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Finite element error estimates in L
2 for

regularized discrete approximations to

the obstacle problem ∗

Dominik Hafemeyer†, Christian Kahle†, Johannes Pfefferer†

This work is concerned with quasi-optimal a-priori finite element error esti-
mates for the obstacle problem in the L2-norm. The discrete approximations
are introduced as solutions to a finite element discretization of an accordingly
regularized problem. The underlying domain is only assumed to be convex
and polygonally or polyhedrally bounded such that an application of point-
wise error estimates results in a rate less than two in general. The main
ingredient for proving the quasi-optimal estimates is the structural and com-
monly used assumption that the obstacle is inactive on the boundary of the
domain. Then localization techniques are used to estimate the global L2-error
by a local error in the inner part of the domain, where higher regularity for
the solution can be assumed, and a global error for the Ritz-projection of the
solution, which can be estimated by standard techniques. We validate our
results by numerical examples.
Keywords: Obstacle problem, finite element discretization, a priori error
analysis, localization techniques
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1 Introduction

This paper is concerned with error estimates for discrete approximations to the solution
of the obstacle problem. Concerning the underlying domain, we only assume that it
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is polygonally or polyhedrally bounded and convex. Under a structural and commonly
used assumption on the obstacle we show that the sequence of discrete approximations
possesses a convergence rate close to two in the L2-norm. Thus, we obtain convergence re-
sults similar to those of the Ritz-projection of the solution. This is the main contribution
of the present paper.

Before going into further details, let us review common discretization concepts for the
obstacle problem and related convergence results from the literature. The first approach
consists of a direct discretization of the variational inequality (corresponding to the ob-
stacle problem) based on linear finite elements. For this approach, it is well known that
the resulting sequence of discrete solutions exhibits a convergence rate of one in the H1-
norm if the domain is convex. The corresponding proof has already become classical in
the meanwhile, see [Falk, 1974]. Essentially, it is based on the variational formulations
of the problems (continuous and discrete) and standard interpolation error estimates. In
contrast, a universal approach for the derivation of optimal error estimates in the L2-
norm is unknown. It has even been shown in [Christof and Meyer, 2018] that a duality
argument, similar to that for the L2-error of the Ritz-projection, cannot be established
as the H2-regularity of the solution in this situation is not sufficient in order to guaran-
tee second order convergence in L2. To circumvent this issue, it is possible to consider
point-wise error estimates since such estimates also imply estimates in L2 due to the
Hölder inequality. In [Nitsche, 1977, Meyer and Thoma, 2013, Nochetto et al., 2015] it
is shown that a convergence rate of two (times log-factors) can be achieved in L∞. This
result requires sufficiently smooth data, and interior angles, that are small enough, in
order to guarantee sufficiently smooth solutions due to the presence of corner and edge
singularities. For instance, in two dimensional polygonal domains, it is well known that
in general the interior angles must be less or equal to π/2 for the validity of those rates.
For larger interior angles the convergence rates are reduced. In addition, based on the
point-wise estimates, it is proven in [Meyer and Thoma, 2013] that a convergence rate
close to two can be expected in L2 if the domain is only assumed to be convex. However,
this result requires an obstacle which is sufficiently smooth and, more importantly, which
is inactive on the boundary. It is also crucial to note that all the point-wise estimates
(and hence the L2 estimate in [Meyer and Thoma, 2013]) discussed so far only hold if
a discrete maximum principle holds for the discrete solutions (at least this is the state
of the art). For instance, this can be ensured by weakly acute finite element meshes.
However, in practice, this is a serious restriction on the construction of finite element
meshes, especially in the three dimensional case.

A second strategy to obtain approximations to the solution of the obstacle problem
can be summarized as follows: First appropriately regularize the obstacle problem (for
instance we use a Moreau-Yosida type relaxation) to get a semilinear partial differen-
tial equation, where the nonlinearity depends on the regularization parameter, and then
truncate the regularized equation and discretize it by linear finite elements. Typically,
the regularization parameter is chosen dependent on the mesh parameter in order to
balance both error contributions. This approach is pursued in the present paper. In case
that the boundary is smooth enough and the data are regular enough, it is shown in
[Nochetto, 1988] that by this type of discretization a convergence rate of two (times log-
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factors) in L∞, and hence in L2, can be achieved. Moreover, the proof can be extended
to polygonal and polyhedral domains if the interior angles are small enough such that
the appearing corner and edge singularities are mild enough. For larger interior angles
the convergence rates in L∞ are again reduced. This is in agreement with corresponding
discretization error estimates for semilinear partial differential equations, where the non-
linearity does not additionally depend on a (mesh parameter dependent) regularization
parameter. In this case, a convergence rate of two can also be proven in L2 if the under-
lying domains are only assumed to be convex. Of course, this raises the question if such
a result (or at least a comparable one) is also valid for the approximations of the present
discretization strategy. Typically, in order to obtain error estimates in L2, a duality
argument is applied. However, a straightforward application of the duality argument in
the L2-setting is not promising here as an inappropriate coupling between regularization
parameter and mesh parameter cannot be avoided in this case. Nevertheless, under the
commonly used structural assumption that the obstacle is sufficiently smooth and inac-
tive on the boundary, we show that a convergence rate of two (times log-factors) in L2

can be established in convex polygonal/polyhedral domains, which represents the main
result of the paper.

Our proof heavily relies on the fact that in the continuous and discrete setting the
obstacle is inactive in a non-empty strip at the boundary. This is deduced by basic
point-wise estimates and the structural assumption that the obstacle is inactive on the
boundary. Then, by using in a certain sense new results for locally discrete harmonic
functions, we are able to split the discretization error in L2 into two error terms. The first
one is nothing else than an L2-error for the Ritz-projection in the domain, where we can
rely on standard estimates from the literature. The second error contribution represents
an error in the interior of the domain, where the solution enjoys more regularity. In
order to appropriately bound this term, we employ techniques from [Nochetto, 1988]
(introduced there for global L∞-error estimates). However, we always take care on the
local support of this error, which lies in the interior of the domain. A more detailed
outline of the proof is given at the beginning of Section 4.

The paper is organized as follows: In Section 2 we introduce the variational formulation
to the obstacle problem and a Moreau-Yosida type relaxation to this problem. Moreover,
we state basic properties of the corresponding solutions, such as regularity results, and
we establish point-wise convergence of these solutions to each other. Some of the results
are already known in a similar fashion in the literature. Nevertheless, we state the basic
ideas in order to be self-contained. Moreover, and more importantly, this also enables
us to ensure that those results do not depend on a smooth boundary in general, which
is very often assumed in the literature. After having introduced the discrete problem in
Section 3, we consider the L2-error estimates in Section 4. There we start with giving a
short roadmap for the remainder of the paper. This is followed by the observation that
in all problems, which we consider, the obstacle is inactive in a strip at the boundary,
which relies on point-wise estimates and the aforementioned structural assumption on
the obstacle. Then we establish error estimates for locally discrete harmonic functions,
which are new in a certain sense compared to the results from the literature. Using these
estimates, standard results for the Ritz-projection, and duality arguments in the L∞-L1-
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setting, we establish at the end of Section 4 the main result of the paper, the discretization
error estimates in L2 in convex polygonal and polyhedral domains. Finally, in Section 5
we state numerical examples which underline our theoretical findings.

