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Abstract
In this work we present the convergence of a positivity preserving semi-discrete finite
volume scheme for a coupled system of two non-local partial differential equations
with cross-diffusion. The key to proving the convergence result is to establish positivity
in order to obtain a discrete energy estimate to obtain compactness. We numerically
observe the convergence to reference solutions with a first order accuracy in space.
Moreover we recover segregated stationary states in spite of the regularising effect
of the self-diffusion. However, if the self-diffusion or the cross-diffusion is strong
enough, mixing occurs while both densities remain continuous.
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1 Introduction

In this paper we develop and analyse a numerical scheme for the following non-local
interaction system with cross-diffusion and self-diffusion
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∂ρ

∂t
= ∂

∂x

(
ρ

∂

∂x
(W11�ρ + W12�η + ν(ρ + η)) + ε

2

∂ρ2

∂x

)
,

∂η

∂t
= ∂

∂x

(
η

∂

∂x
(W22�η + W21�ρ + ν(ρ + η)) + ε

2

∂η2

∂x

)
, (1)

governing the evolution of two species ρ and η on an interval (a, b) ⊂ R for t ∈ [0, T ).
The system is equipped with nonnegative initial data ρ0, η0 ∈ L1+(a, b) ∩ L∞+ (a, b).
We denote by m1 the mass of ρ0 and by m2 the mass of η0, respectively,

m1 =
∫ b

a
ρ0(x) dx, and m2 =

∫ b

a
η0(x) dx .

On the boundary x = a and b, we prescribe no-flux boundary conditions

ρ
∂

∂x
(W11�ρ + W12�η + ν(ρ + η) + ερ) = 0,

η
∂

∂x
(W22�η + W21�ρ + ν(ρ + η) + εη) = 0,

such that the total mass of each species is conserved with respect to time t ≥ 0.
While the self-interaction potentialsW11,W22 ∈ C2

b (R)model the interactions among
individuals of the same species (also referred to as intraspecific interactions), the cross-
interaction potentialsW12,W21 ∈ C2

b (R) encode the interactions between individuals
belonging to different species, i.e. interspecific interactions. Here C2

b (R) denotes the
set of twice continuously differentiable functions on R with bounded derivatives.
Notice that the convolutions Wi j�ψ , with ψ a density function defined on [a, b],
are defined by extending the density ψ by zero outside the interval [a, b]. The two
positive parameters ε, ν > 0 determine the strengths of the self-diffusion and the
cross-diffusion of both species, respectively. Nonlinear diffusion, be it self-diffusion
or cross-diffusion, is biologically relevant. As a matter of fact, around the second
half of the twentieth century biologists found that the dispersal rate of certain insects
depends on the density itself, leading to the nonlinear diffusion terms we incorporated
in the model, cf. [13,32,34,36,37]. At the same time we would like to stress that the
self-diffusion terms are relevant for the convergence analysis below.

It is the interplay between the non-local interactions of both species and their
individual and joint size-exclusion, modelled by the non-linear diffusion [4–6,10,12,
40], that leads to a large variety of behaviours including complete phase separation
or mixing of both densities in both stationary configurations and travelling pulses
[11,19].

While their single species counterparts have been studied quite intensively [15,
21,35,41] and references therein, related two-species models like the system of our
interest, Eq. (1), have only recently gained considerable attention [11,17,19,24,25].
One of the most striking phenomena of these interaction models with cross-diffusion
is the possibility of phase separation. Since the seminal papers [5,33] established
segregation effects for the first time for the purely diffusive system corresponding
to (1) for Wi j ≡ 0, i, j ∈ {1, 2} and ε = 0, many generalisations were presented.
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This includes reaction-(cross-)diffusion systems [3,7,17] and references therein, and
by adding non-local interactions [2,11,19,24] and references therein. Ref. [24] have
established the existence of weak solutions to a class of non-local systems under a
strong coercivity assumption on the cross-diffusion also satisfied by system (1).

Typical applications of these non-local models comprise many biological contexts
such cell–cell adhesion [16,38,39], for instance, as well as tumour models [26,31], but
also the formation of the characteristic stripe patterns of zebrafish can be modelled
by these non-local models [42]. Systems of this kind are truly ubiquitous in nature
and we remark that ‘species’ may not only refer to biological species but also to a
much wider class of (possibly inanimate) agents such as planets, physical or chemical
particles, just to name a few.

Since system (1) is in conservative form a finite volume scheme is a natural choice
as a numerical method. This is owing to the fact that, by construction, finite volume
schemes are locally conservative: due to the divergence theorem, the change in density
on a test cell has to equal the sum of the in-flux and the out-flux of the same cell. There
is a huge literature on finite volume schemes, first and foremost [28]. Therein, the
authors give a detailed description of the construction of such methods and address
convergence issues. Schemes similar to the one proposed in Sect. 2 have been studied in
[9] in the case of nonlinear degenerate diffusion equations in any dimension. A similar
scheme for a system of two coupled PDEs was proposed in [22]. Later, the authors in
[14] generalised the scheme proposed in [9] including both local and non-local drifts.
The scheme was then extended to two species in [19]. All the aforementioned schemes
have in common that they preserve nonnegativity—a property that is also crucial for
our analysis.

Beforewe define the finite volume schemewe shall present a formal energy estimate
for the continuous system. The main difficulty in this paper is to establish positivity
and reproducing the continuous energy estimate at the discrete level. The remainder
of the introduction is dedicated to presenting the aforementioned energy estimate. Let
us consider

d

dt

∫ b

a
ρ log ρ dx =

∫ b

a
log ρ

∂ρ

∂t
dx

=
∫ b

a
log ρ

∂

∂x

(
ρ

∂

∂x
(W11�ρ + W12�η + ν(ρ + η) + ερ)

)
dx

= −
∫ b

a
ρ

∂

∂x
(W11�ρ + W12�η + ν(ρ + η) + ερ)

∂

∂x
(log ρ) dx,

where the second equality holds due to the no-flux boundary conditions. Upon rear-
ranging we get

d

dt

∫ b

a
ρ log ρ dx + ν

∫ b

a

∂

∂x
(ρ + η)

∂ρ

∂x
dx + ε

∫ b

a

∣∣∣∣ ∂ρ∂x
∣∣∣∣
2

dx

= −
∫ b

a
(W ′

11�ρ + W ′
12�η)

∂ρ

∂x
dx .
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A similar computation for η yields

d

dt

∫ b

a
η log η dx + ν

∫ b

a

∂

∂x
(ρ + η)

∂η

∂x
dx + ε

∫ b

a

∣∣∣∣∂η

∂x

∣∣∣∣
2

dx

= −
∫ b

a
(W ′

22�η + W ′
21�ρ)

∂η

∂x
dx,

whence, upon adding both, we obtain

d

dt

∫ b

a

[
ρ log ρ + η log η

]
dx + ν

∫ b

a

∣∣∣∣∂σ

∂x

∣∣∣∣
2

dx

+ ε

∫ b

a

(∣∣∣∣ ∂ρ∂x
∣∣∣∣
2

+
∣∣∣∣∂η

∂x

∣∣∣∣
2
)

dx = Dρ + Dη,

where σ = ρ + η and

Dρ := −
∫ b

a
(W ′

11�ρ + W ′
12�η)

∂ρ

∂x
dx,

Dη := −
∫ b

a
(W ′

22�η + W ′
21�ρ)

∂η

∂x
dx,

denote the advective parts associated to ρ and η, respectively. The advective parts can
be controlled by using the weighted Young inequality to get

|Dρ | =
∣∣∣∣
∫ b

a
(W ′

11�ρ + W ′
12�η)

∂ρ

∂x
dx

∣∣∣∣
≤ 1

2α

∫ b

a
|W ′

11�ρ + W ′
12�η|2 dx + α

2

∫ b

a

∣∣∣∣∂ρ∂x
∣∣∣∣
2

dx,

for some α > 0. In choosing 0 < α < ε we obtain

d

dt

∫ b

a

[
ρ log ρ + η log η

]
dx + ν

∫ b

a

∣∣∣∣∂σ

∂x

∣∣∣∣
2

dx

+
(
ε − α

2

) ∫ b

a

(∣∣∣∣ ∂ρ∂x
∣∣∣∣
2

+
∣∣∣∣∂η

∂x

∣∣∣∣
2
)

dx ≤ Cρ + Cη

2α
, (2)

whereCρ = ‖W ′
11�ρ +W ′

12�η‖2
L2 andCη = ‖W ′

22�η+W ′
21�ρ‖2

L2 . From the last line,
Eq. (2), we may deduce bounds on the gradient of each species as well as on their
sum. As mentioned above the crucial ingredient for this estimate is the positivity of
solutions.

The rest of this paper is organised as follows. In the subsequent section we present
a semi-discrete finite volume approximation of system (1) and we present the main
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result, Theorem 2.4. Section 3 is dedicated to establishing positivity and to the deriva-
tion of a priori estimates. In Sect. 4 we obtain compactness, pass to the limit, and
identify the limiting functions as weak solutions to system (1). We conclude the paper
with a numerical exploration in Sect. 6. We study the numerical order of accuracy and
discuss stationary states and phase segregation phenomena.

2 Numerical scheme andmain result

In this section we introduce the semi-discrete finite volume scheme for system (1). To
begin with, let us introduce our notion of weak solutions.

Definition 2.1 (Weak solutions) A couple of functions (ρ, η) ∈ L2(0, T ; H1(a, b))2

is a weak solution to system (1) if it satisfies

−
∫ b

a
ρ0 ϕ(0, ·) dx

=
∫ T

0

∫ b

a

[
ρ

(
∂ϕ

∂t
+
(

−ν
∂σ

∂x
+ ∂V1

∂x

)
∂ϕ

∂x

)
+ ε

2
ρ2 ∂2ϕ

∂x2

]
dx dt,

(3a)

and

−
∫ b

a
η0 ϕ(0, ·) dx

=
∫ T

0

∫ b

a

[
η

(
∂ϕ

∂t
+
(

−ν
∂σ

∂x
+ ∂V2

∂x

)
∂ϕ

∂x

)
+ ε

2
η2

∂2ϕ

∂x2

]
dxdt,

(3b)

respectively, for any ϕ ∈ C∞
c ([0, T )× (a, b);R). Here we have set Vk = −Wk 1�ρ −

Wk 2�η, for k ∈ {1, 2}, and σ = ρ + η, as above.

