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Abstract
This paper is concerned with error estimates for the piecewise linear finite element
approximation of the two-dimensional scalar Signorini problem on a convex polygo-
nal domain Ω . Using a Céa-type lemma, a supercloseness result, and a non-standard
duality argument, we prove W 1,p(Ω)-, L∞(Ω)-, W 1,∞(Ω)-, and H1/2(∂Ω)-error
estimates under reasonable assumptions on the regularity of the exact solution and
L p(Ω)-error estimates under comparatively mild assumptions on the involved con-
tact sets. The obtained orders of convergence turn out to be optimal for problems
with essentially bounded right-hand sides. Our results are accompanied by numerical
experiments which confirm the theoretical findings.

Mathematics Subject Classification 35J86 · 65K15 · 65N15 · 65N30

1 Introduction

The aim of this paper is to study the accuracy of the piecewise linear finite element
method for the two-dimensional scalar Signorini problem

−Δu + u = f in Ω,

∂nu ≥ 0, u ≥ 0, u∂nu = 0 on ∂Ω
(1)

on a convex polygonal domain Ω (in our analysis, for simplicity, assumed to be the
unit square—see Sect. 2 for the precise assumptions). Using a Céa-type lemma, a
supercloseness result, and a non-standard duality argument that is based on ideas of
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Mosco, we establish new W 1,p- and L p-error estimates for the problem (1) that, in
view of theW 2,p- and Hs-regularity properties of the exact solution u, are optimal for
right-hand sides f ∈ L∞(Ω). In particular, we prove an L4-error estimate of the form
‖u − uh‖L4(Ω) = O(h2−ε) for all ε > 0 which explains the order of convergence in
the lower L p-norms that is typically observed in numerical experiments, cf. Sect. 7
and [41, Section 7]. For the main contributions of this paper, we refer the reader to the
regularity result in Theorem 2.3, the supercloseness result in Theorem 3.6, and the a
priori finite element error estimates collected in Theorems 4.3 and 6.1.

Before we begin with our analysis, let us give some background: As one of the
simplest examples of a problem that models contact, the Signorini problem (1) (along
with its various reformulations and the closely related obstacle problem) has been
subject to active research for a long period of time. In the context of finite element
methods, early contributions on (1) and its approximation can be traced back at least
to the nineteen-seventies, see [8,9,24,33,37], and even though these seminal works
have been followed by a large number of other papers, the analysis of, for instance,
FE-error estimates for (1) still receives considerable attention to this day. See, e.g.,
[16,21,23,41] for some recent contributions. The main reason for the ongoing interest
in the problem (1) and the fact that, even after more than forty years, the approximation
properties of the finite element method for (1) are still not fully understood is that
the weak formulation of (1) takes the form of an elliptic variational inequality. This
causes the differences u − uh between the continuous solution u of (1) and its finite
element approximations uh to lack the property of Galerkin orthogonality and renders
standard tools for the error analysis of finite element methods inapplicable. We remark
that a notable exception to this rule are L∞-estimates which can be established along
roughly the same lines as for elliptic PDEs in the case of the Signorini problem
(1) by employing the discrete maximum principle or regularization techniques, cf.
[4,11,13,15,18,22,28,34,35].

For error estimates in the H1-norm,which, as the energy norm of the problem, is the
most natural choice for the analysis of (1), the lack of Galerkin orthogonality proved
a challenge that could not be properly overcome for a considerable amount of time.
Compare, for instance, with the contributions [5,8,9] in this context, which all require
additional assumptions on the structure of the contact set {x ∈ ∂Ω | u(x) = 0} of
the exact solution u to establish H1-error estimates of optimal order for the Signorini
problem. Only very recently, it has been shown in [16] that these conditions are, in fact,
not needed and that the H1-norm of u − uh is indeed always of order O(h) when (1)
is discretized with standard piecewise linear finite elements (i.e., as in Sect. 2.3) and
u possesses the natural regularity u ∈ H2(Ω) (cf. Proposition 2.1). We remark that,
for other discretization schemes as, e.g., primal-dual approaches or Nitsche’s method,
similar results on the H1-error have recently also been obtained in [21]. See [10] for
a survey article on this topic.

While H1- and L∞-error estimates for obstacle- and Signorini-type problems have
been discussed quite extensively by various authors, results on the finite element error
in other norms are only very rarely addressed in the literature. See, e.g., [12,31,33,40,
41,43] for some of the few contributions on this topic. The reason for this is that, for
error estimates in general L p- and W 1,p-norms, the missing Galerkin orthogonality
of the differences u − uh is an even more severe problem than in the H1-case. This
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Finite element error estimates for the Signorini problem 515

becomes apparent, for instance, in the study of the L2-error: Recall that, for linear
elliptic partial differential equations, L2-error estimates of optimal order are typically
established by means of the so-called Aubin–Nitsche trick. This trick is based on the
idea to consider a dual partial differential equation, which contains the primal error
u − uh as a right-hand side, and requires three main ingredients: an error estimate
of optimal order in the H1-norm, the Galerkin orthogonality of the finite element
approximations, and the H2-regularity of the dual solution, see [6, Section 7], [14,
Section 3.2] or other standard references. Extending such a duality argument to the
Signorini problem (1),whereGalerkin orthogonality is not available, is clearly far from
trivial. Nevertheless, since the derivation of the first H1-error estimates for elliptic
variational inequalities with unilateral constraints in the nineteen-seventies, several
authors have tried to accomplish precisely that, see [31,33,40,43]. The approaches that
have been proposed in this context are typically based on the idea to consider a suitably
defined dual variational inequality that, due to its construction, allows to bypass the
lack of Galerkin orthogonality of the primal error u−uh . Unfortunately, at least to the
best of the authors’ knowledge, none of the contributions published so far has been
able to simultaneously also satisfy the third prerequisite of the Aubin–Nitsche trick,
namely, to show that the dual solution possesses enough regularity for the classical
duality argument to go through. Compare, e.g., with [33] and [43, Section 5.2] in this
context, where the H2-regularity of the dual solution is used as an assumption, or
with [40] where it is implicitly assumed that the dual problem possesses a sufficiently
regular solution, satisfies a constraint qualification, and admits sufficiently regular
multipliers. Approaches that follow different lines to establish L2-error estimates, on
the other hand, typically yield orders of convergence that are far from optimal. See,
e.g., [41], where an error estimate in the H1/2-norm is derived on the boundary and
subsequently used to establish an L2-estimate of order O(h3/2−ε) for all ε > 0. The
results on the L2-error (and the error in the lower L p-norms in general) available in the
literature are thus not very satisfactory and prove to be very unnatural in view of the
required regularity assumptions on the involved primal and dual quantities. Even less
seems to be known aboutW 1,p-error estimates for the Signorini problem with p �= 2.
At least to the authors’ best knowledge, there are no contributions on this topic.

The purpose of the present paper is to demonstrate that, in the situation of (1), it is
indeed possible to derive finite element error estimates of optimal order in non-energy
norms for the Signorini problem while working only with reasonable assumptions
on primal quantities. To be more precise, in what follows, we show that, if u enjoys
a composite W 2,p- and Hs-regularity, that can be proved to hold in various situa-
tions (see Theorem 2.3), then it is possible to establish error estimates in W 1,p(Ω),
L∞(Ω),W 1,∞(Ω), and H1/2(∂Ω) for (1) that are optimal for problemswith L∞(Ω)-
right-hand sides (see Corollaries 4.1 and 4.2 and Theorem 4.3). Under the additional
assumption that the contact set of the continuous solution u is sufficiently regular
and that the contact sets of the finite element approximations uh do not exhibit a
degenerative behavior in the limit h ↘ 0 (and thus in a setting comparable to those
in [5,8,9] - see conditions (A) and (Ah) in Sects. 2 and 5), we are moreover able to
extend the classical Aubin–Nitsche trick to (1) and to establish an L4-estimate of the
form ‖u − uh‖L4(Ω) = O(h2−ε) for all ε > 0. In combination with our previous
findings, this provides us with a complete set of optimal-order finite element error
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estimates for problems (1) with L∞(Ω)-right-hand sides that does not require any
artificial assumptions on the regularity properties of dual quantities (see Theorems 4.3
and 6.1).

The method of proof that we use for our finite element error analysis is somewhat
non-standard in that it does not rely on a multiplier reformulation of (1) but on cer-
tain one-sided approximation results that are apparently only rarely employed in the
literature. For a problem on the unit square Ω = (0, 1)2, whose right-hand side f is
in L∞(Ω) and whose solution u has a sufficiently regular contact set, our approach
can essentially be summarized as follows:

Using an elementary argument, we prove that the H1-error between the finite
element approximation uh and the Ritz projection Rh(u) of the exact solution u
is smaller than the H1-norm of every finite element function wh that satisfies
Rh(u) − u ≤ wh ≤ Rh(u) on ∂Ω (see Lemma 3.4). This best approximation prop-
erty yields, in tandem with results on unilateral finite element approximations (see
Lemma 3.5) and the regularity properties of solutions to (1) (see Theorem 2.3), that
‖uh − Rh(u)‖H1(Ω) = O(h3/2−ε) holds for all ε ∈ (0, 1/2) (see Theorem 3.6). By
exploiting this supercloseness property, inverse estimates, and standard results for the
Ritz projection, we immediately arrive at error estimates of optimal order inW 1,4(Ω),
W 1,∞(Ω), L∞(Ω), and H1/2(∂Ω) (see Theorem 4.3 and Remark 4.4). To study the
error in the lower L p-norms, we follow an approach of Mosco and consider two dual
problems, one for each of the components max(0, u − uh) and min(0, u − uh) (see
Sect. 5). As we will see, the solutions of our dual variational inequalities suffer from
the same regularity problems as those in [31,33,43] and cannot be expected to be
elements of H2(Ω). However, by invoking the results of [19,20], we can show that
W 2,4/3−ε-regularity for all ε > 0 is obtainable instead. This observation and the fact
that q := 4/3 is precisely the Hölder conjugate of p := 4 allow us to invoke our
W 1,4-estimate to compensate the lack of regularity of the dual solutions and to arrive
at an estimate of the type ‖u − uh‖L4(Ω) = O(h2−ε) for all ε > 0 (see Theorem 6.1).

We would like to point out that the H1/2(∂Ω)-error estimate that we establish in
Theorem 4.3 reproduces [41, Theorem 2.2] under slightly different assumptions on
the regularity of the exact solution u (or the right-hand side f , respectively). Further,
Theorem 4.3 shows that the order of convergence 3/2−ε that has been obtained in [41,
Corollary 5.8] in L2(Ω) is, in fact, even achieved in the L∞-norm. Surprisingly, we
obtain this L∞-result without ever invoking the discrete maximum principle (which
is normally used to prove pointwise error estimates for variational inequalities with
unilateral constraints) andwithout the related assumptions on the underlying triangula-
tion, cf. [4,11,13,15,18,28,34]. Theorem 6.1 finally improves the order of convergence
in [41, Corollary 5.8] by the factor h1/2 and yields an L4-error estimate that is opti-
mal. To the best of our knowledge, the L p- and W 1,p-error estimates derived in this
paper are new. Further, the duality argument in Sect. 5 seems to be the first of its kind
that actually works without artificial assumptions on the regularity properties of dual
quantities, cf. [31,33,43]. Compare also with the analysis and the counterexamples in
[12] in this context, which demonstrate that the assumptions on the dual solution made
in [31,33,40,43] are indeed unrealistic and cannot be expected to hold for the classical
obstacle problem and which, in combination with our positive results in Sect. 5, show
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Finite element error estimates for the Signorini problem 517

that it makes a huge difference for the behavior of the finite element error in the lower
L p-norms whether the variational inequality under consideration involves inequality
constraints on the boundary ∂Ω or in the interior of Ω .

To help the reader navigate this paper, we conclude this introduction with a brief
overview of the structure and the content of the following sections:

Section 2 is concerned with preliminaries. Here, we clarify the notation, state our
precise assumptions, and collect several regularity results for the problem (1). In Sect.
3, we prove the Céa-type lemma and the supercloseness result that are at the heart
of our error analysis. Section 4 addresses the consequences that the results of Sect.
3 have for the derivation of finite element error estimates. The main results of this
section, Corollaries 4.1 and 4.2 and Theorem 4.3, contain variousW 1,p(Ω)-, L p(Ω)-
, and H1/2(∂Ω)-estimates that cover a large variety of different situations. Section 5
is devoted to the analysis of the L4-error in the case f ∈ L∞(Ω). Here, we extend
the classical Aubin–Nitsche trick to (1) and prove that the continuous and the discrete
solution satisfy ‖u − uh‖L4(Ω) = O(h2−ε) for all ε > 0 when the involved contact
sets are sufficiently well-behaved. In Sect. 6, we summarize our results and give some
concluding remarks. Section 7 finally contains numerical experiments that confirm
our theoretical findings.

