
A SEMI-LAGRANGIAN SCHEME FOR HAMILTON-JACOBI-BELLMAN

EQUATIONS WITH OBLIQUE BOUNDARY CONDITIONS

ELISA CALZOLA, ELISABETTA CARLINI, XAVIER DUPUIS, AND FRANCISCO J. SILVA

Abstract. We investigate in this work a fully-discrete semi-Lagrangian approximation of second order
possibly degenerate Hamilton-Jacobi-Bellman (HJB) equations on a bounded domain O ⊂ RN with

oblique boundary conditions. These equations appear naturally in the study of optimal control of

diffusion processes with oblique reflection at the boundary of the domain.
The proposed scheme is shown to satisfy a consistency type property, it is monotone and stable.

Our main result is the convergence of the numerical solution towards the unique viscosity solution of

the HJB equation. The convergence result holds under the same asymptotic relation between the time
and space discretization steps as in the classical setting for semi-Lagrangian schemes on O = RN . We

present some numerical results that confirm the numerical convergence of the scheme.
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1. Introduction

In this work we deal with the numerical approximation of the following parabolic Hamilton-Jacobi-
Bellman (HJB) equation

(1.1)

∂tu+H
(
t, x,Du,D2u

)
= 0 in (0, T ]×O,

L(t, x,Du) = 0 on (0, T ]× ∂O,

u(0, x) = Ψ(x) in O.

In the system above, T > 0, O ⊂ RN is a nonempty smooth bounded open set and H and L are nonlinear
functions having the form

H(t, x, p,M) = sup
a∈A

{
−1

2
Tr
(
σ(t, x, a)σ(t, x, a)>M

)
− 〈µ(t, x, a), p〉 − f(t, x, a)

}
,(1.2)

L(t, x, p) = sup
b∈B
{〈γ(x, b), p〉 − g(t, x, b)} ,(1.3)

where A ⊂ RNA and B ⊂ RNB are nonempty compact sets, σ : [0, T ]×O×A→ RN×Nσ , with 1 ≤ Nσ ≤ N ,
µ : [0, T ] × O × A → RN , f : [0, T ] × O × A → R, γ : ∂O × V → RN , with V ⊆ RNB being an open set
containing B, g : [0, T ]× ∂O ×B → R, and Ψ : O → R.

If A = {a} and B = {b}, for some a ∈ RNA and b ∈ RNB , and γ(x, b) = n(x), with n(x) being the unit
outward normal vector to O at x ∈ ∂O, then (1.1) reduces to a standard linear parabolic equation with
Neumann boundary conditions. In the general case, and after a simple change of the time variable in
order to write (1.1) in backward form, the HJB equation (1.1) appears in the study of optimal control of
diffusion processes with controlled reflection on the boundary ∂O (see e.g. [27] for the first order case, i.e.
σ ≡ 0, and [26, 11] for the general case). Since the HJB equation (1.1) is possibly degenerate parabolic,
one cannot expect the existence of classical solutions and we have to rely on the notion of viscosity
solution (see e.g. [16]). Moreover, as it has been noticed in [25, 27], in general the boundary condition in
(1.1) does not hold in the pointwise sense and we have to consider a suitable weak formulation of it. We
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refer the reader to [27, 6] and [16, 4, 5, 24, 12], respectively, for well-posedness results for HJB equations
with oblique boundary condition in the first and second order cases.

The study of the numerical approximation of solutions to HJB and, more generally, fully nonlinear sec-
ond order Partial Differential Equations (PDEs), has made important progress over the last few decades.
Most of the related literature consider the case where O = RN , or where a Dirichlet boundary condition
is imposed on the boundary ∂O. We refer the reader to [19, 20, 30] and the references therein for the state
of the art on this topic. By contrast, the numerical approximation of solutions to (1.1) has been much less
explored. Indeed, to the best of our knowledge only the methods in [31, 1] can be applied to approximate
(1.1) in the particular first order case (σ ≡ 0). Moreover, in [31], where a finite difference scheme is
proposed, the function defining the boundary condition has the particular form L(t, x, p, b) = 〈n(x), p〉.
On the other hand, both references consider Hamiltonians which are not necessarily convex with respect
to p. Let us also mention the reference [2], where, in the context of mean curvature motion with nonlinear
Neumann boundary conditions, the authors propose a discretization that combines a Semi-Lagrangian
(SL) scheme in the main part of the domain with a finite difference scheme near the boundary.

The main purpose of this article is to provide a consistent, stable, monotone and convergent SL scheme
to approximate the unique viscosity solution to (1.1). By the results in [4], the latter is well-posed in
C([0, T ] × O) under the assumptions in Sect. 2 below. Semi-Lagrangian schemes to approximate the
solution to (1.1) when O = RN (see e.g. [13, 17]) can be derived from the optimal control interpretation
of (1.1) and a suitable discretization of the underlying controlled trajectories. These schemes enjoy the
feature that they are explicit and stable under an inverse Courant-Friedrichs-Lewy (CFL) condition and,
consequentely, they allow large time steps. A second important feature is that they permit a simple
treatement of the possibly degenerate second order term in H. The scheme that we propose for O 6= RN
preserves these two properties and seems to be the first convergent scheme to approximate (1.1) with the
rather general asumptions in Sect. 2. In particular, our results cover the stochastic and degenerate case.
Consequently, from the stochastic control point of view, our scheme allows to approximate the so-called
value function of the optimal control of a controlled diffusion process with possibly oblique reflection on
the boundary ∂O (see [11]). The main difficulty in devising such a scheme is to be able to obtain a
consistency type property at points in the space grid which are near the boundary ∂O while maintaining
the stability. This is achieved by considering a discretization of the underlying controlled diffusion which
suitably emulates its reflection at the boundary in the continuous case. We refer the reader to [28] for
a related construction of a semi-discrete in time approximation of a second order non-degenerate linear
parabolic equation.

The remainder of this paper is structured as follows. In Sect. 2 we state our assumptions, we recall the
notion of viscosity solution to (1.1) and the well-posedness result. In Sect. 3 we provide the SL scheme
as well as its probabilistic interpretation (in the spirit of [28]). The latter will play an important role
in Sect. 4, which is devoted to show a consistency type property and the stability of the SL scheme.
By using the half-relaxed limits technique introduced in [7], we show in Sect. 5 our main result, which
is the convergence of solutions to the SL scheme towards the unique viscosity solution to (1.1). The
convergence is uniform in [0, T ] × O and holds under the same asymptotic condition between the space
and time steps than in the case O = RN . Next, in Sect. 6 we first illustrate the numerical convergence of
the SL scheme in the case of a one-dimensional linear equation with homogeneous Neumann boundary
conditions. In this case the numerical results confirm that the boundary condition in (1.1) is not satisfied
at every x ∈ ∂O, but it is satisfied in the viscosity sense recalled in Sect. 2 below. In a second example,
we consider a two dimensional degenerate second order nonlinear equation on a circular domain with
non-homogeneous Neumann and oblique boundary conditions. In the last example, we consider a two-
dimensional non-degenerate nonlinear equation on a non-smooth domain. Due to the lack of regularity
of ∂O, our convergence result does not apply. However, the SL scheme can be successfully applied, which
suggests that our theoretical findings could hold for more general domains. This extension as well as
the corresponding study in the stationary framework remain as interesting subjects of future research.
Finally, we provide in the Appendix of this work some theoretical results concerning oblique projections
and the regularity of the distance to ∂O, which play a key role in the definition of the scheme and in the
proof of its main properties.
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2. Preliminaries

As mentioned in the introduction, it will be simpler to describe our approximation scheme when (1.1)
is written in backward form. This can be done by a simple change of the time variable and a possible
modification of the time dependency of H. Let us set OT := [0, T )×O and OT = [0, T ]×O. We consider
the HJB equation

(HJB)

−∂tu+H
(
t, x,Du,D2u

)
= 0 in OT ,

L(t, x,Du) = 0 on [0, T )× ∂O,

u(T, x) = Ψ(x) in O,
where H and L are respectively given by (1.2) and (1.3).

For notational convenience, throughout this article, we will write γb(x) = γ(x, b) for all x ∈ ∂O and
b ∈ B. Our standing assumptions for the data in (HJB) are the following.

(H1) O ⊆ RN (1 ≤ N ≤ 3) is a nonemtpy, bounded domain with boundary ∂O of class C3.

(H2) The functions σ, µ, f , g and Ψ are continuous. Moreover, for every a ∈ A, the functions σ(·, ·, a)
and µ(·, ·, a) are Lipschitz continuous, with Lipschitz constants independent of a ∈ A.

(H3) The function γ is of class C1. We also assume that

(∀ (x, b) ∈ ∂O ×B) |γb(x)| = 1 and 〈n(x), γb(x)〉 > 0,

where, for every x ∈ ∂O, we recall that n(x) denotes the unit outward normal vector to O at x.

We now recall the notion of viscosity solution to (HJB) (see [4]). We need first to introduce some
notation. Given a bounded function z : OT → R, its upper semicontinuous (resp. lower semicontinuous)
envelope is defined by

(2.1) (∀ (t, x) ∈ OT ) z∗(t, x) := lim sup
(s,y)∈OT ,
(s,y)→(t,x)

z(s, y)

resp. z∗(t, x) := lim inf
(s,y)∈OT ,
(s,y)→(t,x)

z(s, y)

 .