Notice that the existence of weak solutions to system (1) will follow directly from
the convergence of the numerical solution. Indeed, our analysis relies on a compactness
argument which does not suppose a priori existence of solution to system (1).

To this end we first define the following space discretisation of the domain.

Definition 2.2 (Space discretisation) To discretise space, we introduce the mesh

T :=
⋃
i∈I

Ci ,

where the control volumes are given by Ci = [xi−1/2, xi+1/2) for all i ∈ I :=
{1, . . . , N }. We assume that the measure of the control volumes are given by |Ci | =
�xi = xi+1/2 − xi−1/2 > 0, for all i ∈ I . Note that x1/2 = a, and xN+1/2 = b, cf.
(Fig. 1).

We also define xi = (xi+1/2 + xi−1/2)/2 the centre of cell Ci and set �xi+1/2 =
xi+1 − xi for i = 1, . . . , N − 1. We assume that the mesh is regular in the sense that
there exists ξ ∈ (0, 1) such that for h := max1≤i≤N {�xi }
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xi 3/2 xi 1/2 xi+1/2 xi+3/2xi 1 xi xi+1

CiCi−1 Ci+1

x1/2 = a x = b

Fig. 1 Space discretisation according to Definition 2.2

ξ h ≤ �xi ≤ h, (4)

and, as a consequence, ξ h ≤ �xi+1/2 ≤ h, as well.
On this mesh we shall now define the semi-discrete finite volume approximation of

system (1). The discretised initial data are given by the cell averages of the continuous
initial data, i.e.

ρ0
i := 1

�xi

∫
Ci

ρ0(x) dx, and η0i := 1

�xi

∫
Ci

η0(x) dx, (5)

for all i ∈ I . Throughout, we write ρi (resp. ηi ) to denote the approximations of the
two densities on the i-th finite volume cell,Ci . Next, we introduce the discrete versions
of the cross-diffusion and the interaction terms. We set

(V1)i := −
N∑
j=1

�x j
(
Wi− j

11 ρ j + Wi− j
12 η j

)
,

(V2)i := −
N∑
j=1

�x j
(
Wi− j

22 η j + Wi− j
21 ρ j

)
, (6)

where

Wi− j
kl = 1

�x j

∫
C j

Wkl(|xi − s|)ds, (7)

for k, l = 1, 2, and

Ui := −(ρi + ηi ), (8)

for the cross-diffusion term, respectively. Then the scheme reads

dρi
dt

(t) = −Fi+1/2(t) − Fi−1/2(t)

�xi
,

dηi
dt

(t) = −Gi+1/2(t) − Gi−1/2(t)

�xi
, (9a)

for i ∈ I . Here the numerical fluxes are given by

123



Convergence of a finite volume scheme for a system of… 479

Fi+1/2(t) =
[
ν (dU )+i+1/2 + (dV1)

+
i+1/2

]
ρi

+
[
ν (dU )−i+1/2 + (dV1)

−
i+1/2

]
ρi+1

− ε

2

ρ2
i+1 − ρ2

i

�xi+1/2
,

Gi+1/2(t) =
[
ν (dU )+i+1/2 + (dV2)

+
i+1/2

]
ηi

+
[
ν (dU )−i+1/2 + (dV2)

−
i+1/2

]
ηi+1

− ε

2

η2i+1 − η2i

�xi+1/2
, (9b)

for i = 1, . . . , N − 1, with the numerical no-flux boundary condition

F1/2(t) = FN+1/2(t) = 0, and G1/2(t) = GN+1/2(t) = 0, (9c)

where we introduced the discrete gradient dui+1/2 as

dui+1/2 := ui+1 − ui
�xi+1/2

As usual, we use (z)± to denote the positive (resp. negative) part of z, i.e.

(z)+ := max(z, 0), and (z)− := min(z, 0).

At this stage, the numerical flux (9b) may look strange since

• the cross-diffusion term is approximated as a convective term using that

∂

∂x

(
ρ

∂

∂x
(ρ + η)

)
= ∂

∂x

(
ρ

∂σ

∂x

)

with σ = ρ + η and ∂σ
∂x is considered as a velocity field. This treatment has

already been used in [9] and allows to preserve the positivity of both discrete
densities (ρ, η) (see Lemma 3.1), which is crucial for the convergence analysis.

• In this new formulation, the velocity field is split in two parts both treated by an
upwind scheme. One part comes from the cross-diffusion part, and the second one
comes from the non-local interaction fields. This splitting is crucial to recovering
a consistent dissipative term for the discrete energy estimate corresponding to
Eq. (2).

Definition 2.3 (Piecewise constant approximation) For a given mesh Th we define the
approximate solution to system (1) by

ρh(t, x) := ρi (t), and ηh(t, x) := ηi (t),
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for all (t, x) ∈ [0, T ] × Ci , with i = 1, . . . , N . Moreover, we define the following
approximations of the gradients

dρh(t, x) = ρi+1 − ρi

�xi+1/2
, and dηh(t, x) = ηi+1 − ηi

�xi+1/2

for (t, x) ∈ [0, T ) × [xi , xi+1), for i = 1, . . . , N − 1. Furthermore, in order to define
dρh and dηh on the whole interval (a, b) we set them to zero on (a, x1) and (xN , b).

Notice that the discrete gradients (dρh, dηh) are piecewise constant just like (ρh, ηh)

however not on the same partition of the interval (a, b). In a similar fashion we define
the piecewise constant interpolation of the discrete advection fields, i.e.,

dVk, h(x) = (dVk)i+1/2,

for all x ∈ [xi , xi+1), for i = 1, . . . , N − 1, and zero at the boundary.
We have set out all definitions necessary to formulate the convergence of the numer-

ical scheme (9).

Theorem 2.4 (Convergence to a weak solution) Let ρ0, η0 ∈ L1+(a, b) ∩ L∞+ (a, b) be
some initial data and QT := (0, T ) × (a, b). Then,

(i) there exists a nonnegative approximate solution (ρh, ηh) in the sense ofDefinition
2.3;

(ii) up to a subsequence, this approximate solution converges strongly in L2(QT ) to
(ρ, η) ∈ L2(QT ), where (ρ, η) is a weak solution as in Definition 2.1. Further-
more we have ρ, η ∈ L2(0, T ; H1(a, b));

(iii) as a consequence system (1) has a weak solution.

3 A priori estimates

This section is dedicated to deriving a priori estimates for our system. In order to do
so we require the positivity of approximate solutions and their conservation of mass,
respectively. The following lemma guarantees these properties.

Lemma 3.1 (Existence of nonnegative solutions and conservation of mass) Assume
that the initial data (ρ0, η0) are non-negative. Then there exists a unique nonnegative
approximate solution (ρh, ηh)h>0 to the scheme (9a)–(9c). Furthermore, the finite
volume scheme conserves the initial mass of both densities.

Proof On the one hand we notice that the right-hand side of (9a)–(9b) is locally
Lipschitz with respect to (ρi , ηi )1≤i≤N . Hence, we may apply the Cauchy–Lipschitz
theorem to obtain a unique continuously differentiable local-in-time solution.

On the other hand to prove that this solution is global in time, we show the nonnega-
tivity of the solution togetherwith the conservation ofmass and argue by contradiction.
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On a given mesh, let some initial data, ρi (0), ηi (0) ≥ 0, be given for i = 1, . . . N .
We rewrite the scheme in the following way.

dρi
dt

(t) = −Fi+1/2 − Fi−1/2

�xi
= 1

�xi

(
Ai ρi + Bi ρi+1 + Ci ρi−1

)
, (10)

where

Ai = ν (dU )−i−1/2 + (dV1)
−
i−1/2 − ν (dU )+i+1/2

− (dV1)
+
i+1/2 − ε

2

(
ρi

�xi+1/2
+ ρi

�xi−1/2

)
,

Bi = − ν (dU )−i+1/2 − (dV1)
−
i+1/2 + ε

ρi+1

2�xi+1/2
,

Ci = ν (dU )+i−1/2 + (dV1)
+
i−1/2 + ε

ρi−1

2�xi−1/2
.

Then let t� ≥ 0 be the maximal time for all densities to remain nonnegative, i.e.

t� = sup {t ≥ 0 | ρi (s) ≥ 0, for all s ∈ [0, t], and i = 1, . . . , N } .

If t� < ∞, then there exists a nonincreasing sequence (tk)k∈N such that tk > t�,
tk → t� as k → ∞ and there exists ik ∈ {1, . . . , N } verifying

ρik (tk) < 0, ∀k ∈ N.

Since the index ik takes afinite number of integer values,we can extract a nonincreasing
subsequence of (tk)k∈N still labeled in the same manner such that there exists an index
j0 ∈ {1, . . . , N } and

ρ j0(tk) < 0, ∀k ∈ N,

where tk → t�, as k goes to infinity.
Also note by continuity of (ρi )1≤i≤N , we have that ρi (t�) ≥ 0 for any i ∈

{1, . . . , N }.
By the above computation, Eq. (10), we see that, if ρ j0+1(t�) > 0 or respectively

ρ j0−1(t�) > 0, then either Bj0(t
�) > 0 or respectively C j0(t

�) > 0 and

dρ j0

dt
(t�) = 1

�x j0

(
A j0 ρ j0(t

�) + Bj0 ρ j0+1(t
�) + C j0 ρ j0−1(t

�)
)

= 1

�x j0

(
Bj0 ρ j0+1(t

�) + C j0 ρ j0−1(t
�)
)

> 0,

hence there exists τ > 0 such that for any t ∈ [t�, t� +τ), we have ρ j0(t) > ρ j0(t
�) =

0, which cannot occur since ρ j0 is continuous and for tk > t�, ρ j0(tk) < 0 for any
k ∈ N with tk → t� when k goes to infinity.
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If ρ j0−1(t�) = ρ j0(t
�) = ρ j0+1(t�) = 0 then by uniqueness of the solution, we

have that ρ j0 ≡ 0 for t ≥ t�, which contradicts again that ρ j0(tk) < 0 for any k ∈ N

large enough.
Finally we get the conservation of mass,

d

dt

∫ b

a
ρh(t, x)dx =

N∑
i=1

�xi
d

dt
ρi

=
N∑
i=1

�xi
Fi+1/2 − Fi−1/2

�xi
= FN+1/2 − F1/2 = 0,

by the no-flux condition. Analogously, the second species remains nonnegative and its
mass is conserved as well. As a consequence of the control of the L1-norm of (ρh, ηh)
we can extend the local solution to a global, nonnegative solution. 
�
Now, we are ready to study the evolution of the energy of the system on the semi-
discrete level. The remaining part of this section is dedicated to proving the following
lemma—an estimate similar to (2) for the semi-discrete scheme (9).

