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Abstract
Amodification of the standard Boris algorithm, called filtered Boris algorithm, is pro-
posed for the numerical integration of the equations of motion of charged particles in a
strong non-uniformmagnetic field in the asymptotic scaling known as maximal order-
ing.With an appropriate choice of filters, second-order error bounds in the position and
in the parallel velocity, and first-order error bounds in the normal velocity are obtained
with respect to the scaling parameter. This also yields a second-order approximation
to the guiding center motion. The proof compares the modulated Fourier expansions
of the exact and the numerical solutions. Numerical experiments illustrate the error
behaviour of the filtered Boris algorithm.
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1 Introduction

In this paper we propose and analyse a numerical integrator for the equations ofmotion
of a charged particle in a strong inhomogeneous magnetic field,
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ẍ(t) = ẋ(t) × B(x(t), t) + E(x(t), t)

with B(x, t) = 1

ε
B0(εx) + B1(x, t) for 0 < ε � 1.

(1.1)

This scaling is of interest in particle methods in plasma physics and is called maxi-
mal ordering in [2]; see also [12] for a careful discussion of scalings and a rigorous
analysis of this model. It is assumed that |B0(0)| ≥ 1, that B0, B1 and E are smooth
functions that are bounded independently of ε on bounded domains together with
all their derivatives, and that the initial data x(0) = x0, ẋ(0) = v0 are bounded
independently of ε.

In (1.1), x(t) ∈ R3 represents the position at time t of a charged particle (of unit
mass and charge) that moves in the magnetic field B and the electric field E . The
motion is composed of fast rotation around a guiding center (with the Larmor radius
proportional to ε) and slow motion of the guiding center.

The standard integrator for charged particles in a magnetic field is the Boris algo-
rithm [1] (see also, e.g., [6]), which in the two-step formulation with step size h is
given by

xn+1 − 2xn + xn−1

h2
= xn+1 − xn−1

2h
× B(xn, tn) + E(xn, tn) (1.2)

with the velocity approximation vn = 1
2h

(
xn+1 − xn−1

)
at time tn = nh. This algo-

rithm does, however, not behave well for (1.1) with small ε. Here we propose a
modification, which we name filtered Boris algorithm. This modified integrator allows
us to obtain better accuracy with considerably larger time steps, at minor additional
computational cost. It is still a symmetric algorithm. We formulate and discuss this
new algorithm in Sect. 2. It comes in different variants that depend on the choice of a
suitable filter function and of the positions where the magnetic field is evaluated, and
we identify favourable choices.

A different approach to numerical integrators for charged particles in a strong
magnetic field is taken in [3], where damping linearly implicit integrators are studied.
For step sizes h ≥ ε, those integrators quickly reduce that part of the kinetic energy
that comes from the velocity component perpendicular to the magnetic field. As is
shown in [3], the numerical solution then approximates a numerical solution of an
asymptotic model for guiding-center motion. In contrast, the original Boris method
and the filtered Boris method proposed here do not dampen the high oscillations, and
the filtered method is shown to give approximations of second-order accuracy to both
the actual position and the actual guiding center over anO(1) time scale for stepsizes
h ∼ ε.

In Sect. 3 we state the main theoretical result, Theorem 3.1, which gives an error
bound for the filtered Boris method that behaves favourably with respect to ε. While
most filters only yield a first-order error bound in the positions, for a particular, non-
trivial choice of the filter a second-order error bound is obtained. A second-order
error bound is also obtained for the component of the velocity that is parallel to the
magnetic field. For the normal velocity approximation, there is still a first-order error
bound for any filter. The proof of Theorem 3.1 is based on comparing the modulated
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Fourier expansions of the exact and the numerical solutions, which are derived in
Sects. 4 and 5, respectively. Combining those results, the proof of Theorem 3.1 is
finally completed in Sect. 6.

We remark that the differential equations for the coefficient functions of the modu-
lated Fourier expansions derived explicitly up toO(ε2) in Sect. 4 also yield the motion
of the guiding center up to O(ε2). They coincide up to O(ε2) with the guiding center
equations of the numerical approximation given by the filtered Boris integrator for
an appropriate filter and for non-resonant step sizes h ≤ Cε with a possibly large
constant C . This does not hold true for the standard Boris integrator.

In Sect. 7 we describe a related, but different integrator, called two-point filtered
Boris algorithm, which evaluates the magnetic field both in the current position and
in the current guiding center approximation in each step, and which has similar con-
vergence properties to the previously considered filtered Boris method.

In Sect. 8 we present the results of numerical experiments in which we compare
the standard and filtered Boris algorithms.

In theAppendixwe showhow the filters are evaluated efficiently using aRodriguez-
type formula.

2 Filtered Boris algorithm

Using the velocity approximation at the mid-point,

vn−1/2 = 1

h

(
xn − xn−1) = vn − h

2
vn × B(xn, tn) − h

2
E(xn, tn),

the Boris algorithm (1.2) is usually written and implemented as a one-step method
(xn, vn−1/2) �→ (xn+1, vn+1/2),

v
n−1/2
+ = vn−1/2 + h

2 E(xn, tn)

v
n+1/2
− − v

n−1/2
+ = h

2

(
v
n+1/2
− + v

n−1/2
+

) × B(xn, tn)

vn+1/2 = v
n+1/2
− + h

2 E(xn, tn)

xn+1 = xn + h vn+1/2.

(2.1)

To capture the high oscillations in the velocitymore accurately, the second line of (2.1)
needs to be modified, and one should rather work with averaged velocities vn+1/2 ≈
1
h

∫ tn+1

tn v(t) dt and possibly averaged positions. This can be achieved with the help of
filter functions like in [4,9] and [8, Section XIII.2].

For a vector B = (b1, b2, b3)
 ∈ R3 we denote by |B| the Euclidean norm of B
and we use the common notation

v × B = −B̂ v, B̂ =
⎛

⎝
0 −b3 b2
b3 0 −b1

−b2 b1 0

⎞

⎠ . (2.2)
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For real-analytic functions �(ζ) [such as exp(ζ )] we will form matrix functions
�(−h B̂), which are efficiently computed by a Rodriguez-type formula as described
in the Appendix.

