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Abstract
We introduce a novel discretization technique for both elliptic and parabolic fractional
diffusion problems based on double exponential quadrature formulas and the Riesz–
Dunford functional calculus. Compared to related schemes, the new method provides
faster convergence with fewer parameters that need to be adjusted to the problem.
The scheme takes advantage of any additional smoothness in the problem without
requiring a-priori knowledge to tune parameters appropriately. We prove rigorous
convergence results for both, the case of finite regularity data as well as for data in
certain Gevrey-type classes. We confirm our findings with numerical tests.

Mathematics Subject Classification 65N15 · 65M12

1 Introduction

The study of processes governed by fractional linear operators has gathered significant
interest over the last few years [8, 22, 35] with applications ranging from physics [1]
to image processing [1, 15, 16], inverse problems [19] and more. See [33] for an
overview of applications in different fields. The goal is to solve problems of the form

(−�)βu = f or ∂α
t u + (−�)βu = f

with parameters β,α ∈ (0, 1]. There are multiple (non-equivalent) ways of defining
fractional powers of operators. We mention the integral fractional Laplacian and the
spectral definition [22]. In this paper, we focus on the spectral definition which is
equivalent to the functional calculus definition.

B Alexander Rieder
alexander.rieder@univie.ac.at; alexander.rieder@tuwien.ac.at

1 Fakultät für Mathematik, University of Vienna, Vienna, Austria

2 Institute for Analysis and Scientific Computing, TU Wien, Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-022-01342-8&domain=pdf


360 A. Rieder

For discretization of such problems, both stationary and time dependent, multiple
approaches have been presented. A summary of the most common can be found in
[2, 22]. They can be broadly distinguished into three categories. The first class of
methods uses the Caffarelli-Silvestre extension to reformulate the problem as a PDE
posed in one additional spatial dimension. This problem is then treated by standard
finite element techniques [6, 24, 25, 27–29]. The second big class of discretization
schemes, and the one our new scheme is part of, was first introduced in [7] and
later extended to more general operators [5] and time dependent problems [3, 4,
26]. They are based on the Riesz–Dunford calculus (sometimes also referred to as
Dunford-Taylor or Riesz-Taylor) and employ a sinc quadrature scheme to discretize
the appearing contour integral. sinc quadrature, and overall sinc-based numericalmeth-
ods are less well known than their polynomial based counterparts, but provide rapidly
converging schemes [21, 32] with very easy implementation. The quadrature relies
on appropriate coordinate transforms in order to yield analytic, rapidly decaying inte-
grands over the real line and then discretization using the trapezoidal quadrature rule.
In [34] it was realized that by adding an additional sinh-transformation, it is possible to
get an even faster convergence for certain integrals. Namely, writingNq for the num-

ber of quadrature points, instead of convergence of the form e−√Nq , it is possible to

get rid of the square root and obtain rates of the form e
− Nq

lnNq . Further developments in
this direction are summarized in [23]. Such schemes are commonly referred to as dou-
ble exponential quadrature or sinh-tanh quadrature. Thirdly there is the large class of
methods based on rational approximation of the functions z−β and the Mittag Leffler-
Function eγ,μ(z) (see (3.18) for the precise definition). As shown in [17], this class
also encompasses the previous two approaches while also allowing some other meth-
ods, based on general rational approximation algorithms like Best-Uniform-Rational
approximation (BURA) or the “Adaptive Antoulas-Anderson”-algorithm (AAA) from
[30]. Finally, there exist some further methods based on reduced basis and rational
Krylov methods [9, 10, 12, 13] which are strongly related to rational approximation.

In this paper we investigate whether the discretization of the Riesz–Dunford inte-
gral can benefit from using a double exponential quadrature scheme instead of the
more established sinc-quadrature. We present a scheme that retains all the advantages
of [3–5] while delivering improved convergence rates. Namely, the scheme is very
easy to implement if a solver for elliptic finite element problems is available. It is
almost trivially parallelizable, as the main cost consists of solving a series of indepen-
dent elliptic problems. In addition, it provides (compared to sinc-methods) superior
accuracy over a wide range of applications and does not require subtle tweaking of
parameters in order to get good performance. Instead it will automatically pick up
any additional smoothness of the underlying problem to give improved convergence.
Since for each quadrature point an elliptic FEM problem needs to be solved, reducing
the number of quadrature points greatly increases performance of the overall method.

