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Abstract

In this paper, we study the approximation of d-dimensional %-weighted integrals over
unbounded domains Rd+ or Rd using a special change of variables, so that quasi-Monte
Carlo (QMC) or sparse grid rules can be applied to the transformed integrands over the
unit cube. We consider a class of integrands with bounded Lp norm of mixed partial
derivatives of first order, where p ∈ [1,+∞].

The main results give sufficient conditions on the change of variables ν which guarantee
that the transformed integrand belongs to the standard Sobolev space of functions over
the unit cube with mixed smoothness of order one. These conditions depend on % and p.

The proposed change of variables is in general different than the standard change based
on the inverse of the cumulative distribution function. We stress that the standard change
of variables leads to integrands over a cube; however, those integrands have singularities
which make the application of QMC and sparse grids ineffective. Our conclusions are
supported by numerical experiments.

1 Introduction

We consider in this paper the approximation of d-variate %d-weighted integrals of the form

Id,%(f) =

∫
Dd
f(x) %d(x) dx, where %d(x) =

d∏
j=1

%(xj), (1)

over an unbounded domain Dd, where

D = R+ or D = R

and for a given probability density function

% : D → R+.

Such integrals in the univariate case are often approximated by Gaussian quadratures that
enjoy exponential rate of convergence, see, e.g., [1]. There are also generalized Gaussian rules,
see, e.g., [4] and the papers cited there, that achieve exponential rate for integrands with
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singularities at infinity. We stress that those results are about the asymptotic behavior of the
integration error and require analytic integrands. In the current paper, we consider integrands
of regularity one only, and we analyze the worst case error with respect to a class of integrands.

Indeed, we follow the Information-Based Complexity approach (see, e.g., [10]) providing
worst case results for all integrands f from the Sobolev space Fd,p(D

d) of functions defined on
Dd with mixed partial derivatives of first order bounded in the standard Lp(D

d) space, where
p ∈ [1,+∞]. As will be clear later, our results may also be applied to γ-weighted spaces of
∞-variate functions (i.e., d = +∞) as well as for %d being a product of different probability
densities (i.e., %(x) =

∏d
j=1 %j(xj)).

The spaces Fd,p(D
d) have been considered in a number of papers, and they are naturally

related to the Sobolev spaces Wd,p(B
d) of functions on a unit cube Bd with mixed partial first

order derivatives in Lp(B
d). Indeed, a quite common approach is to use the change of variables

x := Φ−1
% (t), where Φ% is the cumulative distribution function (CDF) for the probability density

%, to reduce the %-weighted integrals over Dd to the standard Lebesgue integration over a unit
cube Bd, and next apply algorithms that are efficient for spaces Wd,p(B

d). However, as we will
show, such an approach is well founded for only p = 1, since for p > 1 the change of variables
based on the inverse of the CDF produces integrands with boundary singularities, and so they
do not belong to the spaces Wd,p(B

d).
To simplify the notation, we will denote Wd,p(B

d) and Fd,p(D
d), respectively, by

Wd,p and Fd,p.

We investigate changes of variables that transform the weighted integrals Id,%(f) over unbounded
Dd into standard Lebesgue integrals over a bounded cube Bd:

Id(gf,ν) =

∫
Bd
gf,ν(t) dt with gf,ν(t) = f(ν(t1), . . . , ν(td))

d∏
j=1

(%(ν(tj)) ν
′(tj)) .

We are searching for change of variables functions ν : B → D such that the obtained integrands
satisfy

gf,ν ∈ Wd,p for all f ∈ Fd,p. (2)

We now explain the significance of the requirement (2). If the integrands gf,ν satisfy (2),
then their integrals can be approximated by cubatures that are known to have small worst case
errors with respect to the spaces Wd,p, including quasi-Monte Carlo (QMC) and sparse grid
methods. This in turn provides efficient cubatures for the original %d-weighted integration over
unbounded Dd. More precisely, let

error(Qd,n;Wd,p) = sup
g∈Wd,p

∣∣∫
Bd
g(t) dt−Qd,n(g)

∣∣
‖g‖Wd,p

be the worst case error of a cubature Qd,n. Then the cubature Qd,%,n for the weighted integrals
Id,% over unbounded domains Dd, given by

Qd,%,n(f) := Qd,n(gf,ν), (3)

has the worst case error

error(Qd,%,n;Fd,p) = sup
f∈Fd,p

|Id,%(f)−Qd,%,n(f)|
‖f‖Fd,p

,
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Figure 1: Plot of gf,νa(t) = −a2(ln(1− t))(1− t)a−1 for a ∈ {1, 1.5, 2.5}.

bounded by
error(Qd,%,n;Fd,p) ≤ error(Qd,n;Wd,p) · Cd,p(ν), (4)

where

Cd,p(ν) := sup
f∈Fd,p

‖gf,ν‖Wd,p

‖f‖Fd,p
.

This is why, in our search, we are looking for functions ν with finite and possibly small Cd,p(ν).
As already mentioned, the most common change of variables that uses the inverse of the

CDF,

ν(t) := Φ−1
% (t) for Φ%(x) =

∫
y≤x

%(y) dy, (5)

gives Cd,p(ν) = +∞, for all p > 1 and non-trivial densities %, see Proposition 4. Moreover,
it produces functions gf,ν that have singularities (poles) on the boundary of the cube Bd,
even for exceptionally smooth f . We illustrate this by the following example. Let D = R+,
%(x) = exp(−x), p = +∞, and f(x) = x. Then ‖f‖F1,∞ = 1, yet for ν as in (5) the change of
variables produces

gf,ν(t) = − ln(1− t),

which has a singularity at t = 1. Using instead

νa(x) = aΦ−1
% (x) with a > 1

results in
gf,νa(t) = −a2 (ln(1− t)) (1− t)a−1,

which even belongs to W1,∞ for a > 2 (compare with Fig.1).
Moreover, the midpoint rule with 105 samples applied to gf,νa with a ∈ {1, 1.5, 2.5} produces,

correspondingly, approximations with absolute errors

3.47× 10−6, 5.02× 10−8, 2.65× 10−11,
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see Numerical Test 10 for more details.
In Theorems 5 and 7, we provide conditions on the change of variables function ν, that

guarantee finite Cd,p(ν). It turns out that for a number of specific probability density functions,
including %(x) = λ−1 exp(−x/λ) with D = R+ and %(x) = (2πσ2)−1/2 exp(−x2/(2σ2)) with
D = R, these conditions are satisfied by νa = aΦ−1