We denote by

xn� = xn + vn × Bn

|Bn|2 (2.3)

with Bn = B(xn, tn) the guiding center approximation at time tn (cf. [11]). For the
argument of B in the algorithm we choose a point on the straight line connecting xn

and xn�:
x̄n = θnxn + (1 − θn)xn� (2.4)

with θn = θ(h|Bn|) for a real function θ . It turns out that there is a unique choice of
θ such that a second-order error bound will be obtained:

θ(ξ) = 1

sinc(ξ/2)2
, (2.5)

where sinc(ξ) = sin(ξ)/ξ . We note that with the scaling (1.1), we have x̄n = xn +
O(ε), provided that h|Bn| is bounded away from non-zero integral multiples of 2π .

We consider the following modification of the Boris algorithm.

Algorithm 2.1 (Filtered Boris algorithm) Given (xn, vn−1/2), the algorithm computes
(xn+1, vn+1/2) as follows, with Bn = B(xn, tn), B̄n = B(x̄n, tn) with x̄n defined by
(2.4), and En = E(xn, tn):

v
n−1/2
+ = vn−1/2 + h

2
�(h B̂n) En

v
n+1/2
− = exp

(−ĥ̄Bn
)
v
n−1/2
+ .

vn+1/2 = v
n+1/2
− + h

2
�(h B̂n) En

xn+1 = xn + h vn+1/2,

(2.6)

where �(ζ) = tanch(ζ/2) with tanch(ζ ) = tanh(ζ )/ζ .
The velocity approximation vn is computed as

vn = �1(h
̂̄Bn)

xn+1 − xn−1

2h
− hϒ(h B̂n)En, (2.7)

where �1(ζ ) = 1

sinch(ζ )
with sinch(ζ ) = sinh(ζ )

ζ
, and ϒ(ζ ) = �1(ζ ) − 1

ζ
. The

starting approximation v1/2 is computed from (2.10) below with n = 0.

Theorem 3.1 below shows that the choice of filter functions made in Algorithm 2.1
and (2.5) is the unique choice that gives a second-order error bound.

For the choice θn = 1, the algorithm is explicit and requires only matrix-vector
multiplications that can be done efficiently with a Rodriguez-type formula (see the
Appendix).
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For θn = θ(h|Bn|) with θ(ζ ) from (2.5), the algorithm is implicit, because x̄n then
depends on vn and appears in the argument of B̄n in the second line. This can be solved
by a rapidly convergent fixed-point iteration for x̄n :

We start the iteration with x̄n = xn , then compute v
n+1/2
− from (2.6) and vn from

(2.7) using

1
2h (xn+1 − xn−1) = 1

2

(
vn+1/2 + vn−1/2) = 1

2

(
v
n+1/2
− + v

n−1/2
+

)
. (2.8)

This then yields xn� from (2.3) and the new x̄n from (2.4).We note that allmatrix-vector
multiplications can be done with a Rodriguez-type formula.

It is readily checked that this iteration map has a Lipschitz constant of size O(ε2)

under the scaling (1.1) and for stepsizes h = O(ε). Since the deviation from the
solution of the implicit method is therefore reduced by a factorO(ε2) in each iteration,
making just one iteration is sufficient to get the improved second-order accuracy of
the implicit method.

We mention that Algorithm 2.1 preserves volume in phase space exactly in the
case of constant B (and time-dependent B(t)), but only approximately up to O(hε)

in the general case of an inhomogeneous magnetic field (1.1). For the original Boris
method it is, however, known from [13] that the map (xn, vn−1/2) �→ (xn+1, vn+1/2)

is volume-preserving for general magnetic fields.

Two-step formulation The filtered Boris algorithm has the symmetric two-step formu-
lation

xn+1 − 2xn + xn−1

h2
= 2

h
tanh

(− 1
2h

̂̄Bn
) xn+1 − xn−1

2h
+ �(h B̂n)En, (2.9)

as is readily obtained by taking two consecutive steps and using (2.8). This formulation
is the basis of our theoretical analysis.

Starting value The starting value v1/2 is chosen such that formulas (2.6)–(2.7) also
hold for n = 0. We find, for arbitrary n, that

vn±1/2 = ϕ1
(∓ĥ̄Bn

)(
vn + hϒ(h B̂n)En

)
± h

2
�(h B̂n) En, (2.10)

where ϕ1(ζ ) = (eζ − 1)/ζ . Note that, for given x0 and v0, the vectors xn� and x̄n are
known, so that (2.7) provides an explicit formula for v1/2.

One-step map (xn, vn) �→ (xn+1, vn+1) Using the last formula of (2.6) together with
(2.10) for relating xn+1 and xn , and (2.10) with n and + and with n + 1 and − for
relating vn+1 and vn , the filtered Boris algorithm can be written as

xn+1 = xn + h�n+vn + h2
2 �n+En

�n+1− vn+1 = �n+vn + h
2 �n+1− En+1 + h

2 �n+En,
(2.11)

where �n± = ϕ1(∓ĥ̄Bn) and �n± = �(h B̂n) ± 2�n±ϒ(h B̂n).
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The method is symmetric in the sense that exchanging n ↔ n + 1 and h ↔ −h
gives the same formulas.

The integrator in the case of a constant magnetic field For constant B, we note that
(�n+1− )−1�n+ = exp(−h B̂), and so (2.11) reduces to the exponential integrator (with
the notation �±(ζ ) = �(ζ) ∓ 2ϕ1(±ζ )ϒ(ζ ))

xn+1 = xn + hϕ1(−h B̂)vn + h2
2 �+(−h B̂)En

vn+1 = exp(−h B̂)vn + h
2

(
�0(−h B̂)En + �1(−h B̂)En+1

) (2.12)

with �0(ζ ) = �+(ζ )/ϕ1(−ζ ) and �1(ζ ) = �−(ζ )/ϕ1(−ζ ). The method is exact for
a constant magnetic field B and vanishing electric field E , because

exp

(
0 t I
0 −t B̂

)
=

(
I t ϕ1(−t B̂)

0 exp(−t B̂)

)
. (2.13)

Since we have chosen �(ζ) = tanch(ζ/2), the method is also exact for constant B
and E . This is seen as follows: For constant B, the variation-of-constants formula for
the system ẋ = v, v̇ = x × B + E(x) reads, in view of (2.13),

x(tn + h) = x(tn) + hϕ1(−h B̂)v(tn)

+ h2
∫ 1

0
(1 − s)ϕ1(−(1 − s)h B̂)E(x(tn + hs))ds,

v(tn + h) = exp(−h B̂)v(tn) + h
∫ 1

0
exp(−(1 − s)h B̂)E(x(tn + hs))ds.

