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Abstract
This paper introduces a novel hybrid high-order (HHO) method to approximate the
eigenvalues of a symmetric compact differential operator. The HHOmethod combines
two gradient reconstruction operators by means of a parameter 0 < α < 1 and intro-
duces a novel cell-based stabilization operator weighted by a parameter 0 < β < ∞.
Sufficient conditions on the parameters α and β are identified leading to a guaranteed
lower bound property for the discrete eigenvalues. Moreover optimal convergence
rates are established. Numerical studies for the Dirichlet eigenvalue problem of the
Laplacian provide evidence for the superiority of the new lower eigenvalue bounds
compared to previously available bounds.

1 Introduction

The eigenvalue problem for symmetric compact differential operators is a funda-
mental task in the numerical analysis with a well-understood a priori error analysis
for conforming finite element methods (FEM) leading to optimal asymptotic con-
vergence rates [4,5]. The Rayleigh–Ritz min–max principle shows that the discrete
FEM eigenvalues are also guaranteed upper bounds of the exact eigenvalues, even
in the pre-asymptotic range of coarse triangulations. In practice, guaranteed lower
bounds (GLBs) can be even more important in a safety analysis in computational
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mechanics or for the detection of spectral gaps. The computation of lower eigen-
value bounds has been achieved based on the solution of nonconforming finite
element schemes followed by a simple post-processing in [15,16]. In particular, let-
ting κ2 := π−2 + (2n(n + 1)(n + 2))−1 in nD, and if λCR( j) is the j-th discrete
eigenvalue computed with the Crouzeix–Raviart FEM, [16] proves (without extra
conditions; the linear independency condition in [15,16] can be neglected [19,27])
that

GLBCR( j) := λCR( j)

1 + κ2h2maxλCR( j)
≤ λ( j), (1.1)

thereby delivering a GLB on the j-th continuous Dirichlet eigenvalue λ( j) for the
Laplacian. Several other contributions [10,11,27–29,34,37,38] derived GLBs using
the maximal mesh-size hmax as a global parameter as in (1.1). This results in a possible
underestimation for locally refined triangulations.

This motivated the design of novel schemes for the direct computation of GLBs
without a global post-processing. The first example can be found in [20] for a hybridiz-
able discontinuous Galerkin (HDG) method with Lehrenfeld–Schöberl stabilization,
also studied under the label weak Galerkin scheme. The scheme proposed in [20]
requires the fine tuning of skeletal-based stabilization terms. The main contribution
of the present work is to introduce a new scheme which leads to GLBs on the eigen-
values under a simplified tuning of the stabilization terms. To achieve our goal, we
rely on the framework of hybrid high-order (HHO)methods. HHOmethods have been
introduced in [23,24] for linear diffusion and locking-free linear elasticity and have
been bridged to HDG and nonconforming virtual element methods (ncVEM) in [12].
Recall that in HHO methods the discrete unknowns are polynomials of degree k ≥ 0
attached to the mesh faces and polynomials of degree � ∈ {k − 1, k, k + 1}, � ≥ 0,
attached to the mesh cells. In the present setting, we consider the degree � = k + 1
for the cell unknowns. Moreover the two key ingredients in HHO methods are a local
gradient reconstruction operator and a local stabilization operator. The HHO method
devised herein introduces two novelties with respect to the literature. The first nov-
elty is that the gradient reconstruction combines an operator mapping to piecewise
Raviart–Thomas functions of degree k and an operator mapping to the piecewise gra-
dient of piecewise polynomials of degree at most (k + 1). Although Raviart–Thomas
reconstructions were considered previously in [1,21], it is the first time that they are
combined with another reconstruction. Note that the present analysis cannot employ
the single Raviart–Thomas reconstruction. The second novelty is that the stabilization
operator is not skeletal-based but cell-based.

Theweak formulation of the continuous Laplace eigenvalue problem seeks (λ, u) ∈
R

+ × H1
0 (�) such that

a(u, v) = λb(u, v) for all v ∈ H1
0 (�) and b(u, u) = 1. (1.2)

The discrete eigenvalue problem seeks (λh, uh) ∈ R
+ × Vh with

ah(uh, vh) = λhbh(uh, vh) for all vh ∈ Vh and bh(uh, uh) = 1. (1.3)
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While the bilinear form bh represents the L2(�) scalar product b, the gradient-like
approximations in the bilinear form ah involve two reconstructions R and GRT of the
discrete unknowns inVh := Pk+1(T )×Pk(F)with the spaceof piecewise polynomials
of degree at most (k+1) on each simplex in the triangulation Pk+1(T ) and the space of
piecewise polynomials of degree at most k on each face Pk(F). The precise definition
of the linear maps R : Vh → L2(�;R) and GRT : Vh → L2(�;Rn) can be found
below in Sect. 3.1. Given two positive parameters 0 < α < 1 and 0 < β< ∞, for any
uh := (uT , uF ) and vh := (vT , vF ) ∈ Vh , the energy scalar product reads

ah(uh, vh) := (GRT (uh),GRT (vh))L2(�)

− α
(
(1 − 	k)GRT (uh), (1 − 	k)GRT (vh)

)
L2(�)

+ β(∇pw(uT − R(uh)),∇pw(vT − R(vh)))L2(�). (1.4)

Section 7.1.2 presents an algorithm for an effective parameter selection in the lowest-
order case. The Raviart–Thomas reconstruction GRT of the gradient does not require
a stabilization in the source problem [1,21], but the second term on the right-hand
side in (1.4) has a negative sign and another stabilization with the reconstruction R
in Pk+1(T ) is added. This paper investigates the a priori error analysis for discrete
eigenvalues and eigenvectors and confirms optimal convergence rates. Moreover it
shows that the following GLB property holds for the j-th discrete eigenvalue λh( j)
of (1.3) and the j-th eigenvalue λ( j) of (1.2):

σ 2β + δ2 min{λ( j), λh( j)} ≤ α < 1 implies λh( j) ≤ λ( j), (1.5)

with δ := κhmax and σ , κ related to the stability of L2-projections onto piecewise
polynomial spaces. (Notice that (1.5) means that each of the conditions (i) σ 2β +
δ2λ( j) ≤ α < 1 (a priori) and (ii) σ 2β + δ2λh( j) ≤ α < 1 (a posteriori) implies the
GLB property.) Numerical examples study the feasibility of the condition identified
in the GLB (1.5) and the relation to (1.1) and the bounds in [20].

The remaining parts of this paper are organised as follows. After a short summary of
the notation in Sect. 2, Sect. 3 introduces the new method (1.3) with all the necessary
operators and the discrete bilinear forms ah and bh . Theorem 4.1 in Sect. 4 establishes
(1.5). Section 5 contains the a priori error analysis which hinges on the Babuška–
Osborn theory [4] and is inspired by [9] for the eigenvalue approximation by means of
the standard HHOmethod (which does not have the GLB property). Section 6 concen-
trates on an alternative formulation of the lowest-order version for comparison with
the Crouzeix–Raviart method. The numerical experiments in the final Sect. 7 illustrate
the advantage of the direct lower bounds delivered by the present HHO method in the
case of non-convex domains where adaptive mesh-refinement is necessary for optimal
convergence rates. These results also provide numerical evidence for the superiority
of the new GLBs compared to the aforementioned methods.
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2 Notation and preliminaries

2.1 Triangulations

Let T denote a shape-regular triangulation of a bounded polyhedral Lipschitz domain
� ⊂ R

n into closed n-simplices in the sense of Ciarlet [2,6,7,26]. For any simplex
T ∈ T , let F(T ) denote the set of its (n + 1) sides and letN (T ) denote the set of its
(n + 1) vertices. The intersection T1 ∩ T2 of two distinct, non-disjoint simplices T1
and T2 in T is the shared sub-simplex conv{N (T1) ∩ N (T2)} = ∂T1 ∩ ∂T2 of their
shared vertices. Furthermore, F := ⋃

T∈T F(T ) (resp. F(�) or F(∂�)) denotes the
set of all (resp. interior or boundary) sides. For any simplex or sub-simplex K , let
hK := diam(K ) denote its diameter. The piecewise constant function hT ∈ P0(T )

takes the value hT |T = hT on each simplex T ∈ T and hmax := maxT∈T hT denotes
the maximal mesh-size. Throughout this paper, νT is the piecewise constant function
which denotes for each simplex T ∈ T the outer unit normal vector νT |T = νT .

2.2 Scalar products and differential operators

Standard notation applies to Lebesgue and Sobolev spaces, H1(T ) abbreviates
H1(int(T )) for a compact T with interior int(T ). Throughout this paper, (•, •)L2(ω)

abbreviates the L2-scalar product associated with volumes ω ⊆ �, whereas 〈•, •〉∂ω

denotes the duality brackets in H1/2(∂ω)× H−1/2(∂ω) that extend the scalar product
in L2(∂ω) associated with the boundary ∂ω. We also abbreviate

〈•, •〉∂T :=
∑

T∈T
〈•, •〉∂T .