Definition 2.1. [Viscosity solution]
(i) An upper semicontinuous function u1 : OT → R is a viscosity subsolution to (HJB) if for any

(t, x) ∈ OT and φ ∈ C2(OT ) such that u1 − φ has a local maximum at (t, x), we have

(2.2) − ∂tφ(t, x) +H(t, x,Dφ(t, x), D2φ(t, x)) ≤ 0,

if (t, x) ∈ OT ,

(2.3) min
{
−∂tφ(t, x) +H(t, x,Dφ(t, x), D2φ(t, x)), L(t, x,Dφ(t, x))

}
≤ 0,

if (t, x) ∈ [0, T )× ∂O and,

(2.4) u1(t, x) ≤ Ψ(x),

if (t, x) ∈ {T} × O.
(ii) A lower semicontinuous function u2 : OT → R is a viscosity supersolution to (HJB) if for any

(t, x) ∈ OT and φ ∈ C2(OT ) such that u2 − φ has a local minimum at (t, x), we have

(2.5) − ∂tφ(t, x) +H(t, x,Dφ(t, x), D2φ(t, x)) ≥ 0,

if (t, x) ∈ OT ,

(2.6) max
{
−∂tφ(t, x) +H(t, x,Dφ(t, x), D2φ(t, x)), L(t, x,Dφ(t, x))

}
≥ 0,
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if (t, x) ∈ [0, T )× ∂O and,

(2.7) u2(t, x) ≥ Ψ(x),

if (t, x) ∈ {T} × O.
(iii) A bounded function u : OT → R is a viscosity solution to (HJB) if u∗ and u∗, defined in (2.1),

are, respectively, sub- and supersolutions to (HJB).

Remark 2.1. As shown in [12, Proposition 6], relation (2.4) can be replaced by

(2.8) min
{
−∂tφ(t, x) +H(t, x,Dφ(t, x), D2φ(t, x)), u1(t, x)−Ψ(x)

}
≤ 0,

if (t, x) ∈ {T} × O, and

(2.9) min
{
−∂tφ(t, x) +H(t, x,Dφ(t, x), D2φ(t, x)), L(t, x,Dφ(t, x)), u1(t, x)−Ψ(x)

}
≤ 0,

if (t, x) ∈ {T} × ∂O. Similarly, condition (2.7) can be replaced by

(2.10) max
{
−∂tφ(t, x) +H(t, x,Dφ(t, x), D2φ(t, x)), u2(t, x)−Ψ(x)

}
≥ 0,

if (t, x) ∈ {T} × O, and

(2.11) max
{
−∂tφ(t, x) +H(t, x,Dφ(t, x), D2φ(t, x)), L(t, x,Dφ(t, x)), u2(t, x)−Ψ(x)

}
≥ 0,

if (t, x) ∈ {T} × ∂O.

The following well-posedness result for (HJB) has been shown in [4, Theorem II.1] (see also [11]).

Theorem 2.1. Assume (H1)-(H3). Then there exists a unique viscosity solution u ∈ C(O) to (HJB).

Remark 2.2. (i) [Comparison principle and uniqueness] The existence of at most one solution to (HJB)
follows from the following comparison principle (see [4, Theorem II.1] and also [11, Proposition 3.4]).
If u1 : OT → R is a bounded viscosity subsolution to (HJB) and u2 : OT → R is a bounded viscosity
supersolution to (HJB), then

u1 ≤ u2 in OT .
(ii) [Existence] Once a comparison principle has been shown, the existence of a solution to (HJB) follows
usually from the existence of sub- and supersolutions to (HJB) and Perron’s method. In Sect. 5, we
construct sub- and supersolutions to (HJB) as suitable limits of solutions to the approximation scheme
that we present in the next section. Together with the comparison principle, this yields an alternative
existence proof of solutions to (HJB).

An different and interesting technique to show the existence of a solution to (HJB) is to consider a
suitable stochastic optimal control problem, with controlled reflection of the state trajectory at the bound-
ary ∂O, and to show that the associated value function is a viscosity solution to (HJB). This strategy has
been followed in [11].

(iii) [Continuity] The continuity of the unique viscosity solution to (HJB) follows directly from the com-
parison principle and the continuity properties required in the definition of sub- and supersolutions to
(HJB). Notice that, as usual for parabolic problems with Neumann type boundary conditions, we do not
require any compatibility condition between Ψ and the operator L at the boundary ∂O.

3. The fully discrete scheme

We introduce in this section a fully discrete SL scheme that approximates the unique viscosity solution
to (HJB). Throughout this section, we assume that (H1)-(H3) are fulfilled.

3.1. Discretization of the space domain O. Let us fix ∆x > 0 and consider a polyhedral domain
O∆x ⊆ RN such that

(3.1) d(O,O∆x) = inf {|x− y| |x ∈ O, y ∈ O∆x} ≤ C(∆x)
2
,

for some C > 0. A construction of such a domain O∆x can be found in [8, Section 3] for N = 2 or N = 3,
which explain the dimension constraint in (H1). However, the results in the remainder of this article
can be extended to N > 3, provided that a numerical domain O∆x satisfying (3.1) exists. Let T∆x be a
triangulation of O∆x consisting of simplicial finite elements T with vertices in G∆ = {xi | i = 1, . . . , N∆x}
(for some N∆x ∈ N). We assume that ∆x is the mesh size, i.e. the maximum of the diameters of T ∈ T∆x,
all the vertices on ∂O∆x belong to ∂O, at most one face of each element T ∈ T∆x, with vertices on ∂O∆x,
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intersects ∂O∆x, and T∆x satisfies the following regularity condition: there exists δ ∈ (0, 1), independent
of ∆x, such that each T ∈ T∆x is contained in a ball of radius ∆x/δ and contains a ball of radius δ∆x.

As in [18], we introduce an auxiliary exact triangulation T̂∆x of O with vertices in G∆x. The boundary

elements of T̂∆x are allowed to be curved and we have

O =
⋃

T̂∈T∆x

T̂.

Denoting by pT the projection on T ∈ T∆x, the projection p∆x : O → O∆x ∩ O is defined by

p∆x(x) = pT(x), if x ∈ T̂ ∈ T̂∆x

and the element T ∈ T∆x has the same vertices than T̂.

Set I∆x = {1, . . . , N∆x} and denote by {ψi | i ∈ I∆x} the linear finite element P1 basis function on
T∆x. More precisely, for each i ∈ I∆x, ψi : O∆x → R is a continuous function, affine on each T ∈ T∆x,

0 ≤ ψi ≤ 1, ψi(xi) = 1, ψi(xj) = 0 for all i, j ∈ I∆x with i 6= j, and
∑N∆x

i=1 ψi(x) = 1 for all x ∈ O∆x.

For any φ : G∆x → R its linear interpolation I[φ] on the mesh T̂∆x is defined by

(3.2) I [φ] (x) :=

N∆x∑
i=1

ψi(p∆x(x))φ(xi), for all x ∈ O.

Lemma 3.1. Let φ ∈ C2(O) and denote by φ|G∆x
its restriction to G∆x. Then there exists a constant

Cφ > 0, independent of ∆x, such that

(3.3) sup
x∈O

∣∣φ(x)− I [φ|G∆x
] (x)

∣∣ ≤ Cφ(∆x)2.

Proof. Let x ∈ O and let T ∈ T∆x and T̂ ∈ T̂∆x be two elements having the same vertices and such that

x ∈ T̂. By the triangular inequality

|φ(x)− I [φ|G∆x ] (x)| ≤ |φ(x)− φ(pT(x))|+ |φ(pT(x))− I [φ|G∆x ] (x)|.

Using that φ is Lipschitz, we deduce from (3.1) the existence of C1 > 0, independent of ∆x and x ∈ O,
such that |φ(x)−φ(pT(x))| ≤ C1(∆x)2. In addition, by standard error estimates for P1 interpolation (see
for instance [15]) and (3.2), there exists C2 > 0, independent of ∆x and x ∈ O, such that |φ(pT(x)) −
I [φ|G∆x ] (x)| ≤ C2(∆x)2. Relation (3.3) follows from these two estimates. �

Pixel info: (X, Y)  [R G B]

Figure 1. Reflection: reflected characteristic ỹsk,i(a) (red square) starting from xi (black

circle), which exits from O and arrives in ysk,i(a) (black square). The red segment repre-

sents the oblique direction γb and the black circle the projected point pγb(ysk,i(a)).
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3.2. A semi-Lagrangian scheme. Let ∆t > 0, set N∆t := bT/∆tc, I∆t := {0, . . . , N∆t} and I∗∆t :=
I∆t \ {NT }. We define the time grid G∆t := {tk | tk = k∆t, k ∈ I∆t}. Given (k, i) ∈ I∗∆t × I∆x, a ∈ A,
and ` = 1, . . . , Nσ, we define the discrete characteristics

(3.4) y±,`k,i (a) = xi + ∆tµ (tk, xi, a)±
√
Nσ∆tσ`(tk, xi, a).

Let I = {+,−} × {1, . . . , Nσ} and let c̄ > 0 be a fixed constant. For any δ > 0 we set

(∂O)δ := {x ∈ RN | d(x, ∂O) < δ}.
By Proposition 7.1 in the Appendix, there exist R > 0 and two C1 functions (∂O)R × B 3 (x, b) 7→
pγb(x) ∈ ∂O and (∂O)R ×B 3 (x, b) 7→ dγb(x) ∈ R, uniquely determined, such that

(3.5) x = pγb(x) + dγb(x)γb(p
γb(x)), for all (x, b) ∈ (∂O)R ×B.