2 Notation, assumptions, and preliminaries

2.1 Basic notation

Throughout this paper, we use the standard notations L p(Ω), Ck,γ (Ω), Ws,p(Ω),
and Hs(Ω) for the Lebesgue-, Hölder-, and (fractional) Sobolev spaces on a bounded
domain Ω ⊂ R

2. See, e.g., [1,3,17] for details on these spaces. The scalar products
on L2(Ω) and H1(Ω) are denoted with (·, ·)L2(Ω) and (·, ·)H1(Ω), respectively, i.e.

(v1, v2)L2(Ω) :=
∫

Ω

v1v2dL2 and (v1, v2)H1(Ω) :=
∫

Ω

∇v1 · ∇v2 + v1v2dL2.

With Lk and Hk , we denote the k-dimensional Lebesgue and Hausdorff measure,
and with tr(·) the classical trace operator, cf. [3]. For functions v with a continuous
representative, we typically drop the prefix tr and simply write v instead of tr(v).
Further, we use the symbols cl(·) and ∂ to denote the topological closure and the
boundary of a set, respectively, and the abbreviation Br (x) to denote the closed ball
of radius r > 0 around an x ∈ R

2. With O(·), o(·), we denote the classical Landau
symbols, and with C a generic constant which may change within an estimate but is
never dependent on crucial quantities as, e.g., the mesh width. If we want to emphasize
that C depends on a quantity α, then we write C = C(α). Lastly, we define a+ :=
max(0, a) and a− := min(0, a) for all a ∈ R.

123



518 C. Christof, C. Haubner

2.2 The continuous setting

As already mentioned in the introduction, the purpose of this paper is to study finite
element error estimates for the two-dimensional scalar Signorini problem

−Δu + u = f in Ω,

∂nu ≥ 0, u ≥ 0, u∂nu = 0 on ∂Ω.
(2)

Here and in what follows, Δ and ∂n denote the (distributional) Laplacian and the
normal derivative, respectively, and f ∈ L2(Ω) is a given right-hand side. To avoid
obscuring the basic ideas of our analysis with technicalities and distinctions of cases
and to reduce the notational overhead, throughout this paper, we always assume thatΩ
is the unit square, i.e.,Ω := (0, 1)2. Our arguments can be extended straightforwardly
to other convex polygonal domains with obvious modifications and, depending on the
largest interior angle of Ω , possibly additional assumptions on the exponent p in
the L p- and W 1,p-error estimates. The same is true for other variants of Signorini’s
problem as, e.g., the version

−Δu = f in Ω, u = 0 on ΓD, ∂nu = 0 on ΓN ,

∂nu ≥ 0, u ≥ 0, u∂nu = 0 on ΓS
(3)

studied in [2] whose partial differential operator does not contain a term of order zero
and which involves separate Dirichlet-, Neumann-, and Signorini-boundary parts ΓD ,
ΓN , and ΓS . For such problems, however, some care has to be taken since the H2-
regularity result in Proposition 2.1 and error estimates analogous to those inLemma3.2
are not directly available in the literature but first have to be established (under suitable
assumptions on the angles between ΓD , ΓN , and ΓS) by means of the techniques of
[2,36,39]. We omit a detailed discussion of this topic to avoid overloading this paper.
Lastly, we would like to point out that a Signorini problem of the type (2) with a
sufficiently regular non-zero obstacle on the boundary can always be transformed
into a problem with a vanishing obstacle by an elementary translation argument. This
allows us to restrict our attention to the homogeneous situation in (2) without a great
loss of generality.

To begin our analysis, we recall that the weak formulation of (2) is given by the
elliptic variational inequality

u ∈ K , (u, v − u)H1(Ω) ≥ ( f , v − u)L2(Ω) ∀v ∈ K , (S)

with the admissible set

K :=
{
v ∈ H1(Ω)

∣∣∣ tr(v) ≥ 0 H1-a.e. on ∂Ω
}

.

From [19, Theorem 3.2.3.1, Example (3,2,3,1)], we further obtain:

Proposition 2.1 (S) admits a unique solution u ∈ H2(Ω) for all f ∈ L2(Ω).
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Note that Proposition 2.1 and the Sobolev embeddings imply that u possesses a
representative which is continuous on the closure cl(Ω) of the domain Ω . In what
follows, we always use this representative when talking, e.g., about level sets. As it
turns out, solutions u to (S) enjoy additional regularity properties when the contact
set {x ∈ ∂Ω | u(x) = 0} is sufficiently well-behaved. To explore this effect, we
introduce:

Definition 2.2 (Condition (A))Asolution u ∈ H2(Ω) of (S) is said to satisfy condition
(A) if the relative boundary of the contact set {x ∈ ∂Ω | u(x) = 0} in ∂Ω has one-
dimensional Hausdorff measure zero and if the relative interior of the contact set in
∂Ω consists of at most finitely many connected components.

Under assumption (A), the solution u of the variational inequality (S) can be iden-
tified with the solution of a mixed Dirichlet–Neumann problem with segment-wise
prescribed boundary conditions on a convex polygonal domain. This, together with
the H2-regularity result in Proposition 2.1 and the analysis in [19], allows us to prove
the following improved regularity result for the Signorini problem (S) which clari-
fies precisely which regularity assumptions on u are reasonable when it comes to the
derivation of finite element error estimates:

Theorem 2.3 (Improved regularity for Signorini’s problem) Suppose that u ∈ H2(Ω)

solves (S) and satisfies (A). Then, the following holds true:

1. If f is in L p(Ω) for some 2 < p < 4, then it holds u ∈ W 2,p(Ω).
2. If f is in L p(Ω) for some 4 < p < ∞, then there exist functions us, ur ∈ H2(Ω)

such that u = us + ur , ur ∈ W 2,p(Ω), and us ∈ H5/2−ε(Ω) holds for all
ε ∈ (0, 1/2), and such that the restriction of the trace of us to each of the four
sides of the square Ω = (0, 1)2 has W 2,2−ε-regularity for all ε ∈ (0, 1/2).

Proof Since u satisfies condition (A), we may find relatively open disjoint straight
line segments Γi ⊂ ∂Ω , i = 1, . . . , N + M , N , M ∈ N0, and a set R ⊂ ∂Ω of
one-dimensional Hausdorff measure zero such that

{x ∈ ∂Ω | u(x) = 0} =
N⋃
i=1

Γi ∪ R and ∂Ω =
N+M⋃
i=1

cl(Γi ).

From the variational inequality (S), the H2-regularity of the solution u, and Green’s
first identity, it follows further that

u ∈ K ,
∫
Ω

(−Δu + u − f )(v − u)dL2 + ∫
∂Ω

(∂nu)(v − u)dH1 ≥ 0 ∀v ∈ K .

The above yields

−Δu = f − u L2-a.e. in Ω,

u = 0 H1-a.e. on Γi for all i = 1, . . . , N ,

∂nu = 0 H1-a.e. on Γi for all i = N + 1, . . . , N + M .

(4)
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Note that the parts of the contact set that are contained in the line segments Γi , i =
N +1, . . . , N +M , are negligible here due to the properties of R. Let us suppose now
that f is an element of L p(Ω) for some 2 < p < 4. Then, we may use [19, Theorem
4.4.3.7] to deduce that there exist real numbers ci and trigonometric functions φi such
that

u −
∑

i=1,...,N+M

ciηi r
1/2
i φi (θi ) ∈ W 2,p(Ω) (5)

holds, where ri ≥ 0 and θi ∈ [0, 2π) denote local polar coordinates centered at the
vertices xi , i = 1, . . . , N + M , of the partition {cl(Γi )} of the boundary ∂Ω , and
where ηi is a smooth cut-off function which is identical one in a neighborhood of xi
for each i . We already know, however, that u ∈ H2(Ω), and it is easy to check that the
factor r1/2i prevents a function of the form ηi r

1/2
i φi (θi ) to be an element of H2(Ω).

This implies that all ci in (5) have to be zero and proves the first claim, cf. also with
the discussion in [41, Remark 2.1] and [32] in this regard. To obtain the second claim,
we can proceed along exactly the same lines: If f is an element of L p(Ω) for some
4 < p < ∞, then we may use the same arguments as above and again [19, Theorem
4.4.3.7] to deduce that there exist real numbers c̃i and trigonometric functions φ̃i with

u −
∑

i=1,...,N+M

c̃iηi r
3/2
i φ̃i (θi ) ∈ W 2,p(Ω),

where ηi , ri , and θi are as in (5). The functions

us :=
∑

i=1,...,N+M

c̃iηi r
3/2
i φ̃i (θi ), ur := u − us, (6)

have all of the desired properties (see, for instance, [20, Theorem 1.2.18] for the
H5/2−ε-regularity of us). This completes the proof. 
�

Some remarks are in order regarding the last result and condition (A):

Remark 2.4

1. Due to the presence of the singular part us , the solution u of (S) can, in general, not
be expected to possessW 2,4- or H5/2-regularity even for smooth right-hand sides
f . Compare, for instance, with the examples in [41] and Sect. 7 in this context.
This is an important difference to the classical obstacle problem whose solution
can be shown to be inW 2,p(Ω) for all 2 ≤ p < ∞ under appropriate assumptions
on the problem data, see [25, Theorem IV-2.3].

2. Assumptions similar to (A) are often implicitly made in the literature when it
is discussed that the solution u of (S) can be expected to possess H5/2−ε(Ω)-
regularity for all ε > 0. Compare, e.g., with [41, Remark 2.1] and [5, Section 2]
in this context, where it is supposed (but not explicitly stated) that each point in
the relative boundary of the contact set admits an open neighborhood in which the
solution u changes precisely once from contact to non-contact. (Note that the latter
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assumption implies in particular that the relative boundary of the contact set in
∂Ω is finite and is thus stronger than condition (A).) Theorem 2.3 is more precise
in this regard in that it explicitly states which assumptions on the contact set are
needed to rigorously prove improved regularity properties for (S) and further also
quantifies which regularity can be expected for the “regular” part of the solution
that remains when the singular contributions coming from the transition points on
the boundary are subtracted from u.

3. For problems of the type (3) with right-hand side f ≡ 0 and an additional inho-
mogeneity on the boundary ∂Ω , it is possible to rigorously prove that condition
(A) is satisfied. See the recent contribution [2] for details.

4. As already mentioned in the introduction, in the context of finite element error
estimates for Signorini’s problem, conditions similar to (A) have been needed for
the derivation of optimal-order finite element error estimates in the H1-norm for a
considerable amount of time. See, e.g., [5,8,9], for examples of contributions that
require analogous assumptions on the contact set {x ∈ ∂Ω | u(x) = 0} of the con-
tinuous solution u. Only very recently in 2015, it was finally accomplished in [16]
to get rid of these conditions and to establish H1-error estimates of optimal order
for (S) that solely rely on standard Sobolev regularity properties. We would like to
point out that, similar to the results in [16], the W 1,p(Ω)-, L∞(Ω)-, W 1,∞(Ω)-,
and H1/2(∂Ω)-error estimates that we derive in Sects. 3 and 4 for the problem (S)
do not require condition (A), but only the regularity properties that are implied
by it. Only the derivation of the L4-error estimates in Sect. 5 will make explicit
use of condition (A) (and a comparable condition in the discrete setting). In what
follows, in each theorem, lemma etc., we will clearly state whether the respective
result requires condition (A) or suitable regularity properties of the solution u of
the problem (S).

2.3 The discrete setting

As discrete counterparts of the variational inequality (S), we consider problems of the
form

uh ∈ Kh, (uh, vh − uh)H1(Ω) ≥ ( f , vh − uh)L2(Ω) ∀vh ∈ Kh . (Sh)

Our standing assumptions on the quantities in (Sh) are as follows:

Assumption 2.5 (Standing assumptions for the FE-discretization)

1. {Th}0<h<1/2 is a quasi-uniform family of triangulations of Ω = (0, 1)2,
2. Vh := {v ∈ C(cl(Ω)) | v is affine on all cells T ∈ Th},
3. Kh := K ∩ Vh = {vh ∈ Vh | vh ≥ 0 on ∂Ω}.
See, e.g., [11, Definition 2] or [7, Definition 4.4.13] for the definition of the term

“quasi-uniform family of triangulations”. For brevity’s sake, in what follows, we often
ignore the upper bound on the mesh width and simply write “for all h > 0” instead of
“for all 0 < h < 1/2”. From standard results as, e.g., [25, Theorem II-2.1], we obtain:
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Proposition 2.6 (Sh) is uniquely solvable for all f ∈ L2(Ω) and all h > 0.