Before closing the introduction, we emphasize that in all what follows C denotes a
generic positive constant which is always independent of the regularization parameter ε
and the mesh parameter h.

2 The Continuous and the Regularized Problem

We start with introducing some notation which is used in the sequel of the paper. We
let Ω ⊂ R

N , N ∈ {2, 3}, denote an open, convex and polygonally/polyhedrally bounded
domain with boundary ∂Ω. The Sobolev spaces are classically denoted by W k,p(Ω) with
k ∈ N0 and p ∈ [1,∞]. In case that p = 2, we also use the notation Hk(Ω). The
norms in these spaces are denoted by ‖·‖W k,p(Ω) and ‖·‖Hk(Ω), respectively. In addition,

Hk
0 (Ω) denotes the completion of all functions in C∞

0 (Ω) (the space of infinitely often
differentiable functions with compact support in Ω) with respect to ‖·‖Hk(Ω). Again

classically, we denote the norm in Lp(Ω) = W 0,p(Ω) by ‖·‖Lp(Ω). For the inner product
in L2(Ω) we use the notation (·, ·). The dual space to H1

0 (Ω) is denoted by H−1(Ω) and
we use the notation 〈·, ·〉 to indicate the corresponding duality pairing.

Let us now formulate the problem which we are dealing with. For f ∈ L∞(Ω) and
ψ ∈ W 2,∞(Ω), which satisfies ψ ≤ 0 on ∂Ω, we consider the variational problem: Find
u ∈ Kψ := {v ∈ H1

0 (Ω) | v ≥ ψ a.e. in Ω} such that

(∇u,∇(v − u)) ≥ (f, v − u) ∀v ∈ Kψ. (1)

That is, we discuss the classical obstacle problem for a function u ∈ Kψ ⊂ H1
0 (Ω) with an

obstacle ψ ∈W 2,∞(Ω). By classical means it is possible to show that there exists a unique
solution to this problem, see for instance [Kinderlehrer and Stampacchia, 1980, Chap. II,
Theorem 2.1]. For the existence of a unique solution our regularity assumptions on the
domain, the obstacle and the data can certainly be relaxed. Let us again emphasize that
the assumptions stated above are crucial for our numerical analysis. In Section 4 we even
assume that the obstacle is inactive on the boundary.

Next, let us recall a well known reformulation of the obstacle problem which can be
deduced by using concepts from convex analysis, see for instance [Barbu, 2010, Sections
1 and 2]. Let IKψ denote the indicator functional of the convex set Kψ. Then, the
subdifferential ∂IKψ of IKψ at a point u ∈ Kψ is given by

∂IKψ(u) =
{

v ∈ H−1(Ω)
∣

∣ 〈v, u − w〉 ≥ 0∀w ∈ Kψ

}

.

Moreover, a function u ∈ H1
0 (Ω) solves the obstacle problem (1) if and only if there exists

a Lagrange multiplier β(u− ψ) ∈ ∂IKψ(u) such that

(∇u,∇v) + 〈β(u− ψ), v〉 = (f, v) ∀v ∈ H1
0 (Ω). (2)
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Remark 1. Note that, as the solution u to the obstacle problem is unique, the equation
(2) uniquely determines β(u− ψ) ∈ H−1(Ω) by the relation

β(u− ψ) = f +∆u ∈ H−1(Ω).

Next, we introduce a regularized problem, where we replace the Lagrange multiplier
β(u − ψ) by a suitable relaxation. Our approach follows that of [Nochetto, 1988]. A
similar one is also used in [Kinderlehrer and Stampacchia, 1980, Chap. IV, Sec. 5].

For ε > 0 we substitute β(u−ψ) by the monotonically increasing, and globally Lipschitz
continuous function

βε(s) :=

{

0, if s ≥ 0,

s/ε if s < 0,

and consider the semi-linear partial differential equation

(∇uε,∇v) + (βε(uε − ψ), v) = (f, v) ∀v ∈ H1
0 (Ω) (3)

as an approximation of (1). Due to the above formulated assumptions on βε, ψ and
f , existence of a unique solution uε ∈ H1

0 (Ω) ∩ C(Ω̄) to (3) follows for any ε > 0
by arguments due to Browder and Minty, see for instance [Tröltzsch, 2010, Theorem
4.7]. We also note that this is an outer approximation or Moreau–Yosida relaxation,
[Glowinski et al., 1981], of the variational inequality (1).

The following two lemmas about regularity issues for the obstacle problem and its
regularized version are in the spirit of [Kinderlehrer and Stampacchia, 1980, Chap. IV,
Lemma 5.1 and Theorem 5.2].

Lemma 2. Let uε ∈ H1
0 (Ω) for ε ∈ (0, 1] denote the solution to (3). Then, βε(uε − ψ)

belongs to L∞(Ω) fulfilling

‖βε(uε − ψ)‖L∞(Ω) ≤ ‖f +∆ψ‖L∞(Ω). (4)

Further, the solution uε possesses the higher regularity H2(Ω) ∩H1
0 (Ω) and satisfies

‖uε‖H2(Ω) ≤ C(‖f‖L∞(Ω) + ‖∆ψ‖L∞(Ω))

with a constant C > 0 independent of ε.

Proof. To prove the boundedness of βε(uε − ψ) in L∞(Ω), one can proceed completely
analogously to the proof of [Kinderlehrer and Stampacchia, 1980, Chap. IV, Lemma 5.1].
For the convenience of the reader and also to see the exact regularity requirements, let
us quickly summarize the most essential steps of the proof. Since uε ∈ H1

0 (Ω) ∩ C(Ω̄)
and ψ ∈ W 2,∞(Ω) with ψ|∂Ω ≤ 0 we have that βε(u − ψ)|∂Ω = 0 and βε(u − ψ) ∈
H1(Ω)∩L∞(Ω) (according to [Kinderlehrer and Stampacchia, 1980, Chap. II, Theorem
A.1]). Thus, we may choose −(−βε(uε−ψ))p−1 = −|βε(uε−ψ)|p−1, which then belongs
to H1

0 (Ω) ∩ L
∞(Ω) as well (definitely for p > 2), as a test function in (3). This yields

‖βε(uε − ψ)‖pLp(Ω) = (∇(uε − ψ),∇((−βε(uε − ψ))p−1) + (f +∆ψ,−(−βε(uε − ψ))p−1)

= (1− p)(∇(uε − ψ), (−βε(uε − ψ))p−2β′ε(uε − ψ)∇(uε − ψ))

− (f +∆ψ, |βε(uε − ψ)|p−1),
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where we used the integration by parts formula and the chain rule. Then, employing the
monotonicity of βε together with βε ≤ 0 and the Hölder inequality results in

‖βε(uε − ψ)‖pLp(Ω) ≤ ‖f +∆ψ‖Lp(Ω)‖βε(uε − ψ)‖p−1
Lp(Ω).

Finally, after having divided by ‖βε(uε − ψ)‖p−1
Lp(Ω), we take the limit p→ ∞ and obtain

the desired bound for βε(uε−ψ). As a consequence, the higher regularity can be deduced
from [Grisvard, 2011, Theorem 3.2.1.2] after having sent βε(uε − ψ) to the right hand
side.