For constant E , this becomes (2.12), which yields �±(ζ ) = ϕ2(±ζ ), where ϕ2(ζ ) =
(eζ − 1 − ζ )/(ζ 2/2) = ∫ 1

0 (1 − s) ϕ1((1 − s)ζ )ds.

3 Statement of themain result

Our main theoretical result in this paper is the following error bound for the filtered
Boris algorithm. Here we denote, for the exact velocity v(t) = ẋ(t),

v‖(t) = B(x(t), t)

|B(x(t), t)|
(

B(x(t), t)

|B(x(t), t)| · v(t)

)
, v⊥(t) = v(t) − v‖(t),

and similarly for the numerical velocity vn ,

vn‖ = B(xn, t)

|B(xn, tn)|
(

B(xn, tn)

|B(xn, tn)| · vn
)

, vn⊥ = vn − vn‖ .

We then have the following result.
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Theorem 3.1 We assume the following, with arbitrarily chosen positive constants c,
C, M and T :

1. The initial velocity satisfies an ε-independent bound

|v0| ≤ M . (3.1)

2. The exact solution x(t) of (1.1) stays in a bounded set K (independent of ε) for
0 ≤ t ≤ T .

3. The step size satisfies h ≤ Cε and is such that the following non-resonance
condition is satisfied:

∣∣ sinc
( 1
2kh|B(x(t), t)|)∣∣ ≥ c > 0 for k = 1, 2, 3. (3.2)

If in the filtered Boris algorithm,

– x̄n is given by (2.4) with the function θ of (2.5), and
– the filter functions � and ϒ are defined as in Algorithm 2.1,

then the errors in the positions and the velocities are bounded by

xn − x(tn) = O(ε2),

vn‖ − v‖(tn) = O(ε2), vn⊥ − v⊥(tn) = O(ε). (3.3)

For a different choice of the functions θ ,� andϒ , the error bounds are not better than
O(ε) for general problems (1.1). The constants in theO-notation are independent of ε
and h and n with 0 ≤ tn = nh ≤ T , but depend on T , on the velocity bound M and the
constants c and C, and on bounds of derivatives of B0, B1 and E in a neighbourhood
of the set K .

We remark that in view of the error bounds, the non-resonance condition might be
required along the numerical solution xn instead of the exact solution x(t) as in (3.2).

The proof of this theorem will compare the modulated Fourier expansion of the
exact solution (as given in Sect. 4) with that of the numerical approximation (as given
in Sect. 5). It will be given in Sect. 6.

Remark 3.1 The proof also shows that the choice x̄n = xn is sufficient for order 2 if
the magnetic field satisfies, for all z ∈ C3 and x ∈ K and all times t ,

Im (z × ∂x B(x, t)z̄) · B(x, t) = O(ε).

Remark 3.2 As a consequence of Theorem 3.1, the approximate guiding center xn� of
the numerical solution, given by (2.3), is an O(ε2) approximation to

x�(t) = x(t) + ẋ(t) × B(x(t), t)

|B(x(t), t)|2 ,

which is an O(ε2) approximation to the guiding center of the trajectory x(t) (by
Theorem 4.1 below; cf. [11]).
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4 Modulated Fourier expansion of the exact solution

We write the solution of (1.1) as a modulated Fourier expansion

x(t) ≈
∑

k∈Z
zk(t) eikφ(t)/ε (4.1)

with coefficient functions zk(t) for which all time derivatives are bounded inde-
pendently of ε, where φ̇(t)/ε = ∣∣B

(
z0(t), t

)∣∣, and z0(t) describes the motion of
the guiding center. Such a formal expansion has first been considered in [10] for
proving the existence of an adiabatic invariant (essentially the magnetic moment
1
2 |ẋ × B(x)|2/|B(x)|3). It has been used for a rigorous proof of the long-time near-
conservation of the magnetic moment in [7], where this approach was extended to
the numerical solution of a variational integrator, for which near-conservation of the
magnetic moment and of the energy is rigorously proved over long times that cover
arbitrary negative powers of ε.

Following [7], we diagonalize the linear map v �→ v × B(x, t), which has eigen-
values λ1 = i|B(x, t)|, λ0 = 0, and λ−1 = −i|B(x, t)|. We denote the normalized
eigenvectors by v1(x, t), v0(x, t), v−1(x, t), and remark that v0(x, t) is collinear to
B(x, t). We let Pj (x, t) = v j (x, t)v j (x, t)∗ be the orthogonal projections onto the
eigenspaces. Furthermore, we write the coefficient functions of (4.1) in the time-
dependent basis v j

(
z0(t), t

)
,

zk = zk1 + zk0 + zk−1, zkj (t) = Pj
(
z0(t), t

)
zk(t). (4.2)

Since x(t) is real, we assume z−k = zk for all k. Together with the fact that v−1(x, t) =
v1(x, t) and v0(x, t) is real, it follows

z−k
−1 = zk1, z−k

0 = zk0, z−k
1 = zk−1. (4.3)

The following result is a variant of Theorem 4.1 in [7], adapted to the present case of
a strong magnetic field of the form (1.1). Note that B in this paper corresponds to B/ε

in [7].

Theorem 4.1 Let x(t) be a solution of (1.1) with bounded initial velocity (3.1) that
stays in a compact set K for 0 ≤ t ≤ T . For an arbitrary truncation index N ≥ 1 we
then have

x(t) =
∑

|k|≤N

zk(t) eikφ(t)/ε + RN (t), (4.4)

where the phase function satisfies φ̇(t) = ε|B(z0(t), t)| = O(1).

(a) The coefficient functions zk(t) together with their derivatives (up to order N) are
bounded as z0j = O(1) for j ∈ {−1, 0, 1}, z11 = O(ε), z−1

−1 = O(ε), zkj = O(ε3)

for |k| = 1, j �= k, and for the remaining ( j, k) with |k| ≤ N,

zkj = O(ε|k|+1). (4.5)
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They are unique up to O(εN+2). Moreover, we have ż0 × B(z0, t) = O(1).
(b) The remainder term and its derivative are bounded by

RN (t) = O(t2εN ), ṘN (t) = O(tεN ) for 0 ≤ t ≤ T . (4.6)

(c) The functions z00, z
0±1, z

1
1, z

−1
−1 satisfy the differential equations

z̈00 = P0(z
0, t)E(z0, t) + 2 P0(z

0, t)Re
(
i
φ̇

ε
z11 × B ′(z0, t)z−1

−1

)

+2 Ṗ0(z
0, t)ż0 + P̈0(z

0, t)z0 + O(ε2), (4.7)

ż0±1 = Ṗ±1(z
0, t)z0 ± i

ε

φ̇
P±1(z

0, t)E(z0, t) + O(ε2), (4.8)

ż±1
±1 = − φ̈

φ̇
z±1
±1 + O(ε2) = O(ε2), (4.9)

where we use the notation Ṗj (z0, t) = d
dt Pj

(
z0(t), t

)
and similar for P̈j (z0, t).