In the remainder of this paper, our aimwill be to study the approximation properties
of the solution uh of (Sh) for h ↘ 0. The main ingredients of our error analysis are:

3 A Céa-type lemma and a supercloseness result

To study the error u − uh , we introduce the following operator:

Definition 3.1 (Ritz projection) For every v ∈ H1(Ω), we define the Ritz projection
Rh(v) to be the unique element of Vh with

(Rh(v), wh)H1(Ω) = (v,wh)H1(Ω) ∀wh ∈ Vh .

Note that Rh : H1(Ω) → Vh is precisely the solution operator of the unconstrained
problem associated with (Sh). In particular, Rh is well-defined, linear, and continuous,
and we may invoke classical results to obtain:

Lemma 3.2
1. For every v ∈ W 2,p(Ω), 2 ≤ p < ∞, it holds

‖v − Rh(v)‖L p(Ω) + h‖v − Rh(v)‖W 1,p(Ω) + h1/p‖v − Rh(v)‖L p(∂Ω)

≤ Ch2‖v‖W 2,p(Ω)

(7)

with some constant C > 0 independent of h and v.
2. If v satisfies v ∈ H5/2−ε(Ω) for all ε ∈ (0, 1/2), then, for every ε ∈ (0, 1/2),

there exists a constant C > 0 independent of h with

‖v − Rh(v)‖H1/2(∂Ω) ≤ Ch3/2−ε.

Proof For the domainΩ = (0, 1)2, the estimate (7) can be derived as follows:Consider
an arbitrary but fixed v ∈ W 1,∞(Ω)with associatedRitz projection Rh(v) ∈ Vh . Then,
we may use reflections to extend v and Rh(v) first to the rectangle (0, 1)×(−1, 2) and
subsequently to the square Ω̃ := (−1, 2)2 to construct functions ṽ, ṽh ∈ W 1,∞(Ω̃)

with ṽ|Ω = v, ṽh |Ω = Rh(v), and ṽh = R̃h(ṽ). Here, R̃h is the Ritz projection
operator on the mesh of Ω̃ that is obtained from the reflection procedure. From the
interior norm estimate [38, Theorem 1.2], we may now deduce that there exists a
constant C > 0 independent of h with

‖v − Rh(v)‖W 1,∞(Ω) = ‖ṽ − R̃h(ṽ)‖W 1,∞(Ω)

≤ C
(
‖ṽ‖W 1,∞(Ω̃) + ‖ṽ − R̃h(ṽ)‖L2(Ω̃)

)
.

Since ṽ has the same W 1,∞-norm as v, the above, the triangle inequality, and the
properties of ṽ and R̃h(ṽ) imply that

‖Rh(v)‖W 1,∞(Ω) ≤ C‖v‖W 1,∞(Ω)
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holds with some C > 0 which does not depend on h. From the Theorem of Riesz-
Thorin, cf. [7, Sections 14.1, 14.2], and the estimate ‖Rh(v)‖H1(Ω) ≤ C‖v‖H1(Ω), it
now follows straightforwardly that there exists a C > 0 independent of h with

‖Rh(v)‖W 1,p(Ω) ≤ C‖v‖W 1,p(Ω) ∀v ∈ W 1,p(Ω) ∀p ∈ [2,∞].

The above estimate, the regularity results of [19], and exactly the same arguments as
in the proofs of [36, Equations (1.8), (1.9)] yield that, for every 2 ≤ p < ∞, there
exists a constant C > 0 independent of h with

‖v − Rh(v)‖L p(Ω) + h‖v − Rh(v)‖W 1,p(Ω) ≤ Ch2‖v‖W 2,p(Ω) ∀v ∈ W 2,p(Ω).

It remains to prove the L p(∂Ω)-estimate. This, however, follows immediately from
the last inequality and [19, Theorem 1.5.1.10] with parameter ε := h p. Note that the
above argumentation onlyworks for rectangles and squares. Formore general domains
Ω , (7) can be obtained by employing the techniques of [36,39]. To do so, however,
one has to study in detail the behavior of certain Green’s functions in the vicinity of
the corners of the domain under consideration, cf. the comments in [39, Section 3].
Such a study is beyond the scope of this paper.

To prove the second assertion of the lemma, we suppose that a function v with
v ∈ H5/2−ε(Ω) for all ε ∈ (0, 1/2) is given and that ṽh is the unique element of Vh
with

∫
Ω

ṽh − Rh(v)dL2 = 0,
∫

Ω

∇ṽh · ∇whdL2 =
∫

Ω

∇v · ∇whdL2 ∀wh ∈ Vh .

Byproceeding completely analogously to the proof of [29, Lemma5.7] (with theBesov
estimate in [29, Lemma 4.1] replaced with the second estimate in [26, Lemma 2.1]),
we obtain that, for every ε ∈ (0, 1/2), there exists a C > 0 with

|v − ṽh |H1/2(∂Ω) ≤ Ch3/2−ε, (8)

where | · |H1/2(∂Ω) denotes the H1/2-seminorm on the boundary ∂Ω (as defined in
[19, Sections 1.3.3, 1.5]). Testing the variational equality for ṽh with ṽh − Rh(v) and
the variational equality for Rh(v) with Rh(v) − ṽh and adding the resulting identities
yields

∫
Ω

∇(ṽh − Rh(v)) · ∇(ṽh − Rh(v))dL2 =
∫

Ω

(v − Rh(v))(Rh(v) − ṽh)dL2.

From the inequality of Poincaré-Wirtinger and the first part of the lemma, we may
now deduce that

‖ṽh − Rh(v)‖H1(Ω) ≤ C‖v − Rh(v)‖L2(Ω) ≤ Ch2
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holds with some C > 0. If we combine the above with (8), the trace the-
orem, the triangle inequality, and the L p(∂Ω)-estimate in (7), then the claim
follows immediately. 
�

We may now make the following observation (that has already been made in [11,
Lemma 10] for the classical obstacle problem):

Lemma 3.3 Suppose that u solves (S) for some f ∈ L2(Ω). Then, Rh(u) is the unique
solution of the variational inequality

ũh ∈ K̃h, (ũh, vh − ũh)H1(Ω) ≥ ( f , vh − ũh)L2(Ω) ∀vh ∈ K̃h (S̃h)

with

K̃h := {vh ∈ Vh | vh ≥ Rh(u) − u on ∂Ω}.

Proof The problem (S̃h) admits a unique solution ũh by [25, Theorem II-2.1]. To see
that this solution is precisely Rh(u), we note that Rh(u) ∈ K̃h and that for all vh ∈ K̃h ,
i.e., for all vh ∈ Vh with vh − Rh(u) + u ≥ 0 on ∂Ω , the definition of Rh(u) and the
variational inequality (S) yield

(Rh(u), vh − Rh(u))H1(Ω) = (u, vh − Rh(u))H1(Ω)

= (u, vh − Rh(u) + u − u)H1(Ω)

≥ ( f , vh − Rh(u) + u − u)L2(Ω)

= ( f , vh − Rh(u))L2(Ω) .

This proves the claim. 
�
The above result shows that it suffices to study the error that occurs in the solution

uh of (Sh) when the original obstacle (i.e., the zero function) in (Sh) is replaced with
the obstacle Rh(u) − u to relate the approximate solution uh and the Ritz projection
Rh(u) of the exact solution u to each other. By pursuing this approach, we obtain the
following Céa-type result:

Lemma 3.4 (A Céa-type property) Let f ∈ L2(Ω) be arbitrary but fixed, and let u
and uh denote the solutions of (S) and (Sh), respectively. Then, it holds

‖Rh(u) − uh‖H1(Ω)

≤ inf
{
‖wh‖H1(Ω)

∣∣∣ wh ∈ Vh, Rh(u) − u ≤ wh ≤ Rh(u) on ∂Ω
}
.

(9)

Proof Consider an arbitrary but fixed wh ∈ Vh that is contained in the set on the
right-hand side of (9). (Note that this set is not empty since it contains Rh(u).) Since
wh ≥ Rh(u) − u on ∂Ω and since Rh(u) is the solution of (S̃h), it holds

(Rh(u), vh − Rh(u))H1(Ω) ≥ ( f , vh − Rh(u))L2(Ω)
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for all vh ∈ Vh with vh ≥ wh on ∂Ω . In particular, the choice vh := uh + wh yields

(Rh(u), Rh(u) − uh)H1(Ω) ≤ (Rh(u), wh)H1(Ω) + ( f , Rh(u) − uh − wh)L2(Ω) .

On the other hand, we know that Rh(u) − wh ≥ Rh(u) − Rh(u) = 0 on ∂Ω . Thus,
we may choose the test function vh := Rh(u) − wh in (Sh) to obtain

(uh, uh − Rh(u))H1(Ω) ≤ (uh,−wh)H1(Ω) + ( f , uh + wh − Rh(u))L2(Ω) .

By addition, it now follows that

‖Rh(u) − uh‖2H1(Ω)
≤ (Rh(u) − uh, wh)H1(Ω) .

This proves the claim. 
�
Note that the above arguments work for all elliptic variational inequalities with

unilateral constraints (not just for the Signorini problem). To obtain a tangible a priori
estimate for the norm ‖Rh(u)− uh‖H1(Ω), it remains to construct a function wh ∈ Vh
which satisfies Rh(u) − u ≤ wh ≤ Rh(u) on ∂Ω and which has a small H1-norm.
This is accomplished in the following lemma by means of a unilateral approximation
technique that has also been used in [11,12,30,31,42]:

Lemma 3.5 (Finite element approximation under constraints)

1. Suppose that v ∈ W 2,p(Ω), 2 < p < ∞, is a function with a non-negative trace.
Then, for every h > 0, we can find a wh ∈ Vh with Rh(v) − v ≤ wh ≤ Rh(v) on
∂Ω such that ‖wh‖H1(Ω) ≤ Ch3/2−1/p holds with a C independent of h.

2. Suppose that v ∈ H2(Ω) is a function with a non-negative trace that can be
decomposed into two parts vs and vr which satisfy the conditions in point 2 of
Theorem 2.3 for some 4 < p < ∞. Then, for every ε ∈ (0, 1/2) and every
h > 0, we can find a wh ∈ Vh with Rh(v) − v ≤ wh ≤ Rh(v) on ∂Ω such that
‖wh‖H1(Ω) ≤ Ch3/2−2/p−ε holds with a C independent of h.

Proof We first introduce some notation: Suppose that h > 0 is arbitrary but fixed.
We denote the nodes of the triangulation Th which are contained in the boundary
of the square Ω = (0, 1)2 with xi , i = 0, . . . , N , starting with x0 := (0, 0) and
then proceeding counterclockwise. For convenience, we additionally set x−1 := xN ,
xN+1 := x0, and xN+2 := x1. Further, we define σi to be the closed line segment
[xi , xi+1], i = −1, . . . , N + 1, and τi to be the mesh cell whose boundary contains
σi . With C we again denote a generic constant which may change within an estimate
but never depends on h. We now proceed in three steps:

Step 1 (h-IndependentMorrey Inequality on theMesh Cells) Consider the reference
element T := conv{(0, 0), (1, 0), (0, 1)}. Then, we know from the classical Morrey
inequality, see [1, Theorem 5.4], that for every 2 < p < ∞ there exists a constant
C = C(p, T ) with

max
x,y∈T

|v(x) − v(y)|
|x − y|1−2/p ≤ C‖v‖W 1,p(T ) ∀v ∈ W 1,p(T ).
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From the inequality of Poincaré-Wirtinger, we obtain further that there exists another
C = C(p, T ) > 0 such that, for all v ∈ W 1,p(T ) with average value zero in T , we
have

‖v‖L p(T ) ≤ C‖∇v‖L p(T ).

By combining the last two inequalities, we may deduce that

max
x,y∈T

|v(x) − v(y)|
|x − y|1−2/p ≤ C‖∇v‖L p(T )

holds for all v ∈ W 1,p(T ) with average value zero on T . Since the seminorms
appearing here do not detect constant functions, the last estimate also holds for all
v ∈ W 1,p(T ). Consider now an arbitrary but fixed τi , i ∈ {−1, . . . , N + 1}, and
denote with Fi : T → τi , x �→ xi + Gi x , the affine linear function with det(Gi ) > 0
which maps the reference element T to τi . Then, for every v ∈ W 1,p(τi ), we obtain

max
x,y∈T

|v(Fi (x)) − v(Fi (y))|
|G−1

i (Fi (x) − Fi (y))|1−2/p
≤ C(p, T )

(∫
T

∣∣∣GT
i (∇v)(Fi )

∣∣∣p dL2
)1/p

≤ C(p, T )
|Gi |

det(Gi )1/p

(∫
τi

|∇v|p dL2
)1/p

.

The above yields

max
x,y∈τi

|v(x) − v(y)|
|x − y|1−2/p ≤ C(p, T )

|G−1
i |1−2/p|Gi |
det(Gi )1/p

(∫
τi

|∇v|p dL2
)1/p

.