Lemma 3. Let u ∈ Kψ und uε ∈ H
1
0 (Ω) denote the solutions to (1) and (3), respectively.

Then, we have

uε
ε→0
−−−→ u weakly in H2(Ω) and strongly in C(Ω̄),

βε(uε − ψ)
ε→0
−−−→ β(u− ψ) weakly in L2(Ω), (5)

and
‖β(u− ψ)‖L∞(Ω) ≤ ‖f +∆ψ‖L∞(Ω).

Proof. We proceed similar to the proof of [Kinderlehrer and Stampacchia, 1980, Chap.
IV, Theorem 5.2]. However, we rely on the reformulation (2) of the obstacle problem
instead of considering the variational inequality (1). Due to the uniform boundedness of
uε in H2(Ω)∩H1

0 (Ω) and βε(uε−ψ) ∈ L2(Ω) according to Lemma 2, we get the existence
of functions û ∈ H2(Ω) ∩H1

0 (Ω) and β̂ ∈ L2(Ω) such that

uε
ε→0
−−−→ û weakly in H2(Ω),

βε(uε − ψ)
ε→0
−−−→ β̂ weakly in L2(Ω).

Actually, we only get the convergence of subsequences at first. However, as the limits will
be unique (the unique solution u of the obstacle problem and the corresponding unique
Lagrange multiplier β(u−ψ)), we will have the convergence of the whole sequences, and
therefore we skip this detail in the following. Next, we show that û and β̂ fulfill (2). Due
to the weak convergence, we already know that

(∇û,∇v) + (β̂, v) = (f, v) ∀v ∈ H1
0 (Ω).

Thus, as the duality pairing between H−1(Ω) and H1
0 (Ω) is compatible with the inner

product in L2(Ω), it only remains to show that β̂ ∈ ∂IKψ(û). In a first step towards
this, we show that û belongs to Kψ, since then the subdifferential ∂IKψ(û) at û can be
characterized as

∂IKψ(û) =
{

v ∈ H−1(Ω)
∣

∣ 〈v, û− w〉 ≥ 0 ∀w ∈ Kψ

}

.

As H2(Ω) is compactly embedded in C(Ω̄), we get that

uε
ε→0
−−−→ û strongly in C(Ω̄).
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Assume next that there is a set O ⊂ Ω with |O| > 0 and δ > 0 such that û ≤ ψ − δ. By
the strong convergence in C(Ω̄) we have for ε small enough that uε ≤ ψ− δ/2. Thus, by
the Cauchy-Schwarz inequality and the definition of βε, we deduce

‖βε(uε − ψ)‖L2(O)‖uε − ψ‖L2(O) ≥ (βε(uε − ψ), uε − ψ)L2(O) =
1

ε
‖uε − ψ‖2L2(O) ≥ |O|

δ2

4ε
,

which is a contradiction to the boundedness of the left hand side of this inequality
(according to Lemma 2) if we send ε to zero. As a consequence, we have shown û ∈ Kψ.

Now, we show that β̂ belongs to ∂IKψ(û). By introducing appropriate intermediate
functions, we get for any w ∈ Kψ, which implies βε(w − ψ) = 0, that

∫

Ω
β̂(û− w) =

∫

Ω
(β̂ − βε(uε − ψ))(û − w) +

∫

Ω
βε(uε − ψ)(û− uε)

+

∫

Ω
(βε(uε − ψ)− βε(w − ψ))((uε − ψ)− (w − ψ))

≥

∫

Ω
(β̂ − βε(uε − ψ))(û − w) +

∫

Ω
βε(uε − ψ)(û− uε),

where we used the monotonicity of βε in the last step. Sending ε to zero implies

∫

Ω
β̂(û− w) ≥ 0 ∀w ∈ Kψ,

which means that β̂ ∈ ∂IKψ(û), and hence u = û and β(u − ψ) = β̂. Finally, the
estimate for the Lagrange multiplier β(u − ψ) in L∞(Ω) is a direct consequence of the
weak convergence (5) and the estimate (4) due to the weakly lower semi-continuity of
the norm.

Remark 4. Due to the convergence results of Lemma 3 it is possible to further char-
acterize β(u − ψ). For any non-negative function v ∈ C∞

0 (Ω) we have according to the
definition of βε

0 ≥ lim
ε→0

∫

Ω
βε(uε − ψ)v =

∫

Ω
β(u− ψ)v.

Thus, by means of the fundamental lemma of variational calculus, we get β(u− ψ) ≤ 0,
and hence, β(u−ψ)(u−ψ) ≤ 0 almost everywhere, such that the definition of βε implies

0 ≤ lim
ε→0

∫

Ω
βε(uε − ψ)(uε − ψ) =

∫

Ω
β(u− ψ)(u− ψ) ≤ 0

or, equivalently,
‖β(u− ψ)(u − ψ)‖L1(Ω) = 0.

To summarize, this means in the almost everywhere sense

β(u− ψ)

{

= 0 if u− ψ > 0,

≤ 0 if u− ψ = 0.
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The next theorem is concerned with the regularization error in L∞(Ω) and the related
convergence rate. It basically reflects the results of [Nochetto, 1988, Theorem 2.1]. Nev-
ertheless, we recall the proof in order to ensure that it does not depend on the smoothness
of the boundary since in [Nochetto, 1988] a smooth boundary is assumed.

Theorem 5. Let u ∈ Kψ and uε ∈ H1
0 (Ω) denote the solutions to (1) and (3), respectively.

Then there is the estimate

‖u− uε‖L∞(Ω) ≤ ε‖f +∆ψ‖L∞(Ω).

Proof. Let us abbreviate eε = u−uε. Having in mind the L2-regularity of β(u−ψ) from
Lemma 3, we obtain from (2) and (3)

(∇eε,∇v) = (βε(uε − ψ)− β(u− ψ), v) ∀v ∈ H1
0 (Ω).

Next, we observe that the function e2p+1
ε , where p is an arbitrary positive integer, belongs

to H1
0 (Ω) if u and uε belong to H1

0 (Ω) ∩ L∞(Ω). The L∞(Ω) regularity is given by
Lemma 3. Thus, we may choose it as a test function in the above variational equation.
This yields employing the chain rule several times

(βε(uε − ψ)− β(u− ψ), e2p+1
ε ) = (∇eε,∇e

2p+1
ε ) =

2p+ 1

(p + 1)2
‖∇ep+1

ε ‖2L2(Ω)

≥ C
2p+ 1

(p + 1)2
‖ep+1
ε ‖2L2(Ω) = C

2p + 1

(p+ 1)2
‖eε‖

2(p+1)

L2(p+1)(Ω)
,

where we applied the Poincaré inequality in between. Notice, that the constant from
the Poincaré inequality is independent of p. We now estimate the term on the left hand
side. Due to the definition of βε and Remark 4 we notice that βε(u−ψ) = β(u−ψ) = 0
almost everywhere if u− ψ > 0. Then, due to the monotonicity of βε we get

0 ≥ (βε(uε − ψ)− β(u− ψ))(u − uε) a.e. in {x ∈ Ω |u(x)− ψ(x) > 0}.