We consider the differential operators divergence (div), gradient (∇), and the Laplace-
operator (�), aswell as their piecewise applications divpw,∇pw, and�pw. For instance,
∇pwv abbreviates (∇pwv)|T = ∇(v|T ) for any T ∈ T and a piecewise function
v ∈ H1(T ) := {v ∈ L2(�) : v|T ∈ H1(T ) for any T ∈ T }. The scalar products
a : H1

0 (�) × H1
0 (�) → R and b : L2(�) × L2(�) → R read

a(u, v) := (∇u,∇v)L2(�) for all u, v ∈ H1
0 (�),

b(u, v) := (u, v)L2(�) for all u, v ∈ L2(�),

and induce the norms ‖| • ‖|2 := a(•, •) and ‖ • ‖2
L2(�)

:= b(•, •). We also consider
the piecewise bilinear form

apw(u, v) := (∇pwu,∇pwv)L2(�) for all u, v ∈ H1(T ),

with induced semi-norm ‖| • ‖|2pw := apw(•, •). The same notation applies to norms
of scalar- and vector-valued functions.

123



Guaranteed lower bounds on eigenvalues of elliptic…

2.3 Discrete function spaces and L2-projections

For any M ∈ T or M ∈ F , � ∈ N0, m ∈ N, let P�(M;Rm) denote the set of
polynomials of total degree at most � in each component regarded as functions in
L∞(M;Rm) and set

P�(T ;Rm) := {
q ∈ L∞(�;Rm) : for all T ∈ T , q|T ∈ P�(T ;Rm)

}
,

P�(F;Rm) := {
q ∈ L∞(F;Rm) : for all F ∈ F , q|F ∈ P�(F;Rm)

}
,

P�(F(�);Rm) := {
q ∈ P�(F;Rm) : for all F ∈ F(∂�), q|F = 0

}
,

and we omit R
m whenever m = 1. The piecewise Raviart–Thomas space is

RT pw
� (T ) := P�(T )x + P�(T ;Rn). The associated L2-projections are denoted

	� : L2(�) → P�(T ), 	F ,� : L2(F) → P�(F), 	F,� : L2(F) → P�(F) for
all F ∈ F , and 	RT ,� : L2(�;Rn) → RT pw

� (T ). These projections act component-
wise, e.g., for all f ∈ H1(�), 	�( f ) ∈ P�(T ) and 	�(∇ f ) ∈ P�(T ;Rn).

The following two properties of the L2-projections are useful in the analysis below.
These properties are classical (see, e.g., [7, Lemma 4.3.8], [2, Prop. 2.5.1], [22, §1.4])
and are stated without proof.

Lemma 2.1 (Commutation) 	�(	RT ,�( f )) = 	�( f ) = 	RT ,�(	�( f )) holds for all
f ∈ L2(�;Rn).

Lemma 2.2 (Approximation)The following holds for allm = 1, . . . , �+1, all T ∈ T ,
and all φ ∈ Hm(T ),

‖φ − 	�(φ)‖L2(T ) + h1/2T ‖φ − 	�(φ)‖L2(∂T ) ≤ Capxh
m
T |φ|Hm (T ), (2.1)

and for all φ ∈ Hm(T ;Rn),

‖φ − 	RT ,�(φ)‖L2(T ) + h1/2T ‖φ − 	RT ,�(φ)‖L2(∂T ) ≤ Capxh
m
T |φ|Hm(T ). (2.2)

The constant Capx depends on the shape-regularity of T and on the polynomial degree
�, but is independent of the cell diameter hT .

The following refined stability estimates for L2-projections play an important role
in the devising of guaranteed lower bounds on the eigenvalues.

Theorem 2.3 (Refined stability estimates) There is Cst ≥ 1 such that, for all T ∈ T
and all f ∈ H1(T ),

‖∇(1 − 	�+1)( f )‖L2(T ) ≤ Cst‖(1 − 	�)(∇ f )‖L2(T ). (2.3)

Moreover there is κ > 0 such that for all T ∈ T and all f ∈ H1(T ),

‖(1 − 	�+1)( f )‖L2(T ) ≤ κhT ‖(1 − 	�)(∇ f )‖L2(T ). (2.4)
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The constants Cst and κ depend on the shape-regularity of T and on the polynomial
degree �, but are independent of the cell diameter hT .

Remark 2.4 (Constants Cst and κ) The stability estimate (2.3) is established in [20]
where it is shown that, for any T ∈ T , the conditions

(H1) 	�+1(1) = 1 and (H2) P�(T ;Rn) ∩ ∇H1(T ) ⊂ ∇P�+1(T )

are equivalent to the existence of an hT -independent constant Cst (T ) > 0 such that
(2.3) holds on T ∈ T , and one then sets Cst := max{Cst (T ) : T ∈ T }. The esti-
mate Cst ≥ 1 readily follows from the trivial bound ‖∇(1 − 	�+1)( f )‖L2(T ) ≥
‖(1 − 	�)(∇ f )‖L2(T ) since ∇	�+1( f ) ∈ P�(T ;Rn). The Poincaré inequality
‖(1 − 	0)( f )‖L2(T ) ≤ CPhT ‖∇ f ‖L2(T ) for all f ∈ H1(T ) and (2.3) lead to (2.4)
with κ ≤ CPCst . The Poincaré constant reads CP := 1/ j11 for n = 2 with the first
root of the first Bessel function j11 [30] and CP ≤ 1/π for n ≥ 3 [3,32]. For � = 0,
an upper bound on the constant κ was first computed in [16] and improved in [15] for
n = 2. The appendix of [20] proves κ2 ≤ π−2 + (2n(n + 1)(n + 2))−1 for any space
dimension n.

2.4 Vector andmatrix notation

For a, b ∈ R
m×k , let a ·b = a�b ∈ R

k×k and a⊗b = ab� ∈ R
m×m . The notation |• |

depends on the context and denotes the Euclidean length of a vector, the cardinality
of a finite set, the n- or (n − 1)-dimensional Lebesgue measure of a subset of Rn .
Furthermore a � b abbreviates that there exists a generic constant C (independent of
the mesh-size) with a ≤ Cb, whereas a ≈ b abbreviates a � b � a.

3 Themodified HHOmethod

This section is devoted to the reconstruction and stability operators of the newmethod
(1.3) and their properties. Moreover, the discrete bilinear forms are discussed and the
abstract matrix eigenvalue problem is introduced.

3.1 Operators of interest

Set V := H1
0 (�). Let k ≥ 0 be the polynomial degree and set

Vh := Pk+1(T ) × Pk(F(�)). (3.1)

The components of vh := (vT , vF ) ∈ Vh are vT := (vT )T∈T , vF := (vF )F∈F .
Note that vF ≡ 0 whenever F ∈ F(∂�) by definition of Pk(F(�)). Let I denote the
interpolation operator I : V → Vh such that I (φ) = (	k+1(φ),	F ,k(φ)) for all
φ ∈ V .

Define the reconstruction operator R : Vh → Pk+1(T ) such that for any vh :=
(vT , vF ) ∈ Vh , R(vh) ∈ Pk+1(T ) is the unique function with 	0R(vh) = 	0(vT )
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and

(∇pwR(vh),∇pw p)L2(�) = −(vT ,�pw p)L2(�)

+ 〈vF ,∇pw p · νT 〉∂T for all p ∈ Pk+1(T ). (3.2)

LetG denote theGalerkinprojection onto Pk+1(T ), i.e., for anyφ ∈ H1(T ), we have
G(φ) ∈ Pk+1(T ) with 	0G(φ) = 	0(φ) and apw((1 − G)(φ), p) = 0 for all p ∈
Pk+1(T ).

Lemma 3.1 [23,24] R ◦ I = G holds in V := H1
0 (�).

The Raviart–Thomas reconstruction GRT : Vh → RT pw
k (T ) defines a unique

GRT (vh) ∈ RT pw
k (T ) for all vh := (vT , vF ) ∈ Vh such that

(GRT (vh), qRT )L2(�) = −(vT , divpwqRT )L2(�)

+ 〈vF , qRT · νT 〉∂T for all qRT ∈ RT pw
k (T ). (3.3)

The comparison of (3.2) with (3.3) proves that ∇pwR(vh) = 	∇Pk+1GRT (vh) for all
vh ∈ Vh , where	∇Pk+1 denotes the L

2-projection onto∇pwPk+1(T ) (composed of the
gradients of piecewise polynomials of degree (k + 1)). Since ∇pw ◦G = 	∇Pk+1 ◦∇,
we have (∇pw ◦ R) ◦ I = 	∇Pk+1 ◦ ∇ in V := H1

0 (�).

Lemma 3.2 [1,21] GRT ◦ I = 	RT ,k ◦ ∇ holds in V := H1
0 (�).

The stabilization operator S : Vh → Pk+1(T ) is defined for any vh :=
(vT , vF ) ∈ Vh by

S(vh) := vT − R(vh). (3.4)

Lemma 3.3 Given any φ ∈ V = H1
0 (�) and any simplex T ∈ T , the stability term

fulfils

S(Iφ) = 	k+1(φ) − G(φ), (3.5)

‖∇S(Iφ)‖L2(T ) ≤ σ‖(1 − 	k)(∇φ)‖L2(T ), (3.6)

‖|S(Iφ)‖|pw ≤ σ‖(1 − 	k)(∇φ)‖L2(�) (3.7)

with σ 2 := C2
st − 1 and the constant Cst from Theorem 2.3.

Proof The definition (3.4) and Lemma 3.1 imply (3.5). Since ∇pw(1 − G)(φ) is L2-
orthogonal to ∇pwPk+1(T ), the Pythagoras theorem proves for any T ∈ T ,

‖∇S(Iφ)‖2L2(T )
= ‖∇	k+1(φ) − ∇G(φ)‖2L2(T )

= ‖∇(1 − 	k+1)(φ)‖2L2(T )
− ‖∇(1 − G)(φ)‖2L2(T )

.
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The first term is estimated in (2.3) by C2
st‖∇φ − 	k(∇φ)‖2

L2(T )
, whereas the best

approximation property of 	k proves that

‖∇φ − 	k(∇φ)‖L2(T ) ≤ ‖∇φ − ∇G(φ)‖L2(T ) = ‖∇(1 − G)(φ)‖L2(T ).

