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Abstract

We begin an investigation of hybridizable discontinuous Galerkin (HDG) methods for ap-
proximating the solution of Dirichlet boundary control problems governed by elliptic PDEs.
These problems can involve atypical variational formulations, and often have solutions with low
regularity on polyhedral domains. These issues can provide challenges for numerical methods
and the associated numerical analysis. We propose an HDG method for a Dirichlet boundary
control problem for the Poisson equation, and obtain optimal a priori error estimates for the
control. Specifically, under certain assumptions, for a 2D convex polygonal domain we show
the control converges at a superlinear rate. We present 2D and 3D numerical experiments to
demonstrate our theoretical results.

1 Introduction

We consider the following elliptic Dirichlet boundary control problem on a Lipschitz polyhedral
domain Ω ⊂ Rd, d ≥ 2, with boundary Γ = ∂Ω :

min J(u), J(u) =
1

2
‖y − yd‖2L2(Ω) +

γ

2
‖u‖2L2(Γ), (1)

where γ > 0 and y is the solution of the Poisson equation with nonhomogeneous Dirichlet boundary
conditions

−∆y = f in Ω, (2)

y = u on Γ. (3)
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It is well known that the Dirichlet boundary control problem (1)-(3) is equivalent to the opti-
mality system

−∆y = f in Ω, (4a)

y = u on Γ, (4b)

−∆z = y − yd in Ω, (4c)

z = 0 on Γ, (4d)

u = γ−1 ∂z

∂n
on Γ. (4e)

where n is the unit outer normal to Γ.
Dirichlet boundary control has many applications in fluid flow problems and other fields, and

therefore the mathematical study of these control problems has become an important area of
research. Major theoretical and computational developments have been made in the recent past;
see, e.g., [7, 16, 17, 19–21, 24–27, 42, 43, 45]. However, only in the last ten years have researchers
developed thorough well-posedness, regularity, and finite element error analysis results for elliptic
PDEs; see [1, 5, 18, 33, 46] and the references therein. One difficulty of Dirichlet boundary control
problems is that the Dirichlet boundary data does not directly enter a standard variational setting
for the PDE; instead, the state equation is understood in a very weak sense. Also, solutions of
the optimality system typically do not have high regularity on polyhedral domains; corners cause
the normal derivative of the adjoint state ∂z/∂n in the optimality condition (4) to have limited
smoothness. Solutions with limited regularity can lead to complications for numerical methods and
numerical analysis.

To avoid the difficulties described above, researchers have considered other approaches including
modified cost functionals [11, 23, 25, 39], approximating the Dirichlet boundary condition with a
Robin boundary condition [2–4,28,41], and weak boundary penalization [8].

One way to approximate the solution of the original problem without penalization and also
avoid the variational difficulty is to use a mixed finite element method. Recently, Gong and Yan [22]
considered this approach and obtained

‖u− uh‖0,Ω = O(h1−1/s)

when the control belongs to H1−1/s(Γ) and the lowest order Raviart-Thomas elements are used for
the computation.

As researchers continue to investigate Dirichlet boundary control problems of increasingly com-
plexity, it may become natural to utilize discontinuous Galerkin methods for the spatial discretiza-
tion of problems involving strong convection and discontinuities. We have performed preliminary
computations using an hybridizable discontinuous Galerkin (HDG) method for a similar elliptic
Dirichlet boundary control problem for the Stokes equations. Our preliminary results for this prob-
lem indicate that the optimal control can indeed be discontinuous at the corners of the domain.
Before we continue to investigate problems of such complexity, we begin this line of research by
considering an HDG method to approximate the solution of the above Dirichlet boundary control
problem.

HDG methods also utilize a mixed formulation and therefore avoid the variational difficulty of
the Dirichlet control problem. Furthermore, the number of degrees of freedom for HDG methods
are much less than standard mixed methods or other DG approaches. Moreover, the RT element is
a special case of the HDG method. We provide more background about HDG methods in Section
3.
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We propose an HDG method to approximate the control in Section 3, and in Section 4 we prove
an optimal superlinear rate of convergence for the control in 2D under certain assumptions on the
domain and yd. To give a specific example, for a rectangular 2D domain and yd ∈ H1(Ω)∩L∞(Ω),
we obtain the following a priori error bounds for the state y, adjoint state z, their fluxes q = −∇y
and p = −∇z, and the optimal control u:

‖y − yh‖0,Ω = O(h3/2−ε), ‖z − zh‖0,Ω = O(h3/2−ε),

‖q − qh‖0,Ω = O(h1−ε), ‖p− ph‖0,Ω = O(h3/2−ε),

and

‖u− uh‖0,Γ = O(h3/2−ε),

for any ε > 0. We demonstrate the performance of the HDG method with numerical experiments
in 2D and 3D in Section 5.

2 Background: The Optimality System and Regularity

To begin, we review some fundamental results concerning the optimality system for the control
problem and the regularity of the solution in 2D polygonal domains.

Throughout the paper we adopt the standard notation Wm,p(Ω) for Sobolev spaces on Ω with
norm ‖ · ‖m,p,Ω and seminorm | · |m,p,Ω . We denote Wm,2(Ω) by Hm(Ω) with norm ‖ · ‖m,Ω and
seminorm | · |m,Ω. Also, H1

0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}. We denote the L2-inner products on
L2(Ω) and L2(Γ) by

(v, w) =

∫
Ω
vw ∀v, w ∈ L2(Ω),

〈v, w〉 =

∫
Γ
vw ∀v, w ∈ L2(Γ).

Define the space H(div; Ω) as

H(div,Ω) = {v ∈ [L2(Ω)]2,∇ · v ∈ L2(Ω)}.

To avoid the the variational difficulty we follow the strategy introduced by Wei Gong and
Ningning Yan [22] and consider a mixed formulation of the optimality system. Introduce two flux
variables q = −∇y and p = −∇z. The mixed weak form of (4a)-(4e) is

(q, r)− (y,∇ · r) + 〈u, r · n〉 = 0, (5a)

(∇ · q, w) = (f, w), (5b)

(p, r)− (z,∇ · r) = 0, (5c)

(∇ · p, w)− (y, w) = (yd, w), (5d)

〈γu+ p · n, ξ〉 = 0, (5e)

for all (r, w, ξ) ∈ H(div,Ω)× L2(Ω)× L2(Γ).
One of the main reasons that Dirichlet boundary control problem can be challenging numerically

is that the solution can have very low regularity, and this restricts the convergence rates of finite
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element and DG methods. In order to prove a superlinear convergence rate for the optimal control
for the HDG method in 4, we assume the solution has the following fractional Sobolev regularity:

u ∈ Hru(Γ), y ∈ Hry(Ω), z ∈ Hrz(Ω), q ∈ Hrq(Ω), p ∈ Hrp(Ω), (6)

with
ru > 1, ry > 1, rz > 2, rq > 1/2, rp > 1. (7)

We require rq > 1/2 in order to guarantee q has a well-defined trace on the boundary Γ. We note
that it may be possible to use the techniques in [30] to lower the regularity requirement on q. We
leave this to be considered elsewhere.

For a 2D convex polygonal domain and f = 0, we use a recent regularity result of Mateos and
Neitzel [32] below to give conditions on the domain and yd to guarantee the solution has the above
regularity. For a higher dimensional convex polyhedral domain, the regularity theory is much more
complicated, and we do not attempt to provide conditions to guarantee the above regularity in this
work.

Theorem 1 ( [32], Lemma 3 and Corollary 1). Suppose f = 0 and Ω ⊂ R2 is a bounded convex
domain with polygonal boundary Γ. Let ω ∈ [π/3, π) be the largest interior angle of Γ, and define
pΩ, rΩ by

pΩ =
2

2− π/max{ω, π/2}
∈ (2,∞],

and
rΩ = 1 +

π

ω
∈ (2, 4].

If yd ∈ Lp(Ω) ∩Hr−2(Ω) for all p < pΩ and r < rΩ, then the solution (u, y, z) satisfies

u ∈ Hr−3/2(Γ) ∩W 1−1/p,p(Γ),

y ∈ Hr−1(Ω) ∩W 1,p(Ω),

z ∈ H1
0 (Ω) ∩Hr(Ω) ∩W 2,p(Ω)

for all
p < pΩ, r < min{3, rΩ}.

We also require the regularity for the flux variables q = −∇y and p = −∇z.

Corollary 1. Under the assumptions of Theorem 1, the flux variables q = −∇y and p = −∇z
satisfy

q ∈ Hr−2(Ω) ∩H(div,Ω), p ∈ Hr−1(Ω) ∩H(div,Ω)

for all r < min{3, rΩ}.

