Skip to main content
Log in

An ADMM numerical approach to linear parabolic state constrained optimal control problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Optimal control problems arising from systems modeled by linear parabolic equations may be difficult for both theoretical analysis and algorithmic design. For the case where there are additional constraints on the state variables, restrictive regularity assumptions are usually required to guarantee the existence of the associated Lagrange multiplier and thus some regularization type methods such as the Moreau–Yosida and Lavrentiev methods have been discussed in the literature. In this article, we study the application of the alternating direction method of multipliers (ADMM) to linear parabolic state constrained optimal control problems, and propose an ADMM numerical approach. We prove the convergence of the ADMM algorithm without any existence or regularity assumption on the Lagrange multiplier, and estimate its worst-case convergence rate in both the ergodic and nonergodic senses. An important feature of the ADMM approach is that it decouples the state constraints and the parabolic optimal control problems inside each iteration. We show the efficiency of the ADMM approach by testing some control problems in two space dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bergounioux, M.: Augmented Lagrangian method for distributed optimal control problems with state constraints. J. Optim. Theory Appl. 78(3), 493–521 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benedix, O.: Adaptive numerical solution of state constrained optimal control problems. Ph.D. dissertation, Technische Universität München (2011)

  3. Bergounioux, M., Ito, K., Kunisch, K.: Primal–dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37(4), 1176–1194 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergounioux, M., Kunisch, K.: Augmented Lagrangian techniques for elliptic state constrained optimal control problems. SIAM J. Control Optim. 35(5), 1524–1543 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergounioux, M., Kunisch, K.: Primal–dual strategy for state constrained optimal control problems. Comput. Optim. Appl. 22(2), 193–224 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bergounioux, M., Haddou, M., Hintermüller, M., Kunisch, K.: A comparison of a Moreau–Yosida-based active set strategy and interior point methods for constrained optimal control problems. SIAM J. Optim. 11(2), 495–521 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(3), 1–122 (2011)

    MATH  Google Scholar 

  8. Casas, E.: Pontryagin’s principle for state constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35(4), 1297–1327 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan, T., Glowinski, R.: Finite Element Approximation and Iterative Solution of a Class of Mildly Non-linear Elliptic Equations. Stanford University, Stanford (1978)

    Google Scholar 

  10. Deuflhard, P., Seebass, M., Stalling, D., Beck, R., Hege, H.C.: Hyperthermia Treatment Planning in Clinical Cancer Therapy: Modelling, Simulation and Visualization. Konrad-Zuse-Zentrum für Informationstechnik, Berlin (1997)

    Google Scholar 

  11. Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  12. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    Article  MATH  Google Scholar 

  13. Glowinski, R.: Finite Element Methods for Incompressible Viscous Flow. Handbook of Numerical Analysis, vol. 9, pp. 3–1176. Elsevier, Hoboken (2003)

    Google Scholar 

  14. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, Berlin (2008)

    MATH  Google Scholar 

  15. Glowinski, R.: Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems. Society for Industrial and Applied Mathematics, Philadelphia (2015)

    Book  MATH  Google Scholar 

  16. Glowinski, R., Lions, J.L.: Exact and approximate controllability for distributed parameter systems. Part I. Acta Numerica 3, 269–378 (1994)

    Article  MATH  Google Scholar 

  17. Glowinski, R., Lions, J.L.: Exact and approximate controllability for distributed parameter systems. Part II. Acta Numerica 4, 159–328 (1995)

    Article  MATH  Google Scholar 

  18. Glowinski, R., Lions, J.L., He, J.W.: Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  19. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. Society for Industrial and Applied Mathematics, Philadelphia (1989)

    Book  MATH  Google Scholar 

  20. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique 9(2), 41–76 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hintermüller, M., Kunisch, K.: Path-following methods for a class of constrained minimization problems in function space. SIAM J. Optim. 17(1), 159–187 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hinze, M., Schiela, A.: Discretization of interior point methods for state constrained elliptic optimal control problems: optimal error estimates and parameter adjustment. Comput. Optim. Appl. 48(3), 581–600 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, vol. 23. Springer, Berlin (2008)