% for a specially chosen a ≥ 1. However,
with the exception of p = 1, we still have C1,p(ν1) = +∞ for a = 1. Moreover, as shown in
Example 6, νa = aΦ−1

% need not yield finite Cd,p(νa) for any a (unless p = 1) for a special
probability density function %. In this case, we provide another change of variable function ν
with finite Cd,p(ν).

Finally, we add that the results of this paper can be used to produce an efficient imple-
mentation of the Multivariate Decomposition Method (MDM) for approximation of weighted
integrals of functions that belong to γ-weighted spaces Fd,p,γ for any d including d = +∞. Due
to a number of specific details, we delay the discussion of MDM’s to Section 5.

2 Multivariate Integration

In the multivariate integration problem (1), we assume that the integrands f belong to the
Sobolev space Fd,p of functions anchored at zero and whose mixed first order partial derivatives
(in the weak sense) are in the Lp space. By anchored we mean that

f(x) = 0 if xj = 0 for some j ∈ {1, . . . , d}.

This assumption is not restrictive, as will be explained in Section 5.
Such spaces were introduced for d = 1 in [13] and have been later considered in a number

of papers. Specifically, see, e.g. [3], a function f is in Fd,p iff it is of the form

f(x) =

∫
Dd
hf (z)

d∏
j=1

κ(xj, zj) dz, (6)

where

κ(x, z) =


1 if x > z ≥ 0,
−1 if x < z < 0,

0 otherwise.

The mixed first order partial derivative

d∏
j=1

∂

∂xj
f :=

∂d

∂x1∂x2 · · · ∂xd
f

is then equal to hf and is assumed to be in the Lp = Lp(D
d) space, p ∈ [1,+∞], which is

endowed with the norm

‖hf‖Lp(Dd) :=

(∫
Dd
|hf (x)|p dx

)1/p

for 1 ≤ p < +∞,

and
‖hf‖L∞(Dd) := ess sup

x∈Dd
|hf (x)| for p = +∞.
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Then the norm in Fd,p is given by

‖f‖Fd,p = ‖hf‖Lp(Dd) =

∥∥∥∥∥
d∏
j=1

∂

∂xj
f

∥∥∥∥∥
Lp(Dd)

,

which is well defined since the functions f ∈ Fd,p are anchored at zero.
Throughout the paper, p∗ denotes the conjugate of p, i.e.,

1

p
+

1

p∗
= 1.

Due to (6) and Hölder’s inequality, for 1 < p ≤ +∞ we have∣∣∣∣∫
Dd
f(x) %d(x) dx

∣∣∣∣ =

∣∣∣∣∣
∫
Dd
hf (z)

∫
Dd

d∏
j=1

(κ(xj, zj) %(xj)) dx dz

∣∣∣∣∣
≤ ‖f‖Fd,p

∫
Dd

∣∣∣∣∣
∫
Dd

d∏
j=1

(κ(xj, zj) %(xj)) dx

∣∣∣∣∣
p∗

dz

1/p∗

.

Since Hölder’s inequality is sharp, we conclude that if the integration functional Id,% is bounded,
then its operator norm is given by

‖Id,%‖ =

∫
Dd

∣∣∣∣∣
∫
Dd

d∏
j=1

(κ(xj, zj) %(xj)) dx

∣∣∣∣∣
p∗

dz

1/p∗

= ‖I1,%‖d

with

‖I1,%‖ =

(∫
D

∣∣∣∣∫
D

κ(x, z) %(x) dx

∣∣∣∣p∗ dz

)1/p∗

.

Similarly, for p = 1 the equality ‖Id,%‖ = ‖I1,%‖d holds with

‖I1,%‖ = ess sup
z∈D

∣∣∣∣∫
D

κ(x, z) %(x) dx

∣∣∣∣ .
We propose using a change of variables that transforms the original weighted integral over

the unbounded domain Dd to the standard Lebesgue integral over the unit cube Bd with the
new integrand belonging to the standard Sobolev space Wd,p, as required in (2), and then use,
e.g., QMC or sparse grid methods, which are well suited and quite efficient for such kinds of
integrands. Also here we assume, without any loss of generality, that functions g ∈ Wd,p are
anchored at zero.

Specifically, we apply (componentwise) a change of variables

xj = ν(tj) for 1 ≤ j ≤ d,

where the function ν : B → D is monotonically increasing and onto D, and

B =

{
[0, 1) if D = R+,
(−1/2, 1/2) if D = R.
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Then, assuming that the derivative ν ′ exists and is measurable, we obtain

Id,%(f) =

∫
Bd
g(t) dt with g(t) := f(ν(t1), . . . , ν(td))

d∏
j=1

%(ν(tj)) ν
′(tj). (7)

To stress the dependence of g on the functions f and ν, we will often write

gf,ν or gf instead of g.

We are interested in functions ν such that the corresponding integrands g = gf,ν are in Wd,p

and are anchored at zero. That is,

‖g‖Wd,p
=

[∫
Bd

∣∣∣∣∣
d∏
j=1

∂

∂xj
g(x)

∣∣∣∣∣
p

dx

]1/p

< +∞ and g(x) = 0 if xj = 0 for some j

(with the obvious modification for p = +∞). Moreover, we would like the ratio

Cd,p(ν) := sup
f∈Fd,p

‖gf‖Wd,p

‖f‖Fd,p
(8)

to be not only finite, but also small, as explained in the introduction, see (4). Due to the tensor
product form (6), one can show (in a similar way to the derivation of the norm of Id,%) that the
following holds.