All other coefficient functions zkj are given by algebraic expressions depending

on z0, ż00, z
1
1, z

−1
−1.

(d) Assuming φ(0) = 0, initial values for the differential equations of item (c) are
given by

z0(0) = x(0) + ẋ(0) × B(x(0), 0)

|B(x(0), 0)|2 + O(ε2),

ż00(0) = P0(x(0), 0)ẋ(0) + Ṗ0(x(0), 0)x(0) + O(ε2),

z±1
±1(0) = ∓ i

ε

φ̇(0)
P±1(x(0), 0)ẋ(0) + O(ε2).

The constants symbolised by the O-notation are independent of ε and t with
0 ≤ t ≤ T , but they depend on N, on the velocity bound M in (3.1), on bounds
of derivatives of B and E, and on T .

Remark 4.1 We note that the guiding center motion of the system (1.1) is given by
the non-oscillating term z0(t) in the modulated Fourier expansion. By the uniqueness
of the modulated Fourier expansion up to high powers of ε, the equations in item (d)
hold not only at time 0, but for all t ≤ T .

Proof (a) and (b) Compared to Theorem 4.1 in [7], where a more general strong
magnetic field is considered, the time interval of validity of the modulated Fourier
expansion is here O(1) instead of just O(ε), and the bound (4.5) is improved by a
factor ε. The improvement of the time scale comes about by observing that a function
x∗(t) that solves (1.1) up to a defect d(t), i.e.,

ẍ∗(t) = ẋ∗(t) × B(x∗(t), t) + E(x∗(t), t) + d(t),
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satisfies an error bound, for 0 ≤ t ≤ T ,

|x∗(t) − x(t)| ≤ C
(
|x∗(0) − x(0)| + |ẋ∗(0) − ẋ(0)| +

∫ t

0
|d(t)| dt

)
,

where C is independent of ε but grows exponentially with T . This is proved by
decomposing B(x, t) = ε−1B0(0) + ε−1(B0(εx) − B0(0)) + B1(x, t) and using the
variation-of-constants formula and the Gronwall inequality. The improvement of the
bound (4.5) is a consequence of the fact that the derivatives of B(x, t) are bounded
independently of ε.

(c) For the error bound of Sect. 6 we need precise formulas for the dominant terms
of (4.4). Inserting the expansion (4.1) into the differential Eq. (1.1) and comparing
the coefficients of eikφ(t)/ε yields

z̈k + 2ik
φ̇

ε
żk +

(
ik

φ̈

ε
− k2

φ̇2

ε2

)
zk = Fk, (4.10)

where, using Taylor series expansion for the nonlinearities,

Fk =
∑

k1+k2=k

(
żk1 + ik1

φ̇

ε
zk1

)
×

∑

m≥0
s(α)=k2

1

m! B
(m)(z0, t) zα +

∑

m≥0
s(α)=k

1

m! E
(m)(z0, t) zα.

Here, B(m)(x, t) and E (m)(x, t) denote the mth derivative with respect to x , α =
(α1, . . . , αm) is a multi-index with α j ∈ Z\{0}, s(α) = α1 + · · · + αm , |α| =
|α1| + · · · + |αm |, and zα = (zα1 , . . . , zαm ).

From (4.10) it follows that the motion of the guiding center z0(t) is given by

z̈0 = ż0 × B(z0, t) + E(z0, t) + 2Re
(
i
φ̇

ε
z1 × B ′(z0, t)z−1

)
+ O(ε2). (4.11)

The solution z0(t) is influenced by the functions z±1 which, by (4.10), satisfy

± 2i
φ̇

ε
ż±1 +

(
±i

φ̈

ε
− φ̇2

ε2

)
z±1 =

(
ż±1 ± i

φ̇

ε
z±1

)
× B(z0, t) + O(ε). (4.12)

Note that,whereas B(z0, t) is of sizeO(ε−1), its derivatives are bounded independently
of ε due to the special form (1.1).

To get solutions with derivatives bounded uniformly in ε, one has to extract the
dominant terms. Multiplying (4.11) with P0(z0, t) eliminates the ε−1-term that is
present in B(z0, t), and the second derivative z̈00 becomes dominant. Differentiating the
relation z00 = P0(z0, t)z0 with respect to time yields z̈00 = P0(z0, t)z̈0+2 Ṗ0(z0, t)ż0+
P̈0(z0, t)z0. This then gives (4.7). Note that, due to the special form of B(x, t), the
time derivatives of Pj (z0, t) are of size O(ε).
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A multiplication of (4.11) with P±1(z0, t) gives

P±1(z
0, t)z̈0 = ±i

φ̇

ε
P±1(z

0, t)ż0 + P±1(z
0, t)E(z0, t) + O(ε).

Substituting P±1(z0, t)ż0 = ż0±1 − Ṗ±1(z0, t)z0, and extracting ż0±1 yields (4.8). Note
that ż0±1 = O(ε), so that also z̈0±1 = O(ε), and P±1(z0, t)z̈0 = O(ε).

Since φ̇/ε = |B(z0, t)|, the ε−2-terms cancel in (4.12) after projection with
P±1(z0, t). Therefore, the ε−1-terms are dominant and we obtain (4.9).

(d): Assuming φ(0) = 0, initial values are determined from (4.4) by

x(0) = z0(0) + (
z1(0) + z−1(0)

) + O(ε3)

ẋ(0) = ż0(0) + (
ż1(0) + ż−1(0)

) + i
φ̇(0)

ε

(
z1(0) − z−1(0)

) + O(ε3).
(4.13)

This is a nonlinear system for z0(0), ż00(0), z
1
1(0), z

−1
−1(0). We write the vectors in the

basis {v j (z0(0), 0)}, and we select the dominant terms in each equation. They are
z0(0) in the upper relation of (4.13), and ż00(0), z

1
1(0), z

−1
−1(0) in the lower relation.