Proof. We treat the optimal control u as known, and then (y, q) satisfy the weak mixed formulation
(5a)-(5b). Since u ∈ H1/2(Γ), the standard theory for this mixed problem gives q ∈ H(div,Ω).
Taking r smooth and integrating by parts in (5a) gives q = −∇y, and therefore the fractional
Sobolev regularity for q follows directly from Theorem 1. The regularity for p follows similarly.

The regularity for the flux variable q = −∇y is low; Theorem 1 only guarantees q ∈ Hrq for
some 0 < rq < 1. For the HDG approximation theory, we need the regularity condition rq > 1/2.
We can guarantee this condition by restricting the maximum interior angle ω. Specifically, if if yd
has the required smoothness and ω satisfies

ω ∈ [π/3, 2π/3),
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then rΩ ∈ (5/2, 4] and we are guaranteed q ∈ Hrq for some rq > 1/2.
Also, when we restrict ω ∈ [π/3, 2π/3) as above, this guarantees u ∈ Hru for some 1 < ru < 3/2

and furthermore the regularity assumption (6)-(7) is satisfied. For a rectangular domain, we have
pΩ = ∞ and rΩ = 3. Therefore if yd ∈ H1(Ω) ∩ L∞(Ω) we are guaranteed the fractional Sobolev
regularity

ru =
3

2
− ε, ry = 2− ε, rz = 3− ε, rq = 1− ε, rp = 2− ε

for any ε > 0.

3 HDG Formulation and Implementation

A mixed method can avoid the variational difficulty by the introducing flux variables q and p
and the equation for the optimal control (5e). However, these two additional vector variables will
increase the computational cost, even if the lowest order RT method is used.

We introduce an HDG method for the optimality system (4) to take advantage of the mixed
formulation and also reduce the computational cost compared to standard mixed methods. Specif-
ically, we introduce the flux variables but eliminate them before we solve the global equation; this
significantly reduces the degrees of freedom.

HDG methods were proposed by Cockburn et al. in [12] as an improvement of tradition dis-
continuous Galerkin methods and have many applications; see, e.g., [6, 9, 13–15, 35–38, 44]. The
approximate scalar variable and flux are expressed in an element-by-element fashion in terms of an
approximate trace of the scalar variable along the element boundary. Then, a unique value for the
trace at inter-element boundaries is obtained by enforcing flux continuity. This leads to a global
equation system in terms of the approximate boundary traces only. The high number of globally
coupled degrees of freedom is significantly reduced compared to other DG methods and standard
mixed methods.

Before we introduce the HDG method, we first set some notation. Let {Th} be a conforming
quasi-uniform polyhedral mesh of Ω. We denote by ∂Th the set {∂K : K ∈ Th}. For an element K
of the collection Th, let e = ∂K ∩ Γ denote the boundary face of K if the d− 1 Lebesgue measure
of e is non-zero. For two elements K+ and K− of the collection Th, let e = ∂K+ ∩ ∂K− denote the
interior face between K+ and K− if the d − 1 Lebesgue measure of e is non-zero. Let εoh and ε∂h
denote the set of interior and boundary faces, respectively. We denote by εh the union of εoh and
ε∂h. We finally introduce

(w, v)Th =
∑
K∈Th

(w, v)K , 〈ζ, ρ〉∂Th =
∑
K∈Th

〈ζ, ρ〉∂K .

Let Pk(D) denote the set of polynomials of degree at most k on a domain D. We introduce the
discontinuous finite element spaces

Vh := {v ∈ [L2(Ω)]d : v|K ∈ [Pk(K)]d, ∀K ∈ Th}, (8)

Wh := {w ∈ L2(Ω) : w|K ∈ Pk+1(K), ∀K ∈ Th}, (9)

Mh := {µ ∈ L2(εh) : µ|e ∈ Pk(e), ∀e ∈ εh}. (10)

The space Wh is for scalar variables, while Vh is for flux variables and Mh is for boundary trace
variables. Note that the polynomial degree for the scalar variables is one order higher than the
polynomial degree for the other variables. Also, the boundary trace variables will be used to
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eliminate the state and flux variables from the coupled global equations, thus substantially reducing
the number of degrees of freedom.

Let Mh(o) and Mh(∂) denote the spaces defined in the same way as Mh, but with εh replaced
by εoh and ε∂h, respectively. Note that Mh consists of functions which are continuous inside the faces
(or edges) e ∈ εh and discontinuous at their borders. In addition, for any function w ∈Wh we use
∇w to denote the piecewise gradient on each element K ∈ Th. A similar convention applies to the
divergence operator ∇ · r for all r ∈ Vh.

3.1 The HDG Formulation

To approximate the solution of the mixed weak form (4a)-(4e) of the optimality system, the HDG
method seeks approximate fluxes qh,ph ∈ Vh, states yh, zh ∈Wh, interior element boundary traces
ŷoh, ẑ

o
h ∈Mh(o), and boundary control uh ∈Mh(∂) satisfying

(qh, r1)Th − (yh,∇ · r1)Th + 〈ŷoh, r1 · n〉∂Th\ε∂h + 〈uh, r1 · n〉ε∂h = 0, (11a)

−(qh,∇w1)Th + 〈q̂h · n, w1〉∂Th = (f, w1)Th , (11b)

for all (r1, w1) ∈ Vh ×Wh,

(ph, r2)Th − (zh,∇ · r2)Th + 〈ẑoh, r2 · n〉∂Th\ε∂h = 0, (11c)

−(ph,∇w2)Th + 〈p̂h · n, w2〉∂Th − (yh, w2)Th = −(yd, w2)Th , (11d)

for all (r2, w2) ∈ Vh ×Wh,

〈q̂h · n, µ1〉∂Th\ε∂h = 0, (11e)

for all µ1 ∈Mh(o),

〈p̂h · n, µ2〉∂Th\ε∂h = 0, (11f)

for all µ2 ∈Mh(o), and

〈uh, µ3〉ε∂h + 〈γ−1p̂h · n, µ3〉ε∂h = 0, (11g)

for all µ3 ∈Mh(∂).
The numerical traces on ∂Th are defined as

q̂h · n = qh · n+ h−1(PMyh − ŷoh) on ∂Th\ε∂h, (11h)

q̂h · n = qh · n+ h−1(PMyh − uh) on ε∂h, (11i)

p̂h · n = ph · n+ h−1(PMzh − ẑoh) on ∂Th\ε∂h, (11j)

p̂h · n = ph · n+ h−1PMzh on ε∂h, (11k)

where PM denotes the standard L2-orthogonal projection from L2(εh) onto Mh. This completes
the formulation of the HDG method.

The HDG formulation with h−1 stabilization, polynomial degree k + 1 for the scalar unknown,
and polynomial degree k for the other unknowns was originally introduced by Lehrenfeld in [29].
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3.2 Implementation

To arrive at the HDG formulation we implement numerically, we insert (11h)-(11k) into (11a)-(11g),
and find after some simple manipulations that

(qh,ph, yh, zh, ŷ
o
h, ẑ

o
h, uh) ∈ Vh × Vh ×Wh ×Wh ×Mh(o)×Mh(o)×Mh(∂)

is the solution of the following weak formulation:

(qh, r1)Th − (yh,∇ · r1)Th + 〈ŷoh, r1 · n〉∂Th\ε∂h + 〈uh, r1 · n〉ε∂h = 0, (12a)

(ph, r2)Th − (zh,∇ · r2)Th + 〈ẑoh, r2 · n〉∂Th\ε∂h = 0, (12b)

(∇ · qh, w1)Th + 〈h−1PMyh, w1〉∂Th − 〈h
−1ŷoh, w1〉∂Th\ε∂h (12c)

−〈h−1uh, w1〉ε∂h = (f, w1)Th , (12d)

(∇ · ph, w2)Th + 〈h−1PMzh, w2〉∂Th − 〈h
−1ẑoh, w2〉∂Th\ε∂h (12e)

−(yh, w2)Th = −(yd, w2)Th , (12f)

〈qh · n, µ1〉∂Th\ε∂h + 〈h−1yh, µ1〉∂Th\ε∂h − 〈h
−1ŷoh, µ1〉∂Th\ε∂h = 0, (12g)

〈ph · n, µ2〉∂Th\ε∂h + 〈h−1zh, µ2〉∂Th\ε∂h − 〈h
−1ẑoh, µ2〉∂Th\ε∂h = 0, (12h)

〈uh, µ3〉ε∂h + 〈γ−1ph · n, µ3〉ε∂h + 〈γ−1h−1zh, µ3〉ε∂h = 0, (12i)

for all (r1, r2, w1, w2, µ1, µ2, µ3) ∈ Vh × Vh ×Wh ×Wh ×Mh(o)×Mh(o)×Mh(∂).

3.2.1 Matrix equations

Assume Vh = span{ϕi}N1
i=1, Wh = span{φi}N2

i=1, Mo
h = span{ψi}N3

i=1, and M∂
h = span{ψi}N4

i=1+N3
.