Proposition 1 The ratio Cd,p(ν) is fully determined by the univariate case, i.e.,

Cd,p(ν) = (C1,p(ν))d , where C1,p(ν) = sup
f∈F1,p

‖gf‖W1,p

‖f‖F1,p

.

This is why, in the analysis of the factor Cd,p(ν), we can restrict our considerations to the
univariate case.

Remark 2 Denote by Jd the standard Lebesgue integral over the unit cube Bd, i.e.,

Jd(g) =

∫
Bd
g(t) dt.

Then its operator norm equals ‖Jd‖ = ‖J1‖d, where

‖J1‖ =

{
(1 + p∗)−1/p∗ if 1 < p ≤ +∞,
1 if p = 1,

for B = [0, 1), and is twice smaller for B = (−1/2, 1/2). Furthermore,

|Id,%(f)| =
∣∣∣∣ ∫

Bd
gf (t) dt

∣∣∣∣ ≤ ‖Jd‖‖gf‖Wd,p
≤ ‖Jd‖Cd,p(ν)‖f‖Fd,p =

(
‖J1‖C1,p(ν)

)d‖f‖Fd,p .
Hence, if C1,p(ν) < +∞ for some ν, then the operator Id,% is bounded in Fd,%, and its norm
satisfies

‖Id,%‖ ≤
(
‖J1‖C1,p(ν)

)d
.

Remark 3 When %d is a product of different weights depending on j, then also ν being a
product of different νj should be considered. That is, if %d(x) =

∏d
j=1 %1,j(xj), then one could

consider ν(t) =
∏d

j=1 νj(tj). Then Cd,p(ν) =
∏d

j=1C1,p(νj).

Before we propose our ways of changing variables, let us see what happens when we apply
the standard change that has been commonly used in practice.
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Standard Change of Variables. Let Φ% : R+ → [0, 1) or Φ% : R → (0, 1) be the CDF
corresponding to the probability density %, defined by

Φ%(x) =

∫
D

1{x≥t} %(t) dt, (9)

where 1A denotes the indicator function of a given set A. Then the standard change of variables
uses ν = Φ−1

% , i.e.,∫
Dd
f(x) %(x) dx =

∫
[0,1]d

gf,Φ−1
%

(t) dt, where gf,Φ−1
%

(t) = f
(
Φ−1
% (t1), . . . ,Φ−1

% (td)
)
. (10)

We have the following simple yet important proposition.

Proposition 4 For any f ∈ Fd,p, let gf,Φ−1
%

be the function given by (10).

(i) For p = 1, we have
‖f‖Fd,1 = ‖gf,Φ−1

%
‖Wd,1

for all f ∈ Fd,1.

(ii) For p > 1, we have

‖gf,Φ−1
%
‖Wd,p

=

[∫
Dd

∣∣∣∣∣
(

d∏
j=1

∂

∂xj
f(x)

)(
d∏
j=1

1

%1/p∗(xj)

)∣∣∣∣∣
p

dx

]1/p

. (11)

Hence gf,Φ−1
%
∈ Wd,p if and only if the right-hand side of (11) is finite.

Proof. Due to the tensor product structure of the spaces, it is enough to prove the proposition
for d = 1. We clearly have

g′f,Φ%(t) = f ′(Φ−1
% (t))

d

dt
Φ−1
% (t) = f ′(Φ−1

% (t))
1

%(Φ−1
% (t))

.

Hence for 1 ≤ p < +∞ we have

‖gf,Φ−1
%
‖pW1,p

=

∫ 1

0

|g′
f,Φ−1

%
(t)|p dt =

∫ 1

0

∣∣∣∣f ′(Φ−1
% (t))

1

%(Φ−1
% (t))

∣∣∣∣p dt

=

∫
D

∣∣∣∣f ′(x)
1

%(x)

∣∣∣∣p %(x) dx =

∫
D

∣∣∣∣f ′(x)
1

%1/p∗(x)

∣∣∣∣p dx,

(with 1/p∗ = 0 for p = 1), and for p = +∞ we have

‖gf,Φ−1
%
‖W1,∞ = ess sup

t∈[0,1]

|g′
f,Φ−1

%
(t)| = ess sup

t∈[0,1]

∣∣∣∣f ′(Φ−1
% (t))

%(Φ−1
% (t))

∣∣∣∣ = ess sup
x∈D

∣∣∣∣f ′(x)

%(x)

∣∣∣∣ ,
as claimed. 2

Proposition 4 states that the change of variables (10) transforms all functions from Fd,p to
Wd,p only for p = 1. For p > 1, the situation is quite different. Then 1/p∗ > 0 and, therefore,
only those functions whose mixed first order partial derivatives converge to zero sufficiently fast
have the corresponding functions gf,Φ−1

%
in the space Wd,p. Indeed, since the weight %(x) has to

7



converge to zero as |x| → ∞, %−1/p∗(x) has to converge to infinity, resulting in a very restrictive
class of integrands f . In particular, if p∗ = 1 then we need to have

ess sup
x∈Dd

∣∣∣∣∣
∏d

j=1
∂
∂xj
f(x)∏d

j=1 %(xj)

∣∣∣∣∣ < +∞.

For instance, for D = R and Gaussian weight

%(x) =
1√

2πσ2
exp

(
− x2

2σ2

)
we would need∫

Rd
exp

(
1

2σ2p∗

d∑
j=1

x2
j

)∣∣∣∣ d∏
j=1

∂

∂xj
f(x)

∣∣∣∣p dx < +∞ for p < +∞,

and

ess sup
x∈Rd

exp

(
1

2σ2

d∑
j=1

x2
j

)∣∣∣∣ d∏
j=1

∂

∂xj
f(x)

∣∣∣∣ < +∞ for p = +∞,

which may hold only if the derivative of f decreases to zero faster than exponentially. This is
why in the rest of the paper we concentrate on the case of p > 1.