Fixed-point iteration then yields the stated equations for the initial values. Note that
the relation Pj (z0(0), 0) = Pj (x(0), 0) + O(ε2) has been applied. ��

5 Modulated Fourier expansion of the numerical solution

We consider the two-step formulation (2.9) of the filtered Boris algorithm, and we
write the numerical approximation xn as

xn ≈
∑

k∈Z
zk(t) eikφ(t)/ε, t = nh. (5.1)

We use the same notation for the coefficient functions as in Sect. 4. Note, however,
that for the numerical solution these functions are not the same and depend on the
additional parameter h. We again consider the basis {v j (x, t)} and the corresponding
orthogonal projections Pj (x, t), and we write the coefficient functions zk as in (4.2),
with the only difference that here the argument z0(t) is the non-oscillating part of (5.1)
and not that of (4.1).

Theorem 5.1 Let {xn} be a numerical solution of the filtered Boris algorithm applied
to (1.1) with bounded initial velocity (3.1), and suppose that it stays in a compact
set K for 0 ≤ nh ≤ T . We assume the non-resonance condition

∣∣ sinc
( 1
2kh|B(xn, tn)|)∣∣ ≥ c > 0 for k = 1, . . . , N + 1, (5.2)

for a fixed, but arbitrary truncation index N ≥ 2, and (for convenience of presentation)
also the bound η = h/ε ≤ C. Moreover, we assume that the filter function � in (2.9)

123



798 E. Hairer et al.

is bounded by |�(iξ)| ≤ C |tanc( 12ξ)| for all real ξ , where tanc(ξ) = tan(ξ)/ξ . Then,
we have that

xn =
∑

|k|≤N

zk(t) eikφ(t)/ε + RN (t), t = nh, (5.3)

where the phase function is given by φ̇(t) = ε|B(z0(t), t)|.
(a) and (b) The coefficient functions zk(t) together with their derivatives (up to order

N) as well as the remainder term and its derivative satisfy the bounds of
items (a) and (b) of Theorem 4.1.

(c) The functions z00, z
0±1, z

1
1, z

−1
−1 satisfy the differential equations (with θ(ξ)

used in the definition of x̄n in (2.4))

z̈00 = P0(z
0, t)E(z0, t) + 2 P0(z

0, t)Re
(
i
φ̇

ε
z11 × B ′(z0, t)z−1

−1

)

×θ(ηφ̇) sinc(ηφ̇/2)2 + 2 Ṗ0(z
0, t)ż0 + P̈0(z

0, t)z0 + O(ε2), (5.4)

ż0±1 = Ṗ±1(z
0, t)z0 ± �

(
iηφ̇

)

tanc
(ηφ̇

2

) i
ε

φ̇
P±1(z

0, t)E(z0, t) + O(ε2), (5.5)

ż±1
±1 = − 1

tanc
(ηφ̇

2

)
φ̈

φ̇
z±1
±1 + O(ε2) = O(ε2). (5.6)

All other coefficient functions zkj are given by algebraic expressions

depending on z0, ż00, z
1
1, z

−1
−1.

(d) Assuming φ(0) = 0, initial values for the differential equations of item (c)
are given by the same equations as for the exact solution, up to O(ε2),

z0(0) = x(0) + ẋ(0) × B(x(0), 0)

|B(x(0), 0)|2 + O(ε2),

ż00(0) = P0(x(0), 0)ẋ(0) + Ṗ0(x(0), 0)x(0) + O(ε2),

z±1
±1(0) = ∓ i

ε

φ̇(0)
P±1(x(0), 0)ẋ(0) + O(ε2).

(5.7)

The constants symbolised by the O-notation are independent of ε and n
with 0 ≤ nh ≤ T , but they depend on N, on the velocity bound M in
(3.1), on bounds of derivatives of B and E, and on T .

Proof (a) and (b) We do not present the details of the proof of the existence of the
modulated Fourier expansion and the bounds for the coefficient functions and the
remainder term, since this uses the same kind of arguments as in previous such proofs,
e.g. in [5,7,8]. In particular, for |k| = 1, j �= k and for |k| ≥ 2 the construction of the
coefficient functions (see part (c) below) shows that zkj is multiplied by

4

η2
sin

(kηφ̇

2

)
sin

( (k − j)ηφ̇

2

)
.

123



A filtered Boris algorithm for charged-particle dynamics… 799

Under the non-resonance assumption (5.2) this expression is bounded from below by
a positive constant, so that an algebraic relation for zkj can be extracted.

By construction of the coefficient functions the truncated series of (5.3) satisfies
the two-step relation (2.9) up to a defect of sizeO(εN ). A standard discrete Gronwall
argument then gives the bounds on the remainder.

(d) The initial values are obtained from

x(0) = z0(0) + (
z1(0) + z−1(0)

) + O(ε2), (5.8)

which is a consequence of (5.1), and from

ẋ(0) = �1
(
h B̂(x(0), 0)

)
ż0(0) + iφ̇(0)

ε
z11(0) − iφ̇(0)

ε
z−1
−1(0)

−hϒ
(
h B̂(x(0), 0)

)
E(x(0), 0) + O(ε2), (5.9)

which follows from (2.7) and Lemma 5.1. As in the proof of Theorem 4.1 this con-
stitutes a nonlinear system for the values z0(0), ż00(0), z

1
1(0), z

−1
−1(0). The relation

(5.8) yields z00(0). Multiplication of (5.9) with Pj
(
z0(0), 0

) = Pj
(
x(0), 0

) + O(ε2)

gives ż00(0) for j = 0 and z±1
±1(0) for j = ±1, where we use in addition that

�1(h B̂(x(0), 0)) = �1(h B̂(z0(0), 0)) + O(ε2) and P±1 ż0 = ż0±1 − Ṗ±1z0 = O(ε).
Remarkably we get, up to terms of sizeO(ε2), the same formulas for the initial values
as for the exact solution.