Lemma 3.2 (Energy control) Consider a solution of the semi-discrete scheme (9a)–
(9b). Then we have

d

dt

N∑
i=1

�xi [ρi log ρi + ηi log ηi ] +
N−1∑
i=1

�xi+1/2

[
ν |dUi+1/2|2

+ ε

4

(
|dρi+1/2|2 + |dηi+1/2|2

)]
≤ Cε,

where the constant Cε > 0 is given by

Cε = (b − a)

ε

( (‖W ′
11‖L∞ + ‖W ′

21‖L∞
)2

m2
1 + (‖W ′

12‖L∞ + ‖W ′
22‖L∞

)2
m2

2

)
.

(11)

Proof Upon using the scheme, Eq. (9a), we get

d

dt

N∑
i=1

�xi ρi log ρi = −
N∑
i=1

(Fi+1/2 − Fi−1/2) log ρi ,

due to the conservation of mass, ensured by Eq. (9c). By discrete integration by parts
and the no-flux condition, Eq. (9c), we obtain

d

dt

N∑
i=1

�xi ρi log ρi =
N−1∑
i=1

�xi+1/2 Fi+1/2 dlog ρi+1/2
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= ν

N−1∑
i=1

�xi+1/2

(
(dU )+i+1/2ρi + (dU )−i+1/2ρi+1

)
dlog ρi+1/2

+
N−1∑
i=1

�xi+1/2

(
(dV1)

+
i+1/2ρi + (dV1)

−
i+1/2ρi+1

)
dlog ρi+1/2,

− ε

2

N−1∑
i=1

(
ρ2
i+1 − ρ2

i

)
dlog ρi+1/2,

where, in the last equality, we substituted the definition of the numerical flux, Eq. (9b).
Let us define

ρ̃i+1/2 :=

⎧⎪⎨
⎪⎩

ρi+1 − ρi

log ρi+1 − log ρi
, if ρi �= ρi+1,

ρi + ρi+1

2
, else,

(12)

for i ∈ {1, . . . , N − 1}, and note that then ρ̃i+1/2 ∈ [ρi , ρi+1] by concavity of the log.
Here, and throughout, we use the shorthand notation [x, y] := [min(x, y),max(x, y)].
Reordering the terms, we obtain

d

dt

N∑
i=1

�xiρi log ρi −
N−1∑
i=1

�xi+1/2

[
ν dUi+1/2ρ̃i+1/2 − ε

2
dρ2

i+1/2

]
dlog ρi+1/2

= ν

N−1∑
i=1

�xi+1/2

(
(dU )+i+1/2(ρi − ρ̃i+1/2)

+ (dU )−i+1/2(ρi+1 − ρ̃i+1/2)
)
dlog ρi+1/2

+
N−1∑
i=1

�xi+1/2

(
(dV1)

+
i+1/2(ρi − ρ̃i+1/2)

+ (dV1)
−
i+1/2(ρi+1 − ρ̃i+1/2)

)
dlog ρi+1/2

+
N−1∑
i=1

�xi+1/2 ρ̃i+1/2 dV1,i+1/2 dlog ρi+1/2.

(13)

Thus, using ρ̃i+1/2 ∈ [ρi , ρi+1] and the monotonicity of log, we note that

(ρi − ρ̃i+1/2)dlog ρi+1/2
(
ν(dU )+i+1/2 + (dV1)

+
i+1/2

) ≤ 0,

(ρi+1 − ρ̃i+1/2)dlog ρi+1/2
(
ν(dU )−i+1/2 + (dV1)

−
i+1/2

) ≤ 0. (14)
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This is easy to see, for, if ρi = ρi+1, we observe dlog ρi+1/2 = 0 and Eqs. (14) hold
with equality. In the case of ρi < ρi+1 we observe

(ρi − ρ̃i+1/2)︸ ︷︷ ︸
≤0

dlog ρi+1/2︸ ︷︷ ︸
≥0

(
ν(dU )+i+1/2 + (dV1)

+
i+1/2

)
︸ ︷︷ ︸

≥0

≤ 0,

while, for ρi > ρi+1 there also holds

(ρi − ρ̃i+1/2)︸ ︷︷ ︸
≥0

dlog ρi+1/2︸ ︷︷ ︸
≤0

(
ν(dU )+i+1/2 + (dV1)

+
i+1/2

)
︸ ︷︷ ︸

≥0

≤ 0,

whence we infer the inequality. The same argument can be applied in order to obtain
the second line of Eq. (14). Thus we may infer from Eq. (13) that

d

dt

N∑
i=1

�xiρi log ρi −
N−1∑
i=1

�xi+1/2

(
νρ̃i+1/2 dUi+1/2 − ε

2
dρ2

i+1/2

)
dlog ρi+1/2

≤
N−1∑
i=1

�xi+1/2 ρ̃i+1/2 dlog ρi+1/2 dV1,i+1/2.

Note that the definition of ρ̃i+1/2 in Eq. (12), is consistent with the case ρi = ρi+1
and there holds

ρ̃i+1/2 dlog ρi+1/2 = dρi+1/2,

whence we get

d

dt

N∑
i=1

�xi ρi log ρi − ν

N−1∑
i=1

�xi+1/2 dρi+1/2 dUi+1/2

+ ε

2

N−1∑
i=1

�xi+1/2 dρ
2
i+1/2 dlog ρi+1/2 ≤

N−1∑
i=1

�xi+1/2 dρi+1/2 dV1,i+1/2.

Furthermore, we notice that

1

2
dρ2

i+1/2dlog ρi+1/2 = ρi+1 + ρi

2 ρ̃i+1/2
|dρi+1/2|2 ≥ 1

2
|dρi+1/2|2,

123



Convergence of a finite volume scheme for a system of… 485

where we employed Eq. (12). Hence we have

d

dt

N∑
i=1

�xi ρi log ρi − ν

N−1∑
i=1

�xi+1/2 dρi+1/2 dUi+1/2

+ ε

2

N−1∑
i=1

�xi+1/2 |dρi+1/2|2 ≤
N−1∑
i=1

�xi+1/2 dρi+1/2 dV1,i+1/2.

(15)

A similar computation can be applied to the second species, which yields

d

dt

N∑
i=1

�xi ηi log ηi − ν

N−1∑
i=1

�xi+1/2 dηi+1/2 dUi+1/2

+ ε

2

N−1∑
i=1

�xi+1/2 |dηi+1/2|2 ≤
N−1∑
i=1

�xi+1/2 dηi+1/2dV2,i+1/2.

(16)

Upon adding up Eqs. (15) and (16), we obtain

d

dt

N∑
i=1

�xi [ρi log ρi + ηi log ηi ] − ν

N−1∑
i=1

�xi+1/2 dUi+1/2 d (ρ + η)i+1/2

+ ε

2

N−1∑
i=1

�xi+1/2

(
|dρi+1/2|2 + |dηi+1/2|2

)
≤ Rh,

(17)

where Rh is given by

Rh =
N−1∑
i=1

�xi+1/2
[
dV1,i+1/2 dρi+1/2 + dV2,i+1/2 dηi+1/2

]
.

Finally we notice that

Rh ≤ 1

2

N−1∑
i=1

�xi+1/2

[ |dV1,i+1/2|2
α

+ α |dρi+1/2|2

+ |dV2,i+1/2|2
α

+ α |dηi+1/2|2
]

, (18)

for any α > 0, by Young’s inequality. Observing, that for k = 1, 2,

|dVk,i+1/2| ≤
∣∣∣∣∣∣
N−1∑
j=1

ρ j

∫
C j

Wk1(xi+1 − y) − Wk1(xi − y)

�xi+1/2
dy

∣∣∣∣∣∣
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+
∣∣∣∣∣∣
N−1∑
j=1

η j

∫
C j

Wk2(xi+1 − y) − Wk2(xi − y)

�xi+1/2
dy

∣∣∣∣∣∣
≤ ‖W ′

k1‖L∞ m1 + ‖W ′
k2‖L∞ m2

and by conservation of positivity and mass, it gives for k = 1, 2,

1

2α

N−1∑
i=1

�xi+1/2|dVk,i+1/2|2 ≤ (b − a)

2 α

(
m1 ‖W ′

k1‖L∞ + m2‖W ′
k2‖L∞

)2
.

Thus Eq. (18) becomes

Rh ≤ α

2

N−1∑
i=1

�xi+1/2

(
|dρi+1/2|2 + |dηi+1/2|2

)
+ C2α,

where C2α is given in Eq. (11). Finally, substituting the latter estimate into Eq. (17),
we obtain, upon using Eq. (8),

d

dt

N∑
i=1

�xi [ρi log ρi + ηi log ηi ] + ν

N−1∑
i=1

�xi+1/2|dUi+1/2|2

+ ε − α

2

N−1∑
i=1

�xi+1/2

(
|dρi+1/2|2 + |dηi+1/2|2

)
≤ C2α,

for any solution (ρi )i∈I , (ηi )i∈I of the semi-discrete scheme (9). Hence choosing
α = ε/2 concludes the proof. 
�
Corollary 3.3 (A priori bounds) Let (ρi )i∈I , (ηi )i∈I be solutions of the semi-discrete
scheme (9). Then there exists a constant C > 0 such that

∫ T

0

N−1∑
i=1

�xi+1/2

( ε

4
|dρi+1/2|2 + ε

4
|dηi+1/2|2 + ν|dUi+1/2|2

)
dt ≤ C .