We now switch to the univariate case, but will return to the multivariate case in Section 5
with some additional comments.

3 Univariate Functions

Recall that for the univariate case the space F1,p consists of functions anchored at zero and
whose weak derivatives are in the Lp(D) space. For f ∈ F1,p we want to know when the
corresponding functions

gf (t) = gf,ν(t) = f(ν(t)) %(ν(t)) ν ′(t) (12)

belong to the standard Sobolev space W1,p of functions anchored at zero with g′ ∈ Lp(B).
The following functions will play an important role:

h0,p∗(t) := %(ν(t)) ν ′(t) |ν(t)|1/p∗ , (13)

h1,p∗(t) := %(ν(t)) (ν ′(t))1+1/p∗ , (14)

h2,p∗(t) := (%(ν(t)) ν ′(t))
′ |ν(t)|1/p∗ . (15)

For this to make sense we obviously assume that the corresponding functions % and ν are
sufficiently regular.

3.1 Case of D = R+

Let ν : [0, 1)→ R+ be an increasing and twice differentiable function such that

ν(0) = 0 and lim
t→1

ν(t) = +∞.

8



Theorem 5 For every f ∈ F1,p, the corresponding function gf given by (12) satisfies:

(i) ‖gf‖L∞(0,1) < +∞ if ‖h0,p∗‖L∞(0,1) < +∞,

(ii) gf ∈ W1,p if ‖h1,p∗‖L∞(0,1) < +∞ and ‖h2,p∗‖Lp(0,1) < +∞. If so, then

C1,p(ν) ≤ ‖h1,p∗‖L∞(0,1) + ‖h2,p∗‖Lp(0,1).

In particular, for p = +∞,

C1,∞(ν) ≤
∥∥%(ν(·)) (ν ′(·))2

∥∥
L∞(0,1)

+ ‖(%(ν(·)) ν ′(·))′ ν(·)‖L∞(0,1) .

Proof. To show (i), observe that, by Hölder’s inequality,

|gf (t)| = %(ν(t)) ν ′(t)

∣∣∣∣∣
∫ ν(t)

0

f ′(z) dz

∣∣∣∣∣ ≤ %(ν(t)) ν ′(t)

(∫ ν(t)

0

dz

)1/p∗

‖f ′‖Lp(R+)

= h0,p∗(t) ‖f ′‖Lp(R+).

We next prove (ii). Obviously gf (0) = 0 since ν(0) = 0. We will prove the upper bound on
C1,p(ν) only for 1 < p < +∞ since the case of p = +∞ is even easier. We have

g′f (t) = f ′(ν(t)) %(ν(t)) (ν ′(t))
2

+ f(ν(t)) (%(ν(t)) ν ′(t))
′

= f ′(ν(t)) (ν ′(t))
1/p

%(ν(t)) (ν ′(t))
1+1/p∗

+ (%(ν(t)) ν ′(t))
′
∫ ν(t)

0

f ′(z) dz.

Therefore

‖g′f‖Lp([0,1)) ≤
(∫ 1

0

|f ′(ν(t))|p ν ′(t)
(
%(ν(t)) (ν ′(t))1+1/p∗

)p
dt

)1/p

+

(∫ 1

0

|(%(ν(t)) ν ′(t))′|p
∣∣∣∣∣
∫ ν(t)

0

f ′(z) dz

∣∣∣∣∣
p

dt

)1/p

.

Clearly ∫ 1

0

|f ′(ν(t))|p ν ′(t) dt =

∫ ∞
0

|f ′(x)|p dx = ‖f ′‖pLp(R+)

and, again by Hölder’s inequality,∣∣∣∣∣
∫ ν(t)

0

f ′(z) dz

∣∣∣∣∣ =

∣∣∣∣∫ ∞
0

f ′(z) 1{ν(t)≥z} dz

∣∣∣∣ ≤ ‖f ′‖Lp(R+) (ν(t))1/p∗ .

Hence indeed,

‖g′‖Lp(0,1) ≤
(∫ 1

0

|f ′(ν(t))|p ν ′(t) dt

)1/p

ess sup
t∈[0,1)

%(ν(t)) (ν ′(t))1+1/p∗

+

(∫ 1

0

| (%(ν(t)) ν ′(t))
′ |p ‖f ′‖pLp(R+) (ν(t))p/p

∗
dt

)1/p

≤ ‖f ′‖Lp(R+) ‖%(ν(·)) (ν ′(·))1+1/p∗‖L∞(0,1)

+‖f ′‖Lp(R+)

∥∥(%(ν(·)) ν ′(·))′ (ν(·))1/p∗
∥∥
Lp(0,1)

= ‖f ′‖Lp(R+)

(
‖h1,p∗‖L∞(0,1) + ‖h2,p∗‖Lp(0,1)

)
.

This completes the proof. 2
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We give an example for an application of Theorem 5.

Example 6 Let D = R+ and %(x) = (c−1)(1+x)−c for sufficiently large c. We use Theorem 5
for

νb(t) =
1

(1− t)b
− 1 for b > 0.

Then

ν ′b(t) =
b

(1− t)b+1
and %(νb(t)) = (c− 1) (1− t)b c.

Therefore, for p = +∞ we have

h1,1(t) = b2 (c− 1) (1− t)b (c−2)−2 and ‖h1,1‖L∞(0,1) = b2 (c− 1)

for

b ≥ 2

c− 2
.

Otherwise, h1,1 is unbounded. As for h2,1, we have

(%(νb(t)) ν
′
b(t))

′
= b (c− 1) (b (c− 1)− 1) (1− t)b(c−1)−2

and

h2,1(t) = b (c− 1) (b (c− 1)− 1)(1− t)b (c−1)−2

(
1

(1− t)b
− 1

)
= b (c− 1) (b (c− 1)− 1)

(
(1− t)b (c−2)−2 − (1− t)b (c−1)−2

)
.