According to the definition of βε and Remark 4, we also obtain

0 ≥ (βε(uε −ψ)− β(u− ψ))(u− uε) a.e. in {x ∈ Ω |uε(x)−ψ(x) > 0 ∧ u(x) = ψ(x)}.

Next, let us define I = {x ∈ Ω |uε(x)− ψ(x) ≤ 0 ∧ u(x) = ψ(x)} and eψ = ψ − uε ≥ 0.
Then, combining the previous results yields

(βε(uε − ψ)− β(u− ψ), e2p+1
ε ) ≤ (βε(uε − ψ)− β(u− ψ), e2p+1

ψ )L2(I).

Due to the definition βε(uε − ψ) and Remark 4, this also implies

1

ε
‖eψ‖

2(p+1)

L2(p+1)(I)
+ (βε(uε − ψ)− β(u− ψ), e2p+1

ε ) ≤ (|β(u− ψ)|, e2p+1
ψ )L2(I).
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By means of the Hölder and the Young inequality, we get

(|β(u− ψ)|, e2p+1
ψ )L2(I) ≤ ‖β(u− ψ)‖L2(p+1)(I)‖eψ‖

2p+1

L2(p+1)(I)

≤
1

2(p + 1)
ε2p+1‖β(u− ψ)‖

2(p+1)

L2(p+1)(I)
+

2p + 1

2(p + 1)

1

ε
‖eψ‖

2(p+1)

L2(p+1)(I)

≤
1

2(p + 1)
ε2p+1‖β(u− ψ)‖

2(p+1)

L2(p+1)(I)
+

1

ε
‖eψ‖

2(p+1)

L2(p+1)(I)
,

such that

(βε(uε − ψ)− β(u− ψ), e2p+1
ε ) ≤

1

2(p + 1)
ε2p+1‖β(u− ψ)‖

2(p+1)

L2(p+1)(I)
,

and hence

‖eε‖L2(p+1)(Ω) ≤

(

C
p+ 1

2p + 1

)
1

2(p+1)

ε
2p+1
2(p+1) ‖β(u− ψ)‖L2(p+1)(I)

≤ C
1

2(p+1) ε
2p+1
2(p+1) ‖β(u− ψ)‖L2(p+1)(I),

where the constant C is still independent of p. If we let p tend to infinity, the desired
result follows from Lemma 3.

Remark 6. We later consider the error ‖u − uε‖L2(Ω). Nevertheless, Theorem 5 gives
an upper bound for the error due to the Hölder inequality. Even, in Section 5.1, this rate
is numerically validated to be sharp.

We close this section with a local regularity result for the solution of the Poisson
equation, which is needed later in the proof of Lemma 13.

Lemma 7. Let U ⊂ Uδ ⊂ Ω denote two connected subsets with dist(∂U, ∂Uδ) ≥ δ, δ > 0,
with boundaries of class C1,1. Let φ ∈ L2(Ω)∩L∞(Uδ) be given and let z ∈ H1

0 (Ω) denote
the unique solution to

−∆z = φ in Ω,

z = 0 on ∂Ω.

Then, for p ∈ [2,∞) there holds

‖z‖W 2,p(U) ≤ Cp(‖φ‖Lp(Uδ) + ‖φ‖L2(Ω)),

where the constant C depends on δ but not on p.

Proof. We follow a similar proof from [Leykekhman and Vexler, 2016, Lemma 2.4], i.e.,
we apply a boot strapping argument. First we introduce an intermediate smooth domain
Uδ/2 such that U ⊂ Uδ/2 ⊂ Uδ with dist(∂U, ∂Uδ/2) ≥ δ/2 and dist(∂Uδ/2, ∂Uδ) ≥ δ/2.
In a first step we show W 1,∞(Uδ/2)-regularity for z. Let ω ∈ C∞(Ω) denote a smooth
cut-off function on Uδ/2, such that ω|Uδ/2 ≡ 1, ω|Ω\Uδ ≡ 0, and |ω|W r,∞(Ω) ≤ Cδ−r
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for r ∈ {0, 1, 2}, see [Hörmander, 2003, Theorem 1.4.1 and Equation (1.42)] for the
existence of such a cut-off function and the corresponding estimates. We set v := ωz.
Then v ∈ H1

0 (Uδ) is the weak solution to

−∆v = φω + (−∆ω)z − 2∇ω · ∇z =: g in Uδ,

v = 0 on ∂Uδ.

Due to the smoothness properties of ω, the right hand side g can be bounded by

‖g‖L6(Uδ) ≤ C
(

‖φ‖L6(Uδ) + ‖z‖W 1,6(Uδ)

)

,

where the constant C depends on δ. Moreover, due to the H2-regularity of z, as Ω is
convex, we have

‖z‖W 1,6(Ω) ≤ C‖z‖H2(Ω) ≤ C‖φ‖L2(Ω).

Consequently, by elliptic regularity, c.f. [Gilbarg and Trudinger, 2001, Theorem 9.9], we
obtain

‖v‖W 2,6(Uδ) ≤ C‖g‖L6(Uδ) ≤ C(‖φ‖L6(Uδ) + ‖φ‖L2(Ω)).

Since ω ≡ 1 on Uδ/2 we have v|Uδ/2 ≡ z|Uδ/2 and therefore

‖z‖W 1,∞(Uδ/2)
≤ C‖z‖W 2,6(Uδ/2)

≤ C(‖φ‖L6(Uδ) + ‖φ‖L2(Ω)). (6)

Next, we repeat the above argumentation for U and Uδ/2 with correspondingly changed
cut-off function ω and auxiliary problem for v. Let p > 6 and ω denote a cut-off function
such that ω ≡ 1 on U and ω ≡ 0 on Ω \ Uδ/2. As above, we obtain

‖g‖Lp(Uδ/2) ≤ C
(

‖φ‖Lp(Uδ/2) + ‖z‖W 1,p(Uδ/2)

)

≤ C
(

‖φ‖Lp(Uδ) + ‖φ‖L2(Ω)

)

,

where we used (6). Finally, from elliptic regularity, c.f. [Gilbarg and Trudinger, 2001,
Theorem 9.9], we get for p ∈ [2,∞) the desired result,

‖z‖W 2,p(U) ≤ Cp(‖φ‖Lp(Uδ) + ‖φ‖L2(Ω)),

where we notice that the constant C is independent of p. This can be seen from the proof
of [Gilbarg and Trudinger, 2001, Theorem 9.9].