Then

qh =

N1∑
j=1

qjϕj , ph =

N1∑
j=1

pjϕj , yh =

N2∑
j=1

yjφj , zh =

N2∑
j=1

zjφj ,

ŷoh =

N3∑
j=1

αjψj , ẑoh =

N3∑
j=1

γjψj , uh =

N4∑
j=1+N3

βjψj .

(13)

Substitute (13) into (12a)-(12i) and use the corresponding test functions to test (12a)-(12i), respec-
tively, to obtain the matrix equation

A1 0 −A2 0 A8 0 A9

0 A1 0 −A2 0 A8 0
AT

2 0 A5 0 −A10 0 −A11

0 AT
2 −A4 A5 0 −A10 0

AT
8 0 AT

10 0 A11 0 0
0 AT

8 0 AT
10 0 A11 0

0 γ−1A12 0 γ−1A13 0 0 A14





q
p
y
z
ŷ
ẑ
u


=



0
0
b1
−b2

0
0
0


. (14)

Here, q, p, y, z, ŷ, ẑ, u are the coefficient vectors for qh,ph, yh, zh, ŷ
o
h, ẑ

o
h, uh, respectively, and

A1 = [(ϕj ,ϕi)Th ], A2 = [(φj ,∇ ·ϕi)Th ], A3 = [(ψj ,ϕi · n)Th ], A4 = [(φj , φi)Th ],

A5 = [〈h−1PMφj , φi〉∂Th ], A6 = [〈h−1ψj , ψi〉∂Th ], A7 = [〈h−1ψj , ϕi〉∂Th ],

b1 = [(f, φi)Th ], b2 = [(yd, φi)Th ].
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The remaining matrices A8−A14 are constructed by extracting the corresponding rows and columns
from A3, A6, and A7. In the actual computation, to save memory we do not assemble the large
matrix in equation (14).

Equation (14) can be rewritten as B1 B2 B3

−BT
2 B4 B5

B6 B7 B8

 αβ
γ

 =

 0
b
0

 , (15)

where α = [q; p], β = [y; z], γ = [ŷ; ẑ; u], b = [b1;−b2], and {Bi}8i=1 are the corresponding blocks of
the coefficient matrix in (14).

Due to the discontinuous nature of the approximation spaces Vh and Wh, the first two equations
of (15) can be used to eliminate both α and β in an element-by-element fashion. As a consequence,
we can write system (15) as [

α
β

]
=

[
G1 H1

G2 H2

] [
γ
b

]
(16)

and

B6α+B7β +B8γ = 0. (17)

We provide details on the element-by-element construction of G1, G2 and H1, H2 in the appendix.
Next, we eliminate both α and β to obtain a reduced globally coupled equation for γ only:

Kγ = F, (18)

where

K = B6G1 +B7G2 +B8 and F = B6H1 +B7H2.

Once γ is available, both α and β can be recovered from (16).

Remark 1. For HDG methods, the standard approach is to first compute the local solver inde-
pendently on each element and then assemble the global system. The process we follow here is to
first assemble the global system and then reduce its dimension by simple block-diagonal algebraic
operations. The two approaches are equivalent.

Equation (16) says we can express the approximate the scalar state variable and corresponding
fluxes in terms of the approximate traces on the element boundaries. The global equation (18) only
involves the approximate traces. Therefore, the high number of globally coupled degrees of freedom
in the HDG method is significantly reduced. This is one excellent feature of HDG methods.

4 Error Analysis

Next, we provide a convergence analysis of the above HDG method for the Dirichlet boundary
control problem. Throughout this section, we assume Ω is a bounded convex polyhedral domain
and we also assume the regularity condition (6)-(7) is satisfied. For the 2D case, recall Section 2
provides conditions on Ω and yd guaranteeing the required regularity.
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4.1 Main result

First, we present the following main theoretical result of this work. Recall we assume the fractional
Sobolev regularity exponents satisfy

ru > 1, ry > 1, rz > 2, rq > 1/2, rp > 1.

Theorem 2. For

sy = min{ry, k + 2}, sz = min{rz, k + 2}, sq = min{rq, k + 1}, sp = min{rp, k + 1},

we have

‖u− uh‖ε∂h . hsp−
1
2 ‖p‖sp,Ω + hsz−

3
2 ‖z‖sz ,Ω + hsq+ 1

2 ‖q‖sq ,Ω + hsy−
1
2 ‖y‖sy ,Ω ,

‖y − yh‖Th . hsp−
1
2 ‖p‖sp,Ω + hsz−

3
2 ‖z‖sz ,Ω + hsq+ 1

2 ‖q‖sq ,Ω + hsy−
1
2 ‖y‖sy ,Ω

‖q − qh‖Th . hsp−1 ‖p‖sp,Ω + hsz−2 ‖z‖sz ,Ω + hsq ‖q‖sq ,Ω + hsy−1 ‖y‖sy ,Ω ,

‖p− ph‖Th . hsp−
1
2 ‖p‖sp,Ω + hsz−

3
2 ‖z‖sz ,Ω + hsq+ 1

2 ‖q‖sq ,Ω + hsy−
1
2 ‖y‖sy ,Ω ,

‖z − zh‖Th . hsp−
1
2 ‖p‖sp,Ω + hsz−

3
2 ‖z‖sz ,Ω + hsq+ 1

2 ‖q‖sq ,Ω + hsy−
1
2 ‖y‖sy ,Ω .

Using the regularity results for the 2D case presented in Section 2, we obtain the following
result.

Corollary 2. Suppose d = 2, f = 0, and k = 1. Let ω ∈ [π/3, 2π/3) be the largest interior angle
of Γ, and define pΩ, rΩ by

pΩ =
2

2− π/max{ω, π/2}
∈ (4,∞], rΩ = 1 +

π

ω
∈ (5/2, 4].

If yd ∈ Lp(Ω) ∩Hr−2(Ω) for all p < pΩ and r < rΩ, then for any r < min{3, rΩ} we have

‖u− uh‖ε∂h . hr−
3
2 (‖p‖Hr−1(Ω) + ‖z‖Hr(Ω) + ‖q‖Hr−2(Ω) + ‖y‖Hr−1(Ω)),

‖y − yh‖Th . hr−
3
2 (‖p‖Hr−1(Ω) + ‖z‖Hr(Ω) + ‖q‖Hr−2(Ω) + ‖y‖Hr−1(Ω)),

‖q − qh‖Th . hr−2(‖p‖Hr−1(Ω) + ‖z‖Hr(Ω) + ‖q‖Hr−2(Ω) + ‖y‖Hr−1(Ω)),

‖p− ph‖Th . hr−
3
2 (‖p‖Hr−1(Ω) + ‖z‖Hr(Ω) + ‖q‖Hr−2(Ω) + ‖y‖Hr−1(Ω)),

‖z − zh‖Th . hr−
3
2 (‖p‖Hr−1(Ω) + ‖z‖Hr(Ω) + ‖q‖Hr−2(Ω) + ‖y‖Hr−1(Ω)).

Note that min{3, rΩ} is always greater than 5/2, which guarantees a superlinear convergence
rate for all variables except q. Also, if Ω is a rectangle (i.e., ω = π/2) and yd ∈ H1(Ω) ∩ L∞(Ω),
then rΩ = 3 and we obtain an O(h3/2−ε) convergence rate for u, y, z, and p, and an O(h1−ε)
convergence rate for q for any ε > 0.

4.2 Preliminary material

Before we prove the main result, we discuss L2 projections, an HDG operator B, and the well-
posedness of the HDG equations.
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We first define the standard L2 projections Π : [L2(Ω)]d → Vh, Π : L2(Ω) → Wh, and PM :
L2(εh)→Mh, which satisfy

(Πq, r)K = (q, r)K , ∀r ∈ [Pk(K)]d,

(Πu,w)K = (u,w)K , ∀w ∈ Pk+1(K),

〈PMm,µ〉e = 〈m,µ〉e , ∀µ ∈ Pk(e).

