Let W be the associated nodal vector to ψ. By
assumption on Z the set I`pµq is non empty and thus it is easy to see that WJSZ ă 0 and thus Z
can not be in the kernel of S, which proves the claim.
We impose the additional constraint

řN´1
i“0

ř

xPX ϕhpti, xq “ 0 to remove this ambiguity. This can
be written as wJϕh “ 0 where w P RNcardX is the vector with entries wi,x “ 1 leading to the linear
system

ˆ

S w
wT 0

˙ˆ

Z
λ

˙

“

ˆ

F
0

˙

.

This system is uniquely solvable and the solution implies λ “ 0 if F K w (in the Euclidean sense),
which is true because ρA and ρB are assumed to be of equal mass.

4.3 Proximal Mapping of pA
˚

The function pA is convex and 1-homogeneous, hence its Fenchel conjugate is the indicator
function of a convex set and the proximal mapping of pA

˚ is a projection. For pϑ,mq P pV0
e,hq

2

one has

pApϑ,mq “ h
N´1
ÿ

i“0

ÿ

x,yPX

Φpϑpti, x, yq,mpti, x, yqqQpx, yqπpxq .

Following [BB00] a direct calculation for pp, qq P pV0
e,hq

2 yields

pA
˚pp, qq “ sup

pϑ,mqPpV0
e,hq

2

h
N´1
ÿ

i“0

”

xppti, ¨, ¨q, ϑpti, ¨, ¨qyQ ` xqpti, ¨, ¨q,mpti, ¨, ¨qyQ

´
1
2

ÿ

px,yqPXˆX

Φpϑpti, x, yq,mpti, x, yqqQpx, yqπpxq
ı

“
h
2

ÿ

i“0,...,N´1
px,yqPXˆX

Φ˚pppti, x, yq, qpti, x, yqqQpx, yqπpxq “
ÿ

i“0,...,N´1
px,yqPXˆX

IBpppti, x, yq, qpti, x, yqq
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with Φ˚ “ IB for B “ tpp, qq P R2 : p ` q2

4 ď 0u . Thus the proximal mapping separates into
two-dimensional problems for each time interval and graph edge and pppr, qprq “ proxσ pA˚

pp, qq
precisely if

ppprpti, x, yq, qprpti, x, yqq “ proj
B
pppti, x, yq, qpti, x, yqq ,

where proj
B

is the projection with respect to the standard Euclidean distance onR2 and a Newton
scheme inR can be used to solve for this projection. Since this proximal mapping is a projection,
it is in particular independent of the step size σ.

4.4 Projection ontoK

For given pρ´, ρ`, ϑq P pV0
e,hq

3 we need to solve

proj
K
pρ´, ρ`, ϑq “ arg min

pρ´pr,ρ`pr,ϑprqPK

h
2

N´1
ÿ

i“0

´

}ρ´
pr
pti, ¨, ¨q ´ ρ

´pti, ¨, ¨q}
2
Q ` }ρ

`pr
pti, ¨, ¨q ´ ρ

`pti, ¨, ¨q}
2
Q

` }ϑprpti, ¨, ¨q ´ ϑpti, ¨, ¨q}
2
Q

¯

.

Recall that K is a product of the tree-dimensional closed convex set K, as indicated in (24).
Therefore pρ´pr, ρ`pr, ϑprq “ proj

K
pρ´, ρ`, ϑq decouples into the edgewise projection in each

time step, i.e.

pρ´
pr
pti, x, yq, ρ`

pr
pti, x, yq, ϑprpti, x, yqq “ projKpρ

´pti, x, yq, ρ`pti, x, yq, ϑpti, x, yqq

where this projection is with respect to the standard Euclidean distance on R3. Let us denote
by B`θpxq the super-differential of θ at x P R2, which is the analogue of the sub-differential for
concave functions. More precisely, B`θpxq “ ´Bp´θqpxq, where Bp´θqpxq is the sub-differential
of the convex function x ÞÑ ´θpxq at x. Then the projection ppr “ projKppq of p P R3 is
characterized by [BC11, Prop. 6.46]

p´ ppr P NKppprq :“ tz P R3 : xz, q´ ppry ď 0@ q P Ku , (32)

where NKppprq is the normal cone of K at ppr. To solve this inclusion we distinguish the following
cases:

Lemma 4.4. For an averaging function θ : R2 Ñ R fulfilling the assumptions listed in Section 1 and
for K :“ tp P R3 : 0 ď p3 ď θpp1, p2qu the normal cone NKppprq for ppr P K is given by:

(i) Trivial projection: p “ ppr P int K“tpp1, p2, p3q P R3 : 0ăp3ăθpp1, p2qu, then NKppprq “ t0u.

(ii) Projection onto ‘bottom facet’ of K: ppr P p0,`8qˆp0,`8qˆt0u, then NKppprq “ t0uˆt0uˆR´0 .

(iii) Projection onto coordinate axis: ppr “ pppr
1 , 0, 0q for ppr

1 P p0,`8q, then

NKppprq “ t0u ˆR´0 ˆR
´

0 Y
 

p0, q2, q3q P t0u ˆR´0 ˆ p0,`8q : p0,´q2{q3q P B
`θpppr

1 , 0q
(

.

Note that p0, qq P B`θpppr
1 , 0q is equivalent to q ě limzŒ0 B2θpp

pr
1 , zq and that B`θpppr

1 , 0q is
empty if limzŒ0 B2θpp

pr
1 , zq “ 8. The analogous representation holds for the second axis.

