Skip to main content
Log in

\(H^1\), \(H(\mathrm {curl})\) and \(H(\mathrm {div})\) conforming elements on polygon-based prisms and cones

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The conation and extrusion techniques were proposed by Bossavit (Math Comput Simul 80:1567–1577, 2010) for constructing \((m+1)\)-dimensional Whitney forms on prisms/cones from m-dimensional ones defined on the base shape. We combine the conation and extrusion techniques with the 2D polygonal \(H(\mathrm {div})\) conforming finite element proposed by Chen and Wang (Math Comput 307:2053–2087, 2017), and construct the lowest-order \(H^1\), \(H(\mathrm {curl})\) and \(H(\mathrm {div})\) conforming elements on polygon-based prisms and cones. The elements have optimal approximation rates. Despite of the relatively sophisticated theoretical analysis, the construction itself is easy to implement. As an example, we provide a 100-line Matlab code for evaluating the shape functions of \(H^1\), \(H(\mathrm {curl})\) and \(H(\mathrm {div})\) conforming elements as well as their exterior derivatives on polygon-based cones. Note that all convex and some non-convex 3D polyhedra can be divided into polygon-based cones by connecting the vertices with a chosen interior point. Thus our construction also provides composite elements for all such polyhedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. Springer, New York (1988)

    Book  Google Scholar 

  2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MathSciNet  Google Scholar 

  3. Basic principles of virtual element methods: Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A. Math. Model. Methods Appl. Sci. 23, 199–214 (2013)

    Article  Google Scholar 

  4. Bonelle, J., Di Pietro, D., Ern, A.: Low-order reconstruction operators on polyhedral meshes: application to compatible discrete operator schemes. Comput. Aided Geom. D 35(36), 27–41 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bossavit, A.: Mixed finite elements and the complex of Whitney forms. In: Whiteman, J. (ed.) The Mathematics of Finite Elements and Applications VI, pp. 137–144. Academic Press, London (1988)

    Google Scholar 

  6. Bossavit, A.: Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEEE Proc. 135, 493–500 (1988)

    Article  Google Scholar 

  7. Bossavit, A.: A uniform rational for Whitney forms on various supporting shapes. Math. Comput. Simul. 80, 1567–1577 (2010)

    Article  Google Scholar 

  8. Chen, W., Wang, Y.: Minimal degree \(H(curl)\) and \(H(div)\) conforming finite elements on polytopal meshes. Math. Comp. 307, 2053–2087 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Christiansen, S.: A construction of spaces of compatible differential forms on cellular complexes. Math. Models Methods Appl. Sci. 18, 739–757 (2008)

    Article  MathSciNet  Google Scholar 

  10. Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14, 461–472 (2014)

    Article  MathSciNet  Google Scholar 

  11. Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)

    Article  MathSciNet  Google Scholar 

  12. Di Pietro, D.A., Ern, A.: Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes. IMA J. Numer. Anal. 37, 40–63 (2017)

    Article  MathSciNet  Google Scholar 

  13. Du, Q., Faber, V., Gunzburger, M.: Centroidal voronoi tessellations: applications and algorithms. SIAM Rev. 41, 637–676 (1999)

    Article  MathSciNet  Google Scholar 

  14. Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20, 19–27 (2003)

    Article  MathSciNet  Google Scholar 

  15. Floater, M.S.: Generalized barycentric coordinates and applications. Acta Numer. 24, 161–214 (2015)

    Article  MathSciNet  Google Scholar 

  16. Floater, M., Gillette, A., Sukumar, N.: Gradient bounds for Wachspress coordinates on polytopes. SIAM J. Numer. Anal. 52, 515–532 (2014)

    Article  MathSciNet  Google Scholar 

  17. Floater, M.S., Kós, G., Reimers, M.: Mean value coordinates in 3D. Comput. Aided Geom. Des. 22, 623–631 (2005)

    Article  MathSciNet  Google Scholar 

  18. Frankel, T.: The Geometry of Physics: An Introduction, 2nd edn. Cambridge University Press, New York (2004)

    MATH  Google Scholar 

  19. Gillette, A., Rand, A., Bajaj, C.: Error estimates for generalized barycentric interpolation. Adv. Comput. Math. 37, 417–439 (2012)