The combination finishes the proof of (3.6), and (3.7) follows by summation over
T ∈ T . ��
Remark 3.4 (Piecewise evaluation) For all T ∈ T , the reconstructions R(vh)|T and
GRT (vh)|T and the stabilization S(vh)|T soley depend on the local data vT = vT |T
and vF = vF |F for all F ∈ F(T ), so that all these quantities can be computed
piecewise and in parallel.

3.2 Discrete bilinear forms

Given global constants 0 < α < 1 and 0 < β< ∞, the reconstructions in (3.2)–(3.3),
and the stabilization (3.4), the bilinear form ah : Vh ×Vh → R is defined in (1.4), and
we define the L2 scalar product bh : Vh × Vh → R by bh(uh, vh) := (uT , vT )L2(�)

for all uh = (uT , uF ) and vh = (vT , vF ) ∈ Vh . The L2-projection property of 	k

and the definition of the piecewise bilinear form apw imply that the bilinear form ah
can be rewritten as follows for any uh, vh ∈ Vh ,

ah(uh, vh) = (1 − α)
(
(1 − 	k)GRT (uh), (1 − 	k)GRT (vh)

)
L2(�)

+ (	kGRT (uh),	kGRT (vh))L2(�) + βapw(S(uh), S(vh)). (3.8)

The vector space Vh is equipped with the norms ‖ • ‖h [24, Eq. (28)] and ‖ • ‖a,h ,
defined for any vh ∈ Vh by

‖vh‖2h :=
∑

T∈T

(
‖∇vT ‖2L2(T )

+
∑

F∈F(T )

h−1
F ‖vF − vT ‖2L2(F)

)
, (3.9)

‖vh‖2a,h := ah(vh, vh)

= ‖GRT (vh)‖2L2(�)
− α‖(1 − 	k)GRT (vh)‖2L2(�)

+ β‖|S(vh)‖|2pw
= (1 − α)‖GRT (vh)‖2L2(�)

+ α‖	kGRT (vh)‖2L2(�)
+ β‖|S(vh)‖|2pw.

(3.10)

The definiteness of ‖•‖h is known and that of ‖•‖a,h follows from Lemma 3.5 below.
This guarantees that ah(•, •) is a scalar product on Vh × Vh which induces a norm on
Vh . Consequently the source problem associated with ah is well posed owing to the
Lax–Milgram lemma.

Lemma 3.5 There exist constants γ , γ > 0, independent of the mesh-size, such that

γ ‖vh‖2h ≤ ah(vh, vh) ≤ γ ‖vh‖2h for all vh ∈ Vh .
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Proof The Pythagoras theorem and the best approximation property of 	F,k show for
any T ∈ T , F ∈ F(T ), and vh = (vT , vF ) ∈ Vh with vT |T = vT and vF |F = vF ,
that

‖vT − vF‖2L2(F)
= ‖(1 − 	F,k)(vT )‖2L2(F)

+ ‖	F,k(vT ) − vF‖2L2(F)

≤ ‖(1 − 	0)(vT )‖2L2(F)
+ ‖	F,k(vT ) − vF‖2L2(F)

.

The trace inequality from [8,13] and [22, Eq. (1.42)] together with the Poincaré
inequality and the shape-regularity of T lead to

‖(1 − 	0)(vT )‖2L2(F)
≤ |F |

|T | ‖(1 − 	0)(vT )‖L2(T )

(‖(1 − 	0)(vT )‖L2(T ) + 2hT /n‖∇vT ‖L2(T )

)

≤ CP
h2T |F |
|T | (CP + 2/n)‖∇vT ‖2L2(T )

≤ C2hF‖∇vT ‖2L2(T )
.

It is shown in [1,21] (see, e.g., Lemma 1 in [1]) that there is C1 such that for any
T ∈ T ,

∑

F∈F(T )

h−1
F ‖	F,k(vT ) − vF‖2L2(T )

≤ C1‖GRT (vh)‖2L2(T )
.

The combination of the preceding three displayed inequalities leads to an estimator of
h−1
F ‖vT − vF‖2

L2(F)
. The sum over all T ∈ T and F ∈ F(T ) reads

∑

T∈T

∑

F∈F(T )

h−1
F ‖vT − vF‖2L2(F)

≤ C1‖GRT (vh)‖2L2(�)
+ C2(n + 1)‖|vT ‖|2pw.

(3.11)

Since ∇pwR = 	∇Pk+1GRT , we infer ‖|R(vh)‖|pw = ‖	∇Pk+1GRT (vh)‖L2(�)

≤ ‖GRT (vh)‖L2(�). This and the triangle inequality show that

‖|vT ‖|pw ≤ ‖|vT − R(vh)‖|pw + ‖|R(vh)‖|pw=‖|S(vh)‖|pw + ‖	∇Pk+1GRT (vh)‖L2(�)

≤ ‖|S(vh)‖|pw + ‖GRT (vh)‖L2(�). (3.12)

The combination of (3.11)–(3.12) and the last identity from (3.10) shows that

‖vh‖2h = ‖|vT ‖|2pw +
∑

T∈T

∑

F∈F(T )

h−1
F ‖vT − vF‖2L2(F)

≤ 2(1 + C2(n + 1))‖|S(vh)‖|2pw + (2 + C1 + 2C2(n + 1))‖GRT (vh)‖2L2(�)

≤ γ −1((1 − α)‖GRT (vh)‖2L2(�)
+ β‖S(vh)‖2L2(�)

) ≤ γ −1‖vh‖2a,h,

with the constant γ −1 := max{2(1+C2(n+ 1))/β, (2+C1 + 2C2(n+ 1))/(1−α)}.
On the other hand, for any T ∈ T , (3.3) with qRT = GRT (vh), an integration by parts,
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and the Cauchy–Schwarz inequality lead to

‖GRT (vh)‖2L2(T )
= (∇vT ,GRT (vh))L2(T ) + 〈vF − vT ,GRT (vh) · νT 〉∂T
≤ ‖∇vT ‖L2(T )‖GRT (vh)‖L2(T )

+
∑

F∈F(T )

h1/2F ‖GRT (vh)‖L2(F)h
−1/2
F ‖vF − vT ‖L2(F).

A combination of a trace and an inverse estimate for Raviart–Thomas functions shows
that h1/2T ‖GRT (vh)‖L2(∂T ) ≤ C3‖GRT (vh)‖L2(T ). Since hF ≤ hT for any F ∈ F(T ),
the Cauchy–Schwarz inequality in Rn+1 leads to

‖GRT (vh)‖2L2(T )
≤ 2‖∇vT ‖2L2(T )

+ 2C2
3

∑

F∈F(T )

h−1
F ‖vF − vT ‖2L2(F)

.

The sum over all T ∈ T reads

‖GRT (vh)‖2L2(�)
≤ 2‖|vT ‖|2pw + 2C2

3

∑

T∈T

∑

F∈F(T )

h−1
F ‖vF − vT ‖2L2(F)

≤ 2max{1,C2
3 }‖vh‖2h .

The boundedness of the stability contribution follows from the triangle inequality, the
estimate ‖|R(vh)‖|pw ≤ ‖GRT (vh)‖L2(�) shown above and the last bound, leading to

‖|S(vh)‖|pw ≤ ‖|vT ‖|pw + ‖GRT (vh)‖L2(�) ≤
(
1 + √

2max{1,C3}
)
‖vh‖h .

The second identity in (3.10) shows that ‖vh‖2a,h ≤ ‖GRT (vh)‖2L2(�)
+ β‖|S(vh)‖|2pw.

This concludes the proof with γ := 2β + (1 + 2β)2max{1,C2
3 }. ��

3.3 Matrix eigenvalue problem

The algebraic realization of the eigenvalue problem (1.3) leads to a matrix eigenvalue
problem with coefficient matrices and vector (xT , xF ) ∈ R

dimPk+1(T )+dimPk (F(�))

(
AT T AT F
AFT AFF

) (
xT
xF

)
= λh

(
BT T 0
0 0

)(
xT
xF

)
and xT · BT T xT = 1.

(3.13)

The bilinear form bh solely depends on the volume components. The elimination of
the face unknowns leads to the Schur complement

ST T = AT T − AT F A−1
FF AFT ,

123



Guaranteed lower bounds on eigenvalues of elliptic…

and the equivalent matrix eigenvalue problem

ST T xT = λh BT T xT and xT · BT T xT = 1. (3.14)

The mass matrix BT T ∈ R
dimPk+1(T )×dimPk+1(T ) is positive definite and allows the

approximation of dimPk+1(T ) eigenvalues and the application of the min-max prin-
ciple (e.g. [33, Chapter 6]). The alternative formulation (3.14) will be exploited in
Sect. 5 below.

4 Lower eigenvalue bounds

This section proves the main theorem, namely that the modified HHO method (1.3)
provides guaranteed lower bounds for the continuous eigenvalues. Recall the constants
Cst and κ from Theorem 2.3, set σ 2 := C2

st − 1, and δ := κhmax.

Theorem 4.1 Let λ( j) denote the j-th continuous eigenvalue of (1.2) and λh( j) the
j-th discrete eigenvalue of (1.3). Then each of the conditions (i) σ 2β+δ2λ( j) ≤ α < 1
(a priori) and (ii) σ 2β + δ2λh( j) ≤ α < 1 (a posteriori) implies λh( j) ≤ λ( j).