(iv) Projection onto origin: ppr “ p0, 0, 0q, then

NKppprq “ pR´0 q
3 Y tpq1, q2, q3q P R

´

0 ˆR
´

0 ˆ p0,`8q : pq1{q3, q2{q3q P ´B
`θp0qu .
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(v) Projection onto ‘upper surface’ of K: ppr “ pppr
1 , p

pr
2 , θpp

pr
1 , p

pr
2 qq for pppr

1 , p
pr
2 q P p0,`8q

2, then

NKppprq “ tλ ¨ p´B1θpp
pr
1 , p

pr
2 q,´B2θpp

pr
1 , p

pr
2 q, 1q : λ P R`u .

Proof. For ppr P int K one finds NKppprq “ t0u and thus ppr “ p, which implies (i).
In case (ii) the set R ˆ R ˆ t0u is obviously the only supporting plane of K that contains ppr.
Thus the normal cone is just the ray in direction p0, 0,´1q.
Assume ppr “ pppr

1 , 0, 0q, ppr
1 ą 0. Then there is some ε ą 0 such that tpppr

1 ` ε, 0, 0q, pppr
1 ´

ε, 0, 0q, pppr
1 , ε, 0qu Ă K. Therefore NKppprq Ă t0uˆR´0 ˆR. SinceRˆt0uˆR andRˆRˆt0u are

supporting planes of K that contain ppr, one must have t0uˆR´0 ˆR
´

0 Ă NKppprq. Moreover, for
limzŒ0 B2θpp

pr
1 , zq ă 8 let z “ pz1, z2q P B

`θpppr
1 , 0q. One must have z1 “ 0 and z2 P B

` f p0q with
auxiliary function f : t ÞÑ θpppr

1 , tq. Then tq P R3 : xq´ppr, p0,´z2, 1qy “ 0u is a supporting plane
of K and consequently p0,´z2, 1q P NKppprq. Conversely, from z2 < B` f p0q follows p0,´z2, 1q <
NKppprq. So

NKppprq “ t0u ˆR´0 ˆR
´

0 Y tp0,´λ ¨ z, λq : z P B` f p0q, λ P p0,`8qu.

The auxiliary function f is concave and by monotonicity of the super-differential we find
B` f p0q “ rlimzŒ0 B2θpp

pr
1 , zq,`8q. With this characterization we arrive at the expression for

NKppprq as given in (iii). The proof for the second axis is analogous.
For ppr “ p0, 0, 0q we find pR´0 q

3 Ă NKp0q Ă R´0 ˆ R
´

0 ˆ R with arguments analogous to
those in case (iii). For every z “ pz1, z2q P B

`θp0q a supporting plane through 0 is given by
tq P R3 : xq, p´z1,´z2, 1qy “ 0u and hence p´z1,´z2, 1q P NKp0q. Conversely, z “ pz1, z2q < B`θp0q
implies p´z1,´z2, 1q < NKp0q. With this, one obtains the expression for NKp0q given in (iv).
Finally, we consider ppr “ pppr

1 , p
pr
2 , θpp

pr
1 , p

pr
2 qq with pppr

1 , p
pr
2 q P p0,`8q

2. In a neighbourhood
of ppr, K is the subgraph of a concave, differentiable function. The unique supporting plane
of K through ppr is given by tq P R3 : xq ´ ppr, p´B1θpp

pr
1 , p

pr
2 q,´B2θpp

pr
1 , p

pr
2 q, 1qy “ 0u and

p´B1θpp
pr
1 , p

pr
2 q,´B2θpp

pr
1 , p

pr
2 q, 1q is the unique associated outer normal as stated in (v). �

Using Lemma 4.4 one can devise an algorithm for the projection onto K. For p “ pp1, p2, p3q P R3

the projection ppr “ projKppq can be determined as follows:

function ProjectK(p1,p2,p3)
if 0 ď p3 ď θpp1, p2q return pp1, p2, p3q

if p3 ď 0 return pmaxtp1, 0u,maxtp2, 0u, 0q
if pp1 ą 0q ^ pp2 ď 0q then

if ´p2{p3 ě limzŒ0 B2θpp1, zq return pp1, 0, 0q
end if
if pp1 ď 0q ^ pp2 ą 0q then

if ´p1{p3 ě limzŒ0 B1θpz, p2q return p0, p2, 0q
end if
if pp1 ď 0q ^ pp2 ď 0q then

if p´p1{p3,´p2{p3q P B
`θp0q return p0, 0, 0q

end if
return ProjectKTop(p1,p2,p3)

end function

The function ProjectKTop(p1,p2,p3) in the above algorithm corresponds to case (v) of Lemma
4.4, where ppr lies on the ‘upper surface’ of K, defined by the graph surface of θ. It will be
described in more detail below. In the following we will occasionally use the curve c : p0,8q Ñ

20



R2; q ÞÑ pq´1{2, q1{2q to parametrize orientations in p0,8q2. Due to the 1-homogeneity of θ, often
it suffices to look at its values at θpcpqqq. Alternative choices for c are feasible as well.

Lemma 4.5 (Projection onto ‘upper surface’ of K). Let p P R3 with projection on K given by
ppr “ pppr

1 , p
pr
2 , θpp

pr
1 , p

pr
2 qq with pppr

1 , p
pr
2 q P p0,`8q

2. Further, let wpqq “ pq1{2, q´1{2, θpq1{2, q´1{2qq

be a parametrized curve on the ‘upper surface’ and npqq “ p´B1θpq1{2, q´1{2q,´B2θpq1{2, q´1{2q, 1q be
the corresponding normal. Then there exists a unique pq, τq P p0,8q2 s.t. ppr “ τwpqq. We have that q
is the unique root of q ÞÑ xp,wpqq ˆ npqqy and τ “ xp, wpqq

}wpqq}2 y.