Due to the quasi-uniformity of the underlying family of meshes, we can find a constant
C independent of h and i with

|G−1
i |1−2/p|Gi |
det(Gi )1/p

≤ C
h−1+2/ph

h2/p
= C .

We may thus conclude that there exists a constant C > 0 independent of i and h with

max
x,y∈τi

|v(x) − v(y)|
|x − y|1−2/p ≤C‖∇v‖L p(τi ) ∀v ∈ W 1,p(τi ), ∀i= − 1, . . . , N+1. (10)

Step 2 (Proof in the W 2,p-Case) Suppose now that a function v ∈ W 2,p(Ω),
2 < p < ∞, with a non-negative trace is given, let h > 0 be arbitrary but fixed, and
consider the auxiliary problem

min
N∑
i=0

vh(xi ), s.t. vh ∈ Vh, Rh(v) − v ≤ vh ≤ Rh(v) on ∂Ω,

vh = 0 at every interior node of the mesh Th,
(11)
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Fig. 1 Prototypical situation on the boundary mesh. The nodes xi−1, xi+1 are covered by case 1, the nodes
xi−2, xi+2, xi+3 are covered by case 2, and the nodes xi−3, xi , xi+1, xi+2 are covered by case 3. For xi ,
the point a is identical to the mesh node xi+1

where we use the C(cl(Ω))-representatives of v and Rh(v). Since (11) is a finite-
dimensional minimization problem with a non-empty compact admissible set and a
continuous objective functional, it admits at least one solution w̃h ∈ Vh . Consider now
an arbitrary but fixed xi with 0 ≤ i ≤ N . Then, the fact that w̃h solves (11) implies
that we cannot reduce the function value w̃h(xi ) (while leaving the other nodal values
unchanged) without violating the constraint Rh(v) − v ≤ w̃h on ∂Ω . This implies
that one of the following three cases has to hold true (as one may easily check by
contradiction, cf. Figure 1 and the analysis in [11]):

1. It holds w̃h(xi ) = Rh(v)(xi ) − v(xi ).
2. There exists an a ∈ [xi−1, xi ) with

w̃h(a) = Rh(v)(a) − v(a),

(∇w̃h)(a) · (xi − a) = ∇(Rh(v) − v)(a) · (xi − a).
(12)

3. There exists an a ∈ (xi , xi+1] satisfying (12).
Here, [xi−1, xi ) and (xi , xi+1] denote the relatively half-open straight line segments
between xi−1 and xi , and xi and xi+1, respectively, and with ∇Rh(v)(a) and ∇w̃h(a)

we mean the gradient of the respective finite element function on the mesh cell τi−1
in case 2 and on the mesh cell τi in case 3. Recall in this context that W 2,p(Ω) ↪→
C1,1−2/p(cl(Ω)) for 2 < p < ∞.

Note that, in case 1, we trivially have w̃h(xi )−Rh(v)(xi )+v(xi ) = 0. In the second
case, we may apply Taylor’s formula in the direction of the line segment [xi−1, xi ) to
compute that

0 ≤ w̃h(xi ) − Rh(v)(xi ) + v(xi )

=
∫ 1

0
∇(w̃h − Rh(v) + v)(a + t(xi − a)) · (xi − a)dt

=
∫ 1

0

(
∇v(a + t(xi − a)) − ∇v(a)

)
· (xi − a)dt

≤ Ch2−2/p
∫ 1

0

|∇v(a + t(xi − a)) − ∇v(a)|
t1−2/p|xi − a|1−2/p t1−2/pdt

≤ Ch2−2/p‖v‖W 2,p(τi−1)

(13)
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with some constant C independent of i and h. Here, we have used the properties of
a, the regularity of v, the affine linearity of w̃h and Rh(v) on [xi−1, xi ), and (10).
Completely analogously, we obtain in the third case that

0 ≤ w̃h(xi ) − Rh(v)(xi ) + v(xi ) ≤ Ch2−2/p‖v‖W 2,p(τi )
.

We have now proved that

0 ≤ w̃h(xi ) − Rh(v)(xi ) + Ih(v)(xi ) ≤ Ch2−2/p
(
‖v‖p

W 2,p(τi−1)
+ ‖v‖p

W 2,p(τi )

)1/p

holds for all i = 0, . . . , N , where Ih denotes the Lagrange interpolation operator.
Consider now an arbitrary but fixed i ∈ {0, . . . , N }. Then, it follows

∫
σi

|w̃h − Rh(v) + Ih(v)|pdH1

≤ |xi − xi+1|‖w̃h − Rh(v) + Ih(v)‖p
L∞(σi )

≤ Ch2p−1
(
‖v‖p

W 2,p(τi−1)
+ ‖v‖p

W 2,p(τi )
+ ‖v‖p

W 2,p(τi+1)

)

and we may deduce by summation that

‖w̃h‖L p(∂Ω) ≤ Ch2−1/p‖v‖W 2,p(Ω) + ‖v − Rh(v)‖L p(∂Ω) + ‖v − Ih(v)‖L p(∂Ω).

Using the inverse estimate in [27, Equation (3.1)], again [19, Theorem 1.5.1.10] (with
parameter h p), Lemma 3.2, and standard error estimates for the Lagrange interpolation
operator as found in [7, Theorem 4.4.20], we now obtain

‖w̃h‖H1/2(∂Ω)

≤ Ch−1/2‖w̃h‖L2(∂Ω)

≤ Ch−1/2‖w̃h‖L p(∂Ω)

≤ Ch3/2−1/p‖v‖W 2,p(Ω) + Ch−1/2 (‖v − Rh(v)‖L p(∂Ω) + ‖v − Ih(v)‖L p(∂Ω)

)
≤ Ch3/2−1/p‖v‖W 2,p(Ω)

+ Ch−1/2−1/p (
h‖∇v − ∇ Ih(v)‖L p(Ω) + ‖v − Ih(v)‖L p(Ω)

)
≤ Ch3/2−1/p‖v‖W 2,p(Ω)

with some constant C > 0 which may change from step to step but is always indepen-
dent of h. To construct a function wh ∈ Vh with the desired properties, it remains to
extend tr(w̃h) suitably to a function in Vh . This can be accomplished, e.g., by employ-
ing the discrete harmonic extension operator Eh : tr(Vh) → Vh , which, according to
[27, Lemma 3.2], satisfies

‖Eh(vh)‖H1(Ω) ≤ C‖vh‖H1/2(∂Ω) ∀vh ∈ tr(Vh)
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for some constant C > 0 independent of h and vh .
Step 3 (Proof in the vs-vr -Case) For a function v with a non-negative trace that

can be decomposed into two parts vs and vr which satisfy the conditions in point
2 of Theorem 2.3 for some 4 < p < ∞, we can proceed completely analogously
to Step 2 to construct a function w̃h ∈ Vh with Rh(v) − v ≤ w̃h ≤ Rh(v) on ∂Ω

which satisfies either w̃h(xi ) − Rh(v)(xi ) + v(xi ) = 0 or one of the cases 2 and 3 at
each node xi , i = 0, . . . , N . Let us again consider case 2, fix an ε ∈ (0, 1/2), write
q := 2/(1+ 2ε) ∈ (1, 2), and assume w.l.o.g. that the line segment σi−1 is contained
in R×{0} so that a = (ā, 0), xi−1 = (x̄i−1, 0), and xi = (x̄i , 0) with ā, x̄i−1, x̄i ∈ R.
Then, we may use the same calculation as in (13), the regularity properties of vs and
vr , and Morrey’s inequality to obtain

0 ≤ w̃h(xi ) − Rh(v)(xi ) + v(xi )

=
∫ 1

0

(
∇v(a + t(xi − a)) − ∇v(a)

)
· (xi − a)dt

=
∫ 1

0

(
∂1v(ā + t(x̄i − ā), 0) − ∂1v(ā, 0)

)
(x̄i − ā)dt

≤
∫ x̄i

ā

(
∂1vs(t, 0) − ∂1vs(ā, 0)

)
dt + Ch2−2/p‖vr‖C1,1−2/p(Ω)

≤
∫ x̄i

ā

∣∣∣∂21vs(t, 0)(t − x̄i )
∣∣∣ dt + Ch2−2/p‖vr‖C1,1−2/p(Ω)

≤
(∫ x̄i

ā
(t − x̄i )

q
q−1 dt

) q−1
q

‖ tr(vs)‖W 2,q (σi−1)
+ Ch2−2/p‖vr‖C1,1−2/p(Ω)

≤ Ch2−1/q‖ tr(vs)‖W 2,q (σi−1)
+ Ch2−2/p‖vr‖C1,1−2/p(Ω).

If we use exactly the same strategy in case 3, then it follows that w̃h satisfies

0 ≤ w̃h(xi ) − Rh(v)(xi ) + Ih(v)(xi )

≤ Ch2−1/q
(
‖ tr(vs)‖qW 2,q (σi−1)

+ ‖ tr(vs)‖qW 2,q (σi )

)1/q

+ Ch2−2/p‖vr‖C1,1−2/p(Ω)

for all i = 0, . . . , N , where Ih again denotes the Lagrange interpolation operator. By
integration, we may now again deduce (using the estimate (a + b)q ≤ C(aq + bq))

∫
σi

|w̃h − Rh(v) + Ih(v)|qdH1

≤ Ch2q
(
‖ tr(vs)‖qW 2,q (σi−1)

+ ‖ tr(vs)‖qW 2,q (σi )
+ ‖ tr(vs)‖qW 2,q (σi+1)

)

+ Ch2q+1−2q/p‖vr‖qC1,1−2/p(Ω)
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and, by summation,

‖w̃h − Rh(v) + Ih(v)‖Lq (∂Ω)

≤ Ch2−2/p
(
h2q/p‖ tr(vs)‖qW 2,q (∂Ω)

+ ‖vr‖qC1,1−2/p(Ω)

)1/q
.

Combining the above with Lemma 3.2, inverse estimates (cf. [27, Equation (3.1)]),
the definition of q, and standard results for the Lagrange interpolant yields

‖w̃h‖H1/2(∂Ω) ≤ ‖w̃h − Rh(v) + Ih(v)‖H1/2(∂Ω) + ‖Ih(vr ) − Rh(vr )‖H1/2(∂Ω)

+ ‖Ih(vs) − Rh(vs)‖H1/2(∂Ω)

≤ h−1/q‖w̃h − Rh(v) + Ih(v)‖Lq (∂Ω) + Ch3/2−1/p + Ch3/2−ε

≤ Ch2−1/q−2/p + Ch3/2−1/p + Ch3/2−ε

≤ Ch3/2−2/p−ε + Ch3/2−1/p + Ch3/2−ε

with a constant C which may depend on ε but is independent of h. The claim now
follows completely analogously to Step 2. 
�

By combining Lemmas 3.4 and 3.5, we now arrive at the following main result of
this section:

Theorem 3.6 (Supercloseness) Suppose that u solves (S) for some f ∈ L2(Ω). Then,
the following holds true for the Ritz projection Rh(u) and the finite element solution
uh of (Sh):

1. If u satisfies u ∈ W 2,p(Ω) for some 2 < p < 4, then there exists a constant C > 0
independent of h with

‖Rh(u) − uh‖H1(Ω) ≤ Ch3/2−1/p. (14)

2. If u admits a decomposition u = us +ur as in point 2 of Theorem 2.3 for some 4 <

p < ∞, then, for every ε ∈ (0, 1/2), there exists a constant C > 0 independent
of h with

‖Rh(u) − uh‖H1(Ω) ≤ Ch3/2−2/p−ε. (15)

Note that Theorem 3.6 indeed shows that the Ritz projection Rh(u) of the exact
solution u of (S) is superclose to the finite element approximation uh characterized
by (Sh) as, for the considered ranges of p, (14) and (15) yield estimates of the form
‖Rh(u)−uh‖H1(Ω) = O(hγ )with an exponent γ that is strictly greater than one. The
H1-error between Rh(u) and uh thus decays faster than that between u and uh which,
in the considered situation, can be expected to be at most of orderO(h). Wewould like
to point out that the behavior, that we observe here, agrees very well with intuition.
Since the additional constraint in (Sh) is only present on the boundary, it is only natural
that the finite element solution uh is very close to the Ritz projection Rh(u) which
may be interpreted as the solution of an associated unconstrained problem.
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4 Consequences forW1,p-, Lp-, and H1/2-error estimates

As the behavior of the error Rh(u) − u is known by Lemma 3.2, Theorem 3.6 gives
rise to estimates for the quantity u − uh in a straightforward manner. The results that
are obtained along these lines are collected in the following two corollaries:

Corollary 4.1 Suppose that u solves (S) for some f ∈ L2(Ω). Assume further that
there exists a 2 < p < 4 with u ∈ W 2,p(Ω). Then, for every 1 < q < ∞, there exists
a constant C > 0 independent of h with

‖u − uh‖
W

1, 4p
p+2 (Ω)

≤ Ch, ‖u − uh‖W 1,∞(Ω) ≤ Ch1/2−1/p,

‖u − uh‖Lq (Ω) ≤ Ch3/2−1/p, ‖u − uh‖L∞(Ω) ≤ C | ln(h)|1/2h3/2−1/p,

‖u − uh‖H1/2(∂Ω) ≤ Ch3/2−1/p.