Proof Using the fact that x log x ≥ − log(e)/e, i.e. x log x is bounded from below,
yields

∑
i∈I

�xi [ρi log ρi + ηi log ηi ](t) ≥ −2
log(e)

e
(b − a) =: −C1.

Hence the discrete version of the classical entropy functional is bounded from below.
Therefore, we integrate the inequality of Lemma 3.2 in time and get

∫ T

0

N−1∑
i=1

�xi+1/2

[
ν |dUi+1/2(t)|2 + ε

4

(
|dρi+1/2(t)|2 + |dηi+1/2(t)|2

)]
dt
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≤ Cε T + C1 +
∫ b

a
ρ0| log ρ0| + η0| log η0|dx,

which proves the statement. 
�
Thanks to a classical discrete Poincaré inequality [28, Lemma 3.7] and [8], we get

uniform L2-estimates on the discrete approximation (ρh, ηh)h>0.

Lemma 3.4 Let (ρi )i∈I , (ηi )i∈I be the numerical solutions obtained from scheme (9).
Then there holds

‖ρh‖L2(QT ) + ‖ηh‖L2(QT ) ≤ C,

for some constant C > 0 independent of h > 0.

4 Proof of Theorem 2.4

This section is dedicated to proving compactness of both species, the fluxes, and the
regularising porous-medium type diffusion. Upon establishing the compactness result
we identify the limits as weak solutions in the sense of Definition 2.1.

First by application ofLemma3.1,we get existence and uniqueness of a nonnegative
approximate solution (ρh, ηh) to (9a)–(9b). Hence the first item of Theorem 2.4 is
proven. Now let us investigate the asymptotic h → 0.

4.1 Strong compactness of approximate solutions

We shall now make use of the above estimates in order to obtain strong compactness
of both species, (ρh, ηh) in L2(QT ).

Lemma 4.1 (Strong compactness in L2(QT )) Let (ρh, ηh)h>0 be the approximation
to system (1) obtained by the semi-discrete scheme (9). Then there exist functions
ρ, η ∈ L2(QT ) such that

ρh → ρ, and ηh → η,

strongly in L2(QT ), up to a subsequence.

Proof We invoke the compactness criterion by Aubin and Lions [23]. Accordingly, a
set P ⊂ L2(0, T ; B) is relatively compact if P is bounded in L2(0, T ; X) and the
set of derivatives {∂tρ

∣∣ρ ∈ P} is bounded in a third space L1(0, T ; Y ), whenever
the involved Banach spaces satisfy X ↪→↪→ B ↪→ Y , i.e. the first embedding is
compact and the second one continuous. For our purpose we choose X := BV (a, b),
B := L2(a, b), and Y := H−2(a, b). The first embedding is indeed compact, e.g. Ref.
[1, Theorem 10.1.4] and the second one is continuous.

In the second stepwe show the timederivatives are bounded in L1(0, T ; H−2(a, b)).
To this end, let ϕ ∈ C∞

c ((a, b)). Throughout, we write 〈·, ·〉 for 〈·, ·〉H−2,H2 for the
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dual pairing. Making use of the scheme, there holds

〈
dρh
dt

, ϕ

〉
=

N∑
i=1

∫
Ci

dρi
dt

ϕ dx = −
N∑
i=1

Fi+1/2 − Fi−1/2

�xi

∫
Ci

ϕ dx,

having used the scheme, Eq. (9a). Next we set

ϕi := 1

�xi

∫
Ci

ϕ dx,

perform a discrete integration by parts and use the no-flux boundary conditions, Eq.
(9c), to obtain

〈
dρh
dt

, ϕ

〉
=

N−1∑
i=1

Fi+1/2 (ϕi+1 − ϕi ) .

Using the definition of the numerical flux, Eq. (9b), we get

〈
dρh
dt

, ϕ

〉
=

N−1∑
i=1

[(
ν(dU )+i+1/2 + (dV1)

+
i+1/2

)
ρi

+
(
ν(dU )−i+1/2 + (dV1)

−
i+1/2

)
ρi+1

]
(ϕi+1 − ϕi )

− ε

2

N−1∑
i=1

ρ2
i+1 − ρ2

i

�xi+1/2
(ϕi+1 − ϕi ) .

Let us begin with the self-diffusion part. Using the Cauchy–Schwarz inequality, we
estimate the discrete gradient and ρ itself by Corollary 3.3 and Lemma 3.4

ε

2

∫ T

0

N−1∑
i=1

ρ2i+1 − ρ2i

�xi+1/2

(
ϕi+1 − ϕi

)
dt

≤ ε

2

∥∥∥∥∂ϕ

∂x

∥∥∥∥
L∞

∫ T

0

N−1∑
i=1

�xi+1/2|dρi+1/2| (ρi+1 + ρi ) dt

≤ ε

2

∥∥∥∥∂ϕ

∂x

∥∥∥∥
L∞

⎛
⎝∫ T

0

N−1∑
i=1

�xi+1/2|dρi+1/2|2dt
⎞
⎠
1/2 ⎛

⎝∫ T

0

N∑
i=1

4ξ−1�xi |ρi |2dt
⎞
⎠
1/2

≤ C ‖ϕ‖H2(a,b),

(19)

where we used that ϕ′ ∈ H1 ⊂ L∞ and the regularity of the mesh, ξ > 0, cf. Eq. (4).
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Next, we address the cross-diffusion and non-local interactions terms using the
same argument. For instance for the cross-diffusive part, we have

ν

∫ T

0

∣∣∣∣∣
N−1∑
i=1

[
(dU )+i+1/2ρi + (dU )−i+1/2ρi+1

]∣∣∣∣∣ |ϕi+1 − ϕi | dt

≤ 2 ν√
ξ

∥∥∥∥∂ϕ

∂x

∥∥∥∥
L∞

(∫ T

0

N−1∑
i=1

�xi+1/2|dUi+1/2|2dt
)1/2 (∫ T

0

N∑
i=1

�xiρ
2
i dt

)1/2

≤ C ‖ϕ‖H2(a,b),

where we used Corollary 3.3 and Lemma 3.4 again. The non-local interaction term is
estimated in the same way, thus there holds

∫ T

0

∣∣∣∣
〈
dρh
dt

, ϕ

〉∣∣∣∣ dt ≤ C‖ϕ‖H2(a,b).

By density of C∞
c ((a, b)) in H2

0 (a, b) we may infer the boundedness of (
dρh
dt )h>0 in

L1(0, T ; H−2(a, b)), which concludes the proof. 
�
From the latter result we can prove the convergence of the discrete advection field

dV1,h and dV2,h defined as in Definition 2.3.

Lemma 4.2 For any 1 ≤ p ≤ ∞ and k ∈ {1, 2}, the piecewise constant approximation
dVk,h converges strongly in L2(0, T ; L2(a, b)) to −(W ′

k 1�ρ + W ′
k 2�η), where (ρ, η)

corresponds to the limit obtained in Lemma 4.1.

Proof Let k ∈ {1, 2}. For each i = 0, . . . , N − 1, and x ∈ [xi , xi+1) we have

dVk, h(x) = (dVk)i+1/2 = −
N∑
j=1

∫
C j

Wk 1(xi+1 − y) − Wk 1(xi − y)

�xi+1/2
ρ j dy

−
N∑
j=1

∫
C j

Wk 2(xi+1 − y) − Wk 2(xi − y)

�xi+1/2
η j dy.

We define V ′
k,h and V ′

k as

⎧⎨
⎩
V ′
k,h(x) := −W ′

k 1�ρh − W ′
k 2�ηh,

V ′
k(x) := −W ′

k 1�ρ − W ′
k 2�η.

On theonehand from the strong convergenceof (ρh, ηh) to (ρ, η) in L2(0, T ; L2(a, b))
and the convolution product’s properties, we obtain

‖V ′
k,h − V ′

k‖L2(0,T ;L2(a,b)) → 0, when h → 0. (20)
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On the other hand, we have for any x ∈ [xi , xi+1)

|dVk, h(x) − V ′
k, h(x)|

≤
N∑
j=1

∫
C j

∣∣∣∣Wk 1(xi+1 − y) − Wk 1(xi − y)

�xi+1/2
− W ′

k 1(x − y)

∣∣∣∣ ρ j dy,

+
N∑
j=1

∫
C j

∣∣∣∣Wk 2(xi+1 − y) − Wk 2(xi − y)

�xi+1/2
− W ′

k 2(x − y)

∣∣∣∣ η j dy,

≤ ( ‖W ′′
k 1‖L∞m1 + ‖W ′′

k 2‖L∞ m2
)
h,

hence there exists a constant C > 0 such that

|dVk, h(x) − V ′
k, h(x)|2 ≤ C p h2.

Integrating over x ∈ [xi , xi+1) and summing over i ∈ {1, . . . , N − 1}, we get that

‖dVk,h − V ′
k,h‖L2(0,T ;L2(a,b)) → 0, when h → 0. (21)

Notice that (x1, xN ) ⊂ (a, b) where x1 → a and xN → b as h → 0. From Eqs. (20)
and (21) we get that ‖dVk,h − V ′

k‖L2(0,T ;L2(a,b)) goes to zero as h tends to zero. 
�

4.2 Weak compactness for the discrete gradients

In the previous section we have established the strong L2-convergence of both species,
(ρh)h>0 and (ηh)h>0. However, in order to be able to pass to the limit in the cross-
diffusion term ρh(dρh + dηh) we need to establish weak convergence in the discrete
gradients in L2. This is done in the following proposition.