Proof. Since θ is 1-homogeneous, any ppr of the form pppr
1 , p

pr
2 , θpp

pr
1 , p

pr
2 qq, pp

pr
1 , p

pr
2 q P p0,`8q

2,
can be written as ppr “ τ ¨ wpqq for unique q P p0,`8q and τ P p0,`8q. In explicit, q “ ppr

1 {p
pr
2

and τ “ pppr
1 ¨ p

pr
2 q

1
2 . Now, npqq is orthogonal on the graph of θ and outward pointing. Hence, p

lies in the plane spanned by wpqq and npqq. This is equivalent to xp,wpqq ˆ npqqy “ 0. Since ppr

is unique, this must be the unique root of q ÞÑ xp,wpqq ˆ npqqy. Once q is determined, we know
the ray on which ppr lies. To find τ, one must solve the remaining one-dimensional projection
onto the ray. Consequently, τ is the unique minimizer of τ ÞÑ 1

2}p´ τ ¨ wpqq}
2, which concludes

the proof. �

For case (iv) of Lemma 4.4 we need to characterize the super-differential of θ at the origin.

Lemma 4.6. The super-differential of θ at the origin is given by

B`θp0q “ t∇θpq´1{2, q1{2q : q P p0,8qu ` pR`0 q
2 .

Proof. Due to the 1-homogeneity of θ

x∇θpλpq, λry “ lim
εÑ0

θpλpp` εrqq ´ θpλpq
ε

“ λ lim
εÑ0

θpp` εrq ´ θppq
ε

“ λx∇θppq, ry

for p P p0,`8q2, λ ą 0, and all r P R2, which leads to ∇θpλpq “ ∇θppq for p P p0,`8q2 and
λ ą 0. Thus, for the curve c : p0,8q Ñ R2; q ÞÑ pq´1{2, q1{2q the set of tangent planes at
pcpqq, θpcpqqqq spanned by p∇θpcpqqq, 1q and pcpsq, θpcpqqqq for q P p0,8q is already the complete
set of affine tangent planes to the graph of θ over p0,8q2. Thus, by continuity of θ on r0,8q2

we get θp0q ` xr, py ě θppq for r P t∇θpcpqqq : q P p0,8qu. From this we deduce that B`θp0q Ą
t∇θpcpqqq : q P p0,8qu ` pR`0 q

2 . Since B`θp0q is a closed set [BC11, Prop. 16.3], this implies

B`θp0q Ą t∇θpcpsqq : q P p0,8qu ` pR`0 q
2 .

Furthermore, for any w P R2zt0uwith w1, w2 ď 0 there exists a p1 with θp0q`xpr`wq, py ă θpp1q
Since θpzq “ 0 for z P pt0u ˆR`0 q Y pR

`

0 ˆ t0uq and θpzq “ ´8 outside r0,8q2 we finally obtain
that θp0q ` xr, py ě θppq if and only if r P t∇θpcpqqq : q P p0,8qu ` pR`0 q

2, which proves the
claim. �

Logarithmic Mean. Now, we turn to the specific case when θ “ θlog is the logarithmic mean
(4). For s ą 0 limtŒ0 B1θpt, sq “ limtŒ0 B2θps, tq “ `8. That is, NKps, 0, 0q “ t0u ˆR´0 ˆR

´

0 and
analogous NKp0, s, 0q “ R´0 ˆ t0u ˆR

´

0 . Consequently, the algorithm simplifies as follows:

function ProjectK(p1,p2,p3)
if 0 ď p3 ď θpp1, p2q return pp1, p2, p3q

if p3 ď 0 return pmaxtp1, 0u,maxtp2, 0u, 0q
if pp1 ď 0q ^ pp2 ď 0q ^ p´p1{p3,´p2{p3q P B

`θp0q return p0, 0, 0q
return ProjectKTop(p1,p2,p3)

end function
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The inclusion in B`θp0q can be tested as follows.

Lemma 4.7. Let z “ pz1, z2q P R2. If mintz1, z2u ď 0 then z < B`θp0q. Otherwise, there is a unique
q1 P p0,`8q such that B1θpq

´1{2
1 , q1{2

1 q “ z1 and then z P B`θp0q if and only if z2 ě B2θpq´1{2, q1{2q.

Proof. Note that for the logarithmic mean B`θp0q Ă p0,`8q2 and therefore z < B`θp0q if
mintz1, z2q ď 0. One finds that

B1θpq´1{2, q1{2q “
q´ 1´ logpqq

log2
pqq

is monotone increasing with B1θpq´1{2, q1{2q Ñ 0 as q Ñ 0 and B1θpq´1{2, q1{2q Ñ `8 as q Ñ `8.
Indeed, for βpqq “ B1θpq´1{2, q1{2q with βp1q :“ 1

2 we obtain a continuous extension on p0,8q.

Furthermore, we consider β1pqq “ 2p1´qq`logpqqp1`qq
q log3

pqq
with continuous extension 1

6 for q “ 1 and
verify that 2p1´ qq ` logpqqp1` qq is negative for q ă 1 and positive for and q ą 1. This implies
that β1pqq ą 0. Furthermore, by symmetry we obtain that B2θpq´1{2, q1{2q is monotone decreasing
with B2θpq´1{2, q1{2q Ñ `8 as q Ñ 0 and B2θpq´1{2, q1{2q Ñ 0 as q Ñ `8. By Lemma 4.6

B`θp0q “ t∇θpq´1{2, q1{2q : q P p0,`8qu ` pR`q2 .