Compared to the BURA and AAA rational approximation methods, the sinc- and
double-exponential quadrature based algorithms have several advantages. Firstly, the
implementation is very simple with quadrature nodes that are known explicitly. The
quadrature points are also independent of the spectrumof the operatorL and no explicit
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bound on the largest eigenvalue is required. This makes them better suited for highly
accurate but highly ill-conditioned discretizations like the hp-FEM scheme in [26].

Secondly, the quadrature points are independent of the function that is to be
approximated.Most notably,when considering the time-dependent problemwith inho-
mogeneus right-hand side in Sect. 3.3, all the linear systems that need to be solved
are independent of the time t or the integration variable τ . This makes the full time-
dependent problem of the same cost (with respect to the number of systems that need
solving) as the simple stationary problem. Thirdly, the quadrature basedmethods allow
for very detailed analysis, as showcased in this article. In addition to the quadrature
analysis, they also allow for detailed analysis of the error brought in by a discretization
in space [26]. In practice, we also observed better numerical stability in the presence
of rounding errors, as showcased in Fig. 4.

The paper is structured as follows. After fixing the model problem and notation in
Sects. 1.1, 3 introduces the double exponential formulas in an abstract way and we
collect some known properties. In addition, we provide one small convergence result
which, to our knowledge, has not yet appeared in the literature; we show that the double

exponential formulas at least provide comparable convergence of order e−√Nq even
without requiring additional analyticity compared to standard sinc methods.

The paper is structured as follows. In Sect. 1, we introduce the general setting and
the functional calculus. Sect. 2 introduces the quadrature scheme as well as the model
problems we are interested in. We also state the main convergence results. Sect. 3
is devoted to proving these results. Sect. 3.1 presents the abstract analysis for sinc
methods and collects some known properties. In addition, we provide one small con-
vergence result which, to our knowledge, has not yet appeared in the literature; we
show that the double exponential formulas at least provide comparable convergence of

order e−√Nq/ ln(Nq) even without requiring additional analyticity compared to stan-
dard sinc methods. In Sect. 3.2, we look at the case of a purely elliptic problemwithout
time dependence. It will showcase the techniques used and provide the building block
for the more involved problems later on. In Sect. 3.3, we then consider what happens
if we move into the time-dependent regime. Section 4 provides extensive numerical
evidence supporting the theory. We also compare our new method to the standard
sinc-based methods. Finally, Appendix A collects some properties of the coordinate
transform involved. The proofs and calculations are elementary but somewhat lengthy
and thus have been relegated to the appendix in order to not impact readability of the
article.

Throughout this work we will encounter two types of error terms. For those of the
form e− γ

k we will be content with not working out the constants γ explicitly. For the

more important terms of the form e
− γ ′√

k we will derive explicit constants γ ′ which
prove sharp in several examples of Sect. 4.

We close with a remark on notation. Throughout this text, we write A � B to mean
that there exists a constant C > 0, which is independent of the main quantities of
interest like number of quadrature points Nq or step size k such that A ≤ C B. The
detailed dependencies of C are specified in the context. We write A ∼ B to mean
A � B and B � A.
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1.1 General setting and notation

In this paper, we consider problems of applying holomorphic functions f to self-
adjoint operators, for example the Laplacian. The two large classes of problems treated
in this paper stem from the study of fractional diffusion problems, both in the stationary
aswell as in the transient version. Since it does not incur additional difficulty compared
to the explicit setting of Remark 1.2, we will work in the following abstract setting:

Assumption 1.1 Let X be a Hilbert space and L be a positive definite, self adjoint
operator onX such that there exists a sequence of eigenvalues λ j > 0 with associated
eigenfunctions ϕ j ∈ X , j ∈ N0, such that (ϕ j )

∞
j=0 is an orthonormal basis of X .

Given the eigenvalues and eigenfunctions of L, we define the spaces for β ≥ 0

H
β :=

{
u ∈ X : ‖u‖Hβ(
) < ∞

}
with ‖u‖2

Hβ :=
∞∑
j=0

λ
β
j

∣∣(u, v j )X
∣∣2. (1.1)

Remark 1.2 The problemwe have inmind for our applications is the following: given a
bounded Lipschitz domain 
, we consider the space X := L2(
) and the self adjoint
operator

Lu := − div(A∇u) + cu,

where A ∈ L∞(
;Rd×d) is uniformly symmetric and positive definite and c ∈
L∞(
) satisfies c ≥ 0 almost everywhere. The domain of dom(L) is always taken to
include homogeneous Dirichlet boundary conditions. In this case, the spaces Hβ(X )

correspond to the standard (fractional) Sobolev spaces often denoted by H
β(
) or

H̃β(
) in the literature. ��
Remark 1.3 [5] considers an even more general class of operators, namely the class
of “regular accretive operators”. We expect some of the results of this article to carry
over also to such a class, but since many of our proofs rely on the decomposition using
real eigenvalues, such generalizations would be non-trivial. ��

The spacesHβ are the natural setting for our regularity assumptions on the data. If
we are interested in convergence beyond root-exponential rates, we need the following
class of functions of Gevrey-type.