Therefore, there exists ∆t > 0 such that for all ∆t ∈ [0,∆t], (k, i) ∈ I∗∆t × I∆x, a ∈ A, b ∈ B, and s ∈ I,
the reflected characteristic

(3.6) ỹsk,i(a, b) :=

{
ysk,i(a) if ysk,i(a) ∈ O,
pγb(ysk,i(a))− c̄

√
∆tγb(p

γb(ysk,i(a))) otherwise

is well-defined. In Figure 1 we illustrate how the reflected characteristic is computed from the projection
pγb(ysk,i(a)) of ysk,i(a) onto ∂O parallel to γb. Let us also set

d̃sk,i(a, b) :=

{
0 if ysi,k(a) ∈ O,
dγb(ysk,i(a)) + c̄

√
∆t otherwise,

(3.7)

g̃sk,i(a, b) :=

{
0 if ysk,i(a) ∈ O,
g
(
tk, p

γb
(
ysk,i(a)

)
, b
)

otherwise.
(3.8)

Notice that if ysk,i(a) /∈ O, then (3.5), (3.6), and (3.7) imply that

(3.9) ỹsk,i(a, b) = ysk,i(a)− d̃sk,i(a, b)γb
(
pγb(ysk,i(a))

)
.

For (k, i) ∈ I∗∆t × I∆x and Φ : G∆x → R, let us define Sk,i[Φ] : A×B → R by

(3.10) Sk,i[Φ](a, b) :=
1

2Nσ

∑
s∈I

[
I[Φ](ỹsk,i(a, b)) + d̃sk,i(a, b)g̃

s
k,i(a, b)

]
+ ∆tf(tk, xi, a)

and set

(3.11) Sk,i[Φ] := inf
a∈A, b∈B

Sk,i[Φ](a, b).

In the remainder of this work, we will consider the following fully discrete SL scheme to approximate
the solution to (HJB).

(HJBdisc)
Uk,i = Sk,i

[
Uk+1,(·)

]
, for (k, i) ∈ I∗∆t × I∆x,

UN∆t,i = Ψ(xi), for i ∈ I∆x.

3.3. Probabilistic interpretation of the scheme. The fully-discrete SL to approximate the solution
to (HJB) in the unbounded case, i.e. O = Rd, has a natural interpretation in terms of a discrete time,
finite state, Markov control process (see e.g. [13, Section 3]). We show below that a similar interpretation
holds for (HJBdisc). The latter will play an important role in the stability analysis of (HJBdisc) presented
in the next section. Given k ∈ I∗∆t and a ∈ A, b ∈ B, let us define the controlled transition law

(3.12) pk,i,j(a, b) :=
1

2Nσ

∑
s∈I

βj(ỹ
s
k,i(a, b)), for all i, j ∈ I∆x.

We say that (πk)k∈I∗∆t is a N∆t-policy if for all k ∈ I∗∆t we have πk : G∆x → A×B. The set of N∆t-policies

is denoted by ΠN∆t
. Let us fix k ∈ I∗∆t and, for notational convenience, set Xk = GN∆t−k+1

∆x . Associated
to xi ∈ G∆x and π ∈ ΠN∆t , there exists a probability measure Pk,xi,π on 2Xk (the powerset of Xk) and a
Markov chain {Xm |m = k, . . . , N∆t}, with state space G∆x, such that

(3.13) Pk,xi,π(Xk = xi) = 1 and Pk,xi,π(Xm+1 = xj | Xm = xi) = pm,i,j(πm(xi)),
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for m = k, . . . , N∆t − 1. Now, consider a family {ξk+1, . . . , ξN∆t
} of RNσ -valued independent random

variables, which are also independent of {Xm |m = k, . . . , N∆t}, and with common distribution given by

P(ξm = ±e`) =
1

2Nσ
, for m = k + 1, . . . , N∆t and ` = 1, . . . , Nσ,

where e` denotes the `-th canonical vector of RNσ . By a slight abuse of notation (see (3.4)), for m =
k, . . . , N∆t − 1, xi ∈ G∆x, and a ∈ A, let us set

(3.14) ym(xi, a) = xi + ∆tµ(tm, xi, a) +
√
Nσ∆tσ(tm, xi, a)ξm+1.

For m = k, . . . , N∆t − 1, xi ∈ G∆x, a ∈ A, and b ∈ B, define the random variable

(3.15) h(tm, xi, a, b) =

 0 if ym(xi, a) ∈ O,(
dγb(ym(xi, a)) + c̄

√
∆t
)
g(tm, p

γb(ym(xi, a)), b) otherwise.

For all i ∈ IN∆x
and π ∈ ΠN∆t

, let us define

Jk,i(π) = EPk,xi,π
(∑N∆t−1

m=k

[
∆tf(tm, Xm, αm) + h(tm, Xm, αm, βm

)]
+ Ψ

(
XN∆t

))
,

JN∆t,i(π) = Ψ(xi),

where, for notational convenience, we have denoted, respectively, by αm and βm the first NA and the last
NB coordinates of πm(Xm). Notice that, by construction and (3.10), we have that

Jk,i(π) = Sk,i[Jk+1,(·)(π)](αk, βk).

Moreover, setting

Ûk,i = infπ∈ΠN∆t
Jk,i(π),

ÛN∆t,i = Ψ(xi),

for all i ∈ G∆x, the dynamic programming principle (see e.g. [23, Theorem 12.1.5]) implies that {Ûk,i | k ∈
I∆t, i ∈ I∆x} satisfies (HJBdisc). Since the latter has a unique solution, we deduce that Uk,i = Ûk,i for
all k ∈ I∆t and i ∈ I∆x.

Remark 3.1. Scheme (HJBdisc) can thus be interpreted as a Markov chain discretization of an stochastic
control problem with oblique reflection in the boundary (see e.g. [11]).

4. Properties of the fully discrete scheme

In this section, we establish some basic properties of (HJBdisc).

Proposition 4.1. The following hold:
(i) (Monotonicity) For all U, V : G∆x → R with U ≤ V , we have

Sk,i[U ] ≤ Sk,i[V ], for k ∈ I∗∆t and i ∈ I∆x.

(ii) (Commutation by constant) For any c ∈ R and U : G∆x → R,

Sk,i[U + c] = Sk,i[U ] + c, for k ∈ I∗∆t and i ∈ I∆x.

Proof. Both assertions follow directly from (3.10) and (HJBdisc). �

We show in Proposition 4.2 below a consistency result for (HJBdisc). For this purpose, let us set

H(t, x, p,M, a) = −1

2
Tr
(
σ(t, x, a)σ(t, x, a)>M

)
− 〈µ(t, x, a), p〉 − f(t, x, a),(4.1)

for (t, x, p,M, a) ∈ OT × RN × RN×Nσ ×A,
L(t, x, p, b) = 〈γ(x, b), p〉 − g(t, x, b),(4.2)

for (t, x, p, b) ∈ [0, T ]× ∂O × RN ×B,
and for all k ∈ I∗∆t, i ∈ I∆x, s ∈ I, q ∈ RN , a ∈ A, and b ∈ B, define

(4.3) L̃sk,i(q, a, b) :=

 0 if ysk,i(a) ∈ O,

L
(
tk, p

γb(ysk,i(a)), q, b
)

otherwise.
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Proposition 4.2 (Consistency). Let φ ∈ C3
(
O
)

and denote by φ|G∆x
its restriction to G∆x. Then the

following hold:

(i) For all k ∈ I∗∆t, i ∈ I∆x, a ∈ A, and b ∈ B, we have

Sk,i[φ|G∆x
](a, b)− φ(xi) = −∆tH(tk, xi, Dφ(xi), D

2φ(xi), a)

− 1
2Nσ

∑
s∈I

d̃sk,i(a, b)
(
L̃sk,i(Dφ(xi), a, b)−

√
∆tKs

k,i(a, b)
)

+O
(

∆t
√

∆t+ (∆x)2
)
,

where the set of constants {Ks
k,i(a, b) | k ∈ I∗∆t, i ∈ I∆x, s ∈ I, a ∈ A, b ∈ B} is bounded, indepen-

dently of (∆t,∆x).
(ii) For all k ∈ I∗∆t and i ∈ I∆x, we have

Sk,i[φ|G∆x ]− φ(xi) = − sup
a∈A, b∈B

{
∆tH(tk, xi, Dφ(xi), D

2φ(xi), a)

+ 1
2Nσ

∑
s∈I

d̃sk,i(a, b)
(
L̃sk,i(Dφ(xi), a, b)−

√
∆tKs

k,i(a, b)
)}

+O
(

∆t
√

∆t+ (∆x)2
)
.

Proof. In what follows, we denote by C > 0 a generic constant, which is independent of k, i, s a, b, ∆t
and ∆x. Since assertion (ii) follows directly from (i), we only show the latter.

For every s ∈ I, (3.4) and (3.7) imply that 0 ≤ d̃sk,i(a, b) ≤ C
√

∆t. Thus, by (3.4), (3.9), and a second
order Taylor expansion of φ around xi, for every ` = 1, . . . , Nσ, we have

φ
(
ỹ±,`k,i (a, b)

)
= φ (xi) + ∆t〈Dφ(xi), µ(tk, xi, a)〉+ Nσ∆t

2 〈D2φ(xi)σ
`(tk, xi, a), σ`(tk, xi, a)〉

±
√
Nσ∆t〈Dφ(xi), σ

`(tk, xi, a)〉 − d̃±,`k,i (a, b)
〈
Dφ(xi), γ̃

±,`
k,i (a, b)

〉
+

(d̃±,`k,i (a,b))
2

2

〈
D2φ(xi)γ̃

±,`
k,i (a, b), γ̃±,`k,i (a, b)

〉
∓
√
Nσ∆td̃±,`k,i (a, b)

〈
D2φ(xi)γ̃

±,`
k,i (a, b), σ`(tk, xi, a)

〉
+O

(
∆t
√

∆t
)
,

where, for every s ∈ I,

γ̃sk,i(a, b) :=

0 if ysk,i(a) ∈ O,

γb

(
pγb(ysk,i(a))

)
otherwise.