Hence,

‖h2,1‖L∞(0,1) = ess sup
x∈(0,1)

b (c− 1) (b (c− 1)− 1)
(
xb (c−2)−2 − xb (c−1)−2

)
= h2,1

(
1−

(
b(c− 2)− 2

b(c− 1)− 2

)1/b
)

=
b2(c− 1)(b(c− 1)− 1)

b(c− 1)− 2

(
b(c− 2)− 2

b(c− 1)− 2

)c−2− 2
b

,

and for b > 2/(c− 2) we have

C1,∞(νb) ≤ b2(c− 1)

(
1 +

b(c− 1)− 1

b(c− 1)− 2

(
b(c− 2)− 2

b(c− 1)− 2

)c−2− 2
b

)
.

In view of what follows we mention that here for the change of variables ν(t) = bΦ−1
% (t), we

have ‖h0,p∗‖L∞(B) = ‖h1,p∗‖L∞(B) = ‖h2,p∗‖Lp(B) = +∞ for any p > 1.
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3.2 Case of D = R
In this case, we consider ν : (−1/2, 1/2) → R that is increasing, twice differentiable, and for
which

ν(0) = 0 and lim
t→±1/2

ν(t) = ±∞.

To simplify the presentation, we also assume that the function % is even and ν is odd, i.e.,

%(−x) = %(x) and ν(−t) = −ν(t), (16)

since then it is sufficient to consider only positive values of t. However, if this assumption is not
satisfied then one can treat the problem as two subproblems: one with the domain D = [0,+∞)
and the other with D = (−∞, 0].

The following result is a version of Theorem 5 adapted to the case D = R. Due to (16), the
proposition follows easily from the proof of Theorem 5, and hence its proof is omitted.

Theorem 7 If ‖h1,p∗‖L∞(−1/2,1/2) < +∞ and ‖h2,p∗‖Lp(−1/2,1/2) < +∞, then, for every f ∈ F1,p,
the corresponding function gf belongs to W1,p and

C1,p(ν) ≤ ‖h1,p∗‖L∞(−1/2,1/2) + ‖h2,p∗‖Lp(−1/2,1/2)

with h1,p∗ and h2,p∗ defined by (14) and (15), respectively.

3.3 Special Change of Variables

We propose to use the following change of variables. If D = R+, define ν = νa : [0, 1)→ R by

ν(t) = νa(t) = aΦ−1
% (t). (17)

If D = R, define ν = νa : (−1/2, 1/2)→ R by

ν(t) = νa(t) = aΦ−1
%

(
t+

1

2

)
, (18)

where in both cases a ≥ 1 and, as before, Φ−1
% is the inverse of the CDF for %.

Proposition 8 Let νa be given by (17) or (18), respectively. Then

‖h0,p∗‖L∞(B) = a1+1/p∗ ess sup
y∈D

%(a y)

%(y)
|y|1/p∗ ,

‖h1,p∗‖L∞(B) = a1+1/p∗ ess sup
y∈D

%(a y)

(%(y))1+1/p∗
, and

‖h2,p∗‖Lp(B) = a1+1/p∗
(∫

D

∣∣∣∣(%(a y)

%(y)

)′
y1/p∗

%(y)

∣∣∣∣p %(y) dy

)1/p

,

where, as before, B = [0, 1) if D = R+ and B = (−1/2, 1/2) if D = R.
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Proof. The result follows from a change of variables. If D = R+, then replace t by Φ%(y) and
use the fact that

ν ′a(t) =
a

%(Φ−1
% (t))

=
a

%(y)
and dt = %(y) dy.

If D = R, then replace t by Φ%(y)− 1
2

and use the fact that

ν ′a(t) =
a

%(Φ−1
% (t+ 1/2))

=
a

%(y)
and dt = %(y) dy.

This completes the proof. 2

Remark 9 Note that for p = 1, the exponent 1/p∗ =∞. Hence, for a = 1, we have

‖h0,∞‖L∞(B) = ‖h1,∞‖L∞(B) = 1 and ‖h2,∞‖L1(B) = 0.

This coincides with Part (i) of Proposition 4.

4 Particular Weights

We illustrate Proposition 8 for exponential and Gaussian densities %.

4.1 Exponential %

We consider D = R+ and

%(x) =
1

λ
exp

(
−x
λ

)
for λ > 0.

Clearly

‖I1,%‖ =

(
λ

p∗

)1/p∗

.

We use the change of variables

νa(t) = aΦ−1
% (t) = −λ a ln(1− t). (19)

It is easy to see that the norm of h0,p∗ is infinite for a ≤ 1. Assume that a > 1. Then

‖h0,p∗‖L∞(0,1) = a1+1/p∗
(

λ

e p∗ (a− 1)

)1/p∗

.

We also have

‖h1,p∗‖L∞(0,1) = a1+1/p∗λ1/p∗ sup
y∈R+

exp

(
−y a− (1 + 1/p∗)

λ

)
,

and hence

‖h1,p∗‖L∞(0,1) =

{
a1+1/p∗λ1/p∗ if a ≥ 1 + 1

p∗
,

+∞ otherwise,

for any p ∈ (1,+∞].
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In order to analyze h2,p∗ , we consider first p = +∞. It is easy to see that then

‖h2,1‖L∞(0,1) =
a2(a− 1)λ

(a− 2)e
for a > 2

and

C1,∞(νa) ≤ a2λ

(
1 +

a− 1

(a− 2)e

)
for a > 2.