Proof From Theorem 3.6, the inverse estimates in [7, Theorem 4.5.11], Lemma 3.2,
and the triangle inequality, it follows that

‖u − uh‖
W

1, 4p
p+2 (Ω)

≤ ‖Rh(u) − uh‖
W

1, 4p
p+2 (Ω)

+ ‖u − Rh(u)‖
W

1, 4p
p+2 (Ω)

≤ Ch
p+2
2p −1‖Rh(u) − uh‖H1(Ω) + C‖u − Rh(u)‖W 1,p(Ω)

≤ Ch
p+2
2p −1+3/2−1/p + Ch

≤ Ch.

This proves the first estimate. Similarly, we may compute (using standard error
estimates for the Lagrange interpolant Ih(u), see [7, Theorem 4.4.20], Sobolev embed-
dings, again [7, Theorem 4.5.11], and Lemma 3.2) that

‖u − uh‖W 1,∞(Ω)

≤ ‖Rh(u) − uh‖W 1,∞(Ω) + ‖Ih(u) − Rh(u)‖W 1,∞(Ω) + ‖u − Ih(u)‖W 1,∞(Ω)

≤ Ch−1‖Rh(u) − uh‖H1(Ω) + Ch−2/p‖Ih(u) − Rh(u)‖W 1,p(Ω) + Ch1−2/p

≤ Ch1/2−1/p + Ch1−2/p + Ch1−2/p ≤ Ch1/2−1/p

and

‖u − uh‖Lq (Ω)

≤ ‖Rh(u) − uh‖Lq (Ω) + C‖Ih(u) − Rh(u)‖L∞(Ω) + C‖u − Ih(u)‖L∞(Ω)

≤ C‖Rh(u) − uh‖H1(Ω) + Ch−2/p‖Ih(u) − Rh(u)‖L p(Ω) + Ch2−2/p

≤ Ch3/2−1/p + Ch2−2/p ≤ Ch3/2−1/p
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holds for all 1 < q < ∞. Further, we may use the discrete Sobolev inequality in [7,
Lemma 4.9.2] and exactly the same arguments as above to obtain

‖u − uh‖L∞(Ω)

≤ ‖Rh(u) − uh‖L∞(Ω) + ‖Ih(u) − Rh(u)‖L∞(Ω) + ‖u − Ih(u)‖L∞(Ω)

≤ C | ln(h)|1/2‖Rh(u) − uh‖H1(Ω) + Ch2−2/p

≤ C | ln(h)|1/2h3/2−1/p.

It remains to prove the H1/2(∂Ω)-error estimate. To this end, we define ψh to be the
unique element of Vh , which is one at every boundary node and zero at every interior
node, and supp(ψh) to be the support of ψh . We may now use the classical trace
theorem and Hölder’s inequality to infer that

‖u − Ih(u)‖2H1/2(∂Ω)

≤ C‖ψh(u − Ih(u))‖2H1(Ω)

≤ C
(
‖∇ψh‖2L∞(Ω)‖u − Ih(u)‖2L2(supp(ψh))

+ ‖∇(u − Ih(u))‖2L2(supp(ψh))

)

≤ Ch2|u|2H2(supp(ψh))

≤ Ch2|u|2W 2,p(supp(ψh))
L2(supp(ψh))

1−2/p

≤ Ch3−2/p.

(16)

Now we may proceed as before (using Lemma 3.2, [27, Equation (3.1)], the trace
theorem, and again [19, Theorem 1.5.1.10] with parameter ε := h p) to obtain

‖u − uh‖H1/2(∂Ω)

≤ ‖Rh(u) − uh‖H1/2(∂Ω) + ‖Rh(u) − Ih(u)‖H1/2(∂Ω) + ‖Ih(u) − u‖H1/2(∂Ω)

≤ C‖Rh(u) − uh‖H1(Ω) + Ch−1/2‖Rh(u) − Ih(u)‖L p(∂Ω) + Ch3/2−1/p

≤ Ch3/2−1/p.

This proves the claim. 
�
Corollary 4.2 Suppose that u solves (S) for some f ∈ L2(Ω). Assume further that u
admits a decomposition u = us+ur as in point 2 of Theorem 2.3 for some 4 < p < ∞.
Then, for all ε ∈ (0, 1/2), there exists a constant C > 0 independent of h with

‖u − uh‖
W

1, 4p
p+4 (Ω)

≤ Ch1−ε, ‖u − uh‖W 1,∞(Ω) ≤ Ch1/2−2/p−ε,

‖u − uh‖L∞(Ω) ≤ Ch3/2−2/p−ε, ‖u − uh‖H1/2(∂Ω) ≤ Ch3/2−2/p−ε.

Proof The proof is completely along the lines of that of the last corollary and only
requires some minor modifications. We include it for the sake of completeness: Note
that the regularity properties of us and ur imply that u ∈ W 2,q(Ω) holds for all
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q ∈ (2, 4), cf. [17, Theorem 6.5]. Consider now an arbitrary but fixed ε ∈ (0, 1/2).
Then, we may invoke Theorem 3.6 and compute (using the same ideas as before)

‖u − uh‖
W

1, 4p
p+4 (Ω)

≤ ‖Rh(u) − uh‖
W

1, 4p
p+4 (Ω)

+ ‖u − Rh(u)‖
W

1, 4p
p+4 (Ω)

≤ Ch
p+4
2p −1‖Rh(u) − uh‖H1(Ω) + Ch

≤ Ch
p+4
2p −1+3/2−2/p−ε + Ch ≤ Ch1−ε

and

‖u − uh‖W 1,∞(Ω)

≤ ‖Rh(u) − uh‖W 1,∞(Ω) + ‖Ih(u) − Rh(u)‖W 1,∞(Ω) + ‖u − Ih(u)‖W 1,∞(Ω)

≤ Ch−1‖Rh(u) − uh‖H1(Ω) + Ch− p+4
2p ‖Ih(u) − Rh(u)‖

W
1, 4p

p+4 (Ω)
+ Ch1−

p+4
2p

≤ Ch1/2−2/p−ε + Ch1−
p+4
2p + Ch1−

p+4
2p ≤ Ch1/2−2/p−ε.

Analogously (by [7, Lemma 4.9.2]),

‖u − uh‖L∞(Ω)

≤ ‖Rh(u) − uh‖L∞(Ω) + ‖Ih(u) − Rh(u)‖L∞(Ω) + ‖u − Ih(u)‖L∞(Ω)

≤ C | ln(h)|1/2‖Rh(u)−uh‖H1(Ω)+Ch− p+4
2p ‖Ih(u)−Rh(u)‖

L
4p
p+4 (Ω)

+Ch2−
p+4
2p

≤ C | ln(h)|1/2h3/2−2/p−ε + Ch2−
p+4
2p

≤ Ch3/2−2/p−2ε.

(Note that the coefficient of ε in the exponent is completely unimportant here since we
may always redefine ε.) Finally, we may compute (using the trace theorem, Lemma
3.2, and again (16))

‖u − uh‖H1/2(∂Ω)

≤ ‖Rh(u) − uh‖H1/2(∂Ω) + ‖Rh(u) − u‖H1/2(∂Ω)

≤ C‖Rh(u) − uh‖H1(Ω) + ‖Rh(us) − us‖H1/2(∂Ω)

+ ‖Rh(ur ) − Ih(ur )‖H1/2(∂Ω) + ‖ur − Ih(ur )‖H1/2(∂Ω)

≤ Ch3/2−2/p−ε + Ch3/2−ε + Ch−1/2‖Rh(ur ) − Ih(ur )‖L p(∂Ω) + Ch3/2−1/p

≤ Ch3/2−2/p−ε.

This completes the proof. 
�
The error estimates in Corollary 4.2 turn out to be of particular interest when the

exponent p can be chosen arbitrarily large. Indeed, in this limit case, we obtain the
following important result:
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Theorem 4.3 (Optimal FE-estimates under regularity assumptions) Suppose that u
solves (S) for some f ∈ L2(Ω). Assume further that u admits a decomposition u =
us + ur with the properties in point 2 of Theorem 2.3 for all 4 < p < ∞. Then, for
all ε ∈ (0, 1/2), there exists a constant C > 0 independent of h with

‖u − uh‖W 1,8/3−ε(Ω) ≤ Ch, ‖u − uh‖W 1,4(Ω) ≤ Ch1−ε,

‖u − uh‖W 1,∞(Ω) ≤ Ch1/2−ε, ‖u − uh‖L∞(Ω) ≤ Ch3/2−ε,

‖u − uh‖H1/2(∂Ω) ≤ Ch3/2−ε.

(17)

Proof In the considered situation, wemay apply Corollary 4.2 with an arbitrarily large
p > 4 and Corollary 4.1 with a p which is arbitrarily close to four. The assertions
of the theorem now follow immediately by invoking these results and by noting that,
for all ε ∈ (0, 1/2), we have (due to the W 1,∞-estimate and the W 1,q -estimate for all
exponents 2 < q < 4)

‖u − uh‖W 1,4(Ω) ≤ C
(‖u − uh‖W 1,4−ε(Ω)

) 4−ε
4 ≤ Ch(1−ε) 4−ε

4 = Ch1−5ε/4+ε2/4

with some constant C independent of h. This completes the proof. 
�
Several things are noteworthy regarding the last three results:

Remark 4.4 1. Since the overall regularity of u can, in general, not be expected to
exceed

u ∈ W 2,4−ε(Ω) ∀ε ∈ (0, 1/2) and u ∈ H5/2−ε(Ω) ∀ε ∈ (0, 1/2)

in the situation of Theorem 4.3 (cf. the comments in Remark 2.4) and since we
consider piecewise linear ansatz functions, the W 1,8/3−ε-, the W 1,4-, the W 1,∞-,
the L∞-, and the H1/2-error estimate in (17) are optimal. Compare, e.g., with the
classical results for the Lagrange interpolation operator in [7, Theorem 4.4.20]
and with Lemma 3.2 in this context. The orders of convergence in Theorem 4.3
are also observed in numerical experiments, see Sect. 7.

2. Note that the regularity assumptions in the last three results fit precisely to what
we have proved in Theorem 2.3. This implies in particular that Corollaries 4.1 and
4.2 and Theorem 4.3 remain valid when we replace the appearing assumptions
on the regularity of u with the respective assumptions on f and the contact set
{x ∈ ∂Ω | u(x) = 0} in Theorem 2.3. The estimates that are obtained along these
lines in the situation of Theorem 4.3 are collected in Theorem 6.1.

3. The error estimates in Corollaries 4.1 and 4.2 and Theorem 4.3 are similar in
nature to the results for the H1-error in [16] in that they only rely on (realistic)
assumptions on the Sobolev regularity properties of the exact solution u and do
not require any additional conditions on the contact set {x ∈ ∂Ω | u(x) = 0}, cf.
[8]. At least to the authors’ best knowledge, for W 1,p-error estimates with p > 2,
such results have not been available so far in the literature. The same seems to
be the case for the L∞- and the W 1,∞-error estimate in (17). Note that we have
derived our L∞-error estimates without invoking the discrete maximum principle
and without the associated assumptions on Th , cf. [11,13,34].
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4. The H1/2-error estimate in (17) has already been obtained in [41, Theorem 2.2] in
dimensions two and three under the assumption that the solution u is in H5/2−ε(Ω)

for all ε ∈ (0, 1/2). Note that this regularity can only be expected to hold if the
right-hand side f satisfies f ∈ H1/2−ε(Ω) for all ε ∈ (0, 1/2). The regularity
assumptions that we work with in our analysis differ from this in that they also
allow for aW 2,p-part of the solution u and are thus realistic for general right-hand
sides f ∈ L p(Ω), see Theorem 2.3. We further obtain the H1/2-estimate in (17)
with arguments that seem to be more elementary than those in [41]. However, in
contrast to the analysis in [41], our approach cannot be extended straightforwardly
to the three-dimensional setting since unilateral approximation results analogous
to those in Lemma 3.5 are only available in limited form in dimensions d ≥ 3, cf.
the analysis in [11].

5. In [41], an L2-error estimate of order 3/2 − ε is obtained as a corollary of the
H1/2-error estimate on the boundary. We obtain this order of convergence even in
the L∞-norm.