(19)

In the analysis, we use the following classical results:

‖q −Πq‖Th ≤ Ch
sq ‖q‖sq ,Ω , ‖y −Πy‖Th ≤ Ch

sy ‖y‖sy ,Ω , (20a)

‖y −Πy‖∂Th ≤ Ch
sy− 1

2 ‖y‖sy ,Ω , ‖q · n−Πq · n‖∂Th ≤ Ch
sq− 1

2 ‖q‖sq ,Ω , (20b)

‖w‖∂Th ≤ Ch
− 1

2 ‖w‖Th , ∀w ∈Wh, (20c)

where sq and sy are defined in Theorem 2. We have the same projection error bounds for p and z.
To shorten lengthy equations, we define the HDG operator B as follows:

B(qh, yh, ŷ
o
h; r1, w1, µ1) (21)

= (qh, r1)Th − (yh,∇ · r1)Th + 〈ŷoh, r1 · n〉∂Th\ε∂h
− (qh,∇w1)Th + 〈qh · n+ h−1PMyh, w1〉∂Th
− 〈h−1ŷoh, w1〉∂Th\ε∂h − 〈qh · n+ h−1(PMyh − ŷoh), µ1〉∂Th\ε∂h . (22)

By the definition of B, we can rewrite the HDG formulation of the optimality system (11) as
follows: find (qh,ph, yh, zh, ŷ

o
h, ẑ

o
h, uh) ∈ Vh × Vh ×Wh ×Wh ×Mh(o)×Mh(o)×Mh(∂) such that

B(qh, yh, ŷ
o
h; r1, w1, µ1) = −〈uh, r1 · n− h−1w1〉ε∂h + (f, w1)Th , (23a)

B(ph, zh, ẑ
o
h; r2, w2, µ2) = (yh − yd, w2)Th , (23b)

γ−1〈ph · n+ h−1PMzh, µ3〉ε∂h = −〈uh, µ3〉ε∂h , (23c)

for all (r1, r2, w1, w2, µ1, µ2, µ3) ∈ Vh × Vh ×Wh ×Wh ×Mh(o)×Mh(o)×Mh(∂).
Next, we present a basic property of the operator B and show the HDG equations (23) have a

unique solution.

Lemma 1. For any (vh, wh, µh) ∈ Vh ×Wh ×Mh, we have

B(vh, wh, µh;vh, wh, µh) = (vh,vh)Th + 〈h−1(PMwh − µh), PMwh − µh〉∂Th\ε∂h
+ 〈h−1PMwh, PMwh〉ε∂h .

Proof. By the definition of B in (22), we have

B(vh, wh, µh;vh, wh, µh)

= (vh,vh)Th − (wh,∇ · vh)Th + 〈µh,vh · n〉∂Th\ε∂h − (vh,∇wh)Th

+ 〈vh · n+ h−1PMwh, wh〉∂Th − 〈h
−1µh, wh〉∂Th\ε∂h

− 〈vh · n+ h−1(PMwh − µh), µh〉∂Th\ε∂h
= (vh,vh)Th + 〈h−1PMwh, wh〉∂Th − 〈h

−1µh, wh〉∂Th\ε∂h
− 〈h−1(PMwh − µh), µh〉∂Th\ε∂h

= (vh,vh)Th + 〈h−1(PMwh − µh, PMwh − µh〉∂Th\ε∂h + 〈h−1PMwh, PMwh〉ε∂h .

10



Proposition 1. There exists a unique solution of the HDG equations (23).

Proof. Since the system (23) is finite dimensional, we only need to prove the uniqueness. Therefore,
we assume yd = f = 0 and we show the system (23) only has the trivial solution.

First, by the definition of B, we have

B(qh, yh, ŷ
o
h;ph,−zh,−ẑoh) + B(ph, zh, ẑ

o
h;−qh, yh, ŷoh)

= (qh,ph)Th − (yh,∇ · ph)Th + 〈ŷoh,ph · n〉∂Th\ε∂h + (qh,∇zh)Th

− 〈qh · n+ h−1PMyh, zh〉∂Th + 〈h−1ŷoh, zh〉∂Th\ε∂h
+ 〈qh · n+ h−1(PMyh − ŷoh), ẑoh〉∂Th\ε∂h − (ph, qh)Th + (zh,∇ · qh)Th

− 〈ẑoh, qh · n〉∂Th\ε∂h − (ph,∇yh)Th + 〈ph · n+ h−1PMzh, yh〉∂Th
− 〈h−1ẑoh, yh〉∂Th\ε∂h − 〈ph · n+ h−1(PMzh − ẑoh), ŷoh〉∂Th\ε∂h .

Integrating by parts and using the properties of PM in (19) gives

B(qh, yh, ŷ
o
h;ph,−zh,−ẑoh) + B(ph, zh, ẑ

o
h;−qh, yh, ŷoh) = 0.

Next, take (r1, w1, µ1) = (ph,−zh,−ẑoh), (r2, w2, µ2) = (−qh, yh, ŷoh), and µ3 = −γuh in the
HDG equations (23a), (23b), and (23c), respectively, and sum to obtain

(yh, yh)Th + γ ‖uh‖2ε∂h = 0.

This implies yh = 0 and uh = 0 since γ > 0.
Next, taking (r1, w1, µ1) = (qh, yh, ŷ

o
h) and (r2, w2, µ2) = (ph, zh, ẑ

o
h) in Lemma 1 gives qh =

ph = 0, ŷoh = 0, PMzh = 0 on ε∂h, and PMzh − ẑoh = 0 on ∂Th\ε∂h. Also, since ẑh = 0 on ε∂h we have

PMzh − ẑh = 0. (24)

Substituting (24) into (11c), and remembering again ẑh = 0 on ε∂h, we get

−(zh,∇ · r2)Th + 〈PMzh, r2 · n〉∂Th = 0.

Use the property of PM in (19), integrate by parts, and take r2 = ∇zh to obtain

(∇zh,∇zh)Th = 0.

Thus, zh is constant on each K ∈ Th, and also zh = PMzh = ẑh on ∂Th. Since ẑh = 0 on ε∂h and
single valued on each face, we have zh = 0 on each K ∈ Th, and therefore also ẑoh = 0.

4.3 Proof of Main Result

To prove the main result, we follow a similar strategy taken by Gong and Yan [22], see also
[10, 31, 34], and introduce an auxiliary problem with the approximate control uh in (23a) replaced
by a projection of the exact optimal control. We first bound the error between the solutions of
the auxiliary problem and the mixed weak form (4a)-(4e) of the optimality system. The we bound
the error between the solutions of the auxiliary problem and the HDG problem (23). A simple
application of the triangle inequality then gives a bound on the error between the solutions of the
HDG problem and then mixed form of the optimality system.
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The precise form of the auxiliary problem is given as follows: find (qh(u),
ph(u), yh(u), zh(u), ŷoh(u), ẑoh(u)) ∈ Vh × Vh ×Wh ×Wh ×Mh(o)×Mh(o) such that

B(qh(u), yh(u), ŷoh(u); r1, w1, µ1) = −〈PMu, r1 · n− h−1w1〉ε∂h + (f, w1)Th , (25a)

B(ph(u), zh(u), ẑoh(u); r2, w2, µ2) = (yh(u)− yd, w2)Th . (25b)

for all (r1, r2, w1, w2, µ1, µ2) ∈ Vh × Vh ×Wh ×Wh ×Mh(o)×Mh(o).
We split the proof of the main result, Theorem 2, in 7 steps. We begin by bounding the error

between the solutions of the auxiliary problem and the mixed form (4a)-(4e) of the optimality
system. We split the errors in the variables using the L2 projections. In steps 1-3, we focus on the
primary variables, i.e., the state y and the flux q, and we use the following notation:

δq = q −Πq, εqh = Πq − qh(u),

δy = y −Πy, εyh = Πy − yh(u),

δŷ = y − PMy, εŷh = PMy − ŷh(u),

δ̂1 = δq · n+ h−1PMδ
y, ε̂1 = εqh · n+ h−1(PMε

y
h − ε

ŷ
h),

(26)

where ŷh(u) = ŷoh(u) on εoh and ŷh(u) = PMu on ε∂h. Note that this implies εŷh = 0 on ε∂h.

4.3.1 Step 1: The error equation for part 1 of the auxiliary problem (25a)

Lemma 2. We have

B(εqh, ε
y
h, ε

ŷ
h; r1, w1, µ1) = −〈δ̂1, w1〉∂Th + 〈δ̂1, µ1〉∂Th\ε∂h . (27)

Proof. By the definition of the operator B in (22), we have

B(Πq,Πy, PMy; r1, w1, µ1)

= (Πq, r1)Th − (Πy,∇ · r1)Th + 〈PMy, r1 · n〉∂Th\ε∂h
− (Πq,∇w1)Th + 〈Πq · n+ h−1PMΠy, w1〉∂Th
− 〈h−1PMy, w1〉∂Th\ε∂h − 〈Πq · n− h

−1PMδ
y, µ1〉∂Th\ε∂h .

By properties of the L2 projections (19), we have

B(Πq,Πy, PMy; r1, w1, µ1) = (q, r1)Th − (y,∇ · r1)Th + 〈y, r1 · n〉∂Th\ε∂h
− (q,∇w1)Th + 〈q · n, w1〉∂Th − 〈δ

q · n, w1〉∂Th
+ 〈h−1PMΠy, w1〉∂Th − 〈h

−1PMy, w1〉∂Th\ε∂h
− 〈q · n, µ1〉∂Th\ε∂h + 〈δq · n, µ1〉∂Th\ε∂h
+ 〈h−1PMδ

y, µ1〉∂Th\ε∂h .