The upper bound on C1,∞(νa) is minimal for

a∗ = 2 +
4√

17 + 16 e + 1
= 2.4557 . . . and then C1,∞(νa∗) ≤ λ× 13.1172 . . . . (20)

Consider now finite p > 1. Observe that(
%(a y)

%(y)

)′
= −a− 1

λ
exp

(
−y a− 1

λ

)
which results in

‖h2,p∗‖Lp(0,1) =
a1+1/p∗ (a− 1)

λ1/p

(∫ ∞
0

yp−1 exp

(
−y p (a− 2) + 1

λ

)
dy

)1/p

,

where we used the fact that p/p∗ = p− 1.
Suppose for the rest of this section that p is an integer. Using integration by parts p − 1

times, one can show that for any c > 0,∫ ∞
0

yp−1 exp(−y c) dy =
(p− 1)!

cp
,

and conclude that

‖h2,p∗‖Lp(0,1) =
(a− 1) a1+1/p∗

p (a− 2) + 1
λ1/p∗ ((p− 1)!)1/p,

whenever a > 1 + 1/p∗. Finally,

C1,p(νa) ≤ a1+1/p∗ λ1/p∗
(

1 +
(a− 1) ((p− 1)!)1/p

p (a− 2) + 1

)
< +∞ (21)

for a > 1 + 1/p∗.
The upper bound on C1,p(νa) is minimal for

a∗ = 2p(2p− 1)2 + (7p2 − 6p+ 1)((p− 1)!)1/p

+

√
p− 1((p− 1)!)1/(2p)

√
4p2(2p− 1)2 + (17p3 − 19p2 + 7p− 1)((p− 1)!)1/p

2p(2p− 1)(p+ ((p− 1)!)1/p)
.

For example, for p = p∗ = 2,

a∗ =
53 +

√
217

36
= 1.8814 . . .

which results in the upper bound

C1,2(νa∗) ≤
(5 +

√
217) (53 +

√
217)3/2

144 (
√

217− 1)

√
λ =

√
λ × 5.5624 . . . .
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Numerical Test 10 Consider f(x) = x and %(x) = exp(−x). Clearly, f is in our space for
p = +∞ and ‖f‖F1,∞ = 1. The value of the integral is 1, and we use the change of variables νa
as outlined above. Then the corresponding integrand is equal to

gf,νa(t) = −a2 (ln(1− t)) (1− t)a−1.

Note that for a = 1 the function gf,νa(t) = − ln(1− t) has a singularity at t = 1, for 1 < a ≤ 2
its derivative has a singularity at t = 1, and for a > 2 the singularity of g′f,νa is removed and
gf,νa ∈ W1,∞.

In the following table, we compare the integration errors of the midpoint rule with n samples
applied to gf,νa with a = a∗ as in (20), a = 1.5, and a = 1.

n a = a∗ = 2.4557 . . . a = 1.5 a = 1

10 4.353949E − 03 1.118346E − 02 3.424093E − 02
102 3.471053E − 05 6.488305E − 04 3.461569E − 03
103 2.958141E − 07 3.029058E − 05 3.465319E − 04
104 2.707151E − 09 1.271297E − 06 3.465694E − 05
105 2.596101E − 11 5.015712E − 08 3.465732E − 06

4.2 Gaussian %

Consider D = R and

%(x) =
1

σ
√

2 π
exp

(
− x2

2σ2

)
for σ > 0.

Then

‖I1,%‖ =

(
21−p∗

∫ ∞
0

(
1− erf

(
z√
2σ

))p∗
dz

)1/p∗

for p > 1,

where erf is the Gauss error function defined as erf(x) = 2√
π

∫ x
0

e−t
2

dt, and

‖I1,%‖ = 1 for p = 1.

Note that 1− erf(x) = 2√
π

∫∞
x

e−t
2

dt ≤ e−x
2

for x > 0 and hence ‖I1,%‖ < +∞ for all p ≥ 1.
By Proposition 8, for

ν(t) = νa(t) = aΦ−1
% (t+ 1/2) for t ∈ (−1/2, 1/2),

we get

‖h0,p∗‖L∞(−1/2,1/2) = a

(
a σ√

e p∗ (a2 − 1)

)1/p∗

.

Moreover

‖h1,p∗‖L∞(−1/2,1/2) = a1+1/p∗(σ
√

2π)1/p∗ ess sup
y∈R

exp

(
− y2

2σ2

(
a2 −

(
1 +

1

p∗

)))
.

Hence

‖h1,p∗‖L∞(−1/2,1/2) =

{
∞ if a2 < 1 + 1

p∗
,

c1(a) if a2 ≥ 1 + 1
p∗
,
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where
c1(a) = a1+1/p∗ (σ

√
2π)1/p∗ .

Again, by Proposition 8 we get

‖h2,p∗‖Lp(−1/2,1/2) = a1+1/p∗
(∫ ∞
−∞

∣∣∣∣(%(ay)

%(y)

)′∣∣∣∣p (%(y))1−p |y|p/p
∗

dy

)1/p

=
a1+1/p∗

(σ
√

2π)1/p−1

×
(∫ ∞
−∞

[
exp

(
− y2

2σ2
(a2 − 1)

) ∣∣∣ y
σ2

(a2 − 1)
∣∣∣]p exp

(
−y

2(1− p)
2σ2

)
|y|p/p

∗
dy

)1/p

=
a1+1/p∗

(σ
√

2π)1/p−1

a2 − 1

σ2

(∫ ∞
−∞

exp

(
− y2

2σ2
(a2 − 1)p

)
exp

(
−y

2(1− p)
2σ2

)
|y|p+p/p

∗
dy

)1/p

=
a1+1/p∗(a2 − 1)

(
√

2π)1/p−1σ1/p+1

(∫ ∞
−∞

exp

(
− y2

2σ2
((a2 − 2)p+ 1)

)
|y|p+p/p

∗
dy

)1/p

. (22)

For p tending to +∞ (and p∗ tending to 1) we see that

a1+1/p∗(a2 − 1)

(
√

2π)1/p−1σ1/p+1
→ c2(a) :=

√
2π a2 (a2 − 1)

σ
.

Furthermore, we write∫ ∞
−∞

exp

(
− y2

2σ2
((a2 − 2)p+ 1)

)
|y|p+p/p

∗
dy

=

∫ ∞
−∞

[
exp

(
− y2

2σ2

(
(a2 − 2) + 1− 1

p∗

))
|y|1+1/p∗

]p
dy.