    Article  MathSciNet  Google Scholar 

  20. Gillette, A., Rand, A., Bajaj, C.: Construction of scalar and vector finite element families on polygonal and polyhedral meshes. Comput. Methods Appl. Math. 16, 667–683 (2016)

    Article  MathSciNet  Google Scholar 

  21. Grǎdinaru, V.: Whitney elements on sparse grids. Dissertation, Universität Tübingen (2002)

  22. Grǎdinaru, V., Hiptmair, R.: Whitney elements on pyramids. ETNA 8, 154–168 (1999)

    Google Scholar 

  23. Hiptmair, R.: Canonical construction of finite elements. Math. Comput. 68, 1325–1346 (1999)

    Article  MathSciNet  Google Scholar 

  24. Hirani, A.: Discrete Exterior Calculus. Ph.D. Thesis, CalTech (2003)

  25. Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26, Article 71 (2007)

  26. Nédélec, J.C.: Mixed finite element in \({\mathbb{R}}^3\). Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  Google Scholar 

  27. Nédélec, J.C.: A new family of mixed finite elements in \({\mathbb{R}}^3\). Numer. Math. 50, 57–81 (1986)

    Article  MathSciNet  Google Scholar 

  28. Raviart, P., Thomas, J.: A Mixed Finite Element Method for Second Order Elliptic Problems. Springer Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, New York (1977)

  29. Sibon, R.: A vector identity for the Dirichlet tessellation. Math. Proc. Camb. Philos. Soc. 87, 151–155 (1980)

    Article  MathSciNet  Google Scholar 

  30. Wachspress, E.L.: A Rational Finite Element Basis. Academic Press, Cambridge (1975)

    MATH  Google Scholar 

  31. Wachspress, E.L.: Barycentric coordinates for polytopes. Comput. Aided Geom. Des. 61, 3319–3321 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    Article  MathSciNet  Google Scholar 

  33. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comput. 83, 2101–2126 (2014)

    Article  MathSciNet  Google Scholar 

  34. Warren, J.: Barycentric coordinates for convex polytopes. Adv. Comput. Math. 6, 97–108 (1996)

    Article  MathSciNet  Google Scholar 

  35. Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)

    Book  Google Scholar 

Download references

Acknowledgements

Wang is supported by the Natural Science Foundation of China under grant numbers 11671210 and 91630201. Chen is supported by the Grants NSFC 11671098, 91630309, a 111 Project B08018 and Chen also thanks Institute of Scientific Computation and Financial Data Analysis, Shanghai University of Finance and Economics or support during his visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqiu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Matlab code for poly-cone

A Matlab code for poly-cone

We present a 100-line Matlab code for evaluating the vector proxies of Whitney 0-, 1-, and 2-forms, as well as their exterior derivatives, at given points in a poly-cone, i.e., a cone with polygonal base. The code also contains a subroutine which computes vector proxies of 2D Whitney forms and their exterior derivatives on the base polygon, where the Wachspress coordinates are used to define the 0-forms. The code requires Matlab version R2016b or higher, since it uses the ‘implicit expansion’ feature.

The code requires that the input poly-cone must have its base on the xy-plane and apex at [0,0,a] where a\(=\theta \) is the height of the poly-cone. Note that any random poly-cone can be easily converted to such one by a simple rotation and shifting. We emphasize that rotation and shifting do not alter the definition of degrees of freedom for H(div) and H(curl) elements. This is different from the case of a general affine transformation, in which the Piola transformation must be used to get the correct shape functions.

In the code, [x, y, z] stands for the coordinates of points to evaluate the Whitney forms, which are usually the Gaussian points. We do not have Gaussian quadrature on a poly-cone. However, one can easily divide the poly-cone into simplices and then use the Gaussian quadrature on sub-simplices to do numerical integration on the poly-cone. [xs, ys, zs] stands for , as defined in (9). The subroutine baseShapes calculates the 2D Whitney forms on the base polygon, evaluated at points [xs, ys]. The subroutine pullback computes the scaled pullback operator \(\varPi ^*\) of 0-, 1-, and 2-forms.

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wang, Y. \(H^1\), \(H(\mathrm {curl})\) and \(H(\mathrm {div})\) conforming elements on polygon-based prisms and cones. Numer. Math. 145, 973–1004 (2020). https://doi.org/10.1007/s00211-020-01129-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01129-9

Mathematics Subject Classification

Navigation