Thus, for every z P p0,`8q2 there is a unique q1 P p0,`8q such that B1θpq
´1{2
1 , q1{2

1 q “ z1 and
z1 ě B1θpq´1{2, q1{2q if and only if q ď q1. Furthermore, there is a unique q2 P p0,`8q such that
B2θpq

´1{2
2 , q1{2

2 q “ z2 and z2 ě B2θpq´1{2, q1{2q if and only if q ě q2. Hence, z P B`θp0q if and only
if q2 ď q1, which is equivalent to z2 ě B2θpq

´1{2
1 , q1{2

1 q. �

Remark 4.8 (Comments on Numerical Implementation). The sought-after q in Lemma 4.7 can
be determined with a one-dimensional Newton iteration. The function q ÞÑ B1θpq´1{2, q1{2q

becomes increasingly steep as q Ñ 0 which leads to increasingly unstable Newton iterations
as z1 approaches 0. On q P r1,`8q the function is rather flat and easy to invert numerically.
To avoid these numerical problems, note that the roles of z1 and z2 in Lemma 4.7 can easily be
swapped which corresponds to the transformation q Ø q´1. Moreover, for maxtz1, z2u ă

1
2 one

has z < B`θp0q. With this rule and by swapping the values of z1 and z2 if z1 ă z2 one can always
remain in the regime q P r1,`8q. Additionally, we recommend to replace the function θps, tq
and its derivatives by a local Taylor expansion near the numerically unstable diagonal s “ t.

Geometric Mean. Furthermre, let us consider the case where θ “ θgeo is the geometric mean
(4). For s ą 0 we again find limtŒ0 B1θpt, sq “ limtŒ0 B2θps, tq “ `8 and consequently the
same simplification of the algorithm applies as in the case of the logarithmic mean. For the test
of the inclusion z “ pz1, z2q P B

`θp0q, we argue as in the proof of Lemma 4.7. The functions
B1θpq´1{2, q1{2q “ 1

2 q
1
2 and B2θpq´1{2, q1{2q “ 1

2 q´
1
2 have the same monotonicity properties as for

the logarithmic mean. Therefore, if mintz1, z2u ď 0 then z < B`θp0q. Otherwise, q1 “ 4 z2
1 and

thus the condition B2θpq
´1{2
1 , q1{2

1 q ď z2 is equivalent to z1 ¨ z2 ě
1
4 . To summarize, we have

obtained

B`θp0q “
 

z P R2 : z1 ¨ z2 ě
1
4 ^mintz1, z2u ą 0

(

.
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4.5 Proximal Mapping of I˚

J˘

Note that IJ˘ is a 1-homogeneous function. Hence, I˚
J˘

will once again be an indicator
function and prox

I
˚

J˘

a projection. Consequently, the proximal mapping is independent of the

step size σ, i.e. proxσI˚
J˘

“ prox
I
˚

J˘

. To compute prox
I
˚

J˘

we use Moreau’s decomposition

[BC11, Thm. 14.3] that implies

prox
I
˚

J˘

“ id´prox
IJ˘

“ id´proj
J˘

(33)

where id is the identity map on V0
n,h ˆ pV

0
e,hq

2. To compute proj
J˘
pρ, ρ´, ρ`q for a point

pρ, ρ´, ρ`q P V0
n,h ˆ pV

0
e,hq

2 one has to find the minimizer pρpr, ρ´pr, ρ`pr
q P J˘ of

N´1
ÿ

i“0

}ρprpti, ¨q ´ ρpti, ¨q}
2
π ` }ρ

´pr
pti, ¨, ¨q ´ ρ

´pti, ¨, ¨q}
2
Q ` }ρ

`pr
pti, ¨, ¨q ´ ρ

`pti, ¨, ¨q}
2
Q .

Recall that for any ρpr P V0
n,h there is precisely one pair pρ´pr, ρ`pr

q P pV0
e,hq

2 such that
pρpr, ρ´pr, ρ`pr

q P J˘, see (23). Therefore, one has to find ρpr P V0
n,h which minimizes

N´1
ÿ

i“0

ÿ

xPX

|ρprpti, xq ´ ρpti, xq|2πpxq `
1
2

ÿ

px,yqPX2

|ρprpti, xq ´ ρ´pti, x, yq|2Qpx, yqπpxq

`
1
2

ÿ

px,yqPX2

|ρprpti, yq ´ ρ`pti, x, yq|2Qpx, yqπpxq .

The optimality condition in ρpr in combination with the reversibility Qpx, yqπpxq “ Qpy, xqπpyq
yields for i “ 0, . . . ,N ´ 1, x P X

ρprpti, xq “
1
2

¨

˝ρpti, xq `
1
2

ÿ

yPX

pρ´pti, x, yq ` ρ`pti, y, xqqQpx, yq

˛

‚

and subsequently ρ´pr
pti, x, yq “ ρprpti, xq, ρ`

pr
pti, x, yq “ ρprpti, yq for px, yq P X ˆ X. Finally,

for pρpr, ρ´pr, ρ`pr
q “ proj

J˘
pρ, ρ´, ρ`q using (33) one gets prox

I
˚

J˘

pρ, ρ´, ρ`q “ pρ, ρ´, ρ`q ´

pρpr, ρ´pr, ρ`pr
q.