From this we conclude that

‖h2,1‖L∞(−1/2,1/2) = c2(a) max
z∈R

z2 exp

(
− z2

2σ2
(a2 − 2)

)
= c2(a) e−1 2σ2

a2 − 2

for a2 > 2. Hence

C1,∞(νa) ≤
√

2 πσ a2

(
1 +

2

e

a2 − 1

a2 − 2

)
.

It is easy to check that the upper bound on C1,∞(νa), as a function of a, attains its minimum
at

a∗ =

√
2 +

2√
2 + e

= 1.70902 . . . and then C1,∞(a∗) = σ × 18.5582 . . . for p = +∞.

(23)
Returning to (22), and using p(1 + 1/p∗) = 2p− 1, we have for p < +∞,

‖h2,p∗‖Lp(−1/2,1/2) =
a1+1/p∗(a2 − 1)

(
√

2π)1/p−1σ1/p+1

(∫ ∞
−∞

exp

(
− x2

2σ2
((a2 − 2)p+ 1)

)
|x|p+p/p

∗
dx

)1/p

= c2(a)

(
1√

2π σ a

∫ ∞
−∞
|x|2 p−1 exp

(
− x2

2σ2
(p (a2 − 2) + 1)

)
dx

)1/p

.
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This means that ‖h2,p∗‖Lp(−1/2,1/2) < +∞ if and only if p(a2 − 2) + 1 > 0, i.e.,

a2 > 1 +
1

p∗
.

By the change y = x
σ

√
p(a2 − 2) + 1 we get that

‖h2,p∗‖Lp(−1/2,1/2) = c3(a)

(
1√
2 π

∫ ∞
−∞
|y|2 p−1 exp

(
−y

2

2

)
dy

)1/p

,

where

c3(a) = c2(a)
σ2−1/p

(p (a2 − 2) + 1) a1/p
=

√
2π a1+1/p∗ (a2 − 1)σ1/p∗

(p (a2 − 2) + 1)
.

It is well known that for natural numbers p,

1√
2 π

∫ ∞
−∞
|y|2 p−1 exp

(
−y

2

2

)
dy =

1√
2π

2p (p− 1)! .

Hence, for natural numbers p,

‖h2,p∗‖Lp(−1/2,1/2) = c3(a)
2 ((p− 1)!)1/p

(2 π)1/(2p)
,

and, for a2 > 1 + 1
p∗

,

C1,p(νa) ≤ c1(a) + c3(a)
2 ((p− 1)!)1/p

(2 π)1/(2p)

= a1+1/p∗ (σ
√

2 π)1/p∗ +

√
2π a1+1/p∗ (a2 − 1)σ1/p∗

p (a2 − 2) + 1

2 ((p− 1)!)1/p

(2 π)1/(2p)

= a1+1/p∗ (σ
√

2 π)1/p∗
(

1 +
2 (a2 − 1) ((p− 1)!)1/p

p (a2 − 2) + 1

)
< +∞.

For example, if p = p∗ = 2, then

C1,2(νa) ≤ a3/2

√
σ
√

2π

(
2 +

1

2a2 − 3

)
.

As a function of a, the upper bound on C1,2(νa) attains its minimum at a∗ = 3/2 and then

C1,2(νa∗) ≤ 2

√
6
√

2π
√
σ =
√
σ × 7.7562 . . . .

If p is not a natural number, we can estimate

1√
2 π

∫ ∞
−∞
|y|2 p−1 exp

(
−y

2

2

)
dy ≤ C +

1√
2π

∫ ∞
−∞
|y|2 dpe−1 exp

(
−y

2

2

)
dy

= C +
1√
2π

2dpe (dpe − 1)!

for some absolute constant C > 0. Then, ‖h2,p∗‖Lp(−1/2,1/2) and C1,p(νa) can be estimated
accordingly.
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Numerical Test 11 Consider integration of the function f(x) = |x|, similar to Numerical
Test 10. Then the integral to be computed is∫ ∞

−∞

|x|
σ
√

2π
exp

(
− x2

2σ2

)
dx =

√
2

π
.

In this case, our change of variables is defined as x = νa(t) := a
√

2 erfinv(2t), where a ≥ 1, and
erfinv is the inverse of the erf function. This results in the integral∫ 1/2

−1/2

gf,νa(t) dt with gf,νa(t) = a |ν(t)| exp

(
−ν

2(t)

2

(
1− 1

a2

))
.

Note that gf,νa ∈ W1,∞ for a >
√

2.
In the following table, we compare the absolute integration errors of the midpoint rule with

n samples applied to gf,νa with a = a∗ as in (23), a =
√

2, and a = 1.

n a = a∗ = 1.70902 . . . a =
√

2 a = 1

10 6.044012E − 03 8.241433E − 03 2.734692E − 02
102 1.096395E − 04 1.157302E − 03 2.106636E − 03
103 1.200953E − 06 6.968052E − 05 1.770735E − 04
104 1.217389E − 08 3.509887E − 06 1.559486E − 05
105 1.219963E − 10 1.642630E − 07 1.409149E − 06

5 γ-Weighted Spaces and MDM

We show in this section how the algorithms derived via the change of variables can be used in
efficient implementation of the Multivariate Decomposition Method (MDM for short) that was
introduced in [6] (see also [5]). Our presentation follows [11, 12], where more details can be
found.

Consider the following γ-weighted space Fγ = Fγ,d,p,q of functions f : D → R with mixed
first order partial derivatives bounded in Lp(D

d) (as before) and for which the following norm
of Fγ is finite,

‖f‖Fγ :=

[∑
u

γ−qu ‖f (u)(·u;0)‖qLp(Du)

]1/q

< ∞.