Note that the exact state y and exact flux q satisfy

(q, r1)Th − (y,∇ · r1)Th + 〈y, r1 · n〉∂Th\ε∂h = −〈u, r1 · n〉ε∂h ,

−(q,∇w1)Th + 〈q · n, w1〉∂Th = (f, w1)Th ,

〈q · n, µ1〉∂Th\ε∂h = 0,
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for all (r1, w1, µ1) ∈ Vh ×Wh ×Mh(o). Then we have

B(Πq,Πy, PMy; r1, w1, µ1) =− 〈u, r1 · n〉ε∂h + (f, w1)Th − 〈δ
q · n, w1〉∂Th

+ 〈h−1PMΠy, w1〉∂Th − 〈h
−1PMy, w1〉∂Th\ε∂h

+ 〈δq · n, µ1〉∂Th\ε∂h + 〈h−1PMδ
y, µ1〉∂Th\ε∂h .

Subtract part 1 of the auxiliary problem (25a) from the above equality to obtain the result:

B(εqh, ε
y
h, ε

ŷ
h; r1, w1, µ1) =− 〈PMu, h

−1w1〉ε∂h − 〈δ
q · n, w1〉∂Th

+ 〈h−1PMΠy, w1〉∂Th − 〈h
−1PMy, w1〉∂Th\ε∂h

+ 〈δq · n, µ1〉∂Th\ε∂h + 〈h−1PMδ
y, µ1〉∂Th\ε∂h

=− 〈δ̂1, w1〉∂Th + 〈δ̂1, µ1〉∂Th\ε∂h .

4.3.2 Step 2: Estimate for εqh

We first provide a key inequality which was proven in [40].

Lemma 3. We have

‖∇εyh‖Th + h−
1
2 ‖εyh − ε

ŷ
h‖∂Th . ‖εqh‖Th + h−

1
2 ‖PMε

y
h − ε

ŷ
h‖∂Th .

Lemma 4. We have∥∥εqh∥∥2

Th
+ h−1‖PMε

y
h − ε

ŷ
h‖

2
∂Th . h2sq ‖q‖2sq ,Ω + h2sy−2 ‖y‖2sy ,Ω . (28)

Proof. First, since εŷh = 0 on ε∂h, the basic property of B in Lemma 1 gives

B(εqh, ε
y
h, ε

ŷ
h; εqh, ε

y
h, ε

ŷ
h) = (εqh, ε

q
h)Th + h−1‖PMε

y
h − ε

ŷ
h‖

2
∂Th .

Then, taking (r1, w1, µ1) = (εqh, ε
y
h, ε

ŷ
h) in (27) in Lemma 2 gives

(εqh, ε
q
h)Th + h−1‖PMε

y
h − ε

ŷ
h‖

2
∂Th

= −〈δ̂1, ε
y
h − ε

ŷ
h〉∂Th

= −〈δq · n, εyh − ε
ŷ
h〉∂Th − h

−1〈δy, PMε
y
h − ε

ŷ
h〉∂Th

≤ ‖δq‖∂Th ‖ε
y
h − ε

ŷ
h‖∂Th + h−1‖δy‖∂Th‖PMε

y
h − ε

ŷ
h‖∂Th

≤ h1/2 ‖δq‖∂Th h
−1/2‖εyh − ε

ŷ
h‖∂Th + h−1‖δy‖∂Th‖PMε

y
h − ε

ŷ
h‖∂Th .

By Young’s inequality and Lemma 3, we obtain

‖εqh‖
2
Th + h−1‖PMε

y
h − ε

ŷ
h‖

2
∂Th . h ‖δq‖2∂Th + h−1 ‖δy‖2∂Th

. h2sq ‖q‖2sq ,Ω + h2sy−2 ‖y‖2sy ,Ω .
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4.3.3 Step 3: Estimate for εyh by a duality argument

Next, we introduce the dual problem for any given Θ in L2(Ω) :

Φ +∇Ψ = 0 in Ω,

∇ ·Φ = Θ in Ω,

Ψ = 0 on Γ.

(29)

Since the domain Ω is convex, we have the following regularity estimate

‖Φ‖H1(Ω) + ‖Ψ‖H2(Ω) ≤ C ‖Θ‖Ω . (30)

Before we estimate εyh we introduce the following notation, which is similar to the earlier notation
in (26):

δΦ = Φ−ΠΦ, δΨ = Ψ−ΠΨ, δΨ̂ = Ψ− PMΨ. (31)

By the regularity estimate (30), we have the following bounds:

‖δΦ‖Th . h‖Θ‖Th , ‖δΨ‖Th . h2‖Θ‖Th , ‖δΨ̂‖∂Th . h
1
2 ‖Θ‖Th . (32)

Lemma 5. We have

‖εyh‖Th . hsq+1 ‖q‖sq ,Ω + hsy ‖y‖sy ,Ω . (33)

Proof. Consider the dual problem (29) and let Θ = εyh. In the definition (22) of B, take (r1, w1, µ1)
to be (−ΠΦ,ΠΨ, PMΨ) and use Ψ = 0 on ε∂h to obtain

B(εqh, ε
y
h, ε

ŷ
h;−ΠΦ,ΠΨ, PMΨ) =− (εqh,ΠΦ)Th + (εyh,∇ ·ΠΦ)Th − 〈ε

ŷ
h,ΠΦ · n〉∂Th

− (εqh,∇ΠΨ)Th + 〈ε̂1,ΠΨ〉∂Th − 〈ε̂1, PMΨ〉∂Th . (34)

Next, it is easy to verify that

(εyh,∇ ·ΠΦ)Th = 〈εyh,ΠΦ · n〉∂Th − (∇εyh,ΠΦ)Th
= 〈εyh,ΠΦ · n〉∂Th − (∇εyh,Φ)Th

= −〈εyh, δ
Φ · n〉∂Th + (εyh,∇ ·Φ)Th

= −〈εyh, δ
Φ · n〉∂Th + ‖εyh‖

2
Th .

Similarly,

−(εqh,∇ΠΨ)Th = −〈εqh · n,ΠΨ〉∂Th + (∇ · εqh,ΠΨ)Th
= −〈εqh · n,ΠΨ〉∂Th + (∇ · εqh,Ψ)Th
= −〈εqh · n,ΠΨ〉∂Th + 〈εqh · n,Ψ〉∂Th − (εqh,∇Ψ)Th
= 〈εqh · n, (PMΨ−ΠΨ)〉∂Th − (εqh,∇Ψ)Th .

Then equation (34) becomes

B(εqh, ε
y
h, ε

ŷ
h;−ΠΦ,ΠΨ, PMΨ)

= −(εqh,Φ)Th − 〈ε
y
h, δ

Φ · n〉∂Th + ‖εyh‖
2
Th − 〈ε

ŷ
h,ΠΦ · n〉∂Th

+ 〈εqh · n, PMΨ−ΠΨ〉∂Th − (εqh,∇Ψ)Th + 〈ε̂1,ΠΨ〉∂Th − 〈ε̂1, PMΨ〉∂Th .
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The facts Φ +∇Ψ = 0, 〈εŷh,Φ · n〉∂Th = 0, and 〈ε̂1, PMΨ〉∂Th = 〈ε̂1,Ψ〉∂Th imply

B(εqh, ε
y
h, ε

ŷ
h;−ΠΦ,ΠΨ, PMΨ)

= −〈εyh − ε
ŷ
h, δ

Φ · n〉∂Th + ‖εyh‖
2
Th − h

−1〈PMε
y
h − ε

ŷ
h, δ

Ψ〉∂Th .

On the other hand, equation (27) in Lemma 2 gives

B(εqh, ε
y
h, ε

ŷ
h;−ΠΦ,ΠΨ, PMΨ) =− 〈δ̂1,ΠΨ〉∂Th + 〈δ̂1, PMΨ〉∂Th\ε∂h .