Proof To alleviate the notation we simply write λh and λ.

Step 1. Reduction to δ2λ < 1. If 1 ≤ δ2λ, then (i) fails and (ii) holds. Consequently,
δ2λh ≤ α < 1 ≤ δ2λ implies λh ≤ λ as claimed. It remains the case δ2λ < 1
throughout the remainder of the proof.
Step 2. Claim: Linear independence of 	k+1(φ1), . . . ,	k+1(φ j ) ∈ Pk+1(T ).
For the continuous eigenvalue problem (1.2), let φ1, . . . , φ j ∈ H1

0 (�) denote the
first j exact eigenfunctions and λ the j-th eigenvalue. The proof is by contrapo-
sition and concerns φ ∈ span{φ1, . . . , φ j } with ‖φ‖L2(�) = 1 and 	k+1(φ) = 0.
The estimate (2.4) in Theorem 2.3 implies for δ = κhmax that

1 = ‖φ‖L2(�) = ‖(1 − 	k+1)(φ)‖L2(�) ≤ δ‖(1 − 	k)(∇φ)‖L2(�).

The Pythagoras theorem ‖∇φ‖2
L2(�)

= ‖	k(∇φ)‖2
L2(�)

+ ‖(1− 	k)(∇φ)‖2
L2(�)

implies that

‖(1 − 	k)(∇φ)‖2L2(�)
≤ ‖∇φ‖2L2(�)

.

The min-max principle on the exact eigenvalues of (1.2) for φ shows that

‖∇φ‖2L2(�)
≤ λ = max

v∈span{φ1,...,φ j }
‖∇v‖2

L2(�)

‖v‖2
L2(�)

. (4.1)

The combination of the last three displayed inequalities reads 1 ≤ δ2λ.
Step 3. Claim: ∃ φ ∈ span{φ1, . . . , φ j }, ‖φ‖2 = 1, ‖∇φ‖2 ≤ λ, λhbh(I (φ), I (φ))

≤ ah(I (φ), I (φ)). Owing to Step 2, the subspace Uj := span{I (φ1), . . . , I (φ j )}

123



C. Carstensen et al.

of Vh has dimension j . If U( j) denotes the space of all subspaces of Vh of dimen-
sion j , then the min-max principle for (1.3) (on the algebraic level) characterizes
the j-th discrete eigenvalue λh as

λh = min
Uh∈U( j)

max
vh∈Uh\{0}

ah(vh, vh)

bh(vh, vh)
≤ max

vh∈Uj\{0}
ah(vh, vh)

bh(vh, vh)
. (4.2)

The maximum in the finite-dimensional space Uj := span{I (φ1), . . . , I (φ j )} is
attained for some vh ∈ Uj . Therefore, there exists φ ∈ span{φ1, . . . , φ j } with
‖φ‖2 = 1, ‖∇φ‖2 ≤ λ (by the above min–max principle on the continuous level
cf. (4.1)), and

λhbh(I (φ), I (φ)) ≤ ah(I (φ), I (φ)).

Step 4. Lower bound for bh(I (φ), I (φ)). Given φ ∈ span{φ1, . . . , φ j } ⊂ H1
0 (�)

from Step 3, the estimate (2.4) and the Pythagoras theorem show that

1 − δ2‖(1 − 	k)(∇φ)‖2L2(�)
≤ 1 − ‖(1 − 	k+1)(φ)‖2L2(�)

= ‖	k+1(φ)‖2L2(�)
= bh(I (φ), I (φ)).

Since δ2λ < 1 and ‖(1− 	k)(∇φ)‖2
L2(�)

≤ ‖∇φ‖2
L2(�)

≤ λ, the displayed lower
bound proves bh(I (φ), I (φ)) > 0. This also shows that λh < ∞.
Step 5. Upper bound for ah(I (φ), I (φ)). Given φ ∈ H1

0 (�) from Step 3, the
alternative form of ah in (3.8) and Lemma 3.2 prove

ah(I (φ), I (φ)) = ‖	k	RT ,k(∇φ)‖2L2(�)

+ (1 − α)‖(1 − 	k)	RT ,k(∇φ)‖2L2(�)
+ β‖|S(Iφ)‖|2pw.

(4.3)

The commuting property from Lemma 2.1, the Pythagoras theorem, and
‖∇φ‖2

L2(�)
≤ λ from Step 3 show that

‖	k	RT ,k∇φ‖2L2(�)
= ‖	k∇φ‖2L2(�)

≤ λ − ‖(1 − 	k)∇φ‖2L2(�)
. (4.4)

Lemma 2.1 and the boundedness of 	RT ,k with ‖	RT ,k‖ ≤ 1 show that

‖(1 − 	k)	RT ,k(∇φ)‖L2(�) = ‖	RT ,k(1 − 	k)(∇φ)‖L2(�)

≤ ‖(1 − 	k)(∇φ)‖L2(�). (4.5)

The combination of (4.3)–(4.5) with (3.7) proves (for 0 < α < 1) that

ah(I (φ), I (φ)) ≤ λ + (βσ 2 − α)‖(1 − 	k)(∇φ)‖2L2(�)
.
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Step 6. Finish of the proof. The combination of Step 3–Step 5 shows that

(α − βσ 2 − δ2λh)‖(1 − 	k)(∇φ)‖2L2(�)
≤ λ − λh . (4.6)

The pre-factor on the left-hand side is non-negative in the case where the assump-
tion (ii) holds and (4.6) proves the claim λh ≤ λ. In the case where the assumption
(i) holds, (4.6) implies that

δ2(λ − λh)‖(1 − 	k)(∇φ)‖2L2(�)
≤ λ − λh .

For contradiction assume λ − λh < 0 and divide the previous inequality by this
difference so that 1 ≤ δ2‖(1 − 	k)(∇φ)‖2

L2(�)
. This is smaller than or equal to

δ2‖∇φ‖2L2(�)
≤ δ2λ ≤ δ2λ + σ 2β ≤ α < 1.

This contradiction concludes the proof.

��

5 Convergence analysis

This section proves that the discrete eigenvalues converge with the expected optimal
rates. The analysis hinges on the Babuška–Osborn theory for the spectral approxi-
mation of compact selfadjoint operators and adapts the arguments devised in [9] to
analyze the spectral approximation using the standard HHO method.

5.1 Babuška–Osborn theory

Let H denote a Hilbert space with inner product (•, •)H and let T ∈ L(H ; H) denote
a bounded, linear, compact, and selfadjoint operator. Assume that Tn ∈ L(H ; H)

is a member of a sequence of compact, selfadjoint operators that converge to T in
operator norm, i.e. limn→∞ ‖T −Tn‖L(H ;H) = 0. Let σ(T ) denote the spectrum of T
and μ ∈ σ(T )\{0} be a non-zero eigenvalue of T with eigenspace Eμ = ker(μI −T )

of dimension m = dim(Eμ) ∈ N.

Theorem 5.1 (Convergence)For any eigenvalueμ ∈ σ(T )\{0} ofmultiplicitym, there
exists m eigenvalues μn,1, . . . , μn,m of Tn, that converge to μ as n → ∞, and

max
1≤ j≤m

|μ − μn, j | ≤ Ca

(
sup

φ,ψ∈Eμ\{0}
|((T − Tn)φ,ψ)H |

‖φ‖H‖ψ‖H + ‖(T − Tn)|Eμ‖2L(Eμ;H)

)
.

If wn, j ∈ ker(μn, j I − Tn) is a unit vector in the eigenspace of μn, j for 1 ≤ j ≤ m,
then there exists u ∈ Eμ = ker(μI − T ) such that for all n ∈ N

‖u − wn, j‖H ≤ Cb‖(T − Tn)|Eμ‖L(Eμ;H).

The constants Ca and Cb may depend on μ but are independent of n.
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Proof These are Theorems 7.2 and 7.4 in [4] for a selfadjoint operator T , see also in
[5, Section 9] or [35, Section 1.4.2]. ��

5.2 The source problem and relevant solution operators

Given a right-hand side f ∈ L2(�), the weak formulation of the Poisson model
problem and its solution is associated with the solution operator T : L2(�) → L2(�)

with

a(T ( f ), v) = b( f , v) for all v ∈ H1
0 (�). (5.1)

The source problem for the new method (1.3) seeks uh ∈ Vh such that

ah(uh, vh) = b( f , vT ) for all vh = (vT , vF ) ∈ Vh, (5.2)

is associated with the solution operator T̂h : L2(�) → Vh with T̂h( f ) := uh , and
well-posed by Lemma 3.5. Using Lemma 3.5 and proceeding as in [9, Lemma 3.2]
shows that the operator T̂h is bounded uniformly with respect to the mesh-size. The
first component of T̂h( f ) = uh = (uT , uF ) ∈ Vh defines the selfadjoint, positive
definite operator

Th : L2(�) → Pk+1(T ) ⊂ L2(�) with Th( f ) := uT . (5.3)

This operator Th allows for the application of the Babuška–Osborn theory. If (λh, uh)
with uh = (uT , uF ) is an eigenpair of (1.3), then (λ−1

h , uT ) ∈ R+×Vh is an eigenpair
of Th . The analysis of the solution operators T̂h and Th , based on the discrete error
estimate in Theorem 5.2 below, follows the arguments of Section 4 in [9] (reduced
to the present case of a symmetric bilinear form ah(•, •)). Let s > 1/2 be the index
resulting from the (reduced) elliptic regularity on the polyhedral domain �.