Proposition 1 (Weak convergence of the derivatives) The discrete spatial derivatives,
defined in Definition 2.3, satisfy dβh converges weakly to ∂β

∂x in L2(QT ) and β ∈
L2(0, T ; H1(a, b)), where β ∈ {ρ, η,U }
Proof Take β ∈ {ρ, η,U }, hence from Lemma 4.1, we know that βh → β strongly in
L2(QT ). Furthermore, from Corollary 3.3 we also deduce that dβh weakly converges
to some function r ∈ L2(QT ).

Let us show that β ∈ L2(0, T , H1(a, b)) and r = ∂β
∂x . First, we have for any

t ∈ [0, T ] and any ϕ ∈ C∞
c ((0, T ) × (a, b)),

∫
QT

βh(t)
∂ϕ

∂x
dx =

∫ T

0

N∑
i=1

βi (t)
[
ϕ(t, xi+1/2) − ϕ(t, xi−1/2)

]
dt

= −
∫ T

0

N−1∑
i=1

�xi+1/2 dβi+1/2(t) ϕ(t, xi+1/2) dt,
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having used discrete integration by parts and the fact that ϕ is compactly supported,
i.e. ϕ(t, xN+1/2) = ϕ(t, x1/2) = 0. Then, by Definition 2.3 on the discrete gradient,
we may consider

∣∣∣∣∣
∫ T

0

N−1∑
i=1

∫ xi+1

xi
dβi+1/2ϕ(t, x)dxdt +

∫ T

0

∫ b

a
βh

∂ϕ

∂x
dx dt

∣∣∣∣∣
≤
∫ T

0

N−1∑
i=1

∫ xi+1

xi

∣∣dβi+1/2
∣∣ ∣∣ϕ(t, x) − ϕ(t, xi+1/2)

∣∣ dx dt

≤
∥∥∥∥∂ϕ

∂x

∥∥∥∥∞

(∫ T

0

N−1∑
i=1

�xi+1/2
∣∣dβi+1/2

∣∣2 dt
)1/2 (∫ T

0

N−1∑
i=1

�x3i+1/2dt

)1/2

≤
∥∥∥∥∂ϕ

∂x

∥∥∥∥∞
C1/2 T 1/2

√
b − a h,

having used the a priori bounds, cf. Corollary 3.3. This yields the statement, when
h → 0, for we have

∫ T

0

N−1∑
i=1

∫ xi+1

xi
dβi+1/2ϕ(t, x) dx dt +

∫ T

0

∫ b

a
βh

∂ϕ

∂x
dx dt → 0, (22)

which proves that dβh converges weakly to ∂β
∂x , as h → 0 and thus β ∈

L2(0, T ; H1(a, b)). 
�

4.3 Passing to the limit

We have now garnered all information necessary to prove Theorem 2.4. For brevity
we shall only show the convergence result for ρ, as it follows for η similarly, using
the same arguments. Let ϕ ∈ C∞

c ([0, T ) × (a, b)) be a test function. We introduce
the following notations:

Eh :=
∫ T

0

∫ b

a
ρh

∂ϕ

∂t
dx dt +

∫ b

a
ρh(0) ϕ(0) dx,

Ah :=
∫ T

0

∫ b

a
dV1,h ρh

∂ϕ

∂x
dx dt,

Ch := ν

∫ T

0

∫ b

a
dUh ρh

∂ϕ

∂x
dx dt,

Dh := ε

2

∫ T

0

∫ b

a
ρ2
h

∂2ϕ

∂x2
dx dt .
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and

ε(h) := Eh + Ah + Ch + Dh .

On the other hand, we set

ϕi (t) = 1

�xi

∫
Ci

ϕ(t, x) dx,

and multiply the scheme, Eq. (9a), by the test function and integrate in time and space
to get

Eh + A1,h + C1,h + D1,h = 0, (23)

where

A1,h :=
N−1∑
i=1

∫ T

0
�xi+1/2

[
(dV1)

+
i+1/2 ρi + (dV1)

−
i+1/2 ρi+1

]
dϕi+1/2(t) dt,

C1,h := ν

N−1∑
i=1

∫ T

0
�xi+1/2

[
(dU )+i+1/2 ρi + (dU )−i+1/2 ρi+1

]
dϕi+1/2(t) dt,

D1,h := −ε

2

N−1∑
i=1

∫ T

0

[
ρ2
i+1 − ρ2

i

]
dϕi+1/2(t) dt .

When h tends to zero and from the strong convergence of (ρh, ηh)h>0 to (ρ, η)

in L2(QT ), the strong convergence of (dVk,h)h>0 to V ′
k in L2(QT ) and the weak

convergence of the discrete gradient (dUh)h>0 to − ∂σ
∂x in L2(QT ), it is easy to see

that

ε(h) →
∫ T

0

∫ b

a

{
ρ

[
∂ϕ

∂t
+
(

∂V1
∂x

− ν
∂

∂x
(ρ + η)

)
∂ϕ

∂x

]
+ ε

2
ρ2 ∂2ϕ

∂x2

}
dx dt

+
∫ b

a
ρ(0) ϕ(0) dx,

when h → 0. Therefore it suffices to prove that ε(h) → 0, as h goes to zero, which
will be achieved by proving that Ah − A1,h , Ch − C1,h and Dh − D1,h vanish in the
limit h → 0.

The self-diffusion partDh −D1,h

On the one hand, after a simple integration we get

Dh = ε

2

N∑
i=1

∫ T

0
ρ2
i (t)

[
∂ϕ

∂x
(t, xi+1/2) − ∂ϕ

∂x
(t, xi−1/2)

]
dt
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= −ε

2

N−1∑
i=1

∫ T

0

[
ρ2
i+1(t) − ρ2

i (t)
] ∂ϕ

∂x
(t, xi+1/2) dt .

Hence, we have

Dh − D1,h = −ε

2

N−1∑
i=1

∫ T

0

[
ρ2
i+1(t) − ρ2

i (t)
] [∂ϕ

∂x
(t, xi+1/2) − dϕi+1/2(t)

]
dt

and observing that

∣∣∣∣∂ϕ

∂x
(t, xi+1/2) − dϕi+1/2(t)

∣∣∣∣ ≤
∥∥∥∥∂2ϕ

∂x2

∥∥∥∥
L∞

h,

we obtain, in conjunctionwith the Cauchy–Schwarz inequality and the a priori bounds
established in Corollary 3.3, and Lemma 3.4, that

|Dh − D1,h | ≤ ε

2

∥∥∥∥∂2ϕ

∂x2

∥∥∥∥
L∞

(
N−1∑
i=1

∫ T

0
�xi+1/2|dρi+1/2|2dt

)1/2
2 ‖ρh‖L2(QT )

ξ1/2
h

≤ C h, (24)

in the virtue of the estimate Eq. (19).

The cross-diffusion part

Let us now treat the cross-diffusion part. This term is more complicated since it
involves the piecewise constant functions ρh and dUh , which are not defined on the
same mesh. Thus, on the one hand we reformulate the discrete cross-diffusion term
C1,h as C1,h = C10,h + C11,h with

C10,h = ν

N−1∑
i=1

∫ T

0
�xi+1/2 (dU )−i+1/2

[
ρi+1 − ρi

]
dϕi+1/2(t) dt

and

C11,h = ν

N−1∑
i=1

∫ T

0
�xi+1/2 ρi dUi+1/2 dϕi+1/2(t) dt,

where a direct computation and the application of Corollary 3.3 and Lemma 3.4 yield

|C10,h | ≤ ν

∥∥∥∥∂ϕ

∂x

∥∥∥∥
L∞

‖dUh‖L2(QT ) ‖dρh‖L2(QT ) h

≤ C h. (25)
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On the other hand, the term Ch can be rewritten as

Ch = ν

∫ T

0

N−1∑
i=1

dUi+1/2(t)
∫ xi+1

xi
ρh

∂ϕ

∂x
dx dt .

Since

∫ xi+1

xi
ρh

∂ϕ

∂x
dx = ρi

[
ϕ(t, xi+1/2) − ϕ(t, xi )

]

+ ρi+1
[
ϕ(t, xi+1) − ϕ(t, xi+1/2)

]
,

= [ρi − ρi+1
] [

ϕ(t, xi+1/2) − ϕ(t, xi )
]

+ ρi+1
[
ϕ(t, xi+1) − ϕ(t, xi )

]
,

the term Ch can be decomposed as Ch = C00,h + C01,h with

C00,h = −ν

∫ T

0

N−1∑
i=1

dUi+1/2
[
ρi+1 − ρi

] [
ϕ(t, xi+1/2) − ϕ(t, xi )

]
dt

and

C01,h = ν

∫ T

0

N−1∑
i=1

dUi+1/2 ρi
[
ϕ(t, xi+1) − ϕ(t, xi )

]
dt .

Similarly to (25), the first term C00,h can be estimated as

|C00,h | ≤ C h, (26)

whereas the second term C01,h is compared to C11,h

|C01,h − C11,h |

≤ ν

∫ T

0

N−1∑
i=1

�xi+1/2|dUi+1/2| ρi
∣∣∣∣ϕ(t, xi+1) − ϕ(t, xi )

�xi+1/2
− dϕi+1/2(t)

∣∣∣∣ dt .

Using a second order Taylor expansion of ϕ at xi and xi+1, it yields that

∣∣∣∣ϕ(t, xi+1) − ϕ(t, xi )

�xi+1/2
− dϕi+1/2(t)

∣∣∣∣ ≤ C h,

hence we get from Corollary 3.3 and Lemma 3.4 that

|C01,h − C11,h | ≤ C h. (27)
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Gathering Eqs. (25), (26), and (27), we finally obtain that

|Ch − C1,h | = |C00,h + C01,h − C10,h − C11,h | ≤ C h. (28)

The advective part

The evaluation of Ah − A1,h is along the same lines of the cross-diffusion terms
Ch −C1,h since the latter is treated as an advective term. Hence, thanks to Lemma 4.2,
we get that

|Ah − A1,h | ≤ C h. (29)

Finally by definition of ε(h) and using Eq. (23) together with Eqs. (24), (28), and
(29), we obtain

|ε(h)| = | − (A1,h + C1,h + D1,h) + Ah + Ch + Dh |
≤ |Ah − A1,h | + |Ch − C1,h | + |Dh − D1,h |
≤ C h,

that is, ε(h) → 0, when h → 0, which proves that (ρ, η) is a weak solution to Eq. (1).
This proves the second item of Theorem2.4.