This implies that

(4.4)

1
2φ
(
ỹ+,`
k,i (a, b)

)
+ 1

2φ
(
ỹ−,`k,i (a, b)

)
= φ(xi) + ∆t 〈Dφ(xi), µ(tk, xi, a)〉+ Nσ∆t

2

〈
D2φ(xi)σ

`(tk, xi, a), σ`(tk, xi, a)
〉

−d̃+,`
k,i (a, b)

(〈
Dφ(xi), γ̃

+,`
k,i (a, b)

〉
−
√

∆tK+,`
k,i (a, b)

)
−d̃−,`k,i (a, b)

(〈
Dφ(xi), γ̃

−,`
k,i (a, b)

〉
−
√

∆tK−,`k,i (a, b)
)

+O
(

∆t
√

∆t
)
,

where

K±,`k,i (a, b) :=
d̃±,`k,i (a, b)

2
√

∆t
〈D2φ(xi)γ̃

±,`
k,i (a, b), γ̃±,`k,i (a, b)〉

∓
√
Nσ〈D2φ(xi)γ̃

±,`
k,i (a, b), σ`(tk, xi, a)〉.
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Multiplying (4.4) by 1/Nσ and taking the sum over s ∈ I, we obtain

1
2Nσ

∑
s∈I

φ(ỹsk,i(a, b))

= φ(x) + ∆t〈Dφ(xi), µ(tk, xi, a)〉+ ∆t
2 Tr

(
σ(tk, xi, a)σ(tk, xi, a)TD2φ(xi)

)
− 1

2Nσ

∑
s∈I

d̃sk,i(a, b)
(〈
Dφ(xi), γ̃

s
k,i(a, b)

〉
−
√

∆tKs
k,i(a, b)

)
+O

(
∆t
√

∆t
)
,

which, by Lemma 3.1, yields

1
2Nσ

∑
s∈I

I[φ|G∆x ](ỹsk,i(a, b))

= φ(x) + ∆t〈Dφ(xi), µ(tk, xi, a)〉+ ∆t
2 Tr

(
σ(tk, xi, a)σ(tk, xi, a)TD2φ(xi)

)
− 1

2Nσ

∑
s∈I

d̃sk,i(a, b)
(〈
Dφ(xi), γ̃

s
k,i(a, b)

〉
−
√

∆tKs
k,i(a, b)

)
+O

(
∆t
√

∆t+ (∆x)2
)
.

The result follows from the previous expression, (3.10), (4.1) and (4.3). �

For k ∈ I∗N∆t
and a ∈ A, let us define

(4.5) (∀ k ∈ I∗N∆t
,∀ a ∈ A) Γk(a) := {xi ∈ G∆x | ∃ s ∈ I, ysk,i(a) /∈ O},

and recall from Sect. 3.3 that given xi ∈ G∆x and a policy π ∈ ΠN∆t , the Markov chain {Xm |m =
k, . . . , N∆t} is defined by the transition probabilities (3.13). As in Sect. 3.3, we denote by αm and βm
(m = k, . . . , N∆t − 1), respectively, the first NA and the last NB coordinates of πm(Xm). Finally, given
D ⊂ Rd, we denote by ID the indicator function of D, i.e. ID(x) = 1, if x ∈ D, and ID(x) = 0, otherwise.

The following technical result will be useful to establish the stability of (HJBdisc).

Lemma 4.1. The following holds:

(4.6) sup
k∈I∗∆t, i∈I∗∆x,π∈ΠN∆t

EPk,xi,π

(
NT−1∑
m=k

IΓm(αm)

(
Xm

))
≤ C√

∆t
,

where C > 0 is independent of (∆t,∆x) as long as ∆t is small enough and (∆x)2/∆t is bounded.

Proof. The argument of the proof is inspired from [28, Lemma 1]. Let ε > 0, set

Dε = {x ∈ O | d(x, ∂O) > ε}, ∂Dε = {x ∈ O | d(x, ∂O) = ε},

Lε = {x ∈ O | d(x, ∂O) ≤ ε},
and define O 3 x 7→ wε(x) = d2 (x,Dε) ∈ R. By Lemma 7.1(v) in the Appendix, there exists η > 0 such
that wη ∈ C3(O \ ∂Dη) with bounded third order derivatives on the connected components of O \ ∂Dη.
Let us fix this η and, for notational convenience, let us write w = wη. Let M > 0 and, for any k ∈ I∆t,
define

(4.7) O 3 x 7→Wk(x) =

{
M(T − tk) + w(x) if k ∈ I∗∆t,
0 if k = N∆t

∈ R.

By (3.10), with f ≡ 0 and g ≡ 0, for all a ∈ A and b ∈ B, we have

Sk,i[Wk+1|G∆x ](a, b)−Wk(xi) = −M∆t+ Sk,i[w|G∆x ](a, b)− w(xi),(4.8)

= −M∆t+
1

2Nσ

∑
s∈I

I[w](ỹsk,i(a, b))− w(xi).(4.9)

Moreover, assumption (H2) implies the existence of C > 0 such that

(4.10) sup

{
|ysk,i(a)− xi|

∣∣∣∣ k ∈ I∗∆t, i ∈ I∆x, a ∈ A, s ∈ I
}
≤ C
√

∆t.

Now, let us fix k ∈ I∗∆t, i ∈ I∆x, a ∈ A, and b ∈ B. We have the following cases.
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(i) xi /∈ Γk(a) and d(xi, ∂Dη) ≥ C
√

∆t. The first condition implies that ysk,i(a) ∈ O, for any s ∈ I,

and, hence, (3.6) yields ỹsk,i(a, b) = ysk,i(a). The condition d(xi, ∂Dη) ≥ C
√

∆t, (4.10), and standard

error estimates for P1 interpolation (see for instance [15]), imply that

I[w](ỹsk,i(a, b)) = w(ỹsk,i(a, b)) +O((∆x)2) = w(ysk,i(a)) +O((∆x)2).

Since, by second order Talyor expansion, 1
2Nσ

∑
s∈I w(ysk,i(a))− w(xi) = O(∆t), (4.9) yields

(4.11) Sk,i[Wk+1|G∆x
](a, b)−Wk(xi) = −M∆t+O

(
∆t+ (∆x)2

)
.

(ii) xi /∈ Γk(a) and d(xi, ∂Dη) < C
√

∆t. Condition d(xi, ∂Dη) < C
√

∆t and (4.10) imply that w(xi) =

O(∆t) and, for any s ∈ I, d2(ysk,i(a), ∂Dη) = O(∆t). Since the cardinality of J := {j ∈ I∆x |ψj(ysk,i(a)) >

0} is independent of ∆x and, for all j ∈ J , |ysk,i(a)− xj | = O(∆x), we deduce that

I[w](ysk,i(a)) =
∑
j∈J ψj(y

s
k,i(a))w(xj)

≤
∑
j∈J ψj(y

s
k,i(a))d2(xj , ∂Dη)

=
∑
j∈J ψj(y

s
k,i(a))d2(ysk,i(a), ∂Dη) +O((∆x)2)

= O(∆t+ (∆x)2).

Thus, since ỹsk,i(a, b) = ysk,i(a), (4.9) implies that (4.11) still holds.

(iii) xi ∈ Γk(a). Let 0 < δ < η. Since µ and σ are bounded, there exists ∆t > 0, independent of k, i
and a, such that

(4.12) Γk(a) ⊆ Lδ ⊂ Lη,

if ∆t ≤ ∆t. By (4.8) and Proposition 4.2(i), with f ≡ 0 and g ≡ 0, we have

(4.13)

Sk,i[Wk+1|G∆x ](a, b)−Wk(xi) =

−M∆t− 1
2Nσ

∑
s∈I d̃

s
k,i(a, b)

〈
Dw(xi), γb

(
pγb
(
ysk,i(a)

))〉
+O

(
∆t+ (∆x)2

)
.

By Lemma 7.1(v) in the Appendix, for any x ∈ Lη, we have d (x, ∂Dη) = η − d(x, ∂O). Thus,
Lemma 7.1(ii) implies that Dd (x, ∂Dη) = n(p∂O(x)), and hence

(4.14) Dw(xi) = 2d (xi, ∂Dη)Dd (xi, ∂Dη) = 2d (xi, ∂Dη)n(p∂O(x)).

On the other hand, in view of [22, Proposition 1.1(v)], there exists C > 0 such that |dγb(xi)| ≤ Cd(xi, ∂O).
Thus,

|pγb(xi)− p∂O(xi)| ≤ |pγb(xi)− xi|+ |xi − p∂O(xi)| = |dγb(xi)|+ d(xi, ∂O)

≤ (C + 1)d(xi, ∂O).

Since xi ∈ Γk(a), we have d(xi, ∂O) = O(
√

∆t) and hence |pγb(xi) − p∂O(xi)| = O(
√

∆t). Proposition
7.1 implies that γb and pγb are Lipschitz and hence, for any s ∈ I,

(4.15) γb
(
pγb
(
ysk,i(a)

))
= γb (pγb(xi)) +O

(√
∆t
)

= γb (p∂O(xi)) +O
(√

∆t
)
.