Moreover,

〈δ̂1, PMΨ〉∂Th\ε∂h
= 〈δq · n+ h−1PMδ

y, PMΨ〉∂Th\ε∂h
= 〈q · n, PMΨ〉∂Th\ε∂h − 〈Πq · n, PMΨ〉∂Th\ε∂h + 〈h−1PMδ

y, PMΨ〉∂Th\ε∂h
= −〈Πq · n,Ψ〉∂Th\ε∂h + 〈h−1PMδ

y,Ψ〉∂Th\ε∂h
= 〈q · n,Ψ〉∂Th\ε∂h − 〈Πq · n,Ψ〉∂Th\ε∂h + 〈h−1PMδ

y,Ψ〉∂Th\ε∂h
= 〈δ̂1,Ψ〉∂Th\ε∂h
= 〈δ̂1,Ψ〉∂Th ,

where we have used 〈q · n, PMΨ〉∂Th\ε∂h = 0, 〈q · n,Ψ〉∂Th\ε∂h = 0 since q ∈ H(div,Ω) and Ψ = 0 on

ε∂h.
Comparing the above two equalities gives

‖εyh‖
2
Th = 〈εyh − ε

ŷ
h, δ

Φ · n〉∂Th + h−1〈PMε
y
h − ε

ŷ
h, δ

Ψ〉∂Th + 〈δ̂1, δ
Ψ〉∂Th

= 〈εyh − ε
ŷ
h, δ

Φ · n〉∂Th + h−1〈PMε
y
h − ε

ŷ
h, δ

Ψ〉∂Th
− 〈δq · n+ h−1PMδ

y, δΨ〉∂Th
. h−

1
2 ‖εyh − ε

ŷ
h‖∂Th · h

1
2 ‖δΦ‖∂Th + h−

1
2 ‖PMε

y
h − ε

ŷ
h‖∂Th · h

− 1
2 ‖δΨ‖∂Th

+ ‖δq‖∂Th · ‖δ
Ψ‖∂Th + h−1‖δy‖∂Th · ‖δ

Ψ‖∂Th
. (hsq+1 ‖q‖sq ,Ω + hsy ‖y‖sy ,Ω)‖εyh‖Th .

As a consequence of Lemma 4 and Lemma 5, a simple application of the triangle inequality
gives optimal convergence rates for ‖q − qh(u)‖Th and ‖y − yh(u)‖Th :

Lemma 6.

‖q − qh(u)‖Th ≤ ‖δ
q‖Th + ‖εqh‖Th . hsq ‖q‖sq ,Ω + hsy−1 ‖y‖sy ,Ω , (35a)

‖y − yh(u)‖Th ≤ ‖δ
y‖Th + ‖εyh‖Th . hsq+1 ‖q‖sq ,Ω + hsy ‖y‖sy ,Ω . (35b)

4.3.4 Step 4: The error equation for part 2 of the auxiliary problem (25b)

We continue to bound the error between the solutions of the auxiliary problem and the mixed form
(4a)-(4e) of the optimality system. In steps 4-5, we focus on the dual variables, i.e., the state z and
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the flux p. We split the errors in the variables using the L2 projections, and we use the following
notation.

δp = p−Πp, εph = Πp− ph(u),

δz = z −Πz, εzh = Πz − zh(u),

δẑ = z − PMz, εẑh = PMz − ẑh(u),

δ̂2 = δp · n+ h−1PMδ
z.

(36)

where ẑh(u) = ẑoh(u) on εoh and ẑh(u) = 0 on ε∂h. Note that this implies εẑh = 0 on ε∂h.
The derivation of the error equation for part 2 of the auxiliary problem (25b) is similar to the

analysis for part 1 of the auxiliary problem in step 1 in 4.3.1; the only difference is there is one
more term (y − yh(u), w2)Th in the right hand side. Therefore, we state the result and omit the
proof.

Lemma 7. We have

B(εph, ε
z
h, ε

ẑ
h, r2, w2, µ2) = −〈δ̂2, w2〉∂Th + 〈δ̂2, µ2〉∂Th\ε∂h + (y − yh(u), w2)Th . (37)

4.3.5 Step 5: Estimate for εph and εzh

Before we estimate εph, we give the following discrete Poincaré inequality from [40].

Lemma 8. Since εẑh = 0 on ε∂h, we have

‖εzh‖Th . ‖∇εzh‖Th + h−
1
2 ‖εzh − εẑh‖∂Th . (38)

Lemma 9. We have∥∥εph∥∥Th + h−
1
2 ‖PMε

z
h − εẑh‖∂Th

. hsp ‖p‖sp,Ω + hsz−1 ‖z‖sz ,Ω + hsq+1 ‖q‖sq ,Ω + hsy ‖y‖sy ,Ω ,
‖εzh‖Th . hsp ‖p‖sp,Ω + hsz−1 ‖z‖sz ,Ω + hsq+1 ‖q‖sq ,Ω + hsy ‖y‖sy ,Ω .

Proof. First, we note the key inequality in Lemma 3 is valid with (z,p, ẑ) in place of (y, q, ŷ). This
gives

‖∇εzh‖Th + h−
1
2 ‖εzh − εẑh‖∂Th . ‖εph‖Th + h−

1
2 ‖PMε

z
h − εẑh‖∂Th ,

which we use below. Next, since εẑh = 0 on ε∂h, the basic property of B in Lemma 1 gives

B(εph, ε
z
h, ε

ẑ
h, ε

p
h, ε

z
h, ε

ẑ
h) = (εph, ε

p
h)Th + h−1‖PMε

z
h − εẑh‖2∂Th .
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Then taking (r2, w2, µ2) = (εph, ε
z
h, ε

ẑ
h) in (37) in Lemma 7 gives

(εph, ε
p
h)Th + h−1‖PMε

z
h − εẑh‖2∂Th

= −〈δ̂2, ε
z
h − εẑh〉∂Th + (y − yh(u), εzh)Th

= −〈δp · n, εzh − εẑh〉∂Th − h
−1〈δz, PMε

z
h − εẑh〉∂Th + (y − yh(u), εzh)Th

≤ ‖δp‖∂Th ‖ε
z
h − εẑh‖∂Th + h−1‖δz‖∂Th

∥∥∥PMε
z
h − εẑh

∥∥∥
∂Th

+ ‖y − yh(u)‖Th‖ε
z
h‖Th

≤ h1/2 ‖δp‖∂Th h
−1/2‖εzh − εẑh‖∂Th + h−

1
2 ‖δz‖∂Thh

− 1
2

∥∥∥PMε
z
h − εẑh

∥∥∥
∂Th

+ ‖y − yh(u)‖Th‖ε
z
h‖Th

≤ h1/2 ‖δp‖∂Th (‖εph‖Th + h−
1
2 ‖PMε

z
h − εẑh‖∂Th)

+ h−
1
2 ‖δz‖∂Thh

− 1
2

∥∥∥PMε
z
h − εẑh

∥∥∥
∂Th

+ C‖y − yh(u)‖Th(‖∇εzh‖Th + h−
1
2 ‖εzh − εẑh‖∂Th)

≤ h1/2 ‖δp‖∂Th (‖εph‖Th + h−
1
2 ‖PMε

z
h − εẑh‖∂Th)

+ h−
1
2 ‖δz‖∂Thh

− 1
2

∥∥∥PMε
z
h − εẑh

∥∥∥
∂Th

+ C‖y − yh(u)‖Th(‖εph‖Th + h−
1
2 ‖PMε

z
h − εẑh‖∂Th).

Applying Young’s inequality and Lemma 6 gives

(εph, ε
p
h)Th + h−1‖PMε

z
h − εẑh‖2∂Th

. h ‖δp‖2∂Th + h−1‖δz‖2∂Th + ‖yh(u)− y‖2Th

. h2sp ‖p‖2sp,Ω + h2sz−2 ‖z‖2sz ,Ω + h2sq+2 ‖q‖2sq ,Ω + h2sy ‖y‖2sy ,Ω .

This gives

‖εph‖Th + h−
1
2 ‖PMε

z
h − εẑh‖∂Th

. hsp ‖p‖sp,Ω + hsz−1 ‖z‖sz ,Ω + hsq+1 ‖q‖sq ,Ω + hsy ‖y‖sy ,Ω ,

‖εzh‖Th . ‖∇εzh‖Th + h−
1
2 ‖εzh − εẑh‖∂Th

. ‖εph‖Th + h−
1
2 ‖PMε

z
h − εẑh‖∂Th

. hsp ‖p‖sp,Ω + hsz−1 ‖z‖sz ,Ω + hsq+1 ‖q‖sq ,Ω + hsy ‖y‖sy ,Ω .

As a consequence, a simple application of the triangle inequality gives optimal convergence rates
for ‖p− ph(u)‖Th and ‖z − zh(u)‖Th :

Lemma 10.

‖p− ph(u)‖Th ≤ ‖δ
p‖Th + ‖εph‖Th

. hsp ‖p‖sp,Ω + hsz−1 ‖z‖sz ,Ω + hsq+1 ‖q‖sq ,Ω + hsy ‖y‖sy ,Ω , (39a)

‖z − zh(u)‖Th ≤ ‖δ
z‖Th + ‖εzh‖Th

. hsp ‖p‖sp,Ω + hsz−1 ‖z‖sz ,Ω + hsq+1 ‖q‖sq ,Ω + hsy ‖y‖sy ,Ω . (39b)
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4.3.6 Step 6: Estimate for ‖u− uh‖ε∂h and ‖y − yh‖Th
Next, we bound the error between the solutions of the auxiliary problem and the HDG problem
(23). We use these error bounds and the error bounds in Lemma 6, Lemma 9, and Lemma 10 to
obtain the main result.