3 The Discrete Problem

In the following we derive optimal a-priori error estimates in L2(Ω) for a numerical
approximation to (1) which is based on the regularized problem (3). We rely on the ap-
proach of [Nochetto, 1988]. However, we again notice that the results from that reference
are not directly applicable in our setting as in [Nochetto, 1988] global W 2,p-regularity is
required with arbitrarily large p <∞.
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Let us now introduce the numerical approximation which we are dealing with. We do
not discretize (3) directly but an equivalent reformulation of it. According to (4), we
may truncate the nonlinearity βε without changing the solution to (3). More precisely,
if we choose the constant

λ := c‖f +∆ψ‖L∞(Ω) (7)

with c ≥ 1, we may redefine βε by the bounded, monotonically increasing, and globally
Lipschitz continuous function

βε(s) :=

{

0, if s ≥ 0,

max(s/ε,−λ), if s < 0,
(8)

without changing the solution of (3). This problem with the redefined nonlinearity is
now being discretized by piecewise continuous and linear finite elements. Let {Th} be a
family of conforming and quasi-uniform triangulations of Ω which are admissible in the
sense of Ciarlet. We denote by h := maxT∈Th diam T the global mesh parameter and
assume that h < 1/2. For each element T ∈ Th we assume that it is isoparametrically
equivalent either to the unit cube or to the unit simplex in R

N . On Th we define

Vh := {vh ∈ C(Ω) | v|T is affine ∀T ∈ Th, v|∂Ω ≡ 0},

and determine approximations to the solution uε of (3) by solving the problem: Find
uε,h ∈ Vh such that

(∇uε,h,∇vh) + (βε(uε,h − ψ), vh) = (f, vh) ∀vh ∈ Vh. (9)

For each mesh parameter h the existence of a unique solution to this finite dimensional
problem follows by standard arguments. For later reference, we define Ih : C(Ω) → Vh
as the usual Lagrangian interpolation operator, and the Ritz projection of w ∈ H1

0 (Ω)
as the function Rhw in Vh which satisfies

(∇(Rhw − w),∇vh) = 0 ∀vh ∈ Vh.

Finally, let us stress that we assume exact integration for the non-smooth nonlinearity
βε(uε,h−ψ). We refer to [Jiang and Nochetto, 1994], where a lumping technique is used
for the numerical approximation of the non-linear term.

4 Error Estimates in L
2(Ω)

In Theorem 5 we have already seen that the regularization error can appropriately be
bounded in L2(Ω), even in L∞(Ω). In the following we derive a priori bounds with
respect to the discretization parameter h for the discretization error uε − uε,h in L2(Ω),
see Theorem 14. Afterwards, we combine these results in Theorem 15.

Before going into detail, let us quickly elucidate the structure of the main part of this
section, the proof of estimates for the discretization error. Based on the assumption
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that ψ < 0 on the boundary, i.e., the obstacle is inactive on the boundary, we show
in a first step that there exists a (non-empty) strip Dd at the boundary ∂Ω of width d
(independent of ε and h) such that

β(u− ψ) = βε(uε − ψ) = βε(uε,h − ψ) = 0 a.e. in Dd ⊂ Ω, (10)

see Lemma 9, and hence, the constraint is inactive in the neighborhood Dd of the bound-
ary for each problem. The proof requires that ε and h are small enough as it relies on
the fact that we already have point-wise convergence of uε towards u, see Theorem 5,
and point-wise convergence of uε,h towards uε with some (maybe not optimal) rate, see
Lemma 8. According to (10), we also have that Rhuε − uε,h is discretely harmonic, see
(13), on Dd. This implies that there exists another strip D at the boundary (for instance
of width d/2) such that

‖Rhuε − uε,h‖H1(D) ≤ C‖Rhuε − uε,h‖L2(Dd\D) ≤ C‖Rhuε − uε,h‖L2(Ω\D), (11)

where the constant C depends on the distance between D and Dd, see Theorem 11.
Based on this, we get after having introduced Rhuε as an intermediate function

‖uε − uε,h‖L2(Ω) ≤ ‖uε −Rhuε‖L2(D) + ‖Rhuε − uε,h‖L2(D) + ‖uε − uε,h‖L2(Ω\D)

≤ ‖uε −Rhuε‖L2(D) + C‖Rhuε − uε,h‖L2(Ω\D) + ‖uε − uε,h‖L2(Ω\D)

≤ C
(

‖uε −Rhuε‖L2(Ω) + ‖uε − uε,h‖L2(Ω\D)

)

, (12)

where we introduced uε as an intermediate function in the last step. Estimating the
error of the Ritz-projection Rhuε is standard, taking into account the H2(Ω)-regularity
of uε according to Lemma 3. It remains to bound the second term in the previous
inequality. More precisely, we estimate the difference uε − uε,h in L∞(Ω\D). Here we
rely on a duality argument as in [Nochetto, 1988], see Theorem 14. However, we always
take care on the fact that this term only lives in the interior of the domain, where we have
higher regularity. This is the main reason for having second order convergence (times a
log-factor) in L2(Ω) in case of general convex polygonal/polyhedral domains.

We start with providing an L∞(Ω)-estimate for the discretization error, which is valid
in convex domains, but only has a lower convergence rate.

Lemma 8. Let uε and uε,h be the solutions of (3) and (9), respectively. Then, there is
the estimate

‖uε − uε,h‖L∞(Ω) ≤ Ch2−
N
2 (‖f‖L∞(Ω) + ‖∆ψ‖L∞(Ω)),

where the constant C is independent of ε and h.

Proof. This follows from [Nochetto, 1988, Lemma 2.2 and Theorem 2.3] using onlyH2(Ω)-
regularity which holds in general convex domains. Equivalently, one can set D = ∅ within
the proof of Theorem 14 and Lemma 13. Then, by taking into account only the H2(Ω)-
regularity of z within the proof of Lemma 13 for estimating ‖z−Rhz‖L∞(Ω), one obtains
the desired result as well.

Based on the previous lemma, we next show that (10) holds.
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Lemma 9. Let u, uε and uε,h be the solutions of (2), (3) and (9), respectively. In
addition assume that ψ < 0 on the boundary. Then, there exist constants d > 0, ε0 > 0
and h0 > 0 such that for all ε ≤ ε0 and h ≤ h0 there holds

β(u− ψ) = βε(uε − ψ) = βε(uε,h − ψ) = 0 a.e. in Dd := {x ∈ Ω | dist(x, ∂Ω) ≤ d}.

Proof. As the obstacle ψ is a continuous function on the boundary, which represents a
compact set, we obtain that there exists a τ > 0 such that ψ ≤ −τ on the boundary, and
hence, there holds u−ψ ≥ τ on the boundary. Next, we notice that u−ψ is a continuous
function up to the boundary, see Lemma 3. Consequently, there is a constant d > 0
such that u − ψ ≥ 1

2τ on Dd. Further, from Theorem 5 we have that |u(x) − uε(x)| ≤
ε‖f + ∆ψ‖L∞ for all x ∈ Ω. Consequently, there exists a constant ε0 > 0 such that
uε − ψ ≥ 1

4τ on Dd for all ε ≤ ε0. In the same manner, now using the L∞(Ω)-estimate
from Lemma 8 (note that the constant there is independent of ε and h), we deduce the
existence of a constant h0 > 0 such that for all h ≤ h0 there holds uε,h − ψ ≥ 1

8τ on
Dd. The assertion now follows from the discussion in Remark 4 and the definition of βε
in (8).