GL(C f , R f , ω) :=
{

f ∈ X : ‖ f ‖Hρ ≤ C f Rρ
f

(
(ρ + 1)

)ω
< ∞ ∀ρ ≥ 0

}
.

(1.2)

Compared to the standard Gevrey-class of functions, these spaces also include bound-
ary conditions for the functionsLn f for all n ∈ N. If the boundary conditions are met,
we can then estimate

‖ f ‖Hρ ≤ ‖ f ‖X + ‖L�ρ/2� f ‖X .
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Examples for such functions are those only containing afinite number of frequencies
when decomposed into the eigenbasis of L, but also more complex functions such as
smooth bump functions with compact support are admissible (see [31, Section 1.4]).

One natural way of defining a functional calculus for the operator L is based on the
spectral decomposition.

Definition 1.4 (Spectral calculus) Let O ⊆ R+ such that O contains the spectrum of
L. Let g : O → C be continuous with |g(z)| � (1 + |z|)μ for μ ∈ R. We define for
u ∈ H

2μ(
):

g(L)u :=
∞∑
j=0

g(λ j )
(
u, v j

)
X v j .

An alternative definition for holomorphic functions, which will prove more useful
for approximation is given in the following Definition. For simplicity, we restrict our
considerations to decaying functions g. In this case, it can be shown (see also [3,
Section 2]) that the operators resulting from Definitions 1.4 and 1.5 coincide.

Definition 1.5 (Riesz–Dunford calculus) Fix parameters σ = 1/2 or σ = 1, θ ≥ 1
and κ > 0. Let O ⊆ C such that C+ := {z ∈ C : Re(z) > 0} ⊆ O. Let g : O → C

be holomorphic with |g(z)| � (1 + |z|)μ for μ < 0. We define

g(L) := 1

2π i

∫

C
g(z)

(L − z
)−1

dz, (1.3)

where the integral is taken in the sense of Riemann, and C is the smooth path

C :=
{
κ
(
cosh(σw) + iθ sinh(w)

)
for w ∈ R

}
.

The parameter κ > 0 is taken sufficiently small such that κ < λ0, where λ0 is the
smallest eigenvalue of L. The parameters σ and θ can be used to tweak the discretiza-
tion. We have observed the best behavior for σ := 1/2 and θ := 4; cf. Sect. 4.

Remark 1.6 The choice of path in Definition 1.5 is somewhat arbitrary. It is only
required to encircle the spectrum of Lwith winding number 1. Throughout this paper,
we will only ever use the same path and thus make it part of our definition. ��

Remark 1.7 One could also think to allow σ ∈ (0, 1). For the practical application
of the scheme this does not make a big difference, but the analysis for σ �= 1 in this
paper makes heavy use of the half-angle formula. Therefore we restrict our view to
the cases σ = 1 or σ = 1/2. In numerical experiments, methods with σ �= 1/2 work,
but we decided that the small difference in performance does not warrant the much
greater complexity of analysis. ��
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2 Model problems, discretization and results

In this section, we introduce the discretization methods and, in order to ease the
reading of the article, we present the most important of the convergence results. All
of the sometimes very technical proofs are relegated to Sect. 3.

The main role in our discretization schemes will be played by the following coor-
dinate transform which parametrizes the contour in Definition 1.5:

ψθ,σ (y) := κ
[
cosh

(σπ

2
sinh(y)

)
+ iθ sinh

(π

2
sinh(y)

)]
. (2.1)

We will focus on the cases σ ∈ { 1
2 , 1

}
and θ ≥ 1. κ is again taken sufficiently small

as in Definition 1.5.
Using this transformation, we can introduce the double exponential quadrature

approximation of the Riesz–Dunford calculus in Definition 1.5. Because the dis-
cretization by quadrature will appear repeatedly for different functions and operators,
we introduce the following notation:

Definition 2.1 Let O ⊆ C such that C+ ⊆ O. For g : O → C holomorphic as in
Definition 1.5, k ≥ 0 and Nq ∈ N ∪ {∞} we write for all u ∈ X

QL(g,Nq)u := 1

2π i

Nq∑
j=−Nq

g(ψσ,θ ( jk))ψ ′
σ,θ ( jk)(L − ψσ,θ ( jk))−1u (2.2)

and QL(g) := QL(g,∞) for the case where no cutoff is performed. The quadrature
error will be denoted by

EL(g,Nq) := g(L)u − QL(g,Nq)u, ∀u ∈ dom(g(L)) (2.3)

where g(L) is given via the Riesz–Dunford integral 1.5. Again, we write EL(g) :=
EL(g,∞).