By theuniqueness of themodulatedFourier expansion [up toO(εN )], these relations
hold not only at time 0, but for arbitrary times t ≤ T , except for a phase factor e∓iφ(t)

in the equation for z±1
±1. This phase factor did not appear in (5.7) because we chose

φ(0) = 0.
(c) To derive the differential equations for the coefficient functions we first expand

the perturbed argument of B(x, t) in the filtered Boris algorithm as

x̄n ≈
∑

k∈Z
ζ k(t) eikφ(t)/ε, t = nh. (5.10)

The coefficient functions ζ k(t) are obtained as follows: inserting the modulated
Fourier expansion (5.1) into (2.7), using Lemma 5.1 below, and replacing �1

(
ĥ̄Bn

)

by �1
(
h B̂(z0(tn), tn)

)
yields with t = nh

vn = ż00(t) + iφ̇(t)

ε
z11(t) e

iφ(t)/ε − iφ̇(t)

ε
z−1
−1(t) e

−iφ(t)/ε + O(ε),

see also the more detailed computation in Sect. 6. Since we have ż00(t) =
P0

(
z0(t), t

)
z0(t) + O(ε) and Bn = B̂

(
z0(tn), tn

) + O(ε), this implies

vn × Bn

|Bn|2 = −z11(t) e
iφ(t)/ε − z−1

−1(t) e
−iφ(t)/ε + O(ε2),
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and consequently xn� = z0(tn) +O(ε2), which shows that xn� is an excellent approx-
imation of the non-oscillating part of the numerical solution xn . Together with the
definition (2.4) of x̄n we find the dominating terms of the expansion (5.10) as

ζ 0(t) = z0(t) + O(ε2), ζ±1(t) = θ(t) z±1(t) + O(ε2), (5.11)

where θ(t) = θ(hφ̇(t)/ε) = θ
(
h|B(z0(t), t)|).

After this preparation, we insert the expansions (5.1) for xn and (5.10) for x̄n

into the two-step formulation (2.9) of the filtered Boris algorithm. Using Lemma 5.1
below, expanding the nonlinearities around ζ 0 and z0, and comparing the coefficients
of eikφ(t)/ε yields

∑

l≥0

εl−2dkl
dl

dt l
zk =

∑

k1+k2=k

( ∑

m≥0
s(α)=k1

1

m!T
(m)

B̂
(ζ 0, t) ζ α

)( ∑

l≥0

εl−1ck2l
dl

dt l
zk2

)

+
∑

k1+k2=k

( ∑

m≥0
s(α)=k1

1

m!�
(m)

B̂
(z0, t) zα

)( ∑

m≥0
s(α)=k2

1

m! E
(m)(z0, t) zα

)
,

where T (m)

B̂
(x, t) denotes the mth derivative of TB̂(x, t) = 2

h tanh
(− h

2 B̂(x, t)
)

with respect to x and, similarly, �
(m)

B̂
(x, t) is the mth derivative of �B̂(x, t) =

�
(−h B̂(x, t)

)
with respect to x . These derivatives are bounded under the assumption

that η = h/ε ≤ c and the non-resonance condition (3.2).
For k = 0 we obtain

z̈0 = TB̂(ζ 0, t)ż0 + �B̂(z0, t)E(z0, t)

+2Re
((
T ′̂
B
(ζ 0, t)ζ−1) i

εη
sin(ηφ̇)z1

)
+ O(ε2), (5.12)

and for k = ±1 we get

ε−2d±1
0 z±1 + ε−1d±1

1 ż±1 = TB̂(ζ 0, t)
(
ε−1c±1

0 z±1 + c±1
1 ż±1) + O(ε). (5.13)

Because of (5.11), the argument ζ 0 can be replaced by z0 in these equations. In the
limit h → 0, i.e., η → 0 we have accordance with the Eqs. (4.11) and (4.12) for the
exact solution, respectively.

To get the differential equations for the dominant coefficient functions, we shall
use the relations

P0(z
0, t)TB̂(z0, t) = 0, P±1(z

0, t)TB̂(z0, t) = ± i
2

h
tan

(hφ̇

2ε

)
P±1(z

0, t),

P0(z
0, t)�B̂(z0, t) = P0(z

0, t), P±1(z
0, t)�B̂(z0, t) = �

(±i
hφ̇

ε

)
P±1(z

0, t).
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Multiplying the Eq. (5.12) with P0(z0, t) and applying the differentiation formula of
Lemma 5.2 yields the differential equation

P0(z
0, t) z̈00 = P0(z

0, t)E(z0, t)

+2 P0(z
0, t)Re

(
− 2

ηφ̇
tan

(ηφ̇

2

)(
B̂ ′(z0, t)ζ−1

−1

)
i
φ̇

ε
sinc(ηφ̇)z11

)
+ O(ε2).

Using
(
B̂ ′(x, t)�x

)
v = −v × B ′(x, t)�x , which follows from differentiation of

B̂(x, t)v = −v × B(x, t), the trigonometric identity sin(2α) = 2 sin(α) cos(α), and
the second relation of (5.11), this equation becomes (5.4).

A multiplication of (5.12) with P±1(z0, t) permits to extract the dominant first
derivative ż0±1 and gives (5.5).

We next consider the Eq. (5.13). The ε−2-terms in the left and right sides are
contained in

− 4

ε2η2
sin2

(ηφ̇

2

)
z±1 and ± 2

εh
tanh

(
−h

2
B̂(z0, t)

) i

η
sin(ηφ̇)z±1.

After multiplication with P±1(z0, t) these terms cancel because of the above formula
for P±1(z0, t)TB̂(z0, t). The remaining terms lead to

ż±1
±1 = −

(
cos(ηφ̇) + tan

(ηφ̇

2

)
sin(ηφ̇)

)
φ̈

2

η

(
sin(ηφ̇) − tan

(ηφ̇

2

)
cos(ηφ̇)

) z
±1
±1 + O(ε2),

which simplifies to (5.6). ��
In the above proof we referred to the following lemmas.

Lemma 5.1 ([7]) For smooth functions φ(t) and zk(t) let yk(t) = eikφ(t)/εzk(t), and
denote η = h/ε. The finite differences of yk(t) then satisfy

δ2h y
k(t) = yk(t + h) − yk(t − h)

2h
= eikφ(t)/ε

∑

l≥0

εl−1ckl (t)
dl

dt l
zk(t)

δ2h y
k(t) = yk(t + h) − 2yk(t) + yk(t − h)

h2
= eikφ(t)/ε

∑

l≥0

εl−2dkl (t)
dl

dt l
zk(t),

where c02 j = 0, c02 j+1 = η2 j/(2 j + 1)!, and d00 = 0, d02 j = 2η2 j−2/(2 j)!, d02 j+1 = 0.
The leading coefficients are

ck0(t) = i

η
sin

(
kηφ̇(t)

) − ε
kη

2
sin

(
kηφ̇(t)

)
φ̈(t) + O(ε2)

ck1(t) = cos
(
kηφ̇(t)

) + O(ε)
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dk0 (t) = − 4

η2
sin2

(kηφ̇(t)

2

)
+ i ε k cos

(
kηφ̇(t)

)
φ̈(t) + O(ε2)

dk1 (t) = 2 i

η
sin

(
kηφ̇(t)

) + O(ε). (5.14)

Note that these coefficients depend on η, ε, and t via derivatives of φ(t).