Here, q ∈ [1,∞], the summation above is with respect to all subsets

u ⊆ {1, 2, . . . , d},

f (u) denotes
∏

j∈u
∂
∂xj

f , the vector (xu;0) is the d-dimensional vector x = (x1, x2, . . . , xd) with

the j-th component xj set to zero whenever j /∈ u, and γu are given positive numbers quantifying
importance of the subsets u. For u = ∅, we set f (∅) ≡ f(0) and γ∅ = 1. For simplicity, we
consider only so-called product weights, introduced in [9], of the form

γu =
∏
j∈u

γj,

where {γj}j≥1 is a given non-increasing sequence of positive numbers.
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Remark 12 The results can easily be extended to functions with infinitely many (d = +∞)
variables. Then the summation is with respect to all finite subsets u of N.

It is well known that any f ∈ Fγ has a unique anchored decomposition of the form

f(x) =
∑
u

fu(x),

where, for u 6= ∅, fu depends only on xj with j ∈ u and is anchored at zero, i.e.,

fu(x) = 0 if there is j ∈ u such that xj = 0.

Moreover,

f (u)
u = f (u)(·u;0), which implies that ‖f‖Fγ =

[∑
u

γ−qu ‖fu‖
q
Fu,p

]1/q

and fu ∈ Fu,p,

where the spaces Fu,p are equivalent to Fd,p for d = |u| with the only difference that the functions
in Fu,p depend on the variables xj with j ∈ u. In particular, Fd,p = F{1,2,...,d},p. Therefore

Id,%(f) =
∑
u

I|u|,%(fu).

Suppose now that [
∞∑
j=1

γq
∗

j

]1/q∗

< ∞. (24)

Following [7], one can show that for ε > 0 there is a set Act(ε) containing some u’s with
cardinality |Act(ε)| = O(ε−1) such that

∑
u/∈Act(ε)

|I|u|,%(fu)| ≤
ε

21/q∗

∥∥∥∥∥∥
∑

u/∈Act(ε)

fu

∥∥∥∥∥∥
Fγ

and d(ε) := max
u∈Act(ε)

|u| = O

(
ln(1/ε)

ln(ln(1/ε))

)
.

As shown recently in [2], the absolute constants in the big-O notations above are very small,
see also Example 13. Hence it is enough to aproximate the integrands I|u|,%(fu) for u ∈ Act(ε)
with the total error bounded by

ε

21/q∗

∥∥∥∥∥∥
∑

u∈Act(ε)

fu

∥∥∥∥∥∥
Fγ

.

This can be achieved by using cubatures Q|u|,%,nu (see (3)) with appropriately chosen natural
numbers nu such that ∑

u∈Act(ε)

(
γuC|u|,p(ν) error(Q|u|;nu ; W|u|,p)

)q∗1/q∗

≤ ε

21/q∗
,

which follows from (4). Note that

γuC|u|,p(ν) =
∏
j∈u

(γj C1,p(ν)),
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due to Proposition 1. Hence, as shown in, e.g. [11], the sum of all nu is small,∑
u∈Act(ε)

nu = O(ε−1).

This means that the corresponding MDM uses altogether O(1/ε) function values to approximate
O(1/ε) integrals, each with at most d(ε) = O(ln(1/ε)/ ln(ln(1/ε))) variables.

We now illustrate this by the following special case.

Example 13 Let D = R+, %(x) = exp(−x/λ)/λ, γj = 1/jβ with some positive β, and q = 1.
Recall that then ‖I1,%‖ = (λ/p∗)1/p∗ and, hence, we can take

Act(ε) =
{
u : ‖I1,%‖|u| γu > ε

}
=

{
u :

(λ/p∗)|u|/p
∗∏

j∈u j
β

> ε

}
,

for which

d(ε) = max

{
k :

(λ/p∗)k/p
∗

(k!)β
> ε

}
.

For instance for p = p∗ = 2, λ = 2, and ε = 10−4 we have:

β 2 3 4 5
d(ε) 4 3 3 3

Numerical Test 14 Let, similarly to Test 10, D = R+, %(x) = exp(−x), and define, for d ≥ 1,
fd(x) =

∏d
j=1 xj for x = (x1, . . . , xd) ∈ Rd

+. The value of the integral is then 1 and we have
‖f‖∞,d = 1. Using the change of variables νa from (19), the corresponding integrand is

gd,a(t) =
d∏
j=1

(
−a2 (ln(1− tj)) (1− tj)a−1

)
.

As integration rules, we use lattice rules1 (cf. [8]) with n = 2k, k = 10, 11, 12, . . . , 15, points
in [0, 1)d.

We compare the absolute integration errors for a = a∗ as in (20), a = 1.5, and a = 1, and
d = 3 and d = 4. In view of Example 13, it is justified to concentrate on d in this range. The
results below indicate that the approach taken in this paper yields effective improvements over
the standard change of variables.

d = 3
n a = a∗ = 2.4557 . . . a = 1.5 a = 1

210 1.088922E − 04 9.822891E − 04 3.702216E − 03
211 3.972304E − 05 3.220787E − 04 1.725302E − 02
212 1.160874E − 05 1.342448E − 04 4.356446E − 03
213 3.077676E − 06 1.812985E − 04 7.678733E − 03
214 7.859542E − 07 1.831772E − 05 2.343056E − 03
215 2.052312E − 07 2.369181E − 06 3.260093E − 03

1We use lattice rules with generating vectors taken from the website of Frances Y. Kuo. The generating
vectors used in this example were generated for equal product weights γj = 1, referred to as “lattice-28001” at
http://web.maths.unsw.edu.au/~fkuo/lattice/index.html .
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d = 4
n a = a∗ = 2.4557 . . . a = 1.5 a = 1

210 2.125335E − 05 1.461441E − 03 1.316315E − 02
211 1.092869E − 05 7.043893E − 04 3.040979E − 02
212 5.426712E − 06 8.995698E − 06 1.980920E − 02
213 6.603896E − 06 2.797430E − 04 1.999552E − 02
214 8.905416E − 06 9.166504E − 05 5.214687E − 03
215 2.602460E − 06 6.881108E − 05 3.043182E − 04
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