As the reader might have noticed, Theorem 4.3 only yields the suboptimal order of
convergence 3/2− ε for, e.g., the L4-error. We thus miss a factor h1/2 in comparison
with the approximation properties of the Lagrange interpolation operator. In what
follows, we demonstrate that a better estimate can be obtained with a non-standard
duality argument, and that the order two (minus epsilon), that is observed in numerical
experiments, can also be recovered analytically provided the continuous solution u
satisfies condition (A) and the contact sets of the finite element approximations uh
behave sufficiently well in the limit h ↘ 0.

5 L4-error estimates of optimal order via an Aubin–Nitsche trick

To estimate the L4-error, we use an approach that has been proposed byMosco in [31,
Section 7] for the one-dimensional obstacle problem and consider two dual variational
inequalities - one for each of the components (u − uh)+ = max(0, u − uh) and
(u − uh)− = min(0, u − uh).

5.1 A duality argument for the component (u− uh)+ under condition (A)

To formulate our first dual problem, we introduce the following notation:

Definition 5.1 Given a u ∈ H2(Ω) which solves (S) for some f ∈ L2(Ω) and which
satisfies condition (A), we define:

1. A◦ ⊂ ∂Ω to be the relative interior of the contact set {x ∈ ∂Ω | u(x) = 0},
2. A◦

h ⊂ ∂Ω to be the union of all (closed) cells of the boundarymeshwhich intersect
the set A◦.

Note that, according to condition (A), at least for all sufficiently small h, the num-
ber of connected components of A◦

h is finite and equal to the number of connected
components of A◦. Given a u which solves (S) and satisfies (A) and a solution uh of
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(Sh), we now consider the following auxiliary problem:

z ∈ L, (z, v − z)H1(Ω) ≥ (−max(0, u − uh)
3, v − z)L2(Ω) ∀v ∈ L. (D)

Here,

L :=
{
v ∈ H1(Ω)

∣∣∣ tr(v) ≥ 0 H1-a.e. on A◦
h

}
.

Note that the solution z of (D) depends on h (since A◦
h and uh do). From standard

results and the analysis in [19], we may deduce:

Lemma 5.2 Suppose that u solves (S) for some f ∈ L2(Ω), that condition (A) holds,
and that uh is the solution of (Sh). Then, the problem (D) admits a unique solution
z ∈ H1(Ω) for all h > 0. This solution satisfies z ≤ 0 L2-a.e. in Ω and tr(z) = 0
H1-a.e. onA◦

h, and, for every ε ∈ (0, 1/2), there exists a constant C > 0 independent
of h with

‖z‖H1(Ω) ≤ C‖max(0, u − uh)
3‖L(4−ε)/3(Ω). (18)

Moreover, for all ε ∈ (0, 1/2) and all sufficiently small h > 0, z is in W 2,(4−ε)/3(Ω)

and satisfies

‖z‖W 2,(4−ε)/3(Ω) ≤ C‖max(0, u − uh)
3‖L(4−ε)/3(Ω) (19)

with some constant C > 0 independent of h.

Proof The unique solvability of (D) for all h > 0 follows from [25, Theorem II-2.1].
Further, we may employ Stampacchia’s lemma, see [3, Theorem 5.8.2], and use the
test function v := z− ∈ L in (D) to deduce that

0 ≥ −(max(0, u − uh)
3, z+)L2(Ω) ≥ (z, z+)H1(Ω) = ‖z+‖2H1(Ω)

.

This proves that we indeed have z ≤ 0 L2-a.e. in Ω and, as a consequence, that
tr(z) = 0 holds H1-a.e. on A◦

h . Moreover, by choosing the test functions v = 0 and
v = 2z in (D), and by exploiting the Sobolev embeddings, we obtain

‖z‖2H1(Ω)
= (−max(0, u − uh)

3, z)L2(Ω)

≤ ‖max(0, u − uh)
3‖L(4−ε)/3(Ω)‖z‖L(4−ε)/(1−ε)(Ω)

≤ C‖max(0, u − uh)
3‖L(4−ε)/3(Ω)‖z‖H1(Ω) ∀ε ∈ (0, 1/2),

where C is the embedding constant of H1(Ω) ↪→ L(4−ε)/(1−ε)(Ω). This yields (18).
It remains to prove the W 2,(4−ε)/3-regularity of z and (19). To this end, we note that
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the non-positivity of z in Ω , the condition tr(z) ≥ 0 on A◦
h , and the properties of the

set A◦
h imply that z is the unique weak solution of the problem

−Δz = −max(0, u − uh)3 − z L2-a.e. in Ω,

z = 0 H1-a.e. on A◦
h,

∂nz = 0 H1-a.e. on ∂Ω\A◦
h .

Since A◦
h and its complement can be written as the union of at most finitely many

straight line segments which meet at an angle π/2 or π , we may again invoke [19,
Theorem 4.4.3.7] to deduce that z ∈ W 2,(4−ε)/3(Ω) holds for all ε ∈ (0, 1/2). To
obtain the estimate (19), let us assume that A◦ �= ∅ and A◦ �= ∂Ω (else the proof is
trivial). In this case, condition (A) implies thatA◦ consists of finitely many connected
components, that the relative boundary of A◦ in ∂Ω consists of finitely many points
b1, . . . , bN , N ∈ N, and that we may find a δ > 0 with dist(bi , b j ) > 4δ for all i �= j
and dist(bi , {(0, 0), (0, 1), (1, 0), (1, 1)}) > 4δ for all bi which are not themselves
corner-points of the square Ω . Choose rotationally symmetric cut-off functions ψi ∈
C∞
c (R2), i = 1, . . . , N , such that

0 ≤ ψi ≤ 1, supp(ψi ) ⊂ B2δ(bi ), ψi ≡ 1 in Bδ(bi )

holds for all i = 1, . . . , N , where Br (b) denotes the closed ball of radius r > 0 around
a b ∈ R

2, and decompose z into the parts z0, z1, . . . , zN defined by

zi := ψi z for i = 1, . . . , N , z0 := ψ0z, ψ0 := 1 −
N∑
i=1

ψi .

Suppose further that h is so small that the set A◦
h\A◦ is contained in the union of the

balls Bδ(bi ), i = 1, . . . , N . (This is the case for all sufficiently small h due to the
definition of A◦

h .) Then, δ and the functions ψi are clearly independent of h, and we
may compute that

−Δz0 = −zΔψ0 − 2∇z · ∇ψ0 − ψ0 max(0, u − uh)3 − z0 L2-a.e. in Ω,

z0 = 0 H1-a.e. on A◦,
∂nz0 = 0 H1-a.e. on ∂Ω\A◦.

Here, we have used that A◦ ⊂ A◦
h , and that the rotational symmetry of the cut-off

functions and the choice of δ imply ∂nψi ≡ 0 on ∂Ω for all i . Note that the boundary
conditions in the above problem are independent of h. We may thus invoke [19,
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Theorem 4.3.2.4] and (18) to deduce that, for every ε ∈ (0, 1/2), we have

‖z0‖W 2,(4−ε)/3(Ω)

≤ C
(
‖zΔψ0 + 2∇z · ∇ψ0 + ψ0 max(0, u − uh)

3‖L(4−ε)/3(Ω) + ‖z0‖W 1,(4−ε)/3(Ω)

)

≤ C
(
‖max(0, u − uh)

3‖L(4−ε)/3(Ω) + ‖z‖W 1,(4−ε)/3(Ω)

)

≤ C‖max(0, u − uh)
3‖L(4−ε)/3(Ω).

Here, C > 0 is a generic constant which depends on ε and ψ0 but not on h and which
may change from step to step. Consider now a point bi of the relative boundary ofA◦
which is not a corner point of the square Ω , w.l.o.g. bi = (a, 0) for some a ∈ (0, 1).
Then, it follows from our choice of δ that (a − 4δ, a + 4δ) × {0} is a subset of ∂Ω

and does not contain a further point of the relative boundary of A◦. This implies
in particular that exactly one of the sets (a − 4δ, a) × {0} and (a, a + 4δ) × {0} is
contained in A◦. Let us assume w.l.o.g. that this is the case for (a, a + 4δ) × {0}.
Then, it follows from the definition of A◦

h and the properties of {Th} that there exist
a constant C > 0 independent of h and a τ ∈ [0,C] (possibly dependent on h) such
that the set (a − τh, a + 4δ) × {0} is contained in A◦

h , and we may calculate that the
function zi = ψi z satisfies

−Δzi = −zΔψi − 2∇z · ∇ψi

− ψi max(0, u − uh)3 − zi L2-a.e. in Ω,

zi = 0 L2-a.e. in Ω\B2δ(a, 0),

zi = 0 H1-a.e. on (a − τh, a + 2δ) × {0},
∂nzi = 0 H1-a.e. on (a − 2δ, a − τh) × {0}.

Here, we have again used the properties of z and the rotational symmetry of ψi . Since
zi and ψi vanish outside of the ball B2δ(a, 0), we may now deduce that the (trivial
extension of) the function z̄(x, y) := zi (x + a − τh − 1/2, y) satisfies

−Δz̄ = ḡ L2-a.e. in Ω,

z̄ = 0 H1-a.e. on ∂Ω\(0, 1/2) × {0},
∂n z̄ = 0 H1-a.e. on (0, 1/2) × {0}

with

ḡ(x, y):=
(
−zΔψi−2∇z · ∇ψi−ψi max(0, u − uh)

3−zi
)
(x + a − τh−1/2, y).

By invoking [19, Theorem 4.3.2.4], we may now again deduce that there exists a
constant C > 0 independent of h with

‖z̄‖W 2,(4−ε)/3(Ω) ≤ C
(‖ḡ‖L(4−ε)/3(Ω) + ‖z̄‖W 1,(4−ε)/3(Ω)

)
.
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If we express z̄ in terms of zi and use the same calculations as before, then we arrive
at

‖zi‖W 2,(4−ε)/3(Ω) ≤ C‖max(0, u − uh)
3‖L(4−ε)/3(Ω)

with a constant C > 0 which depends on ψi and ε but is independent of h. Using the
same arguments as above, we can transform each of the situations occurring at the
points bi , i = 1, . . . , N , to one of finitely many reference configurations and use [19,
Theorem 4.3.2.4] as well as (18) to prove that there exist constants Ci independent of
h with

‖zi‖W 2,(4−ε)/3(Ω) ≤ Ci‖max(0, u − uh)
3‖L(4−ε)/3(Ω) ∀i = 0, . . . , N .

Note that, if we consider a point bi which is a corner of the squareΩ , then the situation
is even simpler than above since, in this case, the boundaries ofA◦ andA◦

h are locally
the same and equal to {bi } so that a translation argument as above is unnecessary.
To arrive at (19), it now suffices to invoke the triangle inequality. This completes the
proof. 
�

Remark 5.3 Note that the solution z of the auxiliary problem (D) cannot be expected
to possessW 2,q -regularity for some q ≥ 4/3 since it typically contains a singular part
analogous to that in (5).

By choosing a suitable test function in (D) and by exploiting the estimates in
Theorem 4.3, we may now deduce:

Proposition 5.4 Suppose that u solves (S) for some f ∈ L∞(Ω) and that (A) is
satisfied. Then, for all ε ∈ (0, 1/2), there exists a constant C > 0 independent of h
such that, for all sufficiently small h > 0, we have

‖(u − uh)
+‖L4(Ω) ≤ Ch2−ε.