Finally the last item concerning the existence of solutions to (1) is a direct conse-
quence of the convergence.

5 A fully discrete implicit scheme

In this section we shall comment on a discrete-in-time version of the semi-discrete
scheme (9). To this end we replace the time derivative in Eq. (9a) by simple forward
differences and obtain the following implicit and fully-discrete scheme

ρn+1
i − ρn

i

�t
= −Fn+1

i+1/2 − Fn+1
i−1/2

�xi
,

ηn+1
i − ηni

�t
= −Gn+1

i+1/2 − Gn+1
i−1/2

�xi
, (30)

where �t > 0. System (30) gives rise to two approximating sequences (ρn
i )1≤i≤N

and (ηni )1≤i≤N , for 0 ≤ n ≤ M where M := �T /�t� and the discrete time instances
tn := n�t ; cf. Theorem 5.1. Here the numerical fluxes are given by

Fn+1
i+1/2 =

[
ν (dUn+1)+i+1/2 + (dV n

1 )+i+1/2

]
ρn+1
i

+
[
ν (dUn+1)−i+1/2 + (dV n

1 )−i+1/2

]
ρn+1
i+1
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− ε

2

(ρn+1
i+1 )2 − (ρn+1

i )2

�xi+1/2
,

Gn+1
i+1/2 =

[
ν (dUn+1)+i+1/2 + (dV n

2 )+i+1/2

]
ηn+1
i

+
[
ν (dUn+1)−i+1/2 + (dV n

2 )−i+1/2

]
ηn+1
i+1

− ε

2

(ηn+1
i+1 )2 − (ηn+1

i )2

�xi+1/2
, (30a)

for i = 1, . . . , N − 1, with the numerical no-flux boundary condition

Fn+1
1/2 = Fn+1

N+1/2 = 0, and Gn+1
1/2 = Gn+1

N+1/2 = 0, (30b)

for n = 0, . . . , M . Recall that

(dUn+1)±i+1/2 =
(

(ρn+1
i+1 + ηn+1

i+1 ) − (ρn+1
i + ηn+1

i )

�xi+1/2

)±
,

and

(dV n
k )±i+1/2 =

(
−

N∑
j=1

∫
C j

Wk 1(xi+1 − y) − Wk 1(xi − y)

�xi+1/2
ρn
j dy

−
N∑
j=1

∫
C j

Wk 2(xi+1 − y) − Wk 2(xi − y)

�xi+1/2
ηnj dy

)±
,

for k = 1, 2.
Similarly to Definition 2.3 we define the piecewise constant interpolation by

ρh(t, x) := ρn
i , and ηh(t, x) := ηni ,

for all (t, x) ∈ [tn, tn+1) × Ci , with i = 1, . . . , N , and n = 0, . . . , M . Moreover, we
define the discrete approximation of the spatial gradients as

dxρh(t, x) = ρn
i+1 − ρn

i

�xi+1/2
, and dxηh(t, x) = ηni+1 − ηni

�xi+1/2
,

for (t, x) ∈ [tn, tn+1)×[xi , xi+1), for i = 1, . . . , N −1 and n = 0, . . . , M . As above,
we set the discrete gradients to zero on (a, x1) and (xN , b). Furthermore, we define
the discrete time derivative as

dtρh(t, x) = ρn+1
i − ρn

i

�t
, and dtηh(t, x) = ηni − ηni

�t
,

for (t, x) ∈ [tn, tn+1) × Ci , for i = 1, . . . , N and n = 0, . . . , M − 1.
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Theorem 5.1 (Existence and uniqueness result) Let ρ0
i , η

0
i be nonnegative initial data

with mass m1 and m2, respectively, and assume the following time step restriction
condition

16 (m1 + m2)
�t

(ξ h)3
< 1. (31)

Then there exists a unique nonnegative solution (ρn
i , ηni ) to scheme (30), (30a) and

(30b).

Proof We show existence first and prove uniqueness later. Suppose we are given
(ρn

i )1≤i≤N and (ηni )1≤i≤N from some previous iteration. In order to construct the
next iteration we shall employ Brouwer’s fixed point theorem. It is easy to verify that
the set

X :=
{
(ρ, η) ∈ R

2N | ∀1 ≤ i ≤ N : ρi , ηi ≥ 0,

N∑
i=1

�xiρi ≤ m1, and
N∑
i=1

�xiηi ≤ m2

}
,

is a convex and compact subset ofRN ×R
N . Hence, we define the fixed point operator

S : X → R
N ×R

N by setting (ρ�, η�) = S(ρ, η)where (ρ�, η�) are implicitly given
as

ρ�
i = ρn

i − �t

�xi

(
F�
i+1/2 − F�

i−1/2

)
, η�

i = ηni − �t

�xi

(
G�
i+1/2 − G�

i−1/2

)

for any (ρ, η) ∈ X , where F� and G� denote the numerical fluxes

F�
i+1/2 =

[
ν (dU )+i+1/2 + (dV n

1 )+i+1/2

]
ρ�
i

+
[
ν (dU )−i+1/2 + (dV n

1 )−i+1/2

]
ρ�
i+1

− ε (ρi+1 + ρi )

2

ρ�
i+1 − ρ�

i

�xi+1/2
,

G�
i+1/2 =

[
ν (dU )+i+1/2 + (dV n

2 )+i+1/2

]
η�
i

+
[
ν (dU )−i+1/2 + (dV n

2 )−i+1/2

]
η�
i+1

− ε (ηi+1 + ηi )

2

η�
i+1 − η�

i

�xi+1/2
, (32)

for i = 1, . . . , N − 1 where dU is computed from (ρ, η), with the numerical no-flux
boundary condition

F�
1/2 = F�

N+1/2 = 0, and G�
1/2 = G�

N+1/2 = 0. (33)
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Notice that for any given (ρ, η) ∈ X , the viscosity terms in front of the discrete gradi-
ents involved in the definition of the fluxesF�

i+1/2 and G�
i+1/2 are indeed nonnegative,

hence the couple (ρ�, η�) is well defined since it corresponds to the unique solution of
a classical fully implicit scheme in time with an upwind discretisation for the convec-
tive terms and a centred approximation for diffusive terms [29]. Moreover, since ρn

and ηn are nonnegative and using the monotonicity of the numerical flux with respect
to (ρ�, η�), we prove that both densities ρ� and η� are also nonnegative. Furthermore,
using the nonnegativity and the no-flux conditions, we get

‖ρ�‖L1 =
N∑
i=1

�xiρ
�
i = m1, and ‖η�‖L1 =

N∑
i=1

�xiη
�
i = m2,

which yields that S(X ) ⊂ X . Finally, S is continuous as the composition of con-
tinuous functions. Thus, we may apply Brouwer’s fixed point theorem to infer the
existence of a fixed point, (ρn+1, ηn+1). It now remains to show uniqueness of the
fixed point.

To treat in a systematic way the boundary conditions and simplify the presentation,
we define ghost values for (ρ, η) by setting for α ∈ {ρ, η}, and k ∈ {1, 2},

αN+1 = αN α0 = α1 and (dV n
k )N+1/2 = (dV n

k )1/2 = 0.

Then we consider two solutions (ρ̃, η̃) and (ρ, η) to (30). Setting h(x) := x2/2,
s := ρ − ρ̃ and r := η − η̃, we get after substituting the two solutions to (30), for
i = 1, . . . , N ,

si = − �t

�xi

(
(dV n

1 )+i+1/2 si + (dV n
1 )−i+1/2 si+1 − (dV n

1 )+i−1/2 si−1 − (dV n
1 )−i−1/2 si

)

+ �t

�xi

( [h(ρi+1) − h(ρ̃i+1)] − [h(ρi ) − h(ρ̃i )]
�xi+1/2

− [h(ρi ) − h(ρ̃i )] − [h(ρi−1) − h(ρ̃i−1)]
�xi−1/2

)

− �t

�xi

(
(dU )+i+1/2 si + (dU )−i+1/2 si+1 − (dU )+i−1/2 si−1 − (dU )−i−1/2 si

)

− �t

�xi

(
[(dU )+i+1/2 − (dŨ )+i+1/2] ρ̃i + [(dU )−i+1/2 − (dŨ )−i+1/2] ρ̃i+1

)

+ �t

�xi

(
[(dU )+i−1/2 − (dŨ )+i−1/2] ρ̃i−1 + [(dU )−i−1/2 − (dŨ )−i−1/2] ρ̃i

)

and a similar relation for (ri )1≤i≤N . Applying a Taylor expansion on h(ρ) = h(ρ̃) +
h′(ρ̂) s, with ρ̂ a convex combination of ρ and ρ̃, we may write

(�xi + �t Ai ) si
= �t (Bi−1 si−1 + Ci+1 si+1)
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−�t
(
[(dU )+i+1/2 − (dŨ )+i+1/2] ρ̃i + [(dU )−i+1/2 − (dŨ )−i+1/2] ρ̃i+1

)

+�t
(
[(dU )+i−1/2 − (dŨ )+i−1/2] ρ̃i−1 + [(dU )−i−1/2 − (dŨ )−i−1/2] ρ̃i

)
, (34)

where Ai , Bi−1, Ci+1 are nonnegative coefficients given by

Ai = +(dV n
1 )+i+1/2 − (dV n

1 )−i−1/2 + (dU )+i+1/2 − (dU )−i−1/2

+ h′(ρ̂i )
�xi+1/2

+ h′(ρ̂i )
�xi−1/2

,

Bi−1 = +(dV n
1 )+i−1/2 + (dU )+i−1/2 + h′(ρ̂i−1)

�xi−1/2
,

Ci+1 = −(dV n
1 )−i+1/2 − (dU )−i+1/2 + h′(ρ̂i+1)

�xi+1/2
.