Proof Expanding φ(t ± h) and zk(t ± h) into Taylor series around t yields the stated
formulas. ��
Lemma 5.2 Let TB̂(x, t) = 2

h tanh
(− h

2 B̂(x, t)
)
, and let Pj (x, t) be the orthogonal

projections onto the eigenspace of B̂(x, t) corresponding to the eigenvalues λ0 = 0
and λ1 = −i|B(x, t)| = −iφ̇(x, t)/ε, and λ−1 = i|B(x, t)| = iφ̇(x, t)/ε, respec-
tively. Omitting the argument (x, t), we then have with η = h/ε,

P0
(
T ′̂
B
�x

)
P±1 = ∓ 2

ηφ̇
tan

(ηφ̇

2

)
P0

(
B̂ ′�x

)
P±1,

where prime indicates the derivative with respect to x.

Proof Writing tanh as a Taylor series with coefficients γl and differentiating term by
term, we obtain

P0
(
T ′̂
B
�x

)
P±1 = 2

h

∑

l≥1

γl

(
−h

2

)l
P0

(
B̂ ′�x

)
B̂l−1P±1

= 2

h

∑

l≥1

γl

(
−h

2

)l
P0

(
B̂ ′�x

)(
∓i

φ̇

ε

)l−1
P±1

= 2i

ηφ̇
tanh

(
±i

ηφ̇

2

)
P0

(
B̂ ′�x

)
P±1.

This proves the statement of the lemma. ��

6 Proof of Theorem 3.1

Theorems 4.1 and 5.1 show that the coefficient functions zk(t) [and also ż0(t)] of the
modulated Fourier expansions of the exact and numerical solutions coincide up to
O(ε2) for the choice (2.5) and �(ζ) = tanch(ζ/2). This also shows that the phase
functions φ (with φ̇(t) = ε|B(z0(t), t)|) differ only by O(ε2), respectively. Since
all coefficient functions zk of the modulated Fourier expansion with the exception of
z0 are of size O(ε) or smaller, this yields that all summands zk(t)eikφ(t)/ε still differ
only by O(ε2). So we obtain the O(ε2) error bound for the positions as stated in
Theorem 3.1.

We now turn to the error bound for the velocities. By Theorem 4.1, using that
ż±1
±1 = O(ε2) and zkj = O(ε3) for |k| = 1 and k �= j and for |k| ≥ 2 and all
j = −1, 0, 1, together with their derivatives, the velocity of the exact solution satisfies
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v(t) = ẋ(t) = ż0(t) + iφ̇(t)

ε
z11(t) e

iφ(t)/ε − iφ̇(t)

ε
z−1
−1(t) e

−iφ(t)/ε + O(ε2). (6.1)

We shall show below that the numerical solution admits the same expansion with
functionsφ(t), ż0(t), z11(t), z

−1
−1(t) that correspond to themodulated Fourier expansion

(5.1) of the numerical solution and not to (4.1) of the exact solution. By Theorems 4.1
and 5.1, these functions differ only by O(ε2). Because of the denominator ε in the
second and third terms on the right-hand side of (6.1), this yields

vn − v(tn) = O(ε), but vn‖ − v‖(tn) = O(ε2), (6.2)

and proves the statement of Theorem 3.1.
Using Lemma 5.1 and φ̈(t) = O(ε), we have, with t = nh, that

xn+1 − xn−1

2h
= ż0(t) + sinc

(
ηφ̇(t)

) iφ̇(t)

ε

(
z11(t)e

iφ(t)/ε − z−1
−1(t)e

−iφ(t)/ε
)

+O(ε2).

A consequence of the maximal ordering in (1.1) is that �1
(
h B̂(x̄n, tn)

) =
�1

(
h B̂(z0(tn), tn)

) + O(ε2), and ϒ
(
h B̂(xn, tn)

) = ϒ
(
h B̂(z0(tn), tn)

) + O(ε2).
Splitting �1(·)ż0 into ż0 + (

�1(·) − I
)
ż0 and using ϒ(ζ ) = (

�1(ζ ) − 1
)
/ζ , we

therefore have

vn = �1
(
h B̂(x̄n, tn)

) xn+1 − xn−1

2h
− hϒ

(
h B̂(xn, tn)

)
E(xn, tn)

= ż0(t) + iφ̇(t)

ε

(
z11(t)e

iφ(t)/ε − z−1
−1(t)e

−iφ(t)/ε
)

+hϒ
(
h B̂(z0(t), t)

)(
B̂

(
z0(t), t

)
ż0(t) − E

(
z0(t), t

)) + O(ε2).

Since ϒ(0) = 0 we have ϒ
(
h B̂(z0(t), t)

)
P0(z0(t), t) = 0. On the other hand

P±1(z
0(t), t)

(
B̂

(
z0(t), t

)
ż0(t) − E

(
z0(t), t

)) = O(ε2)

which follows from (5.5) for �(iy) = tanc(y/2). This proves the relation (6.1) also
for the numerical solution.

7 A two-point filtered Boris algorithm

Algorithm 2.1 evaluates the magnetic field B at x̄n given by (2.4)–(2.5), which can be
far from both xn and the guiding center approximation xn� of (2.3) when h|B(xn)| is
close to a nonzero integral multiple of 2π . In the following we propose an alternative
filtered Boris algorithm with the same second-order convergence properties as in
Theorem 3.1, which evaluates the magnetic field at the two points xn and xn�.
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Algorithm 7.1 (Two-point filtered Boris algorithm) Given (xn, vn−1/2), the algorithm
computes (xn+1, vn+1/2) as follows, with Bn = B(xn, tn), Bn� = B(xn�, tn) and
En = E(xn, tn):

v
n−1/2
+ = vn−1/2 + h

2
�(h B̂n) En

�2(h B̂
n�)(v

n+1/2
− − v

n−1/2
+ ) = h

2
�1(h B̂

n)
(
v
n+1/2
− + v

n−1/2
+

) × Bn

vn+1/2 = v
n+1/2
− + h

2
�(h B̂n) En

xn+1 = xn + h vn+1/2,

(7.1)

where �(ζ) = tanch(ζ/2) and �1(ζ ) = 1

sinch(ζ )
are as in Algorithm 2.1, and

�2(ζ ) = 1

sinch(ζ/2)2
.