For the remaining steps, we denote

ζq = qh(u)− qh, ζy = yh(u)− yh, ζŷ = ŷh(u)− ŷh,
ζp = ph(u)− ph, ζz = zh(u)− zh, ζẑ = ẑh(u)− ẑh,

where ŷh = ŷoh on εoh, ŷh = uh on ε∂h, ẑh = ẑoh on εoh, and ẑh = 0 on ε∂h. This gives ζẑ = 0 on ε∂h.
Subtracting the auxiliary problem and the HDG problem gives the following error equations

B(ζq, ζy, ζŷ; r1, w1, µ1) = −〈PMu− uh, r1 · n− h−1w1〉ε∂h , (40a)

B(ζp, ζz, ζẑ; r2, w2, µ2) = (ζy, w2)Th , (40b)

for all (r1, r2, w1, w2, µ1, µ2) ∈ Vh × Vh ×Wh ×Wh ×Mh(o)×Mh(o).

Lemma 11. We have

‖u− uh‖2ε∂h + γ−1 ‖ζy‖2Th
= 〈u+ γ−1ph(u) · n+ γ−1h−1PMzh(u), u− uh〉ε∂h
− 〈uh + γ−1ph · n+ γ−1h−1PMzh, u− uh〉ε∂h .

Proof. First, we have

〈u+ γ−1ph(u) · n+ γ−1h−1PMzh(u), u− uh〉ε∂h
− 〈uh + γ−1ph · n+ γ−1h−1PMzh, u− uh〉ε∂h

= ‖u− uh‖2ε∂h + γ−1〈ζp · n+ h−1PMζz, u− uh〉ε∂h .

As in the proof of Lemma 1, it can be shown that

B(ζq, ζy, ζŷ; ζp,−ζz,−ζẑ) + B(ζp, ζz, ζẑ;−ζq, ζy, ζŷ) = 0.

One the other hand, we have

B(ζq, ζy, ζŷ; ζp,−ζz,−ζẑ) + B(ζp, ζz, ζẑ;−ζq, ζy, ζŷ)

= (ζy, ζy)Th − 〈PMu− uh, ζp · n+ h−1ζz〉ε∂h
= (ζy, ζy)Th − 〈u− uh, ζp · n+ h−1PMζz〉ε∂h .

Comparing the above two equalities gives

(ζy, ζy)Th = 〈u− uh, ζp · n+ h−1PMζz〉ε∂h .

Theorem 4.1. We have

‖u− uh‖ε∂h . hsp−
1
2 ‖p‖sp,Ω + hsz−

3
2 ‖z‖sz ,Ω + hsq+ 1

2 ‖q‖sq ,Ω + hsy−
1
2 ‖y‖sy ,Ω ,

‖y − yh‖Th . hsp−
1
2 ‖p‖sp,Ω + hsz−

3
2 ‖z‖sz ,Ω + hsq+ 1

2 ‖q‖sq ,Ω + hsy−
1
2 ‖y‖sy ,Ω .
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Proof. Since u+ γ−1p · n = 0 on ε∂h and uh + γ−1ph · n+ γ−1h−1PMzh = 0 on ε∂h we have

‖u− uh‖2ε∂h + γ−1 ‖ζy‖2Th = 〈u+ γ−1ph(u) · n+ γ−1h−1PMzh(u), u− uh〉ε∂h
= 〈γ−1(ph(u)− p) · n+ γ−1h−1PMzh(u), u− uh〉ε∂h
. (‖ph(u)− p‖∂Th + h−1‖PMzh(u)‖ε∂h) ‖u− uh‖ε∂h .

Next, since ẑh(u) = z = 0 on ε∂h we have

‖ph(u)− p‖∂Th ≤ ‖ph(u)−Πp‖∂Th + ‖Πp− p‖∂Th
. h−

1
2 ‖ph(u)−Πp‖Th + hsp−

1
2 ‖p‖sp,Ω

. hsp−
1
2 ‖p‖sp,Ω + hsz−

3
2 ‖z‖sz ,Ω + hsq+ 1

2 ‖q‖sq ,Ω
+ hsy−

1
2 ‖y‖sy ,Ω ,

‖PMzh(u)‖ε∂h = ‖PMzh(u)− PMΠz + PMΠz − PMz + PMz − ẑh(u)‖ε∂h
≤ (‖PMε

z
h − εẑh‖ε∂h + ‖Πz − z‖ε∂h)

≤ (‖PMε
z
h − εẑh‖∂Th + ‖Πz − z‖∂Th).

Lemma 9 and properties of the L2 projection gives

‖u− uh‖ε∂h . hsp−
1
2 ‖p‖sp,Ω + hsz−

3
2 ‖z‖sz ,Ω + hsq+ 1

2 ‖q‖sq ,Ω + hsy−
1
2 ‖y‖sy ,Ω .

Moreover, we have

‖ζy‖Th . hsp−
1
2 ‖p‖sp,Ω + hsz−

3
2 ‖z‖sz ,Ω + hsq+ 1

2 ‖q‖sq ,Ω + hsy−
1
2 ‖y‖sy ,Ω .

Then, by the triangle inequality and Lemma 6 we obtain

‖y − yh‖Th . hsp−
1
2 ‖p‖sp,Ω + hsz−

3
2 ‖z‖sz ,Ω + hsq+ 1

2 ‖q‖sq ,Ω + hsy−
1
2 ‖y‖sy ,Ω .

4.3.7 Step 7: Estimates for ‖q − qh‖Th, ‖p− ph‖Th and ‖z − zh‖Th
Lemma 12. We have

‖ζq‖Th . hsp−1 ‖p‖sp,Ω + hsz−2 ‖z‖sz ,Ω + hsq ‖q‖sq ,Ω + hsy−1 ‖y‖sy ,Ω ,

‖ζp‖Th . hsp−
1
2 ‖p‖sp,Ω + hsz−

3
2 ‖z‖sz ,Ω + hsq+ 1

2 ‖q‖sq ,Ω + hsy−
1
2 ‖y‖sy ,Ω ,

‖ζz‖Th . hsp−
1
2 ‖p‖sp,Ω + hsz−

3
2 ‖z‖sz ,Ω + hsq+ 1

2 ‖q‖sq ,Ω + hsy−
1
2 ‖y‖sy ,Ω .

Proof. By Lemma 1 and the error equation (40a), we have

B(ζq, ζy, ζŷ; ζq, ζy, ζŷ)

= (ζq, ζq)Th + 〈h−1(PMζy − ζŷ), PMζy − ζŷ〉∂Th\ε∂h + 〈h−1PMζy, PMζy〉ε∂h
= −〈PMu− uh, ζq · n− h−1ζy〉ε∂h = −〈u− uh, ζq · n− h−1PMζy〉ε∂h
. ‖u− uh‖ε∂h (‖ζq‖ε∂h + h−1 ‖PMζy‖ε∂h)

. h−
1
2 ‖u− uh‖ε∂h (‖ζq‖Th + h−

1
2 ‖PMζy‖ε∂h),
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which gives

‖ζq‖Th . h−
1
2 ‖u− uh‖ε∂h

. hsp−1 ‖p‖sp,Ω + hsz−2 ‖z‖sz ,Ω + hsq ‖q‖sq ,Ω + hsy−1 ‖y‖sy ,Ω .

Next, we estimate ζp. By Lemma 1, the error equation (40b), and since ζẑ = 0 on ε∂h, we have

B(ζp, ζz, ζẑ; ζp, ζz, ζẑ)

= (ζp, ζp)Th + 〈h−1(PMζz − ζẑ), PMζz − ζẑ〉∂Th\ε∂h + 〈h−1PMζz, PMζz〉ε∂h
= (ζp, ζp)Th + 〈h−1(PMζz − ζẑ), PMζz − ζẑ〉∂Th
= (ζy, ζz)Th
≤ ‖ζy‖Th ‖ζz‖Th
. ‖ζy‖Th (‖∇ζz‖Th + h−

1
2 ‖ζz − ζẑ‖∂Th)

. ‖ζy‖Th (‖ζp‖Th + h−
1
2 ‖PMζz − ζẑ‖∂Th),

where we used the discrete Poincaré inequality in Lemma 8 and also Lemma 3. This implies

‖ζp‖Th + h−
1
2 ‖PMζz − ζẑ‖∂Th

. hsp−
1
2 ‖p‖sp,Ω + hsz−

3
2 ‖z‖sz ,Ω + hsq+ 1

2 ‖q‖sq ,Ω + hsy−
1
2 ‖y‖sy ,Ω .

The discrete Poincaré inequality in Lemma 8 also gives

‖ζz‖Th . ‖∇ζz‖Th + h−
1
2 ‖ζz − ζẑ‖∂Th

. ‖ζp‖Th + h−
1
2 ‖PMζz − ζẑ‖∂Th

. hsp−
1
2 ‖p‖sp,Ω + hsz−

3
2 ‖z‖sz ,Ω + hsq+ 1

2 ‖q‖sq ,Ω + hsy−
1
2 ‖y‖sy ,Ω .