Theorem 5.2 (Discrete error estimate) The following holds for any s ≤ m ≤ k + 1
and φ ∈ L2(�) with T (φ) ∈ H1+m(�),

‖T̂h(φ) − I (T (φ))‖h � hmmax‖T (φ)‖H1+m (�).

Proof This proof adapts the arguments of [24, Thm. 8] and [9, Lemma 3.3] to the
modified HHO method. We abbreviate uh := T̂h(φ) ∈ Vh and u := T (φ) ∈ H1

0 (�).
Lemma 3.5 shows that

γ ‖I (u) − uh‖h ≤ sup
vh∈Vh ,‖vh‖h=1

ah(I (u) − uh, vh), (5.4)

where the above right-hand side represents the consistency error. The solution property
−�u = φ a.e. in �, and a piecewise integration by parts show, for vh = (vT , vF ) ∈
Vh , that

ah(uh, vh) = b(φ, vT ) = (−�u, vT )L2(�)
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= (∇u,∇pwvT )L2(�) −
∑

T∈T

∑

F∈F(T )

〈vT |T ,∇u · νT 〉L2(F)

= (∇u,∇pwvT )L2(�) +
∑

T∈T

∑

F∈F(T )

〈vF − vT ,∇u · νT 〉L2(F).

The last equality holds since vF= (vF )F∈F ∈ Pk(F(�)) is single-valued for F ∈
F(�) and vanishes along F ⊂ ∂�, and vT = (vT )T∈T . The combination of the
alternative form of ah from (3.8), Lemma 3.2, and Lemma 2.1 proves that

ah(I (u), vh) = (	kGRT I (u),GRT (vh))L2(�)

+ (1 − α)
(
(1 − 	k)GRT I (u),GRT (vh)

)
L2(�)

+ βapw(S(I u), S(vh))

= (
((1 − α)	RT ,k + α	k)(∇u),GRT (vh)

)
L2(�)

+ βapw(S(I u), S(vh)),

because

	kGRT I (u) + (1 − α)(1 − 	k)GRT I (u) = (1 − α)GRT I (u) + α	kGRT I (u)

= ((1 − α)	RT ,k + α	k)(∇u).

The abbreviation qRT := ((1 − α)	RT ,k + α	k)(∇u) ∈ RT pw
k (T ), the definition

(3.3) of GRT (vh) and an integration by parts show that

ah(I (u), vh) = (qRT ,∇pwvT )L2(�)

+ 〈vF − vT , qRT · νT 〉∂T + βapw(S(I u), S(vh)).

The last three displayed equalities lead to

ah(I (u) − uh, vh) = (qRT − ∇u,∇pwvT )L2(�) + 〈vF − vT , (qRT − ∇u) · νT 〉∂T
+ βapw(S(I u), S(vh)) =: S1 + S2 + S3.

For any T ∈ T , the combination of (2.1)–(2.2) and 0 < α < 1 proves that

‖qRT − ∇u‖L2(T ) ≤ (1 − α)‖(1 − 	RT ,k)∇u‖L2(T ) + α‖(1 − 	k)∇u‖L2(T )

� hmT |u|H1+m (T ).

Hence, the Cauchy–Schwarz inequality shows that

|S1| ≤ ‖qRT − ∇u‖L2(�)‖∇pwvT ‖L2(�) � hmmax|u|H1+m (�)‖vh‖h . (5.5)

The term S2 is controlled similarly, and the term S3 is controlled via Lemma 3.3 and
(2.1). The bounds on S1, S2, S3 combined with the estimate (5.4) conclude the proof.

��
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5.3 Error analysis for the eigenvalue problem

Based on Theorem 5.2, the difference T − Th in the summands in Theorem 5.1 are
estimated as in [9] resulting in Theorem5.6 below. Let us briefly outline themain steps.
Recall the index s ∈ (1/2, 1] of the (reduced) elliptic regularity on the polyhedral
domain � ⊂ R

n .

Lemma 5.3 ‖T − Th‖L(L2(�)) � hsmax holds for some 1/2 < s ≤ 1.

Proof This is [9, Lemma 4.1] for a symmetric ah(•, •) in combination with Theo-
rem 5.2. ��

For a spectral value μ ∈ σ(T )\{0}, the smoothness of the functions in the
eigenspaces Eμ is quantified by t ∈ [s, k + 1] (depending on μ) and a constant
Ct such that

‖φ‖H1+t (�) + ‖T (φ)‖H1+t (�) ≤ Ct‖φ‖L2(�) for all φ ∈ Eμ. (5.6)

Since possibly Eμ ⊂ Hs+ε(�) for some ε > 0, we can have t > s > 1/2.

Lemma 5.4 ‖(T − Th)|Eμ‖L(Eμ;L2(�)) � htmax holds for s ≤ t ≤ k + 1 and μ ∈
σ(T )\{0} verifying (5.6).

Proof The proof is analogous to [9, Lemma 4.2] utilizing Theorem 5.2. ��
On Eμ × Eμ this bound can be improved.

Lemma 5.5 For any s ≤ t ≤ k+1 andμ ∈ σ(T )\{0} verifying (5.6), any φ, ψ ∈ Eμ

satisfy

∣∣((T − Th)(φ), ψ
)
L2(�)

∣∣ � h2tmax‖φ‖L2(�)‖ψ‖L2(�).

Proof We detail the proof since it is slightly different from [9, Lemma 4.3]. For any
φ, ψ ∈ Eμ, the definition of T̂h and Th show that

(
(T − Th)(φ), ψ

)
L2(�)

= (T (φ), ψ)L2(�) − b(Th(φ), ψ)

= (T (φ), ψ)L2(�) − ah(T̂h(φ), T̂h(ψ)),

where we used that T̂h is the solution operator in (5.2). Using the symmetry of ah and
again that T̂h is the solution operator in (5.2), we infer that

(
(T − Th)(φ), ψ

)
L2(�)

= (T (φ), ψ)L2(�) − ah(I T (φ), T̂h(ψ))

+ ah(I T (φ) − T̂h(φ), T̂h(ψ))

= (
(1 − 	k+1)T (φ), ψ

)
L2(�)

+ ah(I T (φ) − T̂h(φ), T̂h(ψ)) =: S4 + S5.
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To exploit the additional smoothness (5.6) of ψ ∈ H1+t (�) for S4, the projection
property is combined with the Cauchy–Schwarz inequality and (2.1) to obtain

S4 = (
(1 − 	k+1)T (φ), (1 − 	k+1)(ψ)

)
L2(�)

≤ C2
apxC

2
t h

2(1+t)
max ‖φ‖L2(�)‖ψ‖L2(�).

(5.7)

The term S5 needs a bit more algebraic manipulation. We first write

S5 = ah(I T (φ) − T̂h(φ), T̂h(ψ) − I T (ψ)) + ah(I T (φ) − T̂h(φ), I T (ψ)).

The Cauchy–Schwarz inequality for ah , Theorem 5.2, and (5.6) prove for the first part
that

ah(I T (φ) − T̂h(φ), T̂h(ψ) − I T (ψ)) � h2tmaxC
2
t ‖φ‖L2(�)‖ψ‖L2(�). (5.8)

With the abbreviation S6 := ah(I T (φ), I T (ψ)) − a(T (φ), T (ψ)) the solution prop-
erties of T and T̂h show for the second summand of S5 that

ah(I T (φ) − T̂h(φ), I T (ψ)) − S6 = a(T (φ), T (ψ)) − ah(T̂h(φ), I T (ψ))

= (φ, T (ψ))L2(�) − (φ,	k+1T (ψ))L2(�)

= (φ, (1 − 	k+1)T (ψ))L2(�)

= ((1 − 	k+1)(φ), (1 − 	k+1)T (ψ))L2(�)

≤ C2
apxC

2
t h

2(1+t)
max ‖φ‖L2(�)‖ψ‖L2(�), (5.9)

where the last inequality follows as in (5.7). The alternative form of ah from (3.8), the
definition of a, as well as a combination of Lemma 3.2 and Lemma 2.1 lead to

S6 = (	k∇T (φ),	k∇T (ψ))L2(�)

+ (1 − α)
(
	RT ,k(1 − 	k)∇T (φ),	RT ,k(1 − 	k)∇T (ψ)

)
L2(�)

+ βapw(SI T (φ), SI T (ψ)) − (∇T (φ),∇T (ψ)).

The Cauchy–Schwarz inequality, Lemma 3.3, and (2.1)–(2.2) prove for all φ,ψ ∈ Eμ

verifying (5.6) that

S6 ≤ ‖(1 − 	k)∇T (φ)‖L2(�)‖(1 − 	k)∇T (ψ)‖L2(�)

+ (1 − α)‖	RT ,k(1 − 	k)∇T (φ)‖L2(�)‖	RT ,k(1 − 	k)∇T (ψ)‖L2(�)

+ β‖|SI T (φ)‖|pw‖|SI T (ψ)‖|pw
≤ (2 − α)‖(1 − 	k)∇T (φ)‖L2(�)‖(1 − 	k)∇T (ψ)‖L2(�)

+ βσ 2‖(1 − 	k)(∇T (φ))‖L2(�)‖(1 − 	k)(∇T (ψ))‖L2(�)

≤ h2tmax((2 − α) + βσ 2)C2
t C

2
apx‖φ‖L2(T )‖ψ‖L2(T ). (5.10)
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The combination of (5.8)–(5.10) proves |S5| � h2(1+t)
max ‖φ‖L2(�)‖ψ‖L2(�). This and

(5.7) conclude the proof. ��

5.4 Resulting estimates

Letμ ∈ σ(T )\{0} denote an eigenvalue of T ofmultiplicitym ∈ N. Lemma 5.3 proves
the convergence Th → T in L(L2(�)) as hmax → 0. Hence there are m discrete
eigenvalues μh,1, . . . , μh,m in multiplicity which converge to μ as hmax → 0.