Remark 2.2 In Definition 2.1, we will often work with the special case L = λ. This is
taken to mean the scalar multiplication operator u �→ λu on the vector space X . ��

We apply the function to the following problems:

(i) g(z) := z−β : This corresponds to solving an elliptic fractional diffusion problem;
see Sect. 2.1 for the model problem and Sect. 3.2 for the proofs.

(ii) g(z) = eγ,μ(−tαzβ), with eγ,μ the Mittag–Leffler function: This corresponds to
a parabolic model problem; see Sects. 2.2 and 3.3.

For both model problems, we prove two convergence results, depending on the
regularity of the data. In the case of “finite regularity”, the data ( f or u0) are assumed
to be in a spaceH2ρ for some ρ > 0. This results in bounds of root-exponential order√Nq/ ln(Nq).
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The second case is the one were the data are in the Gevrey-type classes GL intro-
duced in (1.2). For such functions, the double-exponential discretization leads to an

improved convergence of the form O(e
− γNq

ln(Nq ) ).

2.1 The elliptic problem

As our first model problem, we consider the following elliptic fractional diffusion
problem:

Given f ∈ L2(
) andβ > 0, find u ∈ dom(Lβ) such that Lβu = f . (2.4)

Using the Riesz–Dunford formula, this is equivalent to computing

u = 1

2π i

∫

C
z−β

(L − z
)−1

f dz.

In order to get a discrete scheme,we replace the integralwith the quadrature formula.
Given Nq ∈ N and k > 0, the approximation to (2.4) is then given by

uk := QL(z−β,Nq) f .

Remark 2.3 Since in practice, the solution operator (L− z)−1 is not computable, one
would in addition replace (L − z)−1 by a Galerkin solver in order to obtain a fully
computable scheme. In the Setting of Remark 1.2, this means the following: given a
closed subspace Vh ⊆ H1

0 (
), the discrete resolvent Rh(z) : L2(
) → Vh is given
as the solution

Rh(z) f := uh, with
(
A∇uh,∇vh)L2(
) + (

(c − z)uh, vh
)

L2(
)
= (

f , vh
)

L2(
)

∀vh ∈ Vh .

Given discretization parameters Vh ⊆ H
1(
), Nq ∈ N and k > 0, the fully discrete

approximation to (2.4) is then given by

uh,k := 1

2π i

Nq∑
j=−Nq

(
ψσ,θ ( jk)

)−β
ψ ′

σ,θ ( jk) Rh
(
ψσ,θ ( jk)

)
f . (2.5)

In order to keep presentation to a reasonable length, we focus on the spatially contin-
uous setting. We only remark that discretization in space can be easily incorporated
into the analysis. For low order finite elements one can follow [3]; for an exponentially
convergent hp-FEM scheme we refer to [26]. ��
Remark 2.4 We should point out that for the elliptic problem, there exist methods
based on the Balakrishnan formula (see also Sect. 4) which do not require complex
arithmetic. On the other hand, since we are only approximating real valued functions,
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we can exploit the symmetry of (2.2) to only solve for j ≥ 0, thus halving the number
of linear systems. This results in (roughly) comparable computational effort for both
the Balakrishnan and the double exponential schemes. Due to their better convergence
the DE-schemes might therefore still be advantageous. ��

The convergence of the new method can be summarized in the following two
theorems.