Now, we multiply equation (34) by sign(si ) and sum over i = 1, . . . , N , hence
using that x �→ x± is Lipschitz continuous and observing that Ai = Bi + Ci , with
Ai , Bi , Ci ≥ 0, it yields

N∑
i=1

�xi |si | ≤ 2�t ‖ρ̃‖∞
N∑
i=1

( |si+1| + |ri+1| + |si | + |ri |
�xi+1/2

+ |si−1| + |ri−1| + |si | + |ri |
�xi−1/2

)

and in a similar way,

N∑
i=1

�xi |ri | ≤ 2�t ‖η̃‖∞
N∑
i=1

( |ri+1| + |si+1| + |ri | + |si |
�xi+1/2

+ |ri−1| + |si−1| + |ri | + |si |
�xi−1/2

)
.

Gathering these latter inequalities and from (4), it gives that

N∑
i=1

�xi (|si | + |ri |) ≤ 16 ‖(ρ̃, η̃)‖∞
�t

(ξ h)2

N∑
i=1

�xi (|si | + |ri |) .

Finally, from the nonnegativity and the preservation of mass, we have

‖(ρ̃, η̃)‖∞ ≤ m1 + m2

ξh
,

hence under the condition (31), we conclude that s = r = 0 and the uniqueness
follows. 
�
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It is worth to mention here that the condition (31) is not optimal since we only use
the discrete L1-estimate on ρ and η to control the discrete gradient and the L∞-norm.

We are now in position to state for (30), (30a) and (30b) an analogous results to the
semi-discrete case

Theorem 5.2 (Convergence to a weak solution of the implicit Euler discretisation)
Under the assumptions of Theorem 5.1, let ρ0, η0 ∈ L1+(a, b)∩ L∞+ (a, b) be some ini-
tial data and QT := (0, T )× (a, b) as above. Then, given two nonnegative sequences
(ρn

i )1≤i≤N and (ηni )1≤i≤N satisfying (30), (30a) and (30b), for any n ∈ {0, . . . , M},
then

(i) up to a subsequence, the piecewise constant approximations converge strongly in
L2(QT ) to (ρ, η) ∈ L2(QT ), where (ρ, η) is a weak solution as in Definition 2.1.
Furthermore we have ρ, η ∈ L2(0, T ; H1(a, b));

(ii) in particular, system (1) has a weak solution.

Sketch of the proof of Theorem 5.2 It is easily observed that the total mass is conserved
due to the discrete no-flux boundary conditions, cf. (30b). Together with the nonneg-
ativity we were able to prove a semi-discrete version of the energy estimate Eq. (2)
which is at the heart of the convergence result. Similarly as above, we are able to prove
a fully discrete version of the energy estimate which then reads

M∑
n=0

�t
N∑
i=1

�xi
ρn+1
i log ρn+1

i − ρn
i log ρn

i

�t
+ ηn+1

i log ηn+1
i − ηni log ηni

�t

+
M∑
n=0

�t
N−1∑
i=1

�xi+1/2

[
ν |dUn+1

i+1/2|2 + ε

4

(
|dρn+1

i+1/2|2 + |dηn+1
i+1/2|2

)]
≤ C,

withC > 0 as in Corollary 3.3. The inequality follows from the convexity of x(log x−
1) since

ρn+1
i (log ρn+1

i − 1) − ρn
i (log ρn

i − 1) ≤ log(ρn+1
i )(ρn+1

i − ρn
i ).

Multiplying this expression by �xi/�t and summing over i = 1, . . . N and n =
0, . . . , M we obtain

M∑
n=0

�t
N∑
i=1

�xi
ρn+1
i (log ρn+1

i − 1) − ρn
i (log ρn

i − 1)

�t

≤
M∑
n=0

�t
N∑
i=1

�xi log(ρ
n+1
i )

ρn+1
i − ρn

i

�t
.

The right-hand side is then substituted by the scheme and simplified along the lines of
the proof of Lemma 3.2. Since the computations are exactly the same we omit them
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here for brevity and only note that it is important to set

ρ̃n+1
i+1/2 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρn+1
i+1 − ρn+1

i

log ρn+1
i+1 − log ρn+1

i

, if ρn+1
i �= ρn+1

i+1 ,

ρn+1
i + ρn+1

i+1

2
, else,

(35)

to obtain the right sign in the numerical artefacts in Eq. (14), which now read

(
ρn+1
i − ρ̃n+1

i+1/2

)
dlog ρn+1

i+1/2

(
ν
(
dUn + 1

)+
i+1/2 + (dV n

1 )+i+1/2

) ≤ 0,(
ρn+1
i+1 − ρ̃n+1

i+1/2

)
dlog ρn+1

i+1/2

(
ν
(
dUn+1)−

i+1/2 + (dV n
1

)−
i+1/2

) ≤ 0.

Following the lines of the proof Lemma 3.2 and Corollary 3.3 we obtain the fully
discrete a priori bounds

N∑
n=0

�t
N−1∑
i=1

�xi+1/2

(
|dxρn+1

i+1/2|2 + |dxηn+1
i+1/2|2 + |dxUn+1

i+1/2|2
)

≤ C,

for some constantC > 0, where we used ‘dx ’ to denote the discrete spatial gradient as
before. Again, an application of Aubin–Lions Lemma provides relative compactness
in the space L2((0, T ) × (a, b)) of the piecewise constant interpolations ρh, ηh . As
above, the discrete gradients are uniformly bounded in L2((0, T ) × (a, b)) and their
weak convergence is a consequence of the Banach–Alaoglu Theorem. Identifying the
limits as a weak solution to system (1) is shown in the same way as above and we
leave it as an exercise for the reader. 
�
Remark 1 (Explicit scheme) We do not consider an explicit scheme here since its
analysis is much more complicated due to the lack of uniform estimates. Indeed, an
explicit scheme requires aCFL condition on the time stepwhich appears in the stability
analysis or the energy estimate provided in Lemma 3.2. In our case, it leads to

ρn+1 log ρn+1 − ρn log ρn

�t
= ρn+1 − ρn

�t

(
log ρn − 1

)+ (ρn+1 − ρn)2∣∣ρn+1/2
∣∣2 �t

,

where ρn+1/2 belongs to the interval [ρn, ρn+1] or [ρn+1, ρn]. The control of this
reminder term would require some lower bounds estimates on the density ρ (see for
instance [30]).

6 Numerical examples and validation

In this sectionwe perform some numerical simulations of system (1) using our scheme,
Eqs. (9). In Sect. 6.1 we test our scheme by computing the error between the numerical
simulation and a benchmark solution on a finer grid. Furthermore we determine the

123



502 J. A. Carrillo et al.

numerical convergence order. In Sect. 6.2 we compute the numerical stationary states
of system (1) and discuss the implication of different cross-diffusivities and the self-
diffusivities, respectively.

Let us note here, that in the case of no regularising porous-medium diffusion, i.e.
ε = 0, and certain singular potentials the stationary states of system (1) are even
known explicitly [19]. This allows us to compare the numerical solution directly to
the analytical stationary state in Sect. 6.2.1.

Throughout the remainder of this section we apply the scheme (9) to system (1)
using different self-diffusions, ε, and cross-diffusions, ν.

6.1 Error and numerical order of convergence

This section is dedicated to validating our main convergence result, Theorem 2.4. Due
to the lack of explicit solutions we compute the numerical solution on a fine grid
and consider it a benchmark solution. We then compute numerical approximations on
coarser grids and study the error in order to obtain the numerical convergence order.

In all our simulations we use a fourth order Runge–Kutta scheme to solve the ordi-
nary differential equations Eq. (9) with initial data Eq. (5). The discrepancy between
the benchmark solution and numerical solutions on coarser grids is measured by the
error

e :=
(

�t
M∑
k=1

(
�x

N∑
i=1

|ρex(tk, xi ) − ρ(tk, xi )|2 + |ηex(tk, xi ) − η(tk, xi )|2
))1/2

.

Here ρex, ηex denote the benchmark solutions. We use this quantity to study the con-
vergence of our scheme as the grid size decreases.

6.1.1 No non-local interactions

Let us begin with the purely diffusive system. We consider system (1) without any
interactions, i.e. Wi j ≡ 0, for i, j = 1, 2, and we choose ν = 0.5 and ε = 0.1.

In Fig. 2 we present the convergence result as we decrease the grid size. We com-
puted a benchmark solution on a grid of �x = 2−10 on the time interval [0, 10] with
�t = 0.05. Figure2a shows the convergence for symmetric initial datawhereas Fig. 2b
shows the convergence of the same system in case of asymmetric initial data. In both
cases we overlay a line of slope one and we conclude that the numerical convergence
is of order one.

6.1.2 Gaussian cross-interactions

Next, we add non-local self-interaction and cross-interactions. We choose smooth
Gaussians with different variances. These potentials, like the related, more singular
Morse potentials, are classical in mathematical biology since oftentimes the availabil-
ity of sensory information such as sight, smell or hearing is spatially limited [18,20,27].
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(a) Symmetric initial data. ρ0(x)
= η0(x) = [7,10].

(b) Asymmetric initial data. ρ0(x)
= [5,7] and η0(x) = [10,12].

Fig. 2 In the purely diffusive system all interaction kernels are set to zero. Both graphs show the convergence
to the benchmark solution. The triangular markers denote the discrepancy between the numerical solution
and the benchmark solution. A line of slope one is superimposed for the ease of comparison. On the left
we start the system with symmetric initial conditions, on the right we start with asymmetric initial data. In
both cases the scheme has numerical convergence order 1

For the intraspecific interaction we use

W11(x) = W22(x) = 1 − exp

(
− |x |4
4 × 0.1

)
,

while we choose

W12(x) = −W21(x) = 1 − exp

(
− |x |2
2 × 0.1

)
,

for the interspecific interactions.
We consider system (1) with the diffusive coefficients ν = 0.4 and ε ∈ {0.1, 0.5},

and we initialise the system with

ρ(x) = η(x) = c
(
(s − 6.5)(9.5 − s)

)+
,

on the domain [0, 9]. Here the constant c is such that ρ and η have unit mass. Figure 3
depicts the simulation with Gaussian kernels as interaction potentials. In Fig. 3a, b we
present the error plots corresponding to ε ∈ {0.1, 0.5}. Again we observe convergence
to the reference solution with a first order accuracy in space.