Proof Let us denote the finitely many mesh nodes in the relative boundary of the set
A◦

h with xi , i = 1, . . . , N , N ∈ N0, and the basis functions of the nodal basis of Vh
that belong to the nodes xi with ϕi . Note that the number N is independent of h here
for all sufficiently small h by our assumptions and the definition ofA◦

h . Consider now

the function v := (uh − u) + ∑N
i=1 Ch‖u − uh‖W 1,∞(Ω)ϕi , where C is supposed to

be a constant independent of h with diam(T ) ≤ Ch for all T ∈ Th . We claim that
this v is admissible for (D). Indeed, on A◦, we have u ≡ 0 and thus v ≥ 0. Further,
we know that, for all small h and all x ∈ A◦

h\A◦, we can find an x̃ in the relative
boundary of A◦ and a j ∈ {1, . . . , N } with x ∈ [x j , x̃] and dist(x j , x̃) < Ch, where
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[x j , x̃] denotes the line segment between x j and x̃ . This yields

v(x) ≥ (uh − u)(x) − (uh − u)(x̃) +
N∑
i=1

Ch‖u − uh‖W 1,∞(Ω)ϕi (x)

≥ −‖u − uh‖W 1,∞(Ω) dist(x, x̃) + Ch‖u − uh‖W 1,∞(Ω)ϕ j (x)

≥ −‖u − uh‖W 1,∞(Ω) dist(x̃, x j )ϕ j (x) + Ch‖u − uh‖W 1,∞(Ω)ϕ j (x)

≥ 0

for all x ∈ A◦
h\A◦. Thus, we indeed have v ≥ 0H1-a.e. onA◦

h . Choosing the function
v + z ∈ L in (D) and using Lemma 5.2, the Sobolev embedding

W 2, 4−ε
3 (Ω) ↪→ W 1, 8−2ε

2+ε (Ω) ⊂ C(cl(Ω)), ε ∈ (0, 1/2),

and Hölder’s inequality now gives (with a generic C > 0 independent of h)

∫
Ω

max(0, u − uh)
4dL2

≤ (z, uh − u)H1(Ω) +
(
z,

N∑
i=1

Ch‖u − uh‖W 1,∞(Ω)ϕi

)

H1(Ω)

+
∫

Ω

max(0, u − uh)
3

(
N∑
i=1

Ch‖u − uh‖W 1,∞(Ω)ϕi

)
dL2

≤ (z, uh − u)H1(Ω) + C‖z‖
W

1, 8−2ε
2+ε (Ω)

(
h‖u − uh‖W 1,∞(Ω)

N∑
i=1

‖ϕi‖
W

1, 8−2ε
6−3ε (Ω)

)

+ C‖max(0, u − uh)
3‖

L
4−ε
3 (Ω)

(
h‖u − uh‖W 1,∞(Ω)

N∑
i=1

‖ϕi‖
L

4−ε
1−ε (Ω)

)

≤ (z, uh − u)H1(Ω) + C‖z‖
W 2, 4−ε

3 (Ω)

(
h‖u − uh‖W 1,∞(Ω)h

6−3ε
4−ε

−1
)

+ C‖max(0, u − uh)
3‖

L
4−ε
3 (Ω)

(
h‖u − uh‖W 1,∞(Ω)h

2−2ε
4−ε

)

≤ (z, uh − u)H1(Ω) + Ch
6−3ε
4−ε ‖max(0, u − uh)

3‖
L

4−ε
3 (Ω)

‖u − uh‖W 1,∞(Ω).

(20)

Note that, since z vanishes onA◦
h , since the relative boundary ofA◦

h consists of mesh
nodes, and since z ≤ 0 in Ω , the Lagrange interpolant Ih(z) ∈ Vh satisfies Ih(z) = 0
on A◦ ⊂ A◦

h and Ih(z) ≤ 0 in Ω . This implies in combination with (Sh) and the
reformulation (4) of (S) that

(uh,−Ih(z))H1(Ω) ≥ (− f , Ih(z))L2(Ω) and (u, Ih(z))H1(Ω) = ( f , Ih(z))L2(Ω),
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i.e., we have

(−Ih(z), uh − u)H1(Ω) ≥ 0.

Using the last inequality, standard results for the Lagrange interpolation operator, and
again Lemma 5.2, we can continue the estimate in (20) as follows

‖(u − uh)
+‖4L4(Ω)

≤ (z − Ih(z), uh − u)H1(Ω)

+ Ch
6−3ε
4−ε ‖max(0, u − uh)

3‖
L

4−ε
3 (Ω)

‖u − uh‖W 1,∞(Ω)

≤ ‖z − Ih(z)‖
W 1, 4−ε

3 (Ω)
‖uh − u‖

W
1, 4−ε

1−ε (Ω)

+ Ch
6−3ε
4−ε ‖max(0, u − uh)

3‖
L

4−ε
3 (Ω)

‖u − uh‖W 1,∞(Ω)

≤ Ch‖z‖
W 2, 4−ε

3 (Ω)
‖u − uh‖

3ε
4−ε

W 1,∞(Ω)
‖uh − u‖

4−4ε
4−ε

W 1,4(Ω)

+ Ch
6−3ε
4−ε ‖max(0, u − uh)

3‖
L

4−ε
3 (Ω)

‖u − uh‖W 1,∞(Ω)

≤ Ch‖(u − uh)
+‖3L4−ε(Ω)

‖u − uh‖
3ε
4−ε

W 1,∞(Ω)
‖uh − u‖

4−4ε
4−ε

W 1,4(Ω)

+ Ch
6−3ε
4−ε ‖(u − uh)

+‖3L4−ε(Ω)
‖u − uh‖W 1,∞(Ω).

(21)

The aboveyields, in combinationwithTheorems4.3 and2.3, that there exists a constant
C independent of h with

‖(u − uh)
+‖L4−ε(Ω) ≤ Ch‖u − uh‖

3ε
4−ε

W 1,∞(Ω)
‖uh − u‖

4−4ε
4−ε

W 1,4(Ω)

+ Ch
6−3ε
4−ε ‖u − uh‖W 1,∞(Ω)

≤ Ch1+
1
2 (1−ε) 3ε

4−ε
+(1−ε) 4−4ε

4−ε + Ch
3
2− 3ε

8−2ε + 1
2 (1−ε)

≤ Ch2−o(1),

where the Landau symbol refers to the limit ε ↘ 0. Using the above in (21) and
performing the same calculation as before yields

‖(u − uh)
+‖4L4(Ω)

≤ Ch6−o(1)
(
h‖u − uh‖

3ε
4−ε

W 1,∞(Ω)
‖uh − u‖

4−4ε
4−ε

W 1,4(Ω)
+ Ch

6−3ε
4−ε ‖u − uh‖W 1,∞(Ω)

)

≤ Ch8−o(1).

This proves the claim (after redefining ε). 
�
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5.2 A duality argument for the component (u− uh)−

To obtain an L4-error estimate for the component (u − uh)−, we can proceed along
roughly the same lines as in the last subsection provided the contact sets

Ãh := {x ∈ ∂Ω | uh(x) = 0}, h > 0,

of the finite element solutions uh behave sufficiently well for h ↘ 0. To be more
precise, we need the following assumption:

Definition 5.5 (Condition (Ah)) We say that condition (Ah) is satisfied if there exist
points di ∈ ∂Ω , i = 1, . . . , N , N ∈ N0, and numbers δi > 0 such that the sets
Bδi (di ) ∩ ∂Ω have non-zero distance to each other and the corners of the square
Ω = (0, 1)2 and such that the following is true for all sufficiently small h:

1. The sets Bδi (di ) ∩ ∂Ω cover the relative boundary of Ãh and each Bδi (di ) ∩ ∂Ω

contains precisely one element of the relative boundary of Ãh .
2. Every connected component of Ãh has a non-empty relative interior.

Roughly speaking, the above condition expresses that the topological properties
of the sets {x ∈ ∂Ω | uh(x) = 0} and {x ∈ ∂Ω | uh(x) �= 0} do not change
drastically as h passes to zero, and that the set {x ∈ ∂Ω | uh(x) = 0} does not contain
components which are singletons. Suppose, for example, that the contact set Ãh has
the form [0, αh] × {0} ∪ {0} × [0, βh] with some αh, βh ∈ (0, 1) for all sufficiently
small h > 0. Then, condition (Ah) is satisfied if and only if there exists a closed
interval E ⊂ (0, 1) with αh, βh ∈ E for all small enough h. Note that we do not need
here that the sequences αh and βh converge or that Ãh approximates the contact set of
the exact solution u for h ↘ 0 (although this is, of course, what is typically observed
in numerical experiments, cf. [41, Section 7]).

Analogously to the last section, we may now consider the following auxiliary prob-
lem:

z̃ ∈ L̃, (z̃, v − z̃)H1(Ω) ≥ (−max(0, uh − u)3, v − z̃)L2(Ω) ∀v ∈ L̃ (D̃)

with

L̃ :=
{
v ∈ H1(Ω)

∣∣∣ tr(v) ≥ 0 H1-a.e. on Ãh

}
.

By invoking again the results of [19], we obtain:

Lemma 5.6 Suppose that u solves (S) for some f ∈ L2(Ω), that uh is the solution
of (Sh), and that condition (Ah) is satisfied. Then, (D̃) admits a unique solution
z̃ ∈ H1(Ω) for all h > 0, and this solution satisfies z̃ ≤ 0 L2-a.e. in Ω and tr(z̃) = 0
H1-a.e. on Ãh, and, for every ε ∈ (0, 1/2), there exists a constant C > 0 independent
of h with

‖z̃‖H1(Ω) ≤ C‖max(0, uh − u)3‖L(4−ε)/3(Ω). (22)
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Moreover, for all ε ∈ (0, 1/2) and all sufficiently small h > 0, z̃ is in W 2,(4−ε)/3(Ω)

and satisfies

‖z̃‖W 2,(4−ε)/3(Ω) ≤ C‖max(0, uh − u)3‖L(4−ε)/3(Ω) (23)

with some constant C > 0 independent of h.

Proof The unique solvability of (D̃) for all h > 0 follows from [25, Theorem II-2.1],
and the non-positivity of z̃ and the property tr(z̃) = 0 on Ãh are obtained completely
analogously to the proof of Lemma 5.2. The same is the case for the estimate (22).
It remains to prove the W 2,(4−ε)/3-regularity of z̃ and (23) for all sufficiently small
h > 0. The former follows immediately from (Ah), [19, Theorem 4.4.3.7] and the
same arguments as in Lemma 5.2. To obtain the latter, we assume that h is so small
that the conditions in (Ah) hold with some di ∈ ∂Ω , δi > 0, i = 1, . . . , N , N ∈ N

(for N = 0 the claim is trivial) and choose rotationally symmetric cut-off functions
ψi ∈ C∞

c (R2), i = 1, . . . , N , such that 0 ≤ ψi ≤ 1 holds in R
2 for all i , such that

ψi is identical one in Bδi (di ) for all i , and such that the sets supp(ψi ) ∩ ∂Ω have
non-zero distance from each other and the corners of the square Ω . In this situation,
the properties of the functions ψi imply that we may find another cut-off function
φ ∈ C∞

c (R2) with 0 ≤ φ ≤ 1 in R
2 and φ ≡ 1 in a neighborhood of the boundary

∂Ω such that the supports of the functions ψ̃i := ψiφ are disjoint. Using these ψ̃i , we
decompose z̃ into the parts z̃0, z̃1, . . . , z̃N defined by

z̃i := ψ̃i z̃ for i = 1, . . . , N , z̃0 := ψ̃0 z̃, ψ̃0 := 1 −
N∑
i=1

ψ̃i .

Since (Ah) implies that the relative boundary of Ãh is contained in the union of the
balls Bδi (di ), i = 1, . . . , N , that each set Bδi (di ) ∩ ∂Ω contains precisely one point
of the relative boundary of Ãh , and that the connected components of Ãh each have
a non-empty relative interior, we may argue as in the proof of Lemma 5.2 to deduce
that z̃0 satisfies

−Δz̃0 = −z̃Δψ̃0 − 2∇ z̃ · ∇ψ̃0 − ψ̃0 max(0, uh − u)3 − z̃0 L2-a.e. in Ω,

z̃0 = 0 H1-a.e. on B,

∂n z̃0 = 0 H1-a.e. on ∂Ω\B

with some closed set B ⊂ ∂Ω whose connected components each have a non-
empty relative interior and whose relative boundary consists precisely of the points
d1, . . . , dN . Note that it is (at least in theory) possible thatB varies with h since it is not
uniquely determined by the above conditions. However, it is easy to check that only
two sets B and combinations of boundary conditions are possible here. We may thus
again invoke [19, Theorem 4.3.2.4] and use (22) to deduce that, for every ε ∈ (0, 1/2),
we have
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‖z̃0‖W 2,(4−ε)/3(Ω)

≤ C
(
‖z̃Δψ̃0 + 2∇ z̃ · ∇ψ̃0 + ψ̃0 max(0, uh − u)3‖L(4−ε)/3(Ω) + ‖z̃0‖W 1,(4−ε)/3(Ω)

)

≤ C‖max(0, uh − u)3‖L(4−ε)/3(Ω)

with a generic constant C > 0 which is independent of h. It remains to estimate the
W 2,(4−ε)/3-norm of the functions z̃i , i = 1, . . . , N . So let us consider an arbitrary
but fixed point di . Since di is not a corner of Ω by (Ah), we may assume w.l.o.g.
that di = (a, 0) holds for some a ∈ (0, 1). Further, it follows from a straightforward
calculation and the properties of ψ̃i that

−Δz̃i =−z̃Δψ̃i −2∇ z̃ · ∇ψ̃i −ψ̃i max(0, uh−u)3− z̃i L2-a.e. in Ω,

z̃i = 0 L2-a.e. in Ω\ supp(ψ̃i ).