Theorem 2.5 Let u be the exact solution to (2.4) and assume f ∈ H
2ρ(
) for some

ρ ≥ 0. Let β ≥ β with β ∈ (0, 1] and uk := QL(z−β,Nq) f denote the approximation
computed using stepsize k > 0 and Nq ∈ N quadrature points. Then, the following
estimate holds for all ε ≥ 0 and r ∈ [0, β/2]:

‖u − uk‖H2r =
∥∥∥EL(z−β,Nq) f

∥∥∥
H2r

� e
− [p(σ,θ)−ε]√β+ρ−r√

k ‖ f ‖
H2ρ +

[
exp

(− γ

k

)+ exp
(− γ ekNq

)] ‖ f ‖X ,

where the rate p(σ, θ) is given by

p(σ, θ) :=
{
2
√
2π tan−1(θ) for σ = 1,

2π, for σ = 1/2.
(2.6)

For ε > 0, the implied constant and γ may depend on ε, r , the smallest eigenvalue
λ0 of L, β, κ , θ and σ . But they are independent of ρ, β, k, and f . If ε = 0, the
constants may in addition depend on ρ and β.

Remark 2.6 When comparing Theorem 2.5 to the estimates of the standard sinc-
quadrature onemight think that the double exponentialmethod is inferior due to the

√
k

vs k behavior. This misconception can be cleared up by considering the better decay
properties of the double-exponential formula. It allows to choose k ∼ ln(Nq)/Nq com-

pared to the standard sinc-quadrature choice of k ∼ N−1/2
q without the cutoff error

becoming dominant. Using this choice, the exponential term scales like
√Nq/ ln(Nq)

for double exponential and
√Nq for standard sinc respectively. As is shown in Sect. 4,

the better constants in the exponential still often outweigh the presence of the ln-term
for the double-exponential quadrature. ��
Remark 2.7 For most of the computation, the convergence rate is determined by the
factor p(σ, θ) in Corollary 3.8. We observe that for θ = 1, picking σ = 1/2 roughly
doubles the convergence rate. Similarly, it often appears beneficial to pick larger values
of θ . Especially for σ = 1, we get an asymptotic rate for θ → ∞, which is the same
as in the case of σ = 1/2. But we need to point out that increasing θ means that
we have to decrease the value d(θ), which determines the rate in the higher orders
terms of the form e−γ /k , thus leading to those terms dominating in a larger and larger
preasymptotic regime. Overall, the method using σ = 1/2 and setting θ moderately
large is expected to give the best convergence rates; cf. Sect. 4. ��
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The previous theorem shows that in general, the convergence behaves likeO(e
− γ√

k ).
It also shows that, if the function f in the right-hand side has some additional smooth-
ness, the method automatically detects this and delivers an improved convergence
rate. If the additional smoothness is in the right Gevrey type classes, we can establish
convergence which is beyond the root exponential behavior. The details can be found
in the following theorem:

Theorem 2.8 Let u be the exact solution to (2.4) and assume that there exist constants
C f , ω, R f > 0 such that f ∈ GL(C f , R f , ω), i.e.,

‖ f ‖Hρ ≤ C f Rρ
f

(
(ρ + 1)

)ω
< ∞ ∀ρ ≥ 0.

Assume that β > β with β ∈ (0, 1]. Let uk := QL(z−β,Nq) f denote the approxima-
tion computed using stepsize k ∈ (0, 1/2) and Nq ∈ N quadrature points. Then, the
following estimate holds:

‖u − uk‖Hβ =
∥∥∥EL(z−β,Nq)

∥∥∥
Hβ

� C f exp
(

− γ

k |ln(k)|
)

+ C f exp
(

− γ ekNq
)
.

The implied constant and γ may depend on ω, the smallest eigenvalue λ0 of L, κ , θ ,
σ , R f , β, and ω. If ω = 0, the logarithmic term may be removed.

2.2 The parabolic problem

The second model problem we consider is a time-dependent fractional diffusion prob-
lem of parabolic type. We fix α, β ∈ (0, 1] and a final time T > 0. Given an initial
condition u0 ∈ X and right-hand side f ∈ C([0, T ],X ) we seek u : [0, T ] →
dom(Lβ) satisfying

∂α
t u + Lβu = f in [0, T ], u(t) ∈ dom(Lβ) ∀t > 0, and u(0) = u0, (2.7)

where ∂α
t denotes the Caputo fractional derivative. Following [4], the solution u can

be written using the Mittag–Leffler function eα,μ (see (3.18)) as

u(t) := eα,1
(− tαLβ

)
u0 +

∫ t

0
τα−1eα,α

(− ταLβ
)

f (t − τ) dτ . (2.8)

Here we again use either the spectral or, equivalently, the Riesz–Dunford calculus
to define the operators. We discretize this problem by using our double exponential
formula. Namely for k > 0 and using Nq ∈ N quadrature points,

uk(t) := QL(eα,1(−tαzβ),Nq

)
u0 +

∫ t

0
τα−1QL(eα,α(−ταzβ),Nq

)
f (t − τ)dτ .