4.6 Proximal Mapping of I˚

Javg

Once more, we use Moreau’s decomposition, (33), to compute the proximal mapping of I˚
Javg

via the projection onto Javg. Note that the original problem (26) does not change if we add the
constraint ρhpt0, ¨q “ ρA and ρhptN, ¨q “ ρB to the set Javg. That is, we consider the projection
onto the set

Ĵavg “
 

pρh, ρ̄h P Javg : ρhpt0, ¨q “ ρA, ρhptN, ¨q “ ρB
(

.

To compute the projection we have to solve

arg min
pρ

pr
h ,ρ̄

pr
h qPĴavg

1
2

N
ÿ

i“0

ÿ

xPX

|ρ
pr
h pti, xq´ρhpti, xq|2πpxq `

1
2

N´1
ÿ

i“0

ÿ

xPX

|ρ̄
pr
h pti, xq´ρ̄hpti, xq|2πpxq .
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Thus, we introduce a Lagrange multiplier λh P V0
n,h and define the corresponding Lagrangian

Lpρpr
h , ρ̄

pr
h , λhq “

1
2

N
ÿ

i“0

ÿ

xPX

|ρ
pr
h pt, xq´ρhpt, xq|2πpxq `

1
2

N´1
ÿ

i“0

ÿ

xPX

|ρ̄
pr
h pt, xq´ρ̄hpt, xq|2πpxq

´

N´1
ÿ

i“0

ÿ

xPX

λhpti, xq
´

avgh ρ
pr
h pti, xq ´ ρ̄

pr
h pti, xq

¯

πpxq .

We know directly from the added boundary constraints that

ρ
pr
h pt0, xq “ ρA, ρ

pr
h ptN, xq “ ρB.

The optimality condition in ρpr
h for all x P X and for interior time steps i “ 1, . . . ,N ´ 1 reads as

ρ
pr
h pti, xq “ ρhpti, xq ` 1

2 pλhpti´1, xq ` λhpti, xqq . (34)

Further, the optimality condition in ρ̄pr
h implies that on each interval

ρ̄
pr
h pti, xq “ ρ̄hpti, xq ´ λhpti, xq . (35)

Combining both with the constraint avgh ρ
pr
h pti, xq “ ρ̄

pr
h pti, xq, we obtain

ρ̄hpti, xq ´ λhpti, xq “ ρ̄
pr
h pti, xq “ avgh ρ

pr
h pti, xq

“ avgρhpti, xq ` 1
4 pλhpti´1, xq ` 2λhpti, xq ` λhpti`1, xqq

for all interior elements Ii with i “ 1, . . . ,N ´ 2 and for all x P X. Analogously, using the
boundary conditions we get

ρ̄hpt0, xq ´ λhpt0, xq “ 1
2 pρApxq ` ρhpt1, xqq ` 1

4 pλhpt0, xq ` λhpt1, xqq

ρ̄hptN´1, xq ´ λhptN´1, xq “ 1
2 pρBpxq ` ρhptN´1, xqq ` 1

4 pλhptN´2, xq ` λhptN´1, xqq .

Thus, for each x P X the Lagrange multiplier λh satisfies the linear system of equations
1
4 p5λhpt0, xq ` λhpt1, xqq “ ρ̄hpt0, xq ´ 1

2 pρApxq ` ρhpt1, xqq
1
4 pλhpti´1, xq ` 6λhpti, xq ` λhpti`1, xqq “ ρ̄hpti, xq ´ 1

2 pρhpti`1, xq ` ρhpti, xqq @i “ 1, . . . ,N ´ 2
1
4 pλhptN´2, xq ` 5λhptN´1, xqq “ ρ̄hptN´1, xq ´ 1

2 pρBpxq ` ρhptN´1, xqq

This system is solvable, since the corresponding matrix with diagonal p5, 6, . . . , 6, 5q and off-
diagonal 1 is strictly diagonal dominant. Then, given the Lagrange multiplier λh, the solution
of the projection problem is given by (34) and (35). Finally, the proximal map of I˚

Javg
can be

computed by Moreau’s identity, (33). Thus, to compute the proximal mapping of I˚
Ĵavg

one

must solve a sparse system in time for each graph node separately. Since the involved matrix is
constant, it can be pre-factored.

4.7 Proximal Mapping of IJ“

The proximal map of IJ“ is given by the projection

proj
J“
pρ̄h, qhq “ arg min

pρ̄
pr
h ,q

pr
h qPV0

e,hˆV0
e,h : ρ̄pr

h “qpr
h

1
2

h
N´1
ÿ

i“0

ÿ

x,yPX

´

|ρ̄h ´ ρ̄
pr
h |

2 ` |qh ´ qpr
h |

2
¯

Qpx, yqπpxq

“
1
2
pρ̄h ` qh, ρ̄h ` qhq .
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5 Numerical Results

In what follows we compare the numerical solution based on our discretization with the ex-
plicitly known solution for a simple model with just two nodes. Furthermore, we apply our
method to a set of characteristic test cases to study the qualitative and quantitative behaviour
of the discrete transportation distance.

Comparison with the exact solution for the 2-node case. Consider a two point graphX “ ta, bu
with Markov chain and stationary distribution

Q “

ˆ

0 p
q 0

˙

, π “

˜ q
p`q

p
p`q

¸

,

where p, q P p0, 1s. For this case, Maas [Maa11] constructed an explicit solution for the geodesic

from ρA “

´

p`q
q , 0

¯

to ρB “

´

0, p`q
p

¯

. Note that every probability measures on X can be
described by a single parameter r P r´1, 1s via

ρprq “ pρaprq, ρbprqq “
ˆ

p` q
q

1´ r
2

,
p` q

p
1` r

2

˙

.