Next, we are concerned with proving (11). For that reason, let us first introduce the
notion of locally discrete harmonic functions as it is used in the following. Let Uδ denote
a subset of Ω. We call a function wh ∈ Vh discretely harmonic on Uδ if

(∇wh,∇vh) = 0 ∀vh ∈ Vh ∩ {v ∈ H1(Ω) | v = 0 a.e. in Ω\Uδ}. (13)

It is well known that discretely harmonic functions fulfill the following Caccioppoli-type
estimate: Let U and Uδ be subsets of Ω such that U ⊂ Uδ and dist(U, ∂Uδ\∂Ω) = δ with
δ > 0. Further, assume that wh ∈ Vh is discretely harmonic on Uδ. Then for h small
enough (depending on δ) there is the estimate

‖∇wh‖L2(U) ≤ Cδ−1‖wh‖L2(Uδ), (14)

where the constant C is independent of δ. Estimates of this kind are essential when prov-
ing local energy norm estimates, which can be traced back to [Nitsche and Schatz, 1974]
We also mention [Demlow et al., 2011] where in contrast to [Nitsche and Schatz, 1974]
the assumption on quasi-uniform meshes is avoided and sharply varying grids are admit-
ted. A more sophisticated discussion on local estimates and a survey on related results
from the literature can be found in [Demlow et al., 2011] as well.

In (14) the norm on the right hand side is defined on Uδ but not on Uδ\U as it is
required for our purposes. However, the results from the literature can be extended to
this by minor modifications. We summarize this in the following lemma. We assume
that the mesh is quasi-uniform, and only notice that the results also extend to the more
general setting of [Demlow et al., 2011].

Lemma 10. Let U and Uδ be subsets of Ω such that U ⊂ Uδ and dist(U, ∂Uδ\∂Ω) = δ
with δ > 0. Further, assume that wh ∈ Vh is discretely harmonic on Uδ in the sense of
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(13). Then, there exists a constant hδ > 0 (depending on δ) such that for h ≤ hδ there
is the estimate

‖∇wh‖L2(U) ≤ Cδ−1‖wh‖L2(Uδ\U),

where the constant C is independent of δ.

Proof. For i = 1, . . . , 4, let Uiδ/5 be a subset of Ω such that U ⊂ Uiδ/5 ⊂ Uδ and
dist(U, ∂Uiδ/5\∂Ω) = iδ/5. Moreover, we define the smooth cut-off function ω ∈ C∞(Ω)
which satisfies

ω|U2δ/5
≡ 1, ω|Ω\U3δ/5

≡ 0, and |ω|W r,∞(Ω) ≤ Cδ−r for 0 ≤ r ≤ 2,

see [Hörmander, 2003, Theorem 1.4.1 and Equation (1.42)] for the existence of such a
cut-off function and the corresponding estimates. By simple calculations we deduce

‖∇wh‖
2
L2(U) ≤ ‖ω∇wh‖

2
L2(Uδ)

=

∫

Uδ

ω2∇wh · ∇wh

=

∫

Uδ

∇wh · ∇(ω2wh)−

∫

Uδ

wh∇wh · ∇ω
2. (15)

For the second term we obtain by the Cauchy-Schwarz inequality and the properties of ω

∣

∣

∣

∣

∫

Uδ

wh∇wh · ∇ω
2

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∫

Uδ

ω∇wh · wh∇ω

∣

∣

∣

∣

≤ 2‖ω∇wh‖L2(Uδ)‖wh∇ω‖L2(Uδ\U)

≤ Cδ−1‖ω∇wh‖L2(Uδ)‖wh‖L2(Uδ\U) ≤
1

4
‖ω∇wh‖

2
L2(Uδ)

+ Cδ−2‖wh‖
2
L2(Uδ\U),(16)

where we applied Young’s inequality in the last step. Next, we consider the first term in
(15). We notice that there exists a constant hδ > 0 such that for all h ≤ hδ there holds
Ih(ω

2wh) ∈ Vh ∩ {v ∈ H1(Ω) | v = 0 a.e. in Ω\U4δ/5} and Ih(ω
2wh) ≡ ω2wh on Uδ/5.

Thus, using (13) to insert Ih(ω
2wh) we obtain

∫

Uδ

∇wh · ∇(ω2wh) =

∫

Uδ

∇wh · ∇
(

ω2wh − Ih(ω
2wh)

)

=

∫

U4δ/5\Uδ/5
∇wh · ∇

(

ω2wh − Ih(ω
2wh)

)

≤
∑

T⊂Uδ\U
‖∇wh‖L2(T )‖∇

(

ω2wh − Ih(ω
2wh)

)

‖L2(T ).

For each element T ⊂ Uδ \U we deduce by means of an inverse inequality and a standard
interpolation error estimate

‖∇wh‖L2(T )‖∇
(

ω2wh − Ih(ω
2wh)

)

‖L2(T ) ≤ Ch−1‖wh‖L2(T )h|ω
2wh|H2(T )

= C‖wh‖L2(T )|ω
2wh|H2(T ).
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Moreover, using the bounds for ω and its derivatives, we get by elementary calculations

|ω2wh|H2(T ) ≤ C
(

|ω|W 1,∞(T )‖ω∇wh‖L2(T ) + |ω2|W 2,∞(T )‖wh‖L2(T )

)

≤ C
(

δ−1‖ω∇wh‖L2(T ) + δ−2‖wh‖L2(T )

)

.

The previous inequalities imply

∫

Uδ

∇wh · ∇(ω2wh) ≤ C
∑

T⊂Uδ\U

(

δ−1‖wh‖L2(T )‖w∇wh‖L2(T ) + δ−2‖wh‖
2
L2(T )

)

≤
1

4
‖ω∇wh‖

2
L2(Uδ)

+ Cδ−2‖wh‖
2
L2(Uδ\U), (17)

where we applied Young’s inequality in the last step. We finally get the assertion from
(15), (16) and (17).

We now combine the previous results to deduce (11).

Theorem 11. Let uε and uε,h be the solutions of (3) and (9), respectively. In addition
assume that ψ < 0 on the boundary. Then, there exist a non-empty strip D at the
boundary and constants ε1 > 0 and h1 > 0 such that for all ε ≤ ε1 and h ≤ h1 there
holds

‖Rhuε − uε,h‖H1(D) ≤ C‖Rhuε − uε,h‖L2(Ω\D).

Proof. Define D := {x ∈ Ω |dist(x, ∂Ω) ≤ d/2}, where d denotes the width of the
strip Dd in Lemma 9. From the same lemma we obtain that Rhuε − uε,h is discretely
harmonic on Dd for all h ≤ h0 and ε ≤ ε1 := ε0 as βε(uε − ψ) = βε(uε,h − ψ) = 0
on Dd. Consequently, employing Lemma 10 there exists a constant hd such that for all
h ≤ h1 := min{h0, hd} there holds

‖∇(Rhuε − uε,h)‖L2(D) ≤ C‖Rhuε − uε,h‖L2(Dd\D) ≤ C‖Rhuε − uε,h‖L2(Ω\D).

As Rhuε − uε,h fulfills homogeneous boundary conditions on ∂Ω, the estimate of the
assertion is finally a consequence of the Poincaré inequality.