The velocity approximation vn is again computed by (2.7), with Bn instead of B̄n.

For constant B, Algorithms 2.1 and 7.1 are identical and explicit. In the general case,
both methods are implicit, but this time the fixed-point iteration for xn� requires not
only the evaluation of matrix functions by the Rodriguez formula, but in addition the
solution of a linear systemwith the 3×3matrix�2(h B̂n�)+ 1

2h B̂
n�1(h B̂n).We further

note that in the case of a vanishing electric field, En = 0, Algorithm 2.1 preserves the
velocity norm |vn+1/2| = |vn−1/2|, which is satisfied only approximately up toO(hε)

by Algorithm 7.1. While these properties are unfavourable for Algorithm 7.1, our
numerical experiments indicate that it yields higher accuracy than Algorithm 2.1 for
stepsizes such that h|B| is large, and in particular it is less sensitive to near-resonances
where h|B| is close to an integral multiple of 2π .

The two-step formulation of Algorithm 7.1 is

xn+1 − 2xn + xn−1

h2

= �2(h B̂(x̄n, tn))−1
(
�1(h B̂

n)
xn+1 − xn−1

2h
× Bn

)
+ �(h B̂n)En . (7.2)

The starting value v1/2 is chosen such that formulas (7.1) and (2.7) also hold for
n = 0. With the abbreviations

�n = �2(h B̂
n�)−1�1(h B̂

n), �n = �(h B̂n), ϒn = ϒ(h B̂n),

�n± = (I ∓ 1
2 �nh B̂n) sinch(h B̂n),

�n± = �n ± 2�n±ϒn,

we find, for arbitrary n, that like in (2.10),

vn±1/2 = �n±vn ± h
2 �n±En,
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and the one-step map (xn, vn) �→ (xn+1, vn+1) is then again given by (2.11) with
these modified matrices �n± and �n±.

For the two-point filtered Boris algorithm, the second-order convergence result of
Theorem 3.1 in x and v‖ and the first-order convergence in v⊥ remain valid, as can be
shown by an adaptation of the proof of Theorem 5.1, for which we omit the details.

8 Numerical experiment

As an illustrative numerical experiment, we consider the charged-particle motion in
the magnetic field

B(x, t) = ∇ × 1

ε

⎛

⎝
0
x1
0

⎞

⎠ + ∇ ×
⎛

⎝
0

x1x3
0

⎞

⎠ = 1

ε

⎛

⎝
0
0
1

⎞

⎠ +
⎛

⎝
−x1
0
x3

⎞

⎠ ,

and the electric field E(x, t) = −∇xU (x) with the potential

U (x) = 1
√
x21 + x22

.

The initial values are chosen as x(0) = ( 13 ,
1
4 ,

1
2 )

ᵀ and v(0) = ( 25 ,
2
3 , 1)

ᵀ. We solve
this problem for 0 ≤ t ≤ 1 with h = ε, 4ε, 16ε and compare the numerical errors of
the following methods:

– the standard Boris algorithm,
– Exp-A: the filtered Boris method of Algorithm 2.1 with θ = 1 in (2.4) (where

x̄n = xn and the method is explicit),
– Imp-A: the filtered Boris method of Algorithm 2.1 with θ of (2.5),
– Two P-A: the two-point filtered Boris method of Algorithm 7.1.

The errors in x and v‖, v⊥ against different ε = 1/2 j are displayed in Fig. 1, where
j = 4, . . . , 13. Then we fix ε = 1/210 and show the errors at t = 1 against h/ε in
Fig. 2. It is observed that all three filtered Boris methods improve considerably over
the standard Boris method, and the optimally filtered methods Imp-A and Two P-A
show second order, whereas method Exp-A only shows first order. Methods Imp-A
and Two P-A behave very similar away from stepsize resonances, but method Two P-A
appears more robust near stepsize resonances. For the implicit methods Imp-A and
Two P-A, the error behaviour remains essentially unchanged after just one fixed-point
iteration.
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Fig. 1 The logarithm of the global error against the logarithm of ε
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Fig. 2 The logarithm of the global error at t = 1 against h/ε for ε = 1/210 and h = 1/k, where
k = 60, 61, . . . , 600
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Appendix: Implementation

The filtered Boris algorithm requires the computation of matrix functions applied to
a vector. This can be done very efficiently with a Rodriguez-like formula. Consider
a vector B = (b1, b2, b3)
 ∈ R3 and the skew-symmetric matrix B̂ of (2.2), and let
b = |B|. Assume that the function ϕ(ζ ) can be expanded into a Taylor series at the
origin with real coefficients cn , and write

ϕ(iy) = ϕ(0) + iyϕ1(y) − y2ϕ2(y)

with ϕ1(y) = ∑
j≥0 c2 j+1(−y2) j and ϕ2(y) = ∑

j≥0 c2 j+2(−y2) j . The fact that

B̂3 = −b2 B̂

implies that
ϕ(B̂) = ϕ(0)I + ϕ1(b)B̂ + ϕ2(b)B̂

2. (8.1)

This permits us to compute ϕ(B̂)v by evaluating the scalars ϕ(0), ϕ1(b), ϕ2(b), and
by forming twice a product of B̂ with a vector. Note that B̂v = B × v.

For the case that ϕ(ζ ) has only even powers of ζ , we have ϕ1(y) = 0, and the
formula simplifies. Similarly, for the case where only odd powers of ζ are present,
we have ϕ(0) = 0 and ϕ2(y) = 0. For the matrix functions of Algorithm 2.1 we thus
have

exp(−h B̂) = I − sin(hb)

b
B̂ + 1 − cos(hb)

b2
B̂2,

�(h B̂) = I + 1 − tanc(hb/2)

b2
B̂2,

�1(h B̂) = I + 1 − sinc(hb)−1

b2
B̂2,

ϒ(h B̂) = 1 − sinc(hb)−1

hb2
B̂.
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