Since, for all s ∈ I, d̃sk,i(a, b) = O(
√

∆t), from (4.13)-(4.15) we obtain

(4.16)

Sk,i[Wk+1|G∆x
](a, b)−Wk(xi) =

−M∆t− 1
Nσ

∑
s∈I d (xi, ∂Dη) d̃sk,i(a, b)

〈
n(p∂O(xi)), γb (p∂O(xi))

〉
+O

(
∆t+ (∆x)2

)
.

Since xi ∈ Γk(a), there exists Ĩk,i ⊂ I 6= ∅ such that d̃sk,i(a, b) > 0, for any s ∈ Ĩk,i. In addition, (4.12)

implies that d (xi, ∂Dη) ≥ η − δ > 0. Thus, assumption (H3) implies that

Sk,i[Wk+1|G∆x ](a, b)−Wk(xi) ≤ −M∆t− ν(η − δ)
Nσ

∑
s∈Ĩk,i

d̃sk,i(a, b) +O
(
∆t+ (∆x)2

)
,
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and hence (3.7) yields the existence of C > 0, independent of k ∈ I∗∆t, i ∈ I∆x, a ∈ A, and b ∈ B, such
that

(4.17) Sk,i[Wk+1|G∆x ](a, b)−Wk(xi) ≤ −M∆t− C
√

∆t+O
(
∆t+ (∆x)2

)
.

As long as (∆x)2/∆t is bounded, we have that O
(
∆t+ (∆x)2

)
= O(∆t). Thus, from cases (i)-(iii) we

can choose M large enough such that

(4.18) Sk,i[Wk+1|G∆x
](a, b)−Wk(xi) ≤ −C

√
∆tIΓk(a)(xi).

Now, set qk(xi, a, b) = Wk(xi)−Sk,i[Wk+1|G∆x ](a, b). Then the probabilistic interpretation of the operator
Sk,i (see Sect. 3.3) implies that, for any policy π ∈ ΠN∆t

,

Wk(xi) = EPk,xi,π

(
NT−1∑
m=k

qm
(
Xm, αm, βm

)
+ w

(
XNT

))
.

Since (4.18) implies that qk(xi, a, b) ≥ C
√

∆tIΓk(a)(xi) for k ∈ I∗∆t, i ∈ I∆x, a ∈ A and b ∈ B, we deduce
that for any policy π ∈ ΠN∆t we have

EPk,xi,π
(∑NT−1

m=k IΓm(αm)

(
Xm

))
≤ 1

C
√

∆t
EPk,xi,π

(
NT−1∑
m=k

qm
(
Xm, αm, βm

))

=
Wk(xi)− EPk,xi,π

(
w
(
XNT

))
C
√

∆t
.

Finally, using that Wk and w are bounded, (4.6) follows. �

Proposition 4.3. (Stability) The fully discrete scheme (HJBdisc) is stable, i.e. there exists C > 0 such
that

(4.19) max
k∈I∗∆t, i∈I∆x

|Uk,i| ≤ C,

where C is independent of (∆t,∆x) as long as ∆t is small enough and (∆x)2/∆t is bounded.

Proof. Let us fix k ∈ I∗∆t and i ∈ I∆x. Then the probabilistic interpretation of the scheme in Sect. 3.3
and the definition of h in (3.15) imply the existence of a constant C > 0 such that

|Uk,i| ≤ sup
π∈ΠN∆t

EPk,xi,π
(N∆t−1∑

m=k

[
∆t
∣∣f(tm, Xm, αm)

∣∣
+
∣∣h(tm, Xm, αm, βm

)∣∣]+
∣∣Ψ(XN∆t

)∣∣)
≤ ‖Ψ‖∞ + T‖f‖∞ + C

√
∆t‖g‖∞ sup

π∈ΠN∆t

EPk,xi,π

(
N∆t−1∑
m=k

IΓm(αm) (Xm)

)
.

Thus, (4.19) follows from Lemma 4.1. �

5. Convergence analysis

In this section we provide the main result of this article which is the convergence of solutions to
(HJBdisc) to the unique viscosity solution of (HJB). The proof is based on the half-relaxed limits technique
introduced in [7] and the properties of solutions to (HJBdisc) investigated in Sect. 4.

Let ∆t > 0, let ∆x > 0 and let (Uk)N∆t

k=0 be the solution to (HJBdisc) associated to the discretization

parameters ∆t and ∆x. Let us define an extension of (Uk)N∆t

k=0 to OT by

(5.1) (∀ (t, x) ∈ OT ) u∆t,∆x(t, x) := I[Ubt/∆tc](x),

where we recall that the interpolation operator I[·] is defined in (3.2). Now, let (∆tn,∆xn)n∈N ⊆ (0,+∞)2

be such that limn→∞(∆tn,∆xn) = (0, 0) and the sequence (∆xn/∆tn)n∈N is bounded. For every (t, x) ∈
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OT , let us define

u(t, x) := lim sup
n→∞

OT3(sn,yn)→(t,x)

u∆tn,∆xn(sn, yn),

u(t, x) := lim inf
n→∞

OT3(sn,yn)→(t,x)

u∆tn,∆xn(sn, yn).
(5.2)

From Proposition 4.3 we deduce that u : OT → R and u : OT → R are well-defined and bounded.
Moreover, from [3, Chapter V, Lemma 1.5], we have that u and u are, respectively, upper and lower
semicontinuous functions.

Proposition 5.1. Assume that (∆xn)2/∆tn → 0, as n → ∞. Then u and u are, respectively, viscosity
sub- and supersolutions to (HJB).

Proof. We only show that u is a viscosity subsolution to (HJB), the proof that u is a viscosity supersolution
being similar. Let (t̄, x̄) ∈ OT and φ ∈ C∞(OT ) be such that u(t̄, x̄) = φ(t̄, x̄) and u − φ has a
maximum at (t̄, x̄). Then by [3, Chapter V, Lemma 1.6] there exists a subsequence of (u∆tn,∆xn)n∈N,

which for simplicity is still labeled by n ∈ N, and a sequence (sn, yn)n∈N ⊆ OT such that (u∆tn,∆xn)n∈N is
uniformly bounded, u∆tn,∆xn − φ has a local maximum at (sn, yn), and, as n→∞, (sn, yn)→ (t̄, x̄) and
u∆tn,∆xn(sn, yn)→ u(t̄, x̄). Moreover, by modifying the test function φ, we can assume that u∆tn,∆xn−φ
has a global maximum at (sn, yn), i.e. setting ξn := u∆tn,∆xn(sn, yn)− φ(sn, yn), we have

(5.3) (∀ (t, x) ∈ OT ) u∆tn,∆xn(t, x) ≤ φ(t, x) + ξn, with ξn → 0.

We distinguish now the following cases.
(i) (t̄, x̄) ∈ [0, T )×O. In this case, for all n large enough, by (3.1), we have yn ∈ O∆xn . Let k : N→

I∗∆tn be such that sn ∈ [tk(n), tk(n)+1). As n → ∞, we have tk(n) → t̄ and, from (5.1) and (5.3), with
t = tk(n)+1, we have

(5.4) (∀ x ∈ O) I[Uk(n)+1](x) ≤ φ(tk(n)+1, x) + ξn.

From Proposition 4.1, we obtain

(5.5) (∀ i ∈ I∆x) Skn,i[Uk(n)+1] ≤ Skn,i[Φk(n)+1] + ξn,

where, for all k ∈ I∆t, we have denoted Φk := φ(tk, ·)|G∆xn
. In particular, by (HJBdisc) we get

(5.6) (∀ i ∈ I∆x) Uk(n),i ≤ Skn,i[Φk(n)+1] + ξn.

The monotonicity of the interpolation operator (3.2) yields

(5.7)
(
∀ x ∈ O

)
u∆tn,∆xn(sn, x) ≤

∑
i∈I∆xn

ψi
(
p∆xn(x)

)
Skn,i[Φk(n)+1] + ξn,

and hence, by taking x = yn and using the definition of ξn, we obtain

(5.8) φ(sn, yn) ≤
∑

i∈I∆xn

ψi(yn)Skn,i[Φk(n)+1].

Since (t̄, x̄) ∈ [0, T )×O and A,B are compacts, if n large enough, for all a ∈ A, b ∈ B and for all s ∈ I
we have d̃skn,i(a, b) = 0 for all i ∈ I∆x such that ψi(yn) > 0. Using Proposition 4.2(ii) and inequality

(5.8), we get

φ(sn, yn) ≤
∑

i∈I∆xn

ψi(yn)
[
φ(tk(n)+1, xi)−

∆tnsup
a∈A
H
(
tk(n), xi, Dφ(tk(n)+1, xi), D

2φ(tk(n)+1, xi), a
)]

+O
(
∆tn
√

∆tn + (∆xn)2
)
.

Then following the same arguments than those in [14, Theorem 3.1] (see also [19, Theorem 4.22]) we
conclude that

(5.9) − ∂tφ(t̄, x̄) +H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) ≤ 0,

and, hence, (2.2) holds.
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(ii) (t̄, x̄) ∈ [0, T )× ∂O. If

L(t̄, x̄, Dφ(t̄, x̄)) ≤ 0 or − ∂tφ(t̄, x̄) +H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) ≤ 0,

holds, then (2.3) holds. Thus, let us suppose that

(5.10) L(t̄, x̄, Dφ(t̄, x̄)) > 0 and − ∂tφ(t̄, x̄) +H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) > 0.

Letting k : N→ {0, . . . , NT − 1} as in (i), we have tk(n) → t̄, (5.7) holds true, and hence,

(5.11) φ(sn, yn) ≤
∑

i∈I∆xn

ψi
(
p∆xn(yn)

)
Skn,i[Φk(n)+1].