    MATH  Google Scholar 

  24. Hintermüller, M., Tröltzsch, F., Yousept, I.: Mesh-independence of semismooth Newton methods for Lavrentiev-regularized state constrained nonlinear optimal control problems. Numerische Mathematik 108(4), 571–603 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. He, B.S., Yang, H., Wang, S.L.: Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory Appl. 106(2), 337–356 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. He, B.S., Yuan, X.M.: On the \(O(1/n)\) convergence rate of Douglas–Rachford alternating direction method of multipliers. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. He, B.S., Yuan, X.M.: On nonergodic convergence rate of Douglas–Rachford alternating direction method of multipliers. Numerische Mathematik 130(3), 567–577 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ito, K., Kunisch, K.: Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces. Nonlinear Anal. Theory Methods Appl. 41(5–6), 591–616 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ito, K., Kunisch, K.: Semi-smooth Newton methods for state constrained optimal control problems. Syst. Control Lett. 50(3), 221–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jiao, Y.L., Jin, Q.N., Lu, X.L., Wang, W.J.: Alternating direction method of multipliers for linear inverse problems. SIAM J. Numer. Anal. 54(4), 2114–2137 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Karl, V., Pörner, F.: A joint Tikhonov regularization and augmented Lagrange approach for ill-posed state constrained control problems with sparse controls. Numer. Funct. Anal. Optim. 39(14), 1–31 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kruse, F., Ulbrich, M.: A self-concordant interior point approach for optimal control with state constraints. SIAM J. Optim. 25(2), 770–806 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Karl, V., Wachsmuth, D.: An augmented Lagrange method for elliptic state constrained optimal control problems. Comput. Optim. Appl. 69(3), 857–880 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Karsten, E., Tröltzsch, F.: Fast optimization methods in the selective cooling of steel. In: Grötschel, M., Krumke, S.O., Rambau, J. (eds.) Online Optimization of Large Scale Systems, pp. 185–104. Springer, Berlin (2001)

    MATH  Google Scholar 

  36. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 170. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  37. Kunisch, K., Rösch, A.: Primal–dual active set strategy for a general class of constrained optimal control problems. SIAM J. Optim. 13(2), 321–334 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Meyer, C., Philip, P.: Optimizing the temperature profile during sublimation growth of SiC single crystals: control of heating power, frequency, and coil position. Cryst. Growth Des. 5(3), 1145–1156 (2005)

    Article  Google Scholar 

  39. Meyer, C., Prüfert, U., Tröltzsch, F.: On two numerical methods for state constrained elliptic control problems. Optim. Methods Softw. 22(6), 871–899 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Meyer, C., Rösch, A., Tröltzsch, F.: Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33(2), 209–228 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Neitzel, I., Tröltzsch, F.: On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints. ESAIM Control Optim. Calc. Var. 15(2), 426–453 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Neitzel, I., Tröltzsch, F.: Numerical Analysis of State Constrained Optimal Control Problems for PDEs. Constrained Optimization and Optimal Control for Partial Differential Equations, pp. 467–482. Springer, Basel (2012)

    MATH  Google Scholar 

  43. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)

    Google Scholar 

  44. Pearson, J.W., Gondzio, J.: Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization. Numerische Mathematik 137(4), 959–999 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Prüfert, U., Tröltzsch, F.: An interior point method for a parabolic optimal control problem with regularized pointwise state constraints. ZAMM J. Appl. Math. Mech. 87(8–9), 564–589 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Prüfert, U., Tröltzsch, F., Weiser, M.: The convergence of an interior point method for an elliptic control problem with mixed control-state constraints. Comput. Optim. Appl. 39(2), 183–218 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Raymond, J.P., Zidani, H.: Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39(2), 143–177 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. Schiela, A.: Barrier methods for optimal control problems with state constraints. SIAM J. Optim. 20(2), 1002–1031 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Schiela, A.: An interior point method in function space for the efficient solution of state constrained optimal control problems. Math. Program. 138(1–2), 83–114 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Schiela, A., Günther, A.: An interior point algorithm with inexact step computation in function space for state constrained optimal control. Numerische Mathematik 119(2), 373–407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tröltzsch, F.: Regular Lagrange multipliers for control problems with mixed pointwise control-state constraints. SIAM J. Optim. 15(2), 616–634 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  53. Tröltzsch, F., Yousept, I.: A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints. Comput. Optim. Appl. 42(1), 43–66 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ulbrich, M.: Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13(3), 805–841 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Roland Glowinski was partially supported by the Kennedy Wong Foundation in Hong Kong. Xiaoming Yuan was supported by the seed fund for basic research at The University of Hong Kong (Project Code: 201807159005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glowinski, R., Song, Y. & Yuan, X. An ADMM numerical approach to linear parabolic state constrained optimal control problems. Numer. Math. 144, 931–966 (2020). https://doi.org/10.1007/s00211-020-01104-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01104-4

Mathematics Subject Classification

Navigation