6.2 General behaviour of solutions and stationary states

In this section we aim to study the asymptotic behaviour of system (1) numerically.
Let us begin by going back to the set up of Sect. 6.1.2. We note that the potentials
were chosen in such a way that there is an attractive intraspecific force, and the cross-
interactions are chosen as attractive-repulsive explaining the segregation observed in
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(a) Convergence to benchmark solution
for individual diffusion constant = 0.1.

(b) Convergence to benchmark solution
for individual diffusion constant = 0.5.

Fig. 3 We choose Gaussian interaction kernels of different strengths and ranges for the self-interaction
and the cross-interaction, respectively. The graphs show the numerical convergence order in the cases of
ε = 0.1 (left), and ε = 0.5 (right), respectively

(a) Stationary state ( = 0.1). (b) Stationary state ( = 0.5).

Fig. 4 We choose Gaussian interaction kernels of different strengths and ranges for the self-interaction
and the cross-interaction, respectively. The graphs correspond to the simulationed stationary states for
self-diffusivities ε = 0.1, and ε = 0.5, respectively

Fig. 4a. For larger self-diffusivity, ε = 0.5, we see that some mixing occurs. In the
absence of any individual diffusion we would have expected adjacent species with a
jump discontinuity at their shared boundary [19]. However, this phenomenon is no
longer possible as we have a control on the gradients of each individual species, by
Lemma 3.3, rendering jumps impossible thus explaining the continuous transition.

In the subsequent section we shall push our scheme even further by dropping the
smoothness assumption on our potentials.

6.2.1 Case of singular potentials

In this section we go beyond the limit of what we could prove in this paper. On the one
handwe considermore singular potentials and on the other handwe consider vanishing
individual diffusion. We study system (1) for ε ∈ {0, 0.02, 0.04, 0.06, 0.09}, and
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(a) In the case ν = 0.05, = 0, we obtain a great agree-a
ment of the numerically computed stationary states and
the analytical stationary states described in [19].

(b) Adding individual diffusion may still lead to
segregated stationary states. However both specie
remain continuous as they mix.

(c) The case ν = 0.5, = 0 leads to adjacent station-
ary states. Again we see an excellent agreement of the
numerical stationary states and the analytical ones [19].

(d) The regularising effect of the individual diffusion, by
Corollary 3.3, becomes apparent immediately. Instanta-
neously both species become continuous as they start to
intermingle in a small region. This region grows as we
keep increasing the individual diffusion.

Fig. 5 We pushed our numerical scheme to see how it performs in regimes in which we are unable to prove
convergence. We chose Newtonian cross-interactions in the attractive-repulsive case. The red curves denote
the symmetric stationary states of η while the blue curves are the stationary distributions of ρ. The different
line widths and styles correspond to varying values of ε (colour figure online)

ν ∈ {0.05, 0.5}. Here the potentials are given by

W11(x) = W22(x) = x2/2.

for the self-interaction terms and

W12(x) = |x | = ±W21(x).

for the cross-interactions. The system is posed on the domain [0, 5] with a grid size
of �x = 2−8. Note that the case of ε = 0 corresponds to the absence of individual
diffusion, see Fig. 5a, c. By virtue of Corollary 3.3, it is the individual diffusion that
regularises the stationary states, in the sense thatwewill not observe anydiscontinuities
in eitherρ orη. Aswe add individual diffusionwe can see the immediate regularisation.
While stationary states may still remain segregated, as it is shown in Fig. 5b, adjacent
solutions are not possible anymore (see Fig. 5d).
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(a) Strictly segregated stationary state in
the absence of individual diffusion, = 0, and
Newtonian potentials.

(b) Convergence to benchmark solution
= 0 and Newtonian attractive-

repulsive potentials.
in the case of

Fig. 6 Stationary state and numerical convergence order in the case of Newtonian attractive-repulsive cross-
interactions. Even though our estimates fail in the analysis above we observe a numerical convergence order
of one

In the case of attractive-repulsive interspecific interactions, i.e.

W12(x) = |x | = −W21(x).

we expect both species to segregate [19]. We initialise the system with the following
symmetric initial data

ρ(x) = η(x) = c
(
(x − 3)(5 − x)

)+
,

as symmetric initial data are known to approach stationary states [19].Here the constant
c normalises the mass of ρ and η to one.

Figure 5a, c show our scheme performs well even in regimes we are unable to
show convergence due to the lack of regularity in the potentials as well as the lack
of regularity due to the absence of the porous medium type self-diffusion. While the
schemes developed in [14,19] are asymptotic preserving, their convergence to weak
solutions of the respective equations could not be established.We reproduce the steady
states of [19] that exhibit phase separation phenomena. Figure 6 displays the stationary
state in the case ν = 0.09 and ε = 0. Even in the case of no regularising individual
diffusion and with Newtonian cross-interactions we observe a numerical convergence
order of one.

In the case of attractive–attractive cross-interactions, i.e. W12(x) = |x | = W21(x),
we observe an interesting phenomenon. Even in the absence of the individual diffusion,
i.e. ε = 0, some additional mixing occurs even though we expect sharp boundaries,
see Fig. 7, due to numerical diffusion. This is in contrast to the finite volume schemes
proposed in [14,19].
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Fig. 7 We choose m1 = 0.6 and
m2 = 0.1 in order to be able to
compare the stationary state with
the explicit one given in [19].
We can see a strong resemblance
between the numerical stationary
state and the one obtained
analytically. However there are
some regimes of mixing due to
numerical diffusion

6.3 Energy dissipation

It is known that system (1) has a formal gradient flow structure, cf. [24], whenever
W12 = W21. In this case, the evolution of system 1 is such that it decays the energy
functional

E(ρ, η) := 1

2

∫∫
ρW11�ρ + ηW22η dx +

∫∫
ρW12�η dx

+ 1

2

∫
ν(ρ + η)2 + ερ2 + εη2 dx .

Here, we present two examples, one corresponding to the potential

Wii (x) = x2

2
, and Wi j (x) = |x |,

for i, j = 1, 2 and i �= j , cf. Fig. 8, the other one corresponding to

Wii (x) = 1 − exp

(
− (4x)2

2

)
, and

Wi j (x) = 1 + exp
(
−(4x)2

)
− exp

(
−2

3
(4x)2

)
,

for i, j = 1, 2 and i �= j , cf. Fig. 9.
In the first case, we choose the initial data

ρ(x) = c
(
(x − 2)(2.5 − x)

)+
, and η(x) = c

(
(x − 1)(0.5 − x)

)+
,

where c > 0 normalises themass to one.Due to the long-rangeweobserve an attraction
of the two initial bumps until they meet. They begin to mix until they are completely
merged. The graph in the last panel shows the decay of the associated energy to a
constant one which corresponds to the energy of the steady state. It appears the energy
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(a) t = 0 (b) t = 0.211 (c) t = 0.433

(d) t = 0.614 (e) t = 0.768 (f) t = 0.909

(g) t = 1.111 (h) t = 1.41 (i) Decay of the energy, E(ρ, η).

Fig. 8 Evolution of segregated initial data for attractive–attractive interactionswith corresponding potentials
Wii (x) = x2/2 and Wi j (x) = |x |. The two blobs move towards each other. The associated energy appears
to converge exponentially fast to a constant while the profiles merge

is dissipated at an exponential rate but an analytic result for systems, corresponding
to that of a single equation, cf. [21], is not known to our knowledge.

In the second case, for Gaussian potentials, we change the computational domain
to (0, π), for convenience. We choose the initial data

ρ(x) = sin(2x)2, and cos(2x)2,

cf. Fig. 9. We observe the formation of nearly segregated clusters which, as the evo-
lution continues, as begin to merge due to the nonlocal interaction. However, the
short-range cross-interaction is working against this trend which explains that the
evolution slows down just before the merging, a phenomenon which is also observed
inmeta-stability. After the 5 clusters havemerged into three the profile stabilises which
is reflected in the evolution of the energy, cf. graph in the panel. We still observe a
decay, however, after a strong initial decrease the energy decays much slower for a
while before going to the constant corresponding to the stationary state. The explana-
tion lies in the increase of the internal energy. Initially, we have ρ + η ≡ 1 which is
a minimiser of the internal energy. Due to the nonlocal interactions the system wants
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(a) t = 0.0 (b) t = 1.05 (c) t = 5.396

(d) t = 9.89 (e) t = 10.417 (f) t = 10.58

(g) t = 10.71 (h) t = 19.54 (i) Decay of the energy, E(ρ, η).

Fig. 9 Evolution of mixed initial data, ρ = sin(2x)2 and η = cos(2x)2 on the domain (0, π). The
interactions are linear combinations of Gaussians modelling self-attraction whereas the cross-interactions
are short-range repulsive and long-range attractive. The associated energy decays abruptly at the merging
and separation between aggregates. The slower decay of the energy before t ≈ 10 is due to the trade off
between the local (internal) energy and the nonlocal interaction energy. After the rearrangement of the five
initial clusters to only three, the energy stabilises

to rearrange but at the cost of increasing the internal energy to allow for a decrease
in the interaction energy. This beautifully portrays the interplay of local and nonlocal
effects. Similar effects are known in the context of meta-stability.

7 Conclusion

In this paper we presented a finite volume scheme for a system of non-local partial
differential equations with cross-diffusion. We were able to reproduce a continuous
energy estimate on the discrete level for our scheme. These discrete estimates for
the approximate solution are enough to get compactness results and we are able to
identify the limit of the approximate solutions as a weak solution of the equation.
We complement the analytical part with numerical simulations. These back up our
convergence result andwe are also able to apply the scheme in cases inwhichwe cannot
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show convergence. To this end we pushed the scheme to regimes of singular potentials
also lacking the regularising porous medium type self-diffusion terms. Comparing
them with the explicit stationary states from [19] we conclude the scheme performs
well even in regimes it was not designed for.
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