Especially, we have ρA “ ρp´1q and ρB “ ρp1q. Using this representation, Maas showed that for
´1 ď α ď β ď 1 the optimal transport distance is given by

Wpρpαq, ρpβqq “
1
2

d

1
p
`

1
q

ˆ β

α

1
a

θpρaprq, ρbprqq
dr (36)

and the optimal transport geodesic from ρpαq to ρpβq is given by ρpγptqq for t P r0, 1s, where γ
satisfies the differential equation

γ1ptq “ 2pβ´ αqWpρpαq, ρpβqq

d

pq
p` q

θpρpγaptqq, ρbpγptqq . (37)

For the special case, where θ is the logarithmic mean θlog and p “ q, one obtains that
θlogpρaprq, ρbprqq “ r

arctanhprq . and consequently the discrete transport distance is given by

Wpρpαq, ρpβqq “ 1?
2p

´ β
α

b

arctanhprq
r dr . Furthermore, the optimal transport geodesic from ρpαq

to ρpβq is given by ρpγptqq for t P r0, 1s, where γ satisfies the differential equation γ1ptq “
a

2ppβ ´ αqWpρpαq, ρpβqq
b

γptq
arctanhpγptqq . For this two point graph we numerically compute the

optimal transport geodesic. This allows us to evaluate directly the distanceW, which we can
compare with a numerical quadrature of (36). Using the approximation ofW, we use an explicit
Euler scheme to compute the solution ρODE

h of the ODE (37). For the case p “ q “ 1 we compare
our numerical solution to the Euler approximation for the ODE for N “ 2000 in Fig. 1.

Geodesics on some selected graphs. Let us consider four different graphs whose nodes and
edges form a triangle, the 3 ˆ 3 lattice, a cube, and a hypercube, respectively. Figure 2 depicts
these graphs with labeled nodes and edges. In all cases, we set for each node x with m outgoing
edges πpxq “ m

|E| and Qpx, yq “ 1
πpxq|E| . Figure 3 shows numerically computed geodesic paths.

The underlying time step size is h “ 1
100 . The solution pρ,mq is displayed at intermediate time
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Figure 1: The mass distribution at b is plotted over time t P r0, 1s. Left: Numerical solution
for a 2-point graph X “ ta, bu for the logarithmic (red) and geometric (green). The black line
represents the diagonal, which is the solution in the case of the (non admissible) arithmetic
averaging. Right: Difference of the numerical solution for the logarithmic (red) and geometric
(green) mean with the Euler scheme solution ρODE

h for the logarithmic mean.
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Figure 2: Labeling of nodes and edges for four different graphs: a triangle, the 3x3 lattice, a
cube, and a hypercube.
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steps indicated on the arrow in the first row. For each of these time steps, blue discs and red
arrows superimposed over the graph display mass and momentum at nodes and on edges,
respectively. The area of a disc is proportional to the mass ρpxqπpxq. A red arrow connecting
nodes x and y renders the momentum mpx, yq. The direction of the arrow indicates the direction
of the flow, i.e. it points from x to y if mpx, yq “ ´mpy, xq ą 0 (cf. Lemma 2.4). The thickness of an
arrow is proportional to |mpx, yq|Qpx, yqπpxq. Underneath these graph drawings both, mass and
the momentum on nodes and edges, are plotted in histograms. The numbering of the columns
in these plots refers to the numbering of nodes and edges in Figure 2. The plots associated with
t “ 0 and t “ 1 show the prescribed boundary conditions in time. As the stopping criteria
for the iterative algorithm in (28) we choose

´ 1
0 }ρ

k`1 ´ ρk}2
π dt with threshold 10´10, where k

denotes the iteration step. Figure 4 visualizes in the same fashion an optimal transport path
on the graph of the hypercube. Note that for the cube, the hypercube, and the 3 ˆ 3 lattice the
computed solutions are symmetric. In explicit, mass and momentum at time t equal the mass
and the momentum at time 1´ t on point reflected nodes and edges, respectively. Furthermore,
for the cube and the hypercube the distribution of mass is constant on all nodes at time t “ 1

2 .
Finally, in Figure 5 we depict an example of graph with four nodes, which shows that the sign
of the momentum variable on a fixed edge may change along a geodesic path.

Experimental results related to the Gromov-Hausdorff convergence for simple graphs. In
[GM13] it was shown that for the d-dimensional torus Td the discrete transportation distance
W on a discretized torus Td

M with uniform mesh size 1
M converges in the Gromov-Hausdorff

metric to the classical L2-Wasserstein distance on Td. In fact, the optimal transport with respect
to the classical L2-Wasserstein distance between two point masses is a point mass travelling
along the connecting straight line. Concerning the expected concentration of the transport
along this line we perform the following numerical experiments for d “ 1, 2. We first consider
for d “ 1 the unit interval I “ r0, 1s and a sequence of space discretizations XM “ tx0, . . . , xMu

with uniform mesh size 1
M with M PN. The corresponding Markov kernel QM forXM is defined

by QMpxi, xi`1q “ QMpxi, xi´1q “
1
2 for i “ 1, . . . , xM´1 and QMpx0, x1q “ 1 “ QMpxM, xM´1q. The

continuous L2-Wasserstein geodesic connecting ρA “ δ0 and ρB “ δ1 is given by the transport of
the Dirac measure with constant speed:

ρpt, xq “ δtpxq .