For the remainder of this section let D denote a strip at the boundary where we have

βε(uε − ψ)|D = βε(uε,h − ψ)|D = 0. (18)

This is the same strip as introduced in Theorem 11 when we collect all the intermediate
estimates in Theorem 15. In a next step for the final result, we estimate uε − uε,h in
L∞(Ω\D). As already announced, we use a duality argument for that purpose. For the
corresponding dual problem, we define

b :=

{

[βε(uε − ψ)− βε(uε,h − ψ)]/(uε − uε,h) if (uε − uε,h)(x) 6= 0,

0 else.
(19)
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Note that 0 ≤ b ≤ ε−1 almost everywhere in Ω. Moreover, let

δ̃ be a function from C∞(Ω) with supp δ̃ ⊂ Ω \D and ‖δ̃‖L1(Ω) ≤ 1. (20)

Then, we define G ∈ H1
0 (Ω) as the weak solution to the dual problem

−∆G+ bG = δ̃ in Ω,

G = 0 on ∂Ω.
(21)

Before applying the duality argument in Theorem 14, let us state several auxiliary results.

Lemma 12. Let D with |D| ≥ 0 be a strip at the boundary where (18) holds. Moreover,
let b and δ̃ be the functions from (19) and (20), respectively, and let G ∈ H1

0 (Ω) be the
solution of (21). Then, there holds

(i) ‖bG‖L1(Ω) ≤ 1,

(ii) supp bG ⊂ Ω \D.

Proof. (i) For t > 0 we define the regularized sign function sgnt(x) := x√
x2+t

. Testing

(21) with sgnt(G) yields

1 ≥ (δ̃, sgnt(G)) = (∇G, sgn′t(G)∇G) + (bG, sgnt(G)).

As a consequence, by means of the monotonicity of sgnt, we get 1 ≥ (bG, sgnt(G))L2(Ω).
Sending t to zero and recalling that b ≥ 0 yields 1 ≥

∫

Ω b sgn(G)G = ‖bG‖L1(Ω).
(ii) According to (18) we have βε(uε−ψ) = βε(uε,h−ψ) = 0 a.e. on D such that b = 0

a.e. on D, and hence bG = 0 a.e. on D.

Lemma 13. Let D with |D| > 0 (independent of ε and h) be a strip at the boundary
where (18) holds. Moreover, let b and δ̃ be the functions from (19) and (20), respectively.
Then, there exists a constant hd > 0 such that for all h ≤ hd the solution G of (21) and
its Ritz-projection RhG fulfill

‖G−RhG‖L1(Ω) ≤ Ch2|log h|2

with a constant C > 0 independent of ε, h and δ̃.

Proof. Let z ∈ H1
0 (Ω) denote the unique weak solution to

−∆z = sgn(G−RhG) in Ω,

z = 0 on ∂Ω.

By means of this equation, the orthogonality of the Ritz-projection, (21) and Lemma 12,
we obtain

‖G−RhG‖L1(Ω) = (G−RhG, sgn(G−RhG)) = (∇(G −RhG),∇z)

= (∇(G−RhG),∇(z −Rhz)) = (∇G,∇(z −Rhz))

= (δ̃ − bG, z −Rhz)L2(Ω\D) ≤ (‖δ̃‖L1(Ω) + ‖bG‖L1(Ω))‖z −Rhz‖L∞(Ω\D)

≤ 2‖z −Rhz‖L∞(Ω\D).
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For technical reasons, we have to introduce another subset D′ of Ω, which is smoothly
bounded, fulfills D′ ⊂ D, and has a fixed and positive distance to D and to ∂Ω. Using
local L∞-error estimates from [Wahlbin, 1991, Theorem 10.1] in combination with a
standard interpolation error estimate we get for h small enough

‖z −Rhz‖L∞(Ω\D) ≤ C
(

h
2−N

p |log h|‖z‖W 2,p(Ω\D′) + ‖z −Rhz‖L2(Ω)

)

.

A standard L2(Ω)-error estimate for the Ritz-projection together with elliptic regularity
for z, and Lemma 7 implies

‖z −Rhz‖L∞(Ω\D) ≤ C
(

ph
2−N

p |log h|‖sgn(G−RhG)‖Lp(Ω) + h2‖sgn(G−RhG)‖L2(Ω)

)

≤ Ch2|log h|2(p|log h|−1h
−N
p + 1),

where we used that ‖sgn(G − RhG)‖L∞(Ω) ≤ 1. If we set p = |log h|, the desired result

follows as h
− N

|log h| = eN .

Theorem 14. Let D with |D| > 0 (independent of ε and h) be a strip at the boundary
where (18) holds. Moreover, let uε and uε,h be the solutions of (3) and (9), respectively.
Then, there exists a constant hd > 0 such that for all h ≤ hd there holds

‖uε − uε,h‖L∞(Ω\D) ≤ Ch2|log h|2(‖f‖L∞(Ω) + ‖∆ψ‖L∞(Ω))

with a constant C > 0 independent of ε and h.

Proof. As L∞(Ω \D) = (L1(Ω \D))∗ we have that

‖uε − uε,h‖L∞(Ω\D) = sup
δ̃∈C∞(Ω)

supp δ̃⊂Ω\D
‖δ̃‖L1(Ω)≤1

∣

∣

∣

∣

∫

Ω
(uε − uε,h)δ̃

∣

∣

∣

∣

.

Let such a δ̃ be the right hand side of (21). Consequently, we get
∫

Ω
(uε − uε,h)δ̃ = (∇(uε − uε,h),∇G) + (βε(uε − ψ)− βε(uε,h − ψ), G)

= (∇(uε − uε,h),∇(G −RhG) + (βε(uε − ψ) − βε(uε,h − ψ), G −RhG),

where we also used (3) and (9). The orthogonality of the Ritz-projection and (3) imply
∫

Ω
(uε − uε,h)δ̃ = (∇uε,∇(G−RhG) + (βε(uε − ψ)− βε(uε,h − ψ), G −RhG)

= (f − βε(uε,h − ψ), G−RhG)

≤ ‖f − βε(uε,h − ψ)‖L∞(Ω)‖G−RhG‖L1(Ω).

The assertion follows from the boundedness ‖βε(uε,h − ψ)‖L∞(Ω) ≤ c‖f + ∆ψ‖L∞(Ω)

according to (8), and Lemma 13.
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If we now combine the results from Theorem 5, Lemma 9, Theorem 11, and Theo-
rem 14, as outlined in (12), we obtain the following result.

Theorem 15. Let u, uε and uε,h be the solutions of (1), (3) and (9), respectively. In
addition assume that ψ < 0 on the boundary. Then, there exist constants εd > 0 and
hd > 0 such that for all ε ≤ εd and h ≤ hd there holds

‖u− uε,h‖L2(Ω) ≤ C
(

ε+ h2|log h|2
)

(‖f‖L∞(Ω) + ‖∆ψ‖L∞(Ω))

with a constant C > 0 independent of ε and h, and using ε = O(h2|log h|2) we get

‖u− uε,h‖L2(Ω) ≤ Ch2|log h|2(‖f‖L∞(Ω) + ‖∆ψ‖L∞(Ω)).

We close this section with some remarks on certain additional aspects of our approach.

Remark 16 (Inactivity at the boundary ∂Ω). The previous results are derived under the
assumption that the obstacle is inactive on the boundary. This is due to the appearance of
singular terms within the primal and dual solutions at the singular points of the boundary,
which are the corners of the domain for N = 2, and the corners and edges for N = 3.
However, the singularities are local phenomena. Away from the singular points, the
regularity of the primal and dual solutions is only limited by the regularity of the data
and the obstacle. For that reason, it is also sufficient to only assume inactivity of ψ on
the boundary at the singular points.