On the one hand, from Proposition 4.2(ii) we get

0 ≤
∑

i∈I∆xn

ψi(p∆xn(yn))

(
∆tn∂tφ(tk(n), xi)

− sup
a∈A,
b∈B

{
∆tnH(tk(n), xi, Dφ(tk(n)+1, xi), D

2φ(tk(n)+1, xi), a)

+ 1
2Nσ

∑
s∈I

d̃sk,i(a, b)
(
L̃sk(n),i(Dφ(tk(n)+1, xi), a, b)−

√
∆tnK

s
k(n),i(a, b)

)})
+O

(
∆tn
√

∆tn + (∆xn)2
)

and hence, for all a ∈ A and b ∈ B, we have

(5.12)

∑
i∈I∆xn

ψi
(
p∆xn(yn)

){
−∆tn∂tφ(tk(n), xi)

+∆tnH(tk(n), xi, Dφ(tk(n)+1, xi), D
2φ(tk(n)+1, xi), a)

+ 1
2Nσ

∑
s∈I

d̃sk,i(a, b)
(
L̃sk(n),i)(Dφ(tk(n)+1, xi), a, b)−

√
∆tnK

s
k(n),i(a, b)

)}
+O

(
∆tn
√

∆tn + (∆xn)2
)
≤ 0.

On the other hand, since A is compact, there exists ā ∈ A such that

H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) = H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄), ā)

and

(5.13)

∑
i∈I∆xn

ψi
(
p∆xn(yn)

) (
−∂tφ(tk(n), xi)

+ H(tk(n), xi, Dφ(tk(n)+1, xi), D
2φ(tk(n)+1, xi), ā)

)
→ −∂tφ(t̄, x̄) +H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)), as n→∞.

Let us set d̃∗n = max
{
d̃skn,i(ā)

∣∣ s ∈ I, i ∈ I∆xn

}
and take a = ā and an arbitrary b ∈ B in (5.12). If

there exists a subsequence, still labelled by n, such that d̃∗n = 0, then dividing (5.12) by ∆tn, and letting
n→∞, (5.13) yields

−∂tφ(t̄, x̄) +H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) ≤ 0,

which contradicts (5.10). Otherwise, by (3.7), for all n ∈ N, large enough, we have d̃∗n ≥ c̄
√

∆tn. Notice
that the second relation in (5.10) and (5.13) imply that, for n ∈ N large enough,

(5.14)
0 <

∑
i∈I∆xn

ψi
(
p∆xn(yn)

) (
−∂tφ(tk(n), xi)

+H(tk(n), xi, Dφ(tk(n)+1, xi), D
2φ(tk(n)+1, xi), ā)

)
.
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Therefore, inequality (5.12) with a = ā implies that for all b ∈ B

(5.15)

∑
i∈I∆xn

ψi
(
p∆xn(yn)

){∑
s∈I

d̃skn,i(ā, b)
(
L̃skn,i(Dφ(tk(n)+1, xi), ā, b)

−
√

∆tnK
s
k(n),i(ā, b)

)}
+O

(
∆tn
√

∆tn + (∆xn)2
)
< 0.

Since the set I = {+,−}×{1, . . . , d} is finite, there exist ŝ ∈ I, {qs | s ∈ I\{ŝ}} ⊆ [0, 1], and i(n) ∈ I∆xn

such that, up to some subsequence, d̃∗n = d̃ŝk(n),i(n)(ā) and, for all s ∈ I\{ŝ}, d̃sk(n),i(n)(ā)/d̃∗n → qs. Recall

that d̃∗n ≥ c̄
√

∆tn and (∆xn)2/∆tn → 0 as n → ∞. Dividing (5.15) by d̃∗n and taking the limit n → ∞
yields

(∀ b ∈ B)

 ∑
s∈I\{ŝ}

qs + 1

L(t̄, x̄, Dφ(t̄, x̄), b) ≤ 0

and hence (∀ b ∈ B) L(t̄, x̄, Dφ(t̄, x̄), b) ≤ 0.

Thus, L(t̄, x̄, Dφ(t̄, x̄)) ≤ 0, which contradicts (5.10).
(iii) (t̄, x̄) ∈ {T} × O. Let us first assume that (t̄, x̄) ∈ {T} × O. Thus, for n ∈ N large enough, we

have yn ∈ O. By taking a subsequence, if necessary, it suffices to consider the cases sn ∈ [0, T ), for all
n ∈ N, and sn = T , for all n ∈ N. In the first case, proceeding as in (i), we get

(5.16) − ∂tφ(t̄, x̄) +H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) ≤ 0.

In the second case, (5.1) implies that u∆tn,∆xn(sn, yn) = I[Ψ|G∆x ](yn) and hence letting n→∞ we get

(5.17) u(t̄, x̄) = Ψ(x̄).

Now, assume that (t̄, x̄) ∈ {T} × ∂O. As before, it suffices to consider the cases sn ∈ [0, T ), for all
n ∈ N, and sn = T for all n ∈ N. If sn ∈ [0, T ), then, proceeding as in (ii), we get

(5.18) L(t̄, x̄, Dφ(t̄, x̄)) ≤ 0 or − ∂tφ(t̄, x̄) +H(t̄, x̄, Dφ(t̄, x̄), D2φ(t̄, x̄)) ≤ 0.

Finally, if sn = T , for all n ∈ N, we have u∆tn,∆xn(sn, yn) = I[Ψ|G∆x
](yn) and hence (5.17) holds.

Altogether, (5.16) and (5.17) imply that (2.8) holds if (t̄, x̄) ∈ {T} × O, and (5.18) and (5.17) imply
that (2.9) holds if (t̄, x̄) ∈ {T} × ∂O.

Thus, from cases (i)-(iii) and Remark 2.1 we obtain that u is a subsolution to (HJB). �

Theorem 5.1. Assume (H1)-(H3) and that (∆xn)2/∆tn → 0, as n→∞. Then

u∆tn,∆xn → u uniformly in OT ,
where u is the unique continuous viscosity solution to (HJB).

Proof. By (5.2) we have u ≤ u in OT and, by Proposition 5.1 and the comparison principle for sub- and
super solutions to (HJB) (see Remark 2.2(i)), we obtain that u ≥ u in OT . Thus, u = u = u and the
result follows from [3, Chapter V, Lemma 1.9]. �

6. Numerical results

In this section, we present some numerical experiments in order to show the performance of the
scheme. We consider first a one-dimensional linear parabolic equation, with homogeneous Neumann
boundary conditions, and both the first and second order cases. In the former, the boundary conditions
are not satisfied in the pointwise sense at every point in the boundary, but they hold in the viscosity sense
(see Definition 2.1). The second example deals with a degenerate second order nonlinear equation on a
smooth two-dimensional domain. We consider both non-homogeneous Neumann and oblique boundary
conditions. In the last example, we approximate the solution to a non-degenerate second order nonlinear
equation with mixed Dirichlet and homogeneous Neumann boundary conditions on a non-smooth domain.
Because of the presence of Dirichlet boundary conditions and corners, the scheme has to be modified and
the convergence result in Sect. 4 does not apply. However, the scheme can be successfully applied to solve
numerically the problem.

The problems in the first two tests have known analytic solutions. This will allow to compute the
errors of solutions to the scheme and to perform a numerical convergence analysis. In the examples
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dealing with two-dimensional domains, we have considered unstructured triangular meshes, constructed
with the Matlab2019 function initmesh.

In the simulations we have chosen time and space steps satisfying ∆t = ∆x or ∆t = ∆x/2, which are
in agreement with the assumption in Theorem 5.1.

6.1. One-dimensional linear problem. Let ε > 0, set λ±ε = (1±
√

1 + 4ε)/2ε, and define

f(t, x) =
3− t

2

1 +
eλ

+
ε x
(
eλ

−
ε − 1

)
eλ

+
ε − eλ−

ε

(
1− ελ+

ε

)
+
eλ

−
ε x
(

1− eλ+
ε

)
eλ

+
ε − eλ−

ε

(
1− ελ−ε

)
+

1

2

x+
eλ

+
ε x
(
eλ

−
ε − 1

)
eλ

+
ε − eλ−

ε

+
eλ

−
ε x
(

1− eλ+
ε

)
eλ

+
ε − eλ−

ε

 ,

uε(t, x) =
3− t

2

x+
eλ

−
ε − 1

λ+
ε

(
eλ

+
ε − eλ−

ε

)eλ+
ε x +

1− eλ+
ε

λ−ε
(
eλ

+
ε − eλ−

ε

)eλ−
ε x

 ,

for (t, x) ∈ [0, 1]2. Then uε is the unique classical solution to

(6.1)

−∂tu− ε∂2
xu+ ∂xu = f in [0, 1)× (0, 1),

∂xu(·, 0) = ∂xu(·, 1) = 0 in [0, 1),

u(1, ·) = uε(1, ·) in [0, 1].

Similarly to [16, Example 7.3], we have

uε(t, x) −→
ε→0

u0(t, x) :=
3− t

2

(
x+ e−x

)
, uniformly on [0, 1]2

and u0 is the unique viscosity solution to

(6.2)

−∂tu+ ∂xu = f in [0, 1)× (0, 1),

∂xu(·, 0) = ∂xu(·, 1) = 0 in [0, 1),

u(1, ·) = u0(1, ·) in [0, 1].