In Figure 6 we plot the density distribution of the discrete optimal transport geodesic at time
t “ 1

2 for different grid sizes 1
M . One observes the onset of mass concentration in space at that

time at the location x “ 1
2 for increasing M. For d “ 2 we consider a square lattice of uniform grid

size 1
M with M PN and nodesXM “ tpi{M, j{Mq : i, j P p0, . . . ,Mqu. The weights of the Markov

kernel Q are proportional to the number of adjacent edges. Now, we investigate a discrete
geodesic connecting the Dirac masses δp0,0q and δp1,1q. One expects that for increasing M mass
on bands parallel to the space diagonal will decrease. In Figure 7 we plot for decreasing mesh
size 1

M the in time accumulated density values along the diagonal and the off-diagonals bands
of nodes. More precisely, we define the bands of nodes liM “ tpx1, x2q P XMˆXM : x2 “ x1`

i
Mu

(i “ 0 being the diagonal) and compare the values
´ 1

0

ř

xPliM
ρpt, xqπpxq dt.

Discrete geodesics on an internet network of Europe. In Figure 8 we apply the investigated
optimal transport model to a coarse scale internet network of Europe and show experimental
results with masses (data packages) transported from Dublin, Lisbon, and Madrid to Athens,
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Figure 3: Numerically computed geodesics on a triangle, a square lattice and a cube for pre-
scribed boundary conditions at time 0 and 1. Note in particular the symmetry under time
reversal and the spreading of mass at intermediate times (equidistribution at t “ 1

2 for the cube).
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Figure 4: Top: Numerically computed geodesic on a hypercube. Bottom: Distribution of mass
and momentum, note again the symmetry under time reversal and the spreading of mass, with
equidistribution at time t “ 1
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Figure 5: Numerically computed geodesic on a graph with four nodes. Note that the sign of m
for edge 2 changes (cf. t “ 1

5 and t “ 4
5 ).
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Figure 6: Linearly interpolated densities for theW geodesic on a one dimensional chain graph
between a Dirac mass at the beginning and the end, at t “ 0.5 with M “ 2 (blue), 4 (red), 8
(green), 16 (orange), 32 (yellow), and 64 (black).

Figure 7: Geodesics in the distanceW on a two dimensional grid graph between Dirac masses
at diagonally opposite ends. We show accumulated densities along the diagonal and the off-
diagonals (see text for details). From left to right: M “ 4, 8, 16, 32. The width of the bars is
scaled with the number of lines.
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Figure 8: Extraction of a discrete optimal transport geodesic.

Stockholm, and Kiev. Also here, we set for each node x with m outgoing edges πpxq “ m
|E| and

Qpx, yq “ 1
πpxq|E| , with |E| the total number of (directed) edges.

6 Simulation of the gradient flow of the entropy

The entropy functional on PpXq is given by

Hpρq “
ÿ

xPX

ρpxq logpρpxqqπpxq .

with the usual convention ‘0 log 0 “ 0’. Maas [Maa11] proved that for the logarithmic mean
θlogp¨, ¨q and ρ P PpXq the heat flow t ÞÑ et4Xρ is a gradient flow trajectory for the entropyHpρq
with respect to the discrete transportation distanceW. In [EM14] it was shown that a similar
result holds true for the Renyi entropy

Hmpρq “
1

m´ 1

ÿ

xPX

ρpxqmπpxq .

In fact, for m “ 1
2 and the gradient flow ofHm with respect to the metricW constructed with θ

being the geometric mean θgeomp¨, ¨q is given by the Fokker-Planck equation Btρ “ 4Xρm.
To verify this property numerically, we consider a line of five points with stationary distri-
bution π “ 1

5 p1, 2, 2, 2, 1q, Markov kernel Qpx, yq “ 1
10πpxq for x, y adjacent, and initial mass

ρ “ 1
10 p1, 1, 5, 1, 1q. Following [JKO98, AGS08], for an initial density ρ0 P PpXq and a time step

size τ ą 0 an implicit time-discrete gradient flow scheme forH can be defined by

ρk`1 “ arg min
ρB

1
2
Whpρk, ρBq

2 ` τ ¨HpρBq (38)

with an inner time step size h appearing in the discretization Wh of W. To minimize this
functional numerically, we simultaneously carry out the external optimization over ρ and the
internal optimization within Wh . To this end, we define a discrete continuity equation with
one free endpoint. For initial datum ρA P PpXq let

CEhpρAq “

!

pρh,mh, ρBq P V1
n,h ˆ V0

e,h ˆR
X : pρh,mhq P CEhpρA, ρBq

)

.
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Analogous to (26), problem (38) can be written as

min tF pρh,mh, ϑh, ρ
´

h , ρ
`

h , ρ̄h, qh, ρBq ` Gpρh,mh, ϑh, ρ
´

h , ρ
`

h , ρ̄h, qh, ρBq :

pρh,mh, ϑh, ρ
´

h , ρ
`

h , ρ̄h, qh, ρBq P V1
n,h ˆ pV

0
e,hq

4 ˆ pV0
n,hq

2 ˆRXu

with

F pρh,mh, ϑh, ρ
´

h , ρ
`

h , ρ̄h, qh, ρBq :“ pApϑh,mhq ` IJ˘pqh, ρ
´

h , ρ
`

h q ` IJavgpρh, ρ̄hq ` 2 τ ¨HpρBq ,

Gpρh,mh, ϑh, ρ
´

h , ρ
`

h , ρ̄h, qh, ρBq :“ICEhpρkqpρh,mh, ρBq ` IK pρ
´

h , ρ
`

h , ϑhq ` IJ“pρ̄h, qhq .