Theorem 5.6 (Error estimates) Given an eigenvalue μ ∈ σ(T ) \ {0} of multiplicity m,
t ∈ [s, k + 1] such that (5.6) holds, and the m eigenvalues μh,1, . . . , μh,m of Th, that
converge to μ as hmax → 0, then

max
1≤ j≤m

|μ − μh, j | ≤ Cah
2t .

Moreover, given any unit vector uT , j ∈ ker(μh, j I − Th) ⊂ Pk+1(T ), there exist an
unit vector u ∈ ker(μI − T ) = Eμ such that

‖u − uT , j‖L2(�) ≤ Cbh
t .

Given a discrete eigenfunction uT ∈ ker(μh, j I − Th) ⊂ Pk+1(T ), there exist an unit
vector u ∈ ker(μI − T ) = Eμ such that uh := (uT , ZF (uT )) ∈ Vh satisfies

‖uh − I u‖2a,h = ah(uh − I u, uh − I u) ≤ Cch
2t .

The constants Ca, Cb, Cc > 0may depend onμ, the polynomial degree k, the domain
�, and the mesh regularity but are independent of the mesh-size.

Proof The combination of Lemma 5.4–5.5 with the Babuška–Osborn theory in
Theorem 5.1 provides the first two assertions. The proof for the final claim is ana-
logue to Corollary 4.6 in [9]. In fact Lemma 5.5 provides the bound (5.10) for
δu := ah(I u, I u) − a(u, u) = S6. ��

Remark 5.7 The eigenvalues λh in (1.3) and λ in (1.2) are associated with μh = λ−1
h

and μ = λ−1, respectively, which leads to the same estimates. If the smoothness is
optimal, i.e., t = k + 1, the proven convergence is of order h2k+2 for the eigenvalues
and hk+1 for the eigenvectors in the H1-seminorm.

6 Lowest-order case

This section is devoted to the analysis of the lowest-order case and provides a compar-
ison to the Crouzeix–Raviart method. Throughout this section we set k := 0 so that
Vh := P1(T ) × P0(F(�)).
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Letmid(K ) := 1
m

∑m
j=1 Pj ∈ K denote the barycenter of K := conv{P1, . . . , Pm}.

The associated piecewise constant function mid(T ) ∈ P0(T ;Rn) takes on each sim-
plex T ∈ T the value mid(T )|T := mid(T ). Let us set

s(T ) := 1/n2 	0(| • −mid(T )|2) ∈ P0(T ),

S(T ) := 	0
(
(• − mid(T )) ⊗ (• − mid(T ))

) ∈ P0(T ;Rn×n).

6.1 Comparison with the Crouzeix–Raviart method

The Crouzeix–Raviart (CR) finite element space reads

CR1
0(T ) := {vCR ∈ P1(T ) : vCR is continuous at mid(F) for all F ∈ F(�),

vCR(mid(F)) = 0 for all F ∈ F(∂�)}.

The vector spaces P0(F(�)) and CR1
0(T ) can be identified as follows. The extension

operator ICR : P0(F(�)) → CR1
0(T ) maps bijectively vF = (vF )F∈F ∈ P0(F(�))

onto ICR(vF ) := ∑
F∈F vFψF , whereψF ∈ CR1

0(T ) denotes the basis function with
ψF (mid(E)) = δEF for all F, E ∈ F . This leads to	F ,0 ICR(vF ) = vF for any vF ∈
P0(F(�)). Furthermore, if INC : H1

0 (�) → CR1
0(T ) denotes the nonconforming

interpolation INC(φ) := ∑
F∈F −

∫
F φ dsψF ∈ CR1

0(T ) of φ ∈ H1
0 (�), then INC(φ) =

ICR	F ,0(φ). In other words we have INC = ICR ◦	F ,0. Recall the operators R from
(3.2), GRT from (3.3), and S from (3.4).

Lemma 6.1 Any vh := (vT , vF ) ∈ Vh and vCR := ICR(vF ) ∈ CR1
0(T ) satisfy

(a) R(vh) = (1 − 	0)(vCR) + 	0(vT ),
(b) GRT (vh) = ∇pwvCR + 1

n
1

s(T )

(
	0(vCR − vT )

)
(• − mid(T )),

(c) S(vh) = (1 − 	0)(vT − vCR).

Proof (a) For any p ∈ P1(T ) the definition (3.2) of R and an integration by parts
show that

apw(R(vh), p) = −(vT ,�pw p)L2(�) + 〈vF ,∇pw p · νT 〉∂T
= 〈vCR,∇pw p · νT 〉∂T = apw(vCR, p).

Hence, ∇pwR(vh) = ∇pwvCR. The condition 	0R(vh) = 	0(vT ) concludes the
proof of (a).

(b) For any qRT ∈ RT0(T ), the definition (3.3) of GRT and an integration by parts
show that

(GRT (vh), qRT )L2(�) = −(vT , divpwqRT )L2(�) + 〈vCR, qRT · νT 〉∂T
= (vCR − vT , divpwqRT )L2(�) + (∇pwvCR, qRT )L2(�)

= (	0(vCR − vT ), divpwqRT )L2(�)

+ (∇pwvCR,	0(qRT ))L2(�).
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On the other hand, since any qRT ∈ RT pw
0 (T ) can be written as

qRT = 	0qRT + n−1divpwqRT (• − mid(T )),

the Pythagoras theorem for 	0 and the definition of s(T ) show that

(GRT (vh), qRT )L2(�) = (	0GRT (vh),	0(qRT ))L2(�)

+ (
(1 − 	0)GRT (vh), (1 − 	0)(qRT )

)
L2(�)

= (	0GRT (vh),	0(qRT ))L2(�)

+ 1

n2
(
divpwGRT (vh)(• − mid(T )), divpwqRT (• − mid(T ))

)
L2(�)

= (	0GRT (vh),	0(qRT ))L2(�)

+ (s(T )divpwGRT (vh), divpwqRT )L2(�).

Thecomparisonof the last twodisplayed equalities shows that s(T )divpwGRT (vh)

= 	0(vCR − vT ) and 	0GRT (vh) = ∇pwvCR. That completes the proof of (b).
(c) This follows directly from the definition (3.4) and (a).

��

Proposition 6.2 (a) The bilinear forms in the lowest-order case read for all uh :=
(uT , uF ) and vh := (vT , vF ) ∈ Vh,

ah(uh, vh) = apw(ICR(uF ), ICR(vF )) + β apw(uT − ICR(uF ), vT − ICR(vF ))

+ (1 − α)
(
s(T )−1	0(ICR(uF ) − uT ),	0(ICR(vF ) − vT )

)
L2(�)

,

bh(uh, vh) = (uT , vT )L2(�).

(b) The discrete solution uh := (uT , uF ) ∈ Vh of the lowest-order EVP satisfies

ICR(uF )=
(
1 − λhs(T )

1 − α

)
	0(uT ) +

((
1 − λh S(T )

β

)
∇pwuT

)
· (• − mid(T )),

(6.1)

apw(ICR(uF ), vCR) = λh(uT , vCR)L2(�), for all vCR ∈ CR1
0(T ). (6.2)

Proof (a) Using the alternative form for ah from (3.8) for the lowest-order case k = 0,
the substitution of the operators with Lemma 6.1 proves the claim.

(b) With the bilinear forms of Proposition 6.2.a, (1.3) leads for any vh = (vT , 0) ∈ Vh
with vT ∈ P1(T ) to

(1 − α)
(
s(T )−1	0(uT − ICR(uF )), vT )

)
L2(�)

+ β apw(uT − ICR(uF ), vT ) = λh(uT , vT )L2(�). (6.3)
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The choice 	0(vT ) ∈ P0(T ) in (6.3) shows that 1−α
s(T )

	0(uT − ICR(uF )) =
λh	0(uT ) and equivalently

	0 ICR(uF ) =
(
1 − λhs(T )

(1 − α)

)
	0(uT ).

The substitution of (1 − 	0)(vT ) ∈ P1(T ) in (6.3) proves

βapw(uT − ICR(uF ), vT ) = λh
(
uT , (1 − 	0)(vT )

)
L2(�)

.

Since for any v1 ∈ P1(T ), we have v1 = 	0(v1)+∇pwv1 · (•−mid(T )), the last
displayed identity concludes the proof of (6.1) with

∇pw ICR(uF ) =
(
1 − λh S(T )

β

)
∇pwuT .

Since the operator ICR : P0(F(�)) → CR1
0(T ) is surjective, the choice of test

functions vh = (ICR(vF ), vF ) ∈ Vh in (1.3) proves (6.2).
��

Let (λCR, uCR) ∈ R+ × CR1
0(T ) denote a Crouzeix–Raviart eigenvalue pair with

apw(uCR, vCR) = λCRb(uCR, vCR) and ‖uCR‖L2(�) = 1 for all vCR ∈ CR1
0(T ).

(6.4)

Corollary 6.3 (Comparison with Crouzeix–Raviart) If λCR( j) denotes the j-th eigen-
value of (6.4) and λh( j) the j-th eigenvalue of (1.3), then λh( j) ≤ λCR( j).