The above lemma along with the triangle inequality, Lemma 6, and Lemma 10 complete the
proof of the main result:

Theorem 3. We have

‖q − qh‖Th . hsp−1 ‖p‖sp,Ω + hsz−2 ‖z‖sz ,Ω + hsq ‖q‖sq ,Ω + hsy−1 ‖y‖sy ,Ω ,

‖p− ph‖Th . hsp−
1
2 ‖p‖sp,Ω + hsz−

3
2 ‖z‖sz ,Ω + hsq+ 1

2 ‖q‖sq ,Ω + hsy−
1
2 ‖y‖sy ,Ω ,

‖z − zh‖Th . hsp−
1
2 ‖p‖sp,Ω + hsz−

3
2 ‖z‖sz ,Ω + hsq+ 1

2 ‖q‖sq ,Ω + hsy−
1
2 ‖y‖sy ,Ω .

5 Numerical Experiments

For our numerical experiments, we test problems similar to the examples considered in [22]; see
also [5, 33, 39]. We chose k = 1 for all computations; i.e., quadratic polynomials are used for the
scalar variables, and linear polynomials are used for the flux variables and the boundary trace
variables.
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We begin with a 2D example on a square domain Ω = [0, 1/4] × [0, 1/4] ⊂ R2. The largest
interior angle is ω = π/2, and so rΩ = 3 and pΩ =∞. The data is chosen as

f = 0, yd = (x2 + y2)s and γ = 1,

where s = 10−5. Then yd ∈ H1(Ω) ∩ L∞(Ω), and Corollary 2 in Section 4 gives the convergence
rates

‖y − yh‖0,Ω = O(h3/2−ε), ‖z − zh‖0,Ω = O(h3/2−ε),

‖q − qh‖0,Ω = O(h1−ε), ‖p− ph‖0,Ω = O(h3/2−ε),

and

‖u− uh‖0,Γ = O(h3/2−ε).

Since we do not have an explicit expression for the exact solution, we solved the problem
numerically for a triangulation with 262144 elements, i.e., h = 2−12

√
2 and compared this reference

solution against other solutions computed on meshes with larger h. The numerical results are shown
in Table 1. The convergence rates observed for ‖q − qh‖0,Ω and ‖u− uh‖0,Γ are in agreement with
our theoretical results, while the convergence rates for ‖p− ph‖0,Ω, ‖y − yh‖0,Ω, and ‖z − zh‖0,Ω
are higher than our theoretical results. A similar phenomena can be observed in [22,33,39].

h/
√

2 2−4 1/2−5 2−6 2−7 2−8

‖q − qh‖0,Ω 4.1343e-02 2.1025e-02 1.0677e-02 5.3865e-03 2.6959e-03

order - 0.9756 0.9776 0.9871 0.9986

‖p− ph‖0,Ω 1.3463e-03 3.8638e-04 1.0849e-04 2.9862e-05 8.0969e-06

order - 1.8009 1.8325 1.8612 1.8828

‖y − yh‖0,Ω 5.4609e-04 1.3647e-04 3.4763e-05 8.8037e-06 2.2236e-06

order - 2.0005 1.9730 1.9814 1.9852

‖z − zh‖0,Ω 1.9671e-05 2.6887e-06 3.7026e-07 5.0372e-08 6.7767e-09

order - 2.8711 2.8603 2.8778 2.8940

‖u− uh‖0,Γ 7.3053e-03 2.6902e-03 9.7764e-04 3.5178e-04 1.2569e-04

order - 1.4412 1.4603 1.4746 1.4849

Table 1: Error of control u, state y, adjoint state z, and their fluxes q and p.

For illustration, we plot the state y, adjoint state z, and their fluxes q and p. The 2D regularity
result in Section 2 indicate that the primary flux q can have low regularity. In this example, it does
indeed appear that q has singularities at the corners of the domain. These figures can be compared
to similar plots in [5, 39].

Next, we consider a 3D extension of the 2D example above. The domain is a cube Ω =
[0, 1/32]× [0, 1/32]× [0, 1/32], and the data is chosen as

f = 0, yd = (x2 + y2 + z2)s and γ = 1,

where s = −1/4 + 10−5, so that yd ∈ H1(Ω). In this case, we did not attempt to determine the
regularity of the control and other variables; we simply present the numerical results here.

As in the 2D example above, we do not have an explicit expression for the exact solution.
Therefore, we solved the problem numerically for a triangulation with 196608 tetrahedrons, i.e.,
h = 2−12

√
3 and compared this reference solution against other solutions computed on meshes

with larger h. The numerical results are shown in Table 2. The observed convergence rates for all
variables are similar to the results for the 2D example above.
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Figure 1: The primary state yh, the primary flux qh, the dual state zh, and the dual flux ph for
the 2D example

6 Conclusions

We proposed an HDG method to approximate the solution of an optimal Dirichlet boundary control
problems for the Poisson equation. We obtained a superlinear rate of convergence for the control
in 2D under certain assumptions on the domain and the target state yd. Numerical experiments
confirmed our theoretical results.

Our results indicate HDG methods have potential for solving more complex Dirichlet boundary
control problems. We plan to investigate HDG methods for Dirichlet boundary control of other
PDEs, including convection dominated diffusion problems and fluid flows. These problems may

h/
√

3 2−6 2−7 2−8 2−9

‖q − qh‖0,Ω 9.2640e-03 5.2580e-03 2.7462e-03 1.2475e-03

order - 0.81712 0.93706 1.1384

‖p− ph‖0,Ω 3.5425e-05 1.2283e-05 3.8463e-06 1.1022e-06

order - 1.5281 1.6751 1.8032

‖y − yh‖0,Ω 1.6040e-05 4.5070e-06 1.2191e-06 2.9781e-07

order - 1.8314 1.8864 2.0333

‖z − zh‖0,Ω 7.8545e-08 1.3058e-08 2.0042e-09 2.8775e-10

order - 2.5886 2.7039 2.8001

‖u− uh‖0,Γ 4.5932e-04 1.8934e-04 7.1955e-05 2.4123e-05

order - 1.2785 1.3958 1.5767

Table 2: Error of control u, state y, adjoint state z, and their fluxes q and p.
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Figure 2: The optimal control uh for the 2D example

involve solutions with large gradients or shocks, and it is natural to consider HDG methods for
such problems.
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A Local Solver

By simple algebraic operations in equation (15), we obtain the following formulas for the matrices
G1, G2, H1, and H2 in (16):

G1 = B−1
1 B2(B4 +BT

2 B
−1
1 B2)−1(B5 +BT

2 B
−1
1 B3)−B−1

1 B3,

G2 = −(B4 +BT
2 B
−1
1 B2)−1(B5 +BT

2 B
−1
1 B3),

H1 = −B−1
1 B2(B4 +BT

2 B
−1
1 B2)−1,

H2 = (B4 +BT
2 B
−1
1 B2)−1.

In general, this process is impractical; however, for the HDG method described in this work, these
matrices can be easily computed. This is one of the advantages of the HDG method. We briefly
describe this process below.

Since the spaces Vh and Wh consist of discontinuous polynomials, some of the system matrices
are block diagonal and each block is small and symmetric positive definite. Let us call a matrix of
this form a SSPD block diagonal matrix. The inverse of a SSPD block diagonal matrix is another
SSPD block diagonal matrix, and the inverse can be easily constructed by computing the inverse
of each small block. Furthermore, the inverse of each small block can be computed independently;
and therefore computing the inverse can be easily done in parallel.

23



It can be checked that B1 is a SSPD block diagonal matrix, and therefore B−1
1 is easily computed

and is also a SSPD block diagonal matrix. Therefore, the the matrices G1, G2, H1, and H2 are
easily computed if B4 +BT

2 B
−1
1 B2 is also easily inverted. We show below that this is the case.

First, it can be checked that B2 is block diagonal with small blocks, but the blocks are not
symmetric or definite. This implies BT

2 B
−1
1 B2 is block diagonal with small nonnegative definite

blocks. Next, B4 =

[
A5 0
−A4 A5

]
, where A4 and A5 are both SSPD block diagonal. Due to the

structure of B1 and B2, the matrix BT
2 B
−1
1 B2 + B4 has the form

[
C1 0
−A4 C2

]
, where C1 and C2

are SSPD block diagonal. The inverse can be easily computed using the formula[
C1 0
−A4 C2

]−1

=

[
C−1

1 0

C−1
2 A4C

−1
1 C−1

2

]
.

Furthermore, C−1
1 , C−1

2 and C−1
2 A4C

−1
1 are both SSPD block diagonal.
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