Notice that for t ∈ [0, 1] we have −∂tu(t, 1) + ∂xu(t, 1)− f(t, 1) ≤ 0 and ∂xu(t, 1) > 0. Thus, at (t, 1)
the boundary condition is satisfied in the viscosity sense but not in the pointwise sense.

Using (HJBdisc), we approximate uε for ε = 0.05, ε = 0.03, and ε = 0. For these choices, we
plot in Figure 2 respectively the approximations of uε(1, ·) and uε(0, ·), computed with the steps sizes
∆x = 3.125 · 10−3 and ∆t = ∆x/2.

We show in Tables 1 and 2 the errors

E∞ = max
i∈I∆x

|U0,i − u(0, xi)|, E1 = ∆x
∑
i∈I∆x

|U0,i − u(0, xi)|,

and the corresponding convergence rates p∞ and p1, for ε = 0.05 and ε = 0, respectively. In all cases, an
order of convergence close to 1 is obtained.

In the simulations, we have chosen c̄ := 0.025 + σ/2, where σ =
√

2ε is the diffusion parameter. With
this choice, the larger the value of σ, the more the characteristics are reflected further into O.

Table 1. Errors and convergence rates for problem (6.1) with ε = 0.05.

∆t = ∆x ∆t = ∆x/2

∆x E∞ E1 p∞ p1 E∞ E1 p∞ p1

5.00 · 10−2 3.99 · 10−2 2.57 · 10−2 - - 2.16 · 10−2 2.03 · 10−2 - -
2.50 · 10−2 2.25 · 10−2 1.06 · 10−2 0.83 1.28 1.26 · 10−2 6.22 · 10−3 0.78 1.71
1.25 · 10−2 1.17 · 10−2 6.13 · 10−3 0.94 0.79 5.87 · 10−3 5.64 · 10−3 1.10 0.14
6.25 · 10−3 5.38 · 10−3 2.49 · 10−3 1.12 1.30 3.17 · 10−3 2.95 · 10−3 0.89 0.93
3.125 · 10−3 2.15 · 10−3 1.77 · 10−3 1.32 0.49 1.62 · 10−3 1.50 · 10−3 0.97 0.98
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Table 2. Errors and convergence rates for problem (6.1) with ε = 0.

∆t = ∆x ∆t = ∆x/2

∆x E∞ E1 p∞ p1 E∞ E1 p∞ p1

5.00 · 10−2 2.83 · 10−2 1.95 · 10−2 - - 2.26 · 10−2 1.86 · 10−2 - -
2.50 · 10−2 1.42 · 10−2 1.01 · 10−2 0.99 0.95 1.15 · 10−2 9.97 · 10−3 0.97 0.90
1.25 · 10−2 7.08 · 10−3 5.39 · 10−3 1.00 0.91 5.88 · 10−3 5.42 · 10−3 0.97 0.88
6.25 · 10−3 3.54 · 10−3 2.91 · 10−3 1.00 0.89 3.04 · 10−3 2.97 · 10−3 0.95 0.87
3.125 · 10−3 1.77 · 10−3 1.59 · 10−3 1.00 0.87 1.68 · 10−3 1.63 · 10−3 0.86 0.87

Figure 2. Exact final condition uε(1, ·) (left) and numerical approximations of uε(0, ·)
(right) for ε = 0.05, ε = 0.03, and ε = 0, with step sizes ∆x = 6.25 × 10−3 and
∆t = ∆x/2.

6.2. Nonlinear problem on a circular domain. Let T = 1, O = {x = (x1, x2) ∈ R2 | |x| < 1},
σ(t, x) =

√
2(sin(x1 + x2), cos(x1 + x2)), and

f(t, x) =
(

1
2 − t

)
sin(x1) sin(x2) +

(
3
2 − t

)(√
cos2(x1) sin2(x2) + sin2(x1) cos2(x2)

−2 sin(x1 + x2) cos(x1 + x2) cos(x1) cos(x2)

)
,

g(t, x) =
(

3
2 − t

)
(x1 cos(x1) sin(x2) + x2 sin(x1) cos(x2)) .

Then OT 3 (t, x1, x2) 7→ ū(t, x1, x2) =
(

3
2 − t

)
sin(x1) sin(x2) is the unique classical solution to

(6.3)

∂tu− 1
2Tr(σσ>D2u) + |Du| = f in OT ,

〈n,Du〉 = g in [0, T )× ∂O,

u(0, x) = ū(0, x) in x ∈ O.

In Figure 3, we show the numerical solution at the final time T = 1 computed on an unstructured
triangular mesh G∆x with mesh size ∆x = 1.25 · 10−1. On the left, we plot the result together with the
contour lines. On the right, we plot the approximation together with the mesh used to compute it.

Given an element T̂ of the triangulation, we denote by xT̂ its barycenter and by |T̂ | its area. We show
in Tables 3 and 4 the errors

(6.4) E∞ = max
i∈I∆x

|UNT ,i − ū(tNT , xi)|, E1 =
∑

T̂∈T∆x

|T̂ |
∣∣I[UNT ,(·)](xT̂ )− ū(tNT , xT̂ )

∣∣,
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Figure 3. Numerical solution at time T = 1 of problem in subsect.6.2 with Neumann
boundary condition, computed with ∆x = 0.125 and ∆t = ∆x/2.

and the corresponding convergence rates p∞ and p1. In each table, we specify in the first column the mesh
size ∆x. To obtain the results shown in Tables 3 and 4, we have chosen c̄ in (3.6) and (3.7) as c̄ = 0.25
and c̄ = 0.5, respectively. For both choices of c̄, we observe similar errors and an analogue behavior of
the convergence rates. As in the previous example, an order of convergence close to 1 is obtained.

Table 3. Errors and convergence rates for the approximation of (6.3) with c̄ = 0.25.

∆t = ∆x ∆t = ∆x/2

∆x E∞ E1 p∞ p1 E∞ E1 p∞ p1

2.50 · 10−1 2.73 · 10−1 2.95 · 10−1 - - 1.22 · 10−1 1.07 · 10−1 - -
1.25 · 10−1 1.24 · 10−1 1.12 · 10−1 1.14 1.40 5.54 · 10−2 4.57 · 10−2 1.14 1.24
6.25 · 10−2 5.55 · 10−2 4.72 · 10−2 1.16 1.24 2.39 · 10−2 2.11 · 10−2 1.21 1.11
3.125 · 10−2 2.49 · 10−2 2.16 · 10−2 1.16 1.13 1.22 · 10−2 1.10 · 10−2 0.97 0.94

Table 4. Errors and convergence rates for the approximation of (6.3) with c̄ = 0.5.

∆t = ∆x ∆t = ∆x/2

∆x E∞ E1 p∞ p1 E∞ E1 p∞ p1

2.50 · 10−1 2.65 · 10−1 2.55 · 10−1 - - 1.18 · 10−1 1.02 · 10−1 - -
1.25 · 10−1 1.23 · 10−1 1.12 · 10−1 1.11 1.19 5.60 · 10−2 4.72 · 10−2 1.08 1.11
6.25 · 10−2 5.74 · 10−2 5.06 · 10−2 1.10 1.15 2.64 · 10−2 2.27 · 10−2 1.08 1.06
3.125 · 10−2 2.70 · 10−2 2.39 · 10−2 1.09 1.08 1.22 · 10−2 1.10 · 10−2 1.11 1.05

Next, we consider the same problem but with oblique boundary conditions. More precisely, for x =
(x1, x2) ∈ ∂O we set

γ(x) = (x1 cos(π/6) + x2 sin(π/6), x2 cos(π/6)− x1 sin(π/6))

and
g̃(t, x) =

(
3
2 − t

) [
(x1 cos(π/6) + x2 sin(π/6)) cos(x1) sin(x2)

+ (x2 cos(π/6)− x1 sin(π/6)) sin(x1) cos(x2)
]

in [0, T )× ∂O.
Then ū is the unique classical solution to

(6.5)

∂tu− 1
2Tr(σσ>D2u) + |Du| = f in OT ,

〈γ,Du〉 = g̃ in [0, T )× ∂O,

u(0, x) = ū(0, x) in x ∈ O.
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The solution ū is approximated by using the same unstructured meshes as in the previous case. We show
in Tables 5 and 6 the errors (6.4) computed with c̄ = 0.25 and c̄ = 0.5, respectively. As in the previous
case, we observe similar errors and an analogue behavior of the convergence rates for both choices of c̄.
We also observe a slight degradation of the errors and the convergence rates in the more complicated case
of oblique boundary conditions.

Table 5. Errors and convergence rates for the approximation of (6.5) with c̄ = 0.25

∆t = ∆x ∆t = ∆x/2

∆x E∞ E1 p∞ p1 E∞ E1 p∞ p1

2.50 · 10−1 3.06 · 10−1 4.38 · 10−1 - - 1.50 · 10−1 2.08 · 10−1 - -
1.25 · 10−1 1.56 · 10−1 2.25 · 10−1 0.97 0.96 7.96 · 10−2 1.17 · 10−1 0.91 0.83
6.25 · 10−2 8.10 · 10−2 1.21 · 10−1 0.95 0.89 4.36 · 10−2 6.84 · 10−2 0.88 0.77
3.125 · 10−2 4.47 · 10−2 7.17 · 10−2 0.86 0.75 2.58 · 10−2 4.26 · 10−2 0.76 0.68

Table 6. Errors and convergence rates for the approximation of (6.5) with c̄ = 0.5.