Remark 17 (Non-convex domains). Throughout the whole paper, we have assumed that
the domain is convex. Let us briefly comment on the non-convex case. As already noticed
in the previous remark, the singularities are only local phenomena around the singular
points. Thus, the W 2,p(Ω\D′) regularity in the interior of the domain still holds. Only
the H2(Ω) regularity up to the boundary might no longer be true. Consequently, in the
non-convex case, one only has to replace the estimates for

‖uε −Rhuε‖L2(Ω) in (12) and ‖z −Rhz‖L2(Ω) within the proof of Lemma 13

by the correspondingly adapted estimates. Moreover, as the results of Lemma 10 will also
hold on sharply varying grids (see the discussion before Lemma 10), it is also possible to
use mesh grading techniques to retain the full order of convergence for the critical terms
from above.

5 Numerical Validation

For the numerical realization of the fully discrete equation (9) we employ the finite
element toolbox Gascoigne [Gascoigne, 2018]. To access Gascoigne we use the opti-
mization toolbox RoDoBo [RoDoBo, 2018] as an interface. The resulting non-linear and
non-smooth systems of equations corresponding to (9) are solved numerically by means of
the semi-smooth Newton method (see e.g. [Hinze et al., 2009]) provided by Gascoigne.
In each of the numerical examples of the subsequent Sections 5.1 and 5.2 the discrete
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subspaces Vh are constructed by piecewise bilinear and globally continuous functions on
a sequence of subdivisions of Ω into quadrilaterals. The computational domains Ω ⊂ R

2

are exactly specified below. Moreover, we fix f = −30 and ψ = −1. The constant c in
the definition of λ (7) is chosen as c = 6.

The example in Section 5.1 shows that the convergence rates of uε,h in terms of ε and
h are sharp. More precisely, we see that the exponents of ε and h|log h| in

‖u− uε,h‖L2(Ω) ≤ C(ε+ h2| log h|2), (22)

proven in Theorem 15, can essentially not be improved.
The example in Section 5.2 studies the influence of the largest interior angle of a

polygonal domain on the convergence rates in L2(Ω) and L∞(Ω). It illustrates that
the result of Theorem 15, and hence estimate (22), is valid in general convex domains.
However, the convergence rates in L∞(Ω) may be reduced depending on the largest
interior angle due to the appearance of corner singularities. Let us denote by α ∈ [π/3, π)
the largest interior angle of the domain. Then, one can show (neglecting log-terms)

‖u− uε,h‖L∞(Ω) ≤ C(ε+ hmin{2,π/α}−δ) (23)

for an arbitrarily small δ > 0. For instance, this can be deduced from [Nochetto, 1988,
Lem. 2.2 and Thm. 2.3] having in mind the reduced regularity stemming from the corner
singularities.

Before turning our attention to the numerical examples, we notice that we use reference
solutions (computed on a fine mesh and with a small regularization parameter) for the
purpose of comparison, as we do not have analytic solutions to any of our numerical
examples.

5.1 Validation of the Discretization Error Estimates in L
2(Ω)

In this section we verify (22). As underlying domain we choose the unit square. The
reference solution is computed with εref = 10−8 and href = 0.510 ≈ 10−3. From the
structure of the estimate one expects that for small h the total error is dominated by
the error caused by ε and vice versa. To show this, we calculate solutions uε,h to (9) for
sequences ε and h tending to zero. In Figure 1 we show ‖uε,h − uref‖L2(Ω) as a function
of ε for fixed values of h, while in Figure 2 we show ‖uε,h − uref‖L2(Ω) as a function of h
for fixed values of ε.

In Figure 1 we observe, that for every fixed h, the error becomes stationary for small
ε and cannot be further reduced by reducing ε. Hence, the discretization error is domi-
nating in this case. Moreover, for h sufficiently small we observe first order convergence
in terms of ε. This is in agreement with our theoretical findings, see (22). An analogous
result is observed in Figure 2, but with ε and h changing their roles. Of course, in terms
of h we see a convergence rate of close to two.

5.2 Influence of the Largest Interior Angle on the Error in L
2 and L

∞

In this section we verify (22) and (23) on domains Ω with varying largest interior angle.
The reference solution for each experiment is calculated with εref = 10−4 and href =
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10−7 10−6 10−5 10−4 10−3
10−5

10−4

10−3

10−2

10−1

O(ǫ)

ε

‖uǫ,h − uref‖L2(Ω)

h = 6.25 · 10−2

h = 3.12 · 10−2

h = 1.56 · 10−2

h = 7.81 · 10−3

h = 3.91 · 10−3

Figure 1: Sequence of errors for sequences of h and ε tending to zero.

10−2 10−1

10−4

10−3

10−2

O(h2)

h

‖uε,h − uref‖L2(Ω)

ε = 1.00 · 10−3

ε = 7.07 · 10−4

ε = 5.00 · 10−4

ε = 1.41 · 10−4

ε = 1.00 · 10−4

ε = 7.07 · 10−5

ε = 5.00 · 10−5

ε = 1.41 · 10−5

ε = 1.00 · 10−5

ε = 7.07 · 10−6

ε = 5.00 · 10−6

Figure 2: Sequence of errors for sequences of h and ε tending to zero.
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h ηL
2

h EOC of ηL
2

h ηL
∞

h EOC of ηL
∞

h

0.54 6.17 · 10−3 − 9.47 · 10−3 −

0.55 1.50 · 10−3 2.04 2.39 · 10−3 1.99

0.56 3.76 · 10−4 2.00 5.96 · 10−4 2.00

0.57 9.11 · 10−5 2.05 1.43 · 10−4 2.06

expected 2 2− δ

Table 1: Numerical results for Ω 1
2
π.

0.59 ≈ 2 · 10−3. Moreover we fix ε = 10−4 for all experiments, and hence, we only
investigate the error behavior with respect to h depending on the largest interior angle.
As computational domains, we consider the domains Ωα with largest interior angle α ∈
[π/2, π) which are defined by

Ω̄α := conv{(0, 0), (1, 0), (0, 1), (1 + tan(α/2))−1(1, 1)}.

In particular, the case α = π
2 leads to the unit square (0, 1)2, while for α→ π the domain

Ωα degenerates to a rectangular triangle.
We perform experiments for three particular domains with largest interior angle π/2,

3π/4, and 17π/18. Our observations are presented in Tables 1 – 3. Here ηL
p

h := ‖uε,h −
uref‖Lp(Ω) abbreviates the error between the numerical solution uε,h and the reference
solution uref in the Lp-norm (p ∈ {2,∞}). For sequences (hk) and (ηk) we define the
experimental order of convergence (EOC) by

EOCk =
log(ηk)− log(ηk−1)

log(hk)− log(hk−1)

as an approximation to the convergence rate of (ηk) with respect to (hk). We observe
that the experimental orders of convergence for ηL

2

h are two on all three domains, as
expected from (22). In case of ηL

∞

h , we observe a decreasing convergence rate for an
increasing largest interior angle. The corresponding experimental orders of convergence
nicely follow the theoretical result from (23).
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