Proof The proof is similar to [20, Thm.6.2]. Since ICR	F ,0(vCR) = vCR for any
Crouzeix–Raviart function vCR ∈ CR1

0(T ), Proposition 6.2 shows that for vCR,h :=
(vCR,	F ,0vCR) ∈ Vh ,

ah(vCR,h, vCR,h) = apw(vCR, vCR) and bh(vCR,h, vCR,h) = b(vCR, vCR).

The discrete min-max principles for λh( j) and λCR( j) conclude the proof. ��

6.2 Estimate on the constant�

Recall the a posteriori condition σ 2β+δ2λh( j) ≤ α < 1 in Theorem 4.1 sufficient for
the j-th discrete eigenvalue λh( j) of (1.3) to be a guaranteed lower bound for the j-th
exact eigenvalue λ( j) of (1.2). Thus the constants σ and κ (recall that δ := κhmax)
are essential for the choice of the parameters α and β. The constant κ is estimated in
Remark 2.4 as κ2 ≤ π−2 + (2n(n + 1)(n + 2))−1 for any space dimension n, and for
n = 2, this bound can be improved to κ ≤ (1/48+ j−2

11 )1/2 = 0.298234942888 [15],
where j11 denotes the first root of the first Bessel function.
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The constant σ is more difficult to estimate (recall that σ :=
√
C2
st − 1 but the proof

of the existence of Cst in [20, Thm 3.1] is non-constructive). Actually the constant σ
is only needed in Lemma 3.3 to bound ‖|S(Iφ)‖|pw for all φ ∈ V := H1

0 (�). To bound
this quantity in the lowest-order case, we can use an inverse inequality. Let us set for
all T ∈ T , cinv(T ) := supv1∈P1(T ) ‖∇v1‖L2(T )/‖v1‖L2(T ). Notice that cinv(T ) is the
square root of the maximal eigenvalue of the generalized matrix eigenvalue problem
with the stiffness and mass matrix of P1(T ). Let us set cinv := maxT∈T cinv(T ).
Recall from Remark 2.4 the Poincaré constant CP such that ‖(1 − 	0)( f )‖L2(T ) ≤
CPhT ‖∇ f ‖L2(T ) for all f ∈ H1(T ).

Lemma 6.4 (Bound on σ ) Let cinv be the constant associated with the inverse estimate
in P1 and let CP be the Poincaré constant. Then ‖|S(Iφ)‖|pw ≤ σ‖(1−	0)(∇φ)‖L2(�)

for all φ ∈ V := H1
0 (�) with σ ≤ CPcinv.

Proof Any φ ∈ H1
0 (�) satisfies

‖|S(Iφ)‖|pw = ‖|	1(φ) − ICR	F ,0(φ)‖|pw = ‖|(	1 − INC)(φ)‖|pw.

For any T ∈ T , the projection properties of 	0 and 	1 and the inverse estimate for
affine functions in P1(T ) show that

hT c
−1
inv‖∇(	1 − INC)(φ)‖L2(T ) = hT c

−1
inv‖∇(1 − 	0)	1(1 − INC)(φ)‖L2(T )

≤ ‖(1 − 	0)	1(1 − INC)(φ)‖L2(T ) = ‖	1(1 − 	0)(1 − INC)(φ)‖L2(T )

≤ ‖(1 − 	0)(1 − INC)(φ)‖L2(T ) ≤ CPhT ‖∇(1 − INC)(φ)‖L2(T ).

This implies that ‖|S(Iφ)‖|pw ≤ cinvCP‖∇(1− INC)(φ)‖L2(T ) and the identity∇ INC =
	0∇ concludes the proof. ��

For n = 2 the constant cinv(T ) is computed in [18, Lemma 4.10] in terms of the
minimum angle ω0

T in T ∈ T as

cinv(T )2 = 24 cot(ω0
T )

(
2 cot(ω0

T ) − cot(2ω0
T ) + ((2 cot(ω0

T ) − cot(2ω0
T ))2 − 3)1/2

)
.

(6.5)

For a triangulation composed of right isosceles triangles, we have cinv = √
72. Com-

binedwithLemma6.4 and the estimate onCP fromRemark 2.4 shows thatσ ≤ 2.2145.
Lemma 6.4 gives a first analytical upper bound for the constant σ for the lowest-order
method utilized in the numerical experiments below. Sharper bounds for the param-
eter σ (in particular for higher polynomial degrees) may be computed by a related
PDE eigenvalue problem on a reference domain; details and numerical examples shall
appear elsewhere.

7 Numerical experiments

This section presents numerical experiments illustrating the superiority of the guar-
anteed lower bounds delivered in the framework of Theorem 4.1, compared to the
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(a) (b)

(c) (d)
Fig. 1 Initial triangulation T0 of the L-shaped domain (a), the slit domain (b), and the isospectral domains
(c) and (d)

guaranteed lower bounds of [16,20] for the lowest-order variants on regular triangu-
lations of the polygonal domains in Fig. 1 in 2D.

7.1 Preliminaries

7.1.1 Implementation

The implementation is realized inMATLABbasedon thedata structure and assembling
from [8, Section 7.8]. The resulting algebraic eigenvalue problem is solved with the
MATLAB routine eigs exactly; the termination and round-off errors are neglected
for simplicity. (An algebraic bound [31, 15.9.1] could partly circumvent the issue
of inexact solve as in [16] – however, this bound solely clarifies the existence of an
eigenvalue but gives no information on its numbering.)

Given a regular triangulationT of the bounded polygonal Lipschitz domain� ⊂ R
2

into triangles, the Crouzeix–Raviart eigenpairs (λCR( j), uCR( j)) of (6.4) and the post-
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processed GLBCR( j) (1.1) from [16] are computed, together with the lowest-order
version of the skeletal method (SM) [20] defined in (7.1) below. All these meth-
ods deliver guaranteed lower bounds which are compared to those delivered by the
present modified HHO method. The SM method features the same discrete space
Vh = P1(T )× P0(F(�)) as the modified HHOmethod, whereas the discrete bilinear
forms in the 2D case read (with κ defined in Remark 2.4 and ICR from Sect. 6.1)

aSM(uh, vh) := apw(ICR(uF ), ICR(vF ))

+ κ−2(h−2
T (uT − ICR(uF )), vT − ICR(vF ))L2(�),

bSM(uh, vh) := (uT , vT )L2(�) = bh(uh, vh)

for any uh = (uT , uF ), vh = (vT , vF ) ∈ Vh .

The discrete eigenvalue problem seeks (λSM( j), uSM( j)) ∈ R+ × Vh with

aSM(uSM( j), vh) = λSM( j)bSM(uSM( j), vh) for all vh ∈ Vh and bSM(uSM( j), uSM( j)) = 1.
(7.1)

These quantities are computed and comparedwith the discrete eigenvaluesλh( j) of the
lowest-order modified HHO method (1.3) with the bilinear forms of Proposition 6.2.

7.1.2 Setting the parameters of the modified HHOmethod

The computable condition σ 2β + δ2λh( j) ≤ α < 1 shows in Theorem 4.1 that the
discrete eigenvalue λh( j) of the new method (1.3) is a lower bound for the exact
eigenvalue λ( j) of (1.2). This condition restricts the choice of the parameters 0 <

α < 1 and 0 < β < ∞. For right-isosceles triangles Lemma 6.4 shows that σ ≤√
72/ j11 ≤ 2.2145 in (3.7) and δ ≤ κ hmax in (2.4). The numerical bound κ ≤

0.1893 from [27] slightly improves the analytical bound κ ≤ 0.2983 from [15] in the
numerical experiments below. If λCR( j) denotes the j-th Crouzeix–Raviart eigenvalue
and λh( j) the j-th eigenvalue of (1.3), Corollary 6.3 proves λh( j) ≤ λCR( j). This
means that on a given triangulation T with known λCR( j), the parameter choice
0 < α < 1 and β = (α − δ2λCR( j))/σ 2 > 0 leads to a guaranteed lower bound
λh( j) of the j-th exact eigenvalue λ( j). If the parameters are chosen beforehand, the
condition σ 2β+δ2λh( j) ≤ α may not be satisfied on a coarser mesh due to the impact
of hmax. In this case the computed value λh( j) is replaced by zero (which is an obvious
guaranteed lower bound).

7.1.3 Adaptive mesh refinement

Adaptive mesh refinement may recover optimal convergence rates. For the related
Crouzeix–Raviart adaptive finite element method (AFEM) driven by the estimator η,
whose local contributions for any T ∈ T of area |T | read

η2(T ) := |T | ‖λCRuCR‖2L2(T )
+ |T |1/2

∑

F∈F(T )

‖[∂uCR/∂s]F‖2L2(F)
, (7.2)
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(a) (b)

Fig. 2 L-shaped domain: comparison of the distance between λ( j) and λh( j) (computed with α = 0.4,
β = 0.07 (left) and β = 0.06 (right)), GLBCR( j) [16], and λSM( j) [20] computed on uniform (θ = 1,
solid) and adaptive (θ = 0.5, dashed) meshes with (7.2). Left: λ(1). Right: λ(103) = λ(104) = λ(105)

[17] proves optimality for the principal eigenvalue of the CR-EVP. Since the a poste-
riori error analysis for the new modified HHO method and the skeletal method [20] is
left open, the refinement indicator (7.2) drives adaptive mesh-refinement in the AFEM
algorithm [14, Algorithm 2.2] with Dörfler marking for bulk parameter θ = 0.5 (and
θ = 1 for uniform refinement) and newest-vertex bisection. This refinement preserves
the interior angles in the triangulation.