∆t = ∆x ∆t = ∆x/2

∆x E∞ E1 p∞ p1 E∞ E1 p∞ p1

2.50 · 10−1 2.94 · 10−1 3.81 · 10−1 - - 1.42 · 10−1 1.69 · 10−1 - -
1.25 · 10−1 1.49 · 10−1 1.88 · 10−1 0.98 1.02 7.22 · 10−2 8.56 · 10−2 0.98 0.98
6.25 · 10−2 7.55 · 10−2 9.33 · 10−2 0.98 1.01 3.79 · 10−2 4.63 · 10−2 0.93 0.89
3.125 · 10−2 3.95 · 10−2 5.02 · 10−2 0.93 0.89 2.12 · 10−2 2.75 · 10−2 0.84 0.75

6.3. Nonlinear problem on a non-smooth domain with mixed Dirichlet-Neumann boundary
conditions. In this last example, we deal with a problem of exiting from a bounded rectangular domain
with an circular obstacle inside of it. We model this problem by considering a modification of (1.1)
including mixed Dirichlet-Neumann boundary conditions, with a large time horizon T in order to reach
a stationary solution. We consider the space domain

O =

(
(−1, 1)× (−0.5, 0.5)

)
\ {x ∈ R2 | |x− (−0.5, 0)| ≤ 0.2},

a control set A = {a ∈ R2 | |a| = 1}, a drift µ(t, x, a) = a, a diffusion coefficient σ(t, x, a) = 0.1I2, where
I2 is the identity matrix of size 2, a running cost f ≡ 1, and an initial condition Ψ ≡ 0. We impose
constant Dirichlet boundary conditions on some parts of ∂O, representing the exits of the domain, in
order to model some exit costs. More precisely, Dirichlet boundary conditions (or exit costs) u = 0 and
u = 0.2 are imposed on ∂O1 = {x = (x1, x2) ∈ ∂O |x1 = −1, |x2| ≤ 0.2} and ∂O2 = {x = (x1, x2) ∈
∂O |x1 = 1, |x2| ≤ 0.2}, respectively. We also consider homogeneous Neumann boundary conditions on
the remaining part of the boundary.

We treat the Dirichlet boundary conditions by using an extrapolation technique. This approximation
has been proposed in [10] and has been shown to be more accurate with respect to the methods proposed
in [29, 9]. We show in Figure 4 the numerical approximation computed on an unstructured mesh with
mesh size ∆x = 0.01, a time step ∆t = ∆x and final time T = 3. Figure 5 diplays the quiver plot of
−Du at time T = 3.
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7. Appendix

In this appendix we first study the existence of the projection of x onto ∂O parallel to γb in a
neighborhood of ∂O and for b ∈ B. These projections play an important role in the construction of
our scheme in Sect. 3. The following result is an extension of a result in [22, Section 1.2] to the regularity
that we assume in this paper and, more importantly, to the dependence of γ on b. Recall that in (H3)
∂O is assumed to be of class C3. However, the result in Proposition 7.1 below is also valid if ∂O is only
of class C2.

Proposition 7.1. There exists R > 0 such that, for any x ∈ RN satisfying d(x, ∂O) < R and for any
b ∈ B, there exist a unique pγb(x) ∈ ∂O and a unique dγb(x) ∈ R such that

(7.1) x = pγb(x) + dγb(x)γb(p
γb(x)).

The mappings (x, b) 7→ pγb(x) and (x, b) 7→ dγb(x), called respectively the projection onto ∂O parallel to
γb and the algebraic distance to ∂O parallel to γb, are of class C1.

Proof. We use the same outline and, as much as possible, the same notations than those in [22].
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Let us fix (s, b0) ∈ ∂O × B. Let gs : Us → ∂O be a C2 parameterization of ∂O in a neighborhood of
s, with Us being an open subset of RN−1, z0 ∈ Us, and gs(z0) = s. By (H3) the function

Us × R× V 3 (z, λ, b) 7→ Gs(z, λ, b) = (gs(z) + λγb(g
s(z)), b) ∈ RN × RNB

is of class C1. The Jacobian matrix of Gs has the form

Js(z, λ, b) =

(
Jz,λ(z, λ, b) Jb(z, λ, b)

0NB ,N INB

)
,

where Jz,λ(z, λ, b) coincides with J(z, λ) of the Appendix A of [22], that is

Jz,λ(z, λ, b) =

∂z1gs(z) + λ∂z1γb(g
s(z)) · · · ∂zN−1

gs(z) + λ∂zN−1
γb(g

s(z)) γb(g
s(z))

 .

In particular, for λ = 0,

Jz,λ(z, 0, b) =

∂z1gs(z) · · · ∂zN−1
gs(z) γb(g

s(z))


is invertible since its N − 1 first columns span the tangent space to ∂O at gs(z) and, since

〈n(gs(z)), γb(g
s(z))〉 > 0,

its last column is non tangent to ∂O. It follows that Js(z, 0, b) is also invertible, and we can therefore
apply the inverse mapping theorem to Gs at (z0, 0, b0) to obtain the existence of a neighborhood V s,b0

of (s, b0) and C1 mappings V s,b0 3 (x, b) 7→ pγb(x) ∈ ∂O and V s,b0 3 (x, b) 7→ dγb(x) such that (7.1)
holds for every (x, b) ∈ V s,b0 . The compactness of ∂O × B ⊂ ∪(s,b0)∈∂O×BV

s,b0 enables to consider a

finite number of (si, (b0)i), 1 ≤ i ≤ k, such that ∂O × B ⊂ ∪ki=1V
si,(b0)i . Then there exists R̄ > 0 such

that {y ∈ RN | d(y, ∂O) < R̄} × B ⊂ ∪ki=1V
si,(b0)i . In particular for any x such that d(x, ∂O) < R̄ and

any b ∈ B, there exist a least a point pγb(x) and a scalar dγb(x) such that (7.1) holds. We claim that
there exists R ∈ (0, R̄) such that for any x satisfying d(x, ∂O) < R and any b ∈ B, pγb(x) is unique
(and as a consequence dγb(x) is also unique). Assume that this is not the case. Then (considering for
example R = 1

k ) one can build a sequence (xk, bk)k∈N converging (after extraction a subsequence) to

some point (ŝ, b̂) ∈ ∂O × B and such that for all k ∈ N, xk has two distinct projections p
γbk
i (xk) with

associated algebraic distances d
γbk
i (xk), i = 1, 2. At the limit point ŝ, we consider Gŝ which is a local

diffeomorphism on a neighborhood of (ẑ, 0, b̂) (with gŝ(ẑ) = ŝ). Since xk → ŝ ∈ ∂O, then p
γbk
i (xk) → ŝ

and d
γbk
i (xk)→ 0, i = 1, 2. Let zi,k be such that gŝ(zi,k) = p

γbk
i (xk) and λi,k = d

γbk
i (xk), i = 1, 2. Then

(zi,k, λi,k, bk)k, i = 1, 2, are distinct sequences that both converge to (ẑ, 0, b̂) and have the same image
Gŝ(zi,k, λi,k, bk) = (xk, bk). This contradicts that Gŝ is a local diffeomorphism on a neighborhood of

(ẑ, 0, b̂). �

For any ε ≥ 0 let us define

Dε = {x ∈ O | d(x, ∂O) > ε},(7.2)

∂Dε = {x ∈ O | d(x, ∂O) = ε},(7.3)

Lε = {x ∈ O | d(x, ∂O) ≤ ε}.(7.4)

Now we focus on the existence of projections of x ∈ Lε onto ∂Dε and the regularity of Lε 3 x 7→
d(x,Dε) ∈ R. These results are important in order to show Lemma 4.1 which is the key to obtain the
stability of the scheme in Proposition 4.3.

Lemma 7.1. The following hold:

(i) There exists η > 0 such that on Lη, the projection p∂O onto ∂O is well-defined and C1.
(ii) The distance function Lη 3 x 7→ d(x, ∂O) ∈ R is C3, and Dd(·, ∂O)(x) = −n(p∂O(x)).

Let δ ∈ [0, η]. Then the following hold:

(iii) ∂Dδ is of class C3 and, denoting by nδ(x) the unit outward normal at x ∈ ∂Dδ, we have nδ(x) =
n(p∂O(x)).

(iv) For every x ∈ Lδ, p = p∂O(x)− δn(p∂O(x)) is a projection of x onto ∂Dδ.
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(v) The function x 7→ d(x, ∂Dδ) is of class C3 on Lδ and d(x, ∂O) + d(x, ∂Dδ) = δ for every x ∈ Lδ.

Proof. (i)&(ii) See [21, Lemma 14.16].

(iii) This follows from (ii) and (7.3).

(iv)&(v) Let us first show that p ∈ ∂Dδ. We have d(p, ∂O) ≤ |p− p∂O(x)| = δ. Thus, p ∈ Lδ and, by (i),
p∂O(x) = p∂O(p), which implies that d(p, ∂O) = δ and hence p ∈ ∂Dδ. Since

x = p∂O(x)− d(x, ∂O)n(p∂O(x)),

we obtain d(x, ∂Dδ) ≤ |p− x| = δ − d(x, ∂O). Assume that d(x, ∂Dδ) < δ − d(x, ∂O). Then there exists
p′ ∈ ∂Dδ such that |x− p′| < δ − d(x, ∂O). This implies that

δ = d(p′, ∂O) ≤ |p′ − p∂O(x)| ≤ |p′ − x|+ |x− p∂O(x)| < δ,

which is impossible. Thus
|p− x| = d(x, ∂Dδ) = δ − d(x, ∂O).

The first equality above implies that p is a projection of x onto ∂Dδ. Since x ∈ Lδ is arbitrary, the second
equality above and (ii) imply that (v) holds. �
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