Again, this is amenable for algorithm (28). We extend the space H by a factor RX and adapt
the scalar product on H (27) adding the term h xρB,1p¨q, ρB,2p¨qyπ with respect or the additional
variable ρB. The proximal step of F ˚ then entails an additional proximal step of p2 τ ¨Hq˚ with
respect to h} ¨ }π and in the proximal step of G the projection onto CEhpρA, ρBq is replaced by a
projection onto CEhpρkq. Next, we detail these modifications.
Let us recall that the proximal mapping of pγ ¨Hq˚ and γ ¨H are linked by Moreau’s decompo-
sition, cf. (33). The computation of the the proximal mapping for γ ¨H decouples in space and
the resulting one dimensional problem can be solved via Newton’s method. This decoupling is
possible since we do not enforce the constraint ρB P PpXq in the formulation ofH but enforce it
via the discrete continuity equation constraint.
To implement the projection

proj
CEhpρAq

pρ,m, ρBq “ arg min
pρpr,mpr,ρ

pr
B qPCEhpρAq

h
2

N
ÿ

i“0

}ρ
pr
h pti, ¨q ´ ρhpti, ¨q}

2
π

`
h
2

N´1
ÿ

i“0

}mpr
h pti, ¨q ´mhpti, ¨q}

2
Q `

h
2
}ρ

pr
B ´ ρB}

2
π (39)

onto the set CEhpρAq of solutions of the discrete continuity equation with initial data ρA the
following modifications apply. Analogous to Proposition 4.3, a space time discrete elliptic
equation

ϕhpt1, xq ´ ϕhpt0, xq
h2 ` 4Xϕhpt0, xq “ ´

ˆ

ρhpt1, xq ´ ρApxq
h

` divmhpt0, xq
˙

,

´ 3
2ϕhptN´1, xq ´ ϕhptN´2, xq

h2 ` 4XϕhptN´1, xq

“ ´

˜

p

1
2 pρBpxq ` ρhptN, xqq ´ ρhptN´1, xq

h
` divmhptN´1, xq

¸

,

ϕhpti`1, xq ´ 2ϕhpti, xq ` ϕhpti´1, xq
h2 ` 4Xϕhpti, xq

“ ´

ˆ

ρhpti`1, xq ´ ρhpti, xq
h

` divmhpti, xq
˙

with i “ 1, . . . ,N ´ 2 and x P X has to be solved for the Lagrange multiplier ϕh P V0
n,h. Note

that this system is no longer degenerate due to the additional freedom of ρB and thus no
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Figure 9: Numerical solution of the heat flow (top) and the Fokker-Planck equation (bottom)
based on an explicit Euler scheme (blue) with time step size 10´3 and for the gradient flow
of the associated entropy using the logarithmic mean (red) and the geometric mean (green),
respectively, with τ “ 10´3 and h “ 100. Panels on the left show the mass distributions on the
graph at different times, panels on the right show the values of the entropies over time.

regularization as before is required. Then the solution pρpr,mpr, ρ
pr
B q to (39) is given by

ρ
pr
B pxq “

1
2

ˆ

ρhptN, xq ` ρBpxq ´
ϕhptN´1, xq

h

˙

,

ρ
pr
h pti, xq “ ρhpti, xq `

ϕhpti, xq ´ ϕhpti´1, xq
h

,

ρ
pr
h pt0, xq “ ρApxq , ρ

pr
h ptN, xq “ ρ

pr
B pxq ,

mpr
h pti, x, yq “ mhpti, x, yq ` ∇Xϕhpti, x, yq

for all i “ 1, . . . ,N ´ 2 and x, y P X. In Figure 9 we compare the numerical results for this
natural discretization of the gradient flow of the entropy to the flow computed numerically
with a simple explicit Euler discretization applied to the heat equation and the Fokker-Planck
equation, respectively, with respect to the underlying Markov kernel.
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[PPO14] N. Papadakis, G. Peyré, and E. Oudet. Optimal transport with proximal splitting.
SIAM Journal on Imaging Sciences, 7(1):212–238, 2014.

[San15] F. Santambrogio. Optimal Transport for Applied Mathematicians, volume 87 of Progress
in Nonlinear Differential Equations and Their Applications. Birkhäuser Boston, 2015.

[SRGB14] J. Solomon, R. Rustamov, L. Guibas, and A. Butscher. Earth mover’s distances on
discrete surfaces. ACM Transactions on Graphics (Proc. of SIGGRAPH 2014), 33(4), 2014.

34



[SRGB16] J. Solomon, R. Rustamov, L. Guibas, and A. Butscher. Continuous-flow graph trans-
portation distances. arXiv:1603.06927, 2016.

[Vil09] C. Villani. Optimal Transport: Old and New, volume 338 of Grundlehren der mathematis-
chen Wissenschaften. Springer, 2009.

35


	1 Introduction
	2 Optimal transport on graphs
	2.1 The discrete transportation distance
	2.2 A priori bounds

	3 Discretization
	3.1 Galerkin discretization
	3.2 Gamma-convergence

	4 Optimization with Proximal Splitting
	4.1 Slack Variables and Proximal Splitting
	4.2 Projection onto CE
	4.3 Proximal Mapping of A*
	4.4 Projection onto K
	4.5 Proximal Mapping of I*J+/-
	4.6 Proximal Mapping of I*Javg
	4.7 Proximal Mapping of I*J=

	5 Numerical Results
	6 Simulation of the gradient flow of the entropy