7.1.4 Displayed quantities

Figure 1 displays the initial triangulations T0 for the three numerical experiments
below. The respective convergence history plots in Figs. 2, 4, and 6 display the dif-
ference of the exact eigenvalue and the various guaranteed lower bounds for uniform
mesh refinement θ = 1 (solid line and filled markers) and adaptive mesh refinement
θ = 0.5 (dashed line and striped markers) plotted against the number of triangles |T |.
On the uniform meshes the GLBCR( j) (line color blue) and λSM( j) (line color teal)
coincide; see [20, Thm. 6.3]. The error λ( j) − λh( j) (line color green) is replaced
by λ( j) if the condition in Theorem 4.1 is not satisfied for the chosen parameter. The
number j of the eigenvalue is illustrated by different markers. Figure 8 exemplifies
adaptive triangulations for the first eigenvalue on all the domains with |T | = 1375
triangles in (a), |T | = 1421 in (b), and |T | = 1118 in (c).

Figures 3, 5, and 7 display a parameter study for the different domains. The figures
compare the guaranteed lower bound GLBCR( j) (which is on uniform triangulations
the bound λSM( j) in [20] marked by a dotted blue line) with the guaranteed lower
bound λh( j) (dotted green curve) computedwith the newmethod and different choices
ofα (andβ = (α−δ2λCR( j))/σ 2 > 0 fromSect. 7.1.2). In these graphs thedot-density
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Fig. 3 L-shaped domain: comparison of GLBCR(1) and λh(1) for parameter α varying in (0, 1) and
β = (α − δ2λCR(1))/σ 2 ∈ (0.001, 0.199) on coarse uniform triangulations

of the curves indicates on which triangulation T� (the �-th uniform refinement of the
initial triangulation T0) the values were computed. For comparison the eigenvalue
approximation (assumed to be exact) is displayed as well (dark violet line).

(a) (b)

Fig. 4 Slit domain: comparison of the distance betweenλ( j) andλh( j) (computedwithα = 0.4,β = 0.07),
GLBCR( j) [16], and λSM( j) [20] computed on uniform (θ = 1, solid) and adaptive (θ = 0.5, dashed)
meshes with (7.2). Left: λ(1). Right: λ(6)

123



Guaranteed lower bounds on eigenvalues of elliptic…

Fig. 5 Slit domain: comparison of GLBCR( j) and λh( j) for parameter α varying in (0, 1) and β =
(α − δ2λCR( j))/σ 2 ∈ (0.001, 0.198) on coarse uniform triangulations

7.2 Experiments on the L-shaped domain

On the non-convex L-shaped domain � := (−1, 1)2\[0, 1) × (−1, 0], the principal
eigenvalue λ(1) = 9.6397238389738806 is computedwith a P2 finite elementmethod
on uniformly refined triangulations with Aitken extrapolation. The associated eigen-
vector is apparently in H1

0 (�) \ H2(�) resulting in the reduced convergence rate 0.8
for uniformmesh-refinement in Fig. 2a.As soon as the initial triangulation fromFig. 1a
is refined three times, λh(1) slightly improves the known bound λSM(1) = GLBCR(1)
on the uniform meshes. The adaptive mesh-refinement driven by the estimator (7.2)
allows to recover the optimal convergence rate with the skeletal method in [20] and the
modified HHO method. Remarkably, the modified HHO method with the parameter
choice α = 0.4 and β = 0.07 convinces with sharper bounds. In [36] the multiple
eigenvalue λ(103) = λ(104) = λ(105) = 50π2 and the associated eigenfunction in
C∞(�) are presented. Figure 2b shows for these eigenvalues the optimal convergence
rate of one with uniform mesh-refinement. The similar plots obtained with adaptive
mesh-refinement are omitted for brevity. The parameter choice α = 0.4 and β = 0.06
guarantees the condition σ 2β + δ2λh( j) ≤ α for λ(103) = λ(104) = λ(105) on
coarser meshes. Figure 3 illustrates that the new method improves all known guaran-
teed lower bounds for the principal eigenvalue on the L-shaped domain on at least three
times uniform refinedmeshes for an appropriate parameter choice and that the parame-
ter range that leads to improvement grows with mesh-refinement, but the improvement
is more impressive on the coarser triangulation. For higher eigenvalues the parameter
studies show similar results.

7.3 Experiments on the slit domain

On the non-convex slit domain� := (−1, 1)2 \([0, 1)×{0}), the principal eigenvalue
λ(1) = 8.371330522443726 and the sixth λ(6) = 30.535991049204789 are approx-
imated with a P2 finite element method on uniformly refined meshes and Aitken
extrapolation for comparison. The first and sixth eigenfunction on the non-convex
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(a) (b)

Fig. 6 First isospectral domain: comparison of the distance between λ( j) and λh( j) (computed with
α = 0.4, β = 0.07), GLBCR( j), and λSM( j). Left: λ(1). Right: λ(50)

slit domain are obviously in H1
0 (�)\H2(�). For uniform mesh-refinement, this leads

to the reduced convergence rates 0.4 for the first in Fig. 4a and 0.6 for the sixth in
Fig. 4b. The AFEM algorithm with bulk parameter θ = 0.5 driven by the estima-
tor (7.2) allows to recover the optimal rates for both λSM( j) and λh( j), j ∈ {1, 6},
in Fig. 4. The parameter choice α = 0.4 and β = 0.07 allows to compute sharper
bounds with the new method on finer meshes. The orange line illustrates that with
the parameter choice α = 0.4 and β = (α − δ2λCR( j))/σ 2, the discrete eigenvalue
λh( j) is a guaranteed lower bound on each triangulation. For the slit domain, Fig. 5
illustrates that the new method improves all known guaranteed lower bounds on the
moderately (three resp. four times for λ(1) and λ(6)) uniformly refined triangulation

Fig. 7 First isospectral domain: comparison of GLBCR( j) and λh( j) for parameter α varying in (0, 1) and
β = (α − δ2λCR( j))/σ 2 ∈ (0.001, 0.199)
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(a) (b)

(c)

Fig. 8 Adaptive triangulation T for θ = 0.5 of the L-shaped domain (a), the slit domain (b), and the first
isospectral domain (c) computed for the first eigenvalue λh(1) (with α = 0.4, β = 0.07)

for an appropriate parameter choice with a wider range of appropriate parameters on
a finer mesh.

7.4 Experiments on the isospectral domains

The isospectral drums with the initial triangulation of Fig. 1c, d have the same eigen-
values. The paper [25] displays approximations for the first 25 identical eigenvalues
on these domains and [36] gives the approximation λ(50) = 54.187936. Figure 6
presents convergence plots for the error in the principal and the fiftieth eigenvalue.
The first eigenfunction to the principal eigenvalue λ(1) = 2.53794399980 is in
H1
0 (�)\H2(�) and leads to the reduced convergence rate 0.8 for uniform mesh-

refinement. The AFEM algorithm driven by (7.2) (after three uniform refinements to
guarantee σ 2β + δ2λh( j) ≤ α) recovers the optimal convergence rate for the direct
lower bounds in Fig. 6a. In [36] are no remarks on the smoothness of the fiftieth eigen-
function. The numerical results displayed in Fig. 6b suggest that this eigenfunction is
indeed in H2(�). Uniform and adaptive mesh-refinement lead to optimal convergence
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rates. For brevity the adaptive results are not displayed. The parameter studies in Fig. 7
indicate that a parameter 0.1 ≤ α ≤ 0.5 and an appropriate β from Sect. 7.1.2 improve
all known guaranteed lower bounds on refined meshes.

7.5 Conclusions

This subsection summarizes the empirical observations of the numerical experiments
in Sects. 7.2–7.4.

(i) All experiments confirm the a priori convergence rates of Theorem 5.1. The
convergence rate depends only on the smoothness of the approximated eigen-
function. For instance in Figs. 2b and 6b, the optimal convergence rate is one for
uniform refinement despite the reduced convergence rate in Figs. 2a and 6a for
the principal eigenvalue in H1

0 (�)\H2(�).
(ii) Theorem 5.1 predicts a convergence provided the initial mesh is sufficiently fine.

In all examples the convergence rate is visible for moderate triangulations, so
this restriction does not affect the numerical examples too much.

(iii) The parameter choice of Sect. 7.1.2 provides indeed guaranteed lower bounds
in all numerical experiments and fully confirms Theorem 4.1.

(iv) The guaranteed lower bounds computedwithTheorem4.1 do not always improve
the known bounds by λSM( j). The numerical examples suggest the conjecture
that the new bounds are better for finer triangulations.

(v) For the majority of the numerical experiments, the parameters α = 0.4 and
β ≤ α/σ 2 − δ2λh( j)/σ 2 lead to the best known guaranteed lower bounds for
the eigenvalues.

(vi) For the eigenfunctions in H1
0 (�)\H2(�), the AFEM algorithm recovers the

optimal convergence rates and illustrates the advantage of a direct lower bound
compared to GLBCR( j) in (1.1).

(vii) This first realization of the new method concerns the lowest-order case and
illustrates that the scheme can be competitive to other methodologies for the
computation of guaranteed lower eigenvalue bounds. For the appropriate param-
eter selection, the scheme can provide the sharpest bounds in comparison to
[16,20]. Numerical benchmarks with the higher-order versions of the method
suggested in the paper are even more promising provided the mesh is adapted
appropriately and will be investigated in future research.
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