(24)

Since the support supp(ψ̃i ) contains precisely one point (ã, 0) ∈ ∂Ω of the relative
boundary of Ãh by our assumption (Ah), we may complement (24) with one of the
boundary conditions

z̃i = 0 H1-a.e. on
(
(−∞, ã) × {0}) ∩ supp(ψ̃i ) ⊂ ∂Ω

∂n z̃i = 0 H1-a.e. on
(
(ã,∞) × {0}) ∩ supp(ψ̃i ) ⊂ ∂Ω

and

z̃i = 0 H1-a.e. on
(
(ã,∞) × {0}) ∩ supp(ψ̃i ) ⊂ ∂Ω

∂n z̃i = 0 H1-a.e. on
(
(−∞, ã) × {0}) ∩ supp(ψ̃i ) ⊂ ∂Ω.

Using exactly the same arguments as in the proof of Lemma5.2,wemay now transform
the situation at di into one of finitely many reference configurations and invoke [19,
Theorem 4.3.2.4] as well as (22) to deduce that there exists a constant Ci independent
of h with

‖z̃i‖W 2,(4−ε)/3(Ω) ≤ Ci‖max(0, uh − u)3‖L(4−ε)/3(Ω).

Proceeding exactly along the same lines at the other points di and using the triangle
inequality, we arrive at (23). This completes the proof. 
�

By choosing the test function v = z̃ + u − uh ∈ L̃ in (D̃), we now obtain:

Proposition 5.7 Suppose that u solves (S) for some f ∈ L∞(Ω), that uh is the solution
of (Sh), and that the conditions (A) and (Ah) are satisfied. Then, for all ε ∈ (0, 1/2),
there exists a constant C > 0 independent of h such that, for all sufficiently small
h > 0, we have

‖(u − uh)
−‖L4(Ω) ≤ Ch2−ε. (25)

123



Finite element error estimates for the Signorini problem 545

Proof Note that the definition of Ãh implies u − uh = u ≥ 0 on Ãh . The function
u − uh is thus an element of L̃ and we may choose the function v = z̃ + u − uh in
(D̃) to obtain

‖min(0, u − uh)‖4L4(Ω)
≤ (z̃, u − uh)H1(Ω). (26)

Since the set Ãh consists of cells of the boundary mesh, since z̃ vanishes in Ãh , and
since z̃ ≤ 0 holds L2-a.e. in Ω , we know that the Lagrange interpolant Ih(z̃) vanishes
in Ãh and that Ih(z̃) is non-positive everywhere. This implies that, for all small enough
s > 0, we have uh ± s Ih(z̃) ∈ Kh and, as a consequence, that

(uh, Ih(z̃))H1(Ω) = ( f , Ih(z̃))L2(Ω) and (u,−Ih(z̃))H1(Ω) ≥ ( f ,−Ih(z̃))L2(Ω).

Using the above in (26) yields

‖min(0, u − uh)‖4L4(Ω)
≤ (z̃, u − uh)H1(Ω)

≤ (z̃ − Ih(z̃), u − uh)H1(Ω)

≤ ‖z − Ih(z)‖
W 1, 4−ε

3 (Ω)
‖uh − u‖

W
1, 4−ε

1−ε (Ω)

for all ε ∈ (0, 1/2). A calculation completely analogous to that at the end of the proof
of Proposition 5.4 now yields (25) as claimed. 
�

6 Summary of results and remarks on the error analysis

In summary, we have now proved the following for problems (S) whose right-hand
sides are in L∞(Ω) and whose solutions satisfy condition (A):

Theorem 6.1 (Optimal FE-estimates under assumption (A)) Suppose that u solves (S)
for some f ∈ L∞(Ω) and that condition (A) is satisfied. Then, for all ε ∈ (0, 1/2),
there exists a constant C > 0 independent of h with

‖u − uh‖W 1,8/3−ε(Ω) ≤ Ch, ‖u − uh‖W 1,4(Ω) ≤ Ch1−ε,

‖u − uh‖W 1,∞(Ω) ≤ Ch1/2−ε, ‖u − uh‖L∞(Ω) ≤ Ch3/2−ε,

‖u − uh‖H1/2(∂Ω) ≤ Ch3/2−ε, ‖(u − uh)+‖L4(Ω) ≤ Ch2−ε.

(27)

If, additionally, the approximate solutions uh satisfy (Ah), then we also have

‖(u − uh)
−‖L4(Ω) ≤ Ch2−ε ∀ε ∈ (0, 1/2).

Proof Combine Theorems 2.3 and 4.3 and Propositions 5.4 and 5.7. 
�
Some remarks are in order regarding the last result:

Remark 6.2 1. The error estimates in Theorem 6.1 are optimal in view of the W 2,p-
and Hs-regularity properties of the exact solution u, cf. Remark 4.4.
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2. Recall that condition (A) in Theorem 6.1 may be replaced with the regularity
assumption in Theorem 4.3 if only the W 1,8/3−ε(Ω)-, W 1,4(Ω)-, W 1,∞(Ω)-,
L∞(Ω)-, and H1/2(∂Ω)-estimate are considered, see Sect. 4, and that, for right-
hand sides f in L p(Ω), we have the results in Corollaries 4.1 and 4.2.

3. Note that one of the crucial steps in the proofs of Propositions 5.4 and 5.7 is to
use the W 1,4-error estimate in Theorem 4.3 to compensate the lack of regularity
of the dual solutions in Sects. 5.1 and 5.2. It is quite remarkable here that the
exponent in the obtained W 1,p-error estimate (namely, p = 4) and the exponent
in the W 2,p-regularity results for (D) and (D̃) (namely, p = 4/3 − ε) are (up to
the ε) Hölder conjugates of each other and thus fit together perfectly. Even more
surprisingly, 4/3+ ε is also the difference of the exponents in the two W 1,p-error
estimates in the first line of (27). This omnipresence of the exponents 4 and 4/3
indicates that the L4- and theW 1,4-norm are a natural choice for the finite element
error analysis of the problem (S).

4. We expect that it is possible to relax the (certainly not optimal) assumption (Ah)

in Proposition 5.7 and Theorem 6.1 by studying in more detail how the constant
in [19, Theorem 4.3.2.4] depends on the boundary conditions of the considered
problem. Note that the difficult part in the proof of Proposition 5.7 is to obtain
the uniform bound on theW 2,(4−ε)/3-norm in (23). Showing that the dual solution
possesses W 2,(4−ε)/3-regularity is relatively simple.

5. Recall that, for a classical obstacle problem with an essentially bounded right-
hand side, it can be shown that the exact solution enjoys W 2,p-regularity for all
2 ≤ p < ∞, cf. [11,25,28]. This implies in particular that it is possible to prove
L∞-error estimates of orderO(h2−ε) for arbitrarily small ε > 0. For the Signorini
problem, this is different since the exact solution u cannot be expected to be in
W 2,4(Ω) even for smooth right-hand sides f . The L4-error estimates in Theorem
6.1 thus yield an order of convergence that cannot be recovered with pointwise a
priori error estimates.

6. Note that Theorem 6.1 shows that a counterexample, which demonstrates that the
L4-error ‖u − uh‖L4(Ω) is in general not of order O(h2−ε), has to be very exotic
(if it exists) since the contact sets of u and uh have to exhibit a very degenerate
behavior for the conditions (A) and (Ah) to be violated.

7 Numerical experiments

We conclude this paper with numerical experiments that confirm our theoretical find-
ings. To construct a model problem that allows us to validate our results and that
possesses a known analytic solution, we proceed along the lines of [41, Section 7] and
consider the function ũ : R× (0,∞) → R, x �→ −r3/2 sin( 32θ). Here, r and θ denote
polar coordinates centered at (0.5, 0), i.e.,

r(x1, x2) :=
(
(x1 − 0.5)2 + x22

)1/2
and θ(x1, x2) := arccos

(
x1 − 0.5

r

)
.
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Fig. 2 Solution u (left) and right-hand side f (right) in the situation of Sect. 7

Note that the function ũ is exactly of the same type as the singular terms on the right-
hand side of (6), cf. also the analysis in [19,20]. Moreover, it is easy to check that
ũ is an element of H2(U ) for all bounded, open U ⊂ R × (0,∞), that ũ = 0 and
∂nũ ≥ 0 holds on (0.5,∞) × {0}, that ũ ≥ 0 and ∂nũ = 0 holds on (−∞, 0.5) × {0},
and that Δũ vanishes L2-a.e. in R × (0,∞). Suppose now that ψ : [0,∞) → R is a
C4-function satisfying ψ ≡ 0 in [0.45,∞), ψ > 0 in [0, 0.45), and

ψ(0) = 1, ψ ′(0) = · · · = ψ ′′′′(0) = 0.

(In the experiments below, this ψ was an appropriately defined ninth-order spline.)
Then, the properties of ũ and ψ yield that the map

u : Ω → R, x �→ 10ψ(r)ũ(r , θ), (28)

satisfies

−Δu + u ∈ C(cl(Ω)),

u = 0 and ∂nu ≥ 0 on ∂Ω\(0.05, 0.5) × {0},
u ≥ 0 and ∂nu = 0 on (0.05, 0.5) × {0},

(29)

where Ω again denotes the unit square (0, 1)2 and where we have added the factor
ten for scaling reasons. Note that the conditions in (29) imply in particular that the
function u solves (S) with right-hand side f := −Δu+u ∈ C(cl(Ω)). What we have
constructed in (28) is thus indeed an analytic solution of Signorini’s problem that can
be used as a reference in our numerical experiments, cf. Fig. 2.

The results that we have obtained for the right-hand side f associated with the
solution u in (28) by means of the finite element scheme described in Sect. 2.3 can be
seen inTables 1 and 2.Here,we have used Friedrichs-Keller triangulations to discretize
the continuous problem (S) and a 16-point Gauss-Legendre-type quadrature rule for
triangles to evaluate the variousWs,p-errors and the integrals arising on the right-hand
side of (Sh). The finite-dimensional elliptic variational inequalities obtained from
the discretization scheme have been solved by means of the MatlabR2019b-routine
quadprog to a high precision. Note that the choice of mesh widths in our numerical
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Table 2 Experimental orders of convergence (EOCs) for different widths h w.r.t. various norms, see (30)

h L4(Ω) L16(Ω) L∞(Ω) W 1,4(Ω) W 1,16(Ω) W 1,∞(Ω) H1/2(∂Ω)

1
101 – – – – – – –
1
201 1.99675 1.99624 1.63135 0.99119 0.62776 0.50270 1.46755
1
301 1.99873 1.98984 1.49392 0.99244 0.62662 0.50159 1.46944
1
401 1.99923 1.94412 1.49574 0.99276 0.62615 0.50113 1.47026
1
501 1.99944 1.83910 1.49671 0.99291 0.62590 0.50088 1.47078
1
601 1.99955 1.73258 1.49732 0.99300 0.62573 0.50072 1.47116
1
701 1.99961 1.67223 1.49774 0.99306 0.62562 0.50061 1.47146
1
801 1.99965 1.64560 1.49804 0.99310 0.62554 0.50053 1.47171
1
901 1.99968 1.63424 1.49827 0.99313 0.62547 0.50047 1.47192
1

1001 1.99970 1.62918 1.49845 0.99316 0.62542 0.50042 1.47210

regr. 1.99874 1.87309 1.52533 0.99247 0.62640 0.50137 1.46995

theo. 2 − ε 1.625 − ε 1.5 − ε 1 − ε 0.625 − ε 0.5 − ε 1.5 − ε

The row “regr.” contains the EOCs that are obtained from the data in Table 2 by linear regression (after a
logarithmic scaling) and the row “theo.” the orders of convergence expected from our analysis. The expected
rates of convergence for the L16- and the W 1,16-error have been computed with inverse estimates

experiments ensures that the point (0.5, 0), where the analytic solution u detaches
from the boundary ∂Ω and where ∇2u possesses a singularity, never coincides with
a node of the underlying mesh. This constitutes the worst case scenario as the critical
part of the contact set of u is never resolved properly. Further, it should be noted that
the condition (A) is trivially satisfied in (28) by the properties of the analytic solution
u. Our numerical experiments indicate that the same is true for the condition (Ah) as
it can be observed that the contact sets of the finite element solutions uh approximate
their continuous counterpart, cf. the comments after Definition 5.5.

As the results in Tables 1 and 2 illustrate, the behavior observed in our numerical
experiments agrees very well with the predictions in Theorem 6.1. (Note that this
result is indeed applicable here since f ∈ C(cl(Ω)).) In particular, the experimental
orders of convergence (EOCs), i.e., the quantities

(EOC)hk ,‖·‖∗ := log ‖u − uhk‖∗ − log ‖u − uhk−1‖∗
log hk − log hk−1

, (30)

fit very well to the a priori error estimates in (27). Table 2 further shows that the rates of
convergence in the L p- and theW 1,p-norms break down in the situation of (28) when
p is greater than the critical exponent four. This demonstrates that, for instance, the
order one (minus epsilon) is in general unobtainable when we consider theW 1,p-error
for some p > 4.
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