(2.9)
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Remark 2.9 In practice, in order to get a fully computable discrete scheme, one would
again replace the resolvent by a Galerkin solver and the convolution in time by an
appropriate numerical quadrature. For example, [4] presents a loworder approximation
scheme. In order to retain exponential convergence, [26] uses a scheme based on hp-
FEM and hp-quadrature. We summarize the construction briefly. For a given degree
p ∈ N0, and interval I , we denote the Gauss quadrature points and weights on (−1, 1)
by (x I ,p

j , w
I ,p
j ) ∈ I × R+, j = 0, . . . , p. See [11, Section 2.7] for details. We then

consider a geometric mesh on (0, 1) with grading factor σ ∈ (0, 1) and parameter
L ∈ N, L ≤ p given by

K0 := (0, σ L), K1 := (σ L , σ L−1), . . . , KL := (σ, 1).

On each one of these elements, we apply a Gauss quadrature, reducing the order as
we approach the singularity, i.e., we get the nodes and weights as

(X , W ) :=
L⋃

�=0

{
(x K�,p−L+�

j , w
K�,p−L+�
j ) : j = 0, . . . , p

}
.

The convolution in (2.7) is then replaced by∫ t

0
τα−1eα,α(−ταzβ) dτ ≈ t

∑
(x j ,w j )∈(X ,W )

w j (t x j )
α−1eα,α(−(t x j )

αzβ) f (t − (t x j ))

=: ht (z).

In order to get a fully discrete scheme, this function is then discretized using the double
exponential quadrature scheme:∫ t

0
τα−1eα,α(−ταLβ) f (t − τ)dτ ≈ QL(ht ,Nq).

In order to not overwhelm the presentation of the paper, we do not consider these types
of discretization errors. The analysis of such errors could be taken almost verbatim
from the references [3, 26]. ��

The analysis of themethod again comes in the formof two theorems, one for the case
of finite regularity and one for regularity in the Gevrey-type classes GL(C f , R f , ω).

Theorem 2.10 Assume that either α + β < 2 or σ = 1 (i.e., the case α = β = 1
and σ = 1/2 is not allowed). Let u be the solution to (2.7). Assume u0 ∈ H

2ρ for
some ρ > 0, and f ∈ Cm([0, T ],H2ρ) for some m ∈ N. Let uk be the corresponding
discretization using stepsize k > 0 and Nq ∈ N quadrature points as defined in (2.9).

Then, the following estimate holds for all t ∈ (0, T ), r ∈ [0, β/2] and any q < 1:

‖u(t) − uk(t)‖H2r � max
(
t−m−qα, T α

)( ‖u0‖H2ρ +
m∑

j=0

max
τ≤t

‖ f ( j)(τ )‖H2ρ

)

×
(

e
−min

{
p(σ,θ)

√
β+ρ−r ,γ1

√
m/α+q

}
√

k + e−γ /k + e−γ ekNq
)
,
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where p(σ, θ) is as in (2.6) and γ1 is the constant from Corollary 3.5. The implied
constant and γ may depend on q, r , the smallest eigenvalue λ0 of L, β, α, κ , θ , σ and
ρ.

Theorem 2.11 Assume that either α + β < 2 or σ = 1 (i.e., the case α = β = 1
and σ = 1/2 is not allowed). Let u be the solution to (2.7), and assume that the data
satisfy

‖u0‖Hρ ≤ Cu0 Rρ
u0

(
(ρ + 1)

)ω
< ∞ ∀ρ ≥ 0∥∥ f (n)(t)

∥∥
Hρ ≤ C f Rρ+n

f

(
(ρ + 1)

)ω(
n!)ω < ∞ ∀t ∈ [0, T ], ∀ρ ≥ 0, ∀n ∈ N0.

(2.10)
Let uk be the corresponding discretization using stepsize k ∈ (0, 1/2) and Nq ∈ N

quadrature points as defined in (2.9). Then, the following estimate holds:

‖u(t) − uk(t)‖Hβ � (1 + t) exp
(

− γ

k |ln t�| |ln k|
)

+ (
t + t−γ /2) exp (− γ ekNq

)

with t� := min(t, 1/2). The implied constant and γ may depend on the smallest
eigenvalue λ0 of L, β, θ , σ and the constants from (2.10).

3 Error analysis

In this section, we analyze the quadrature error when applying a double exponential
formula for discretizing certain integrals.

For θ ≥ 1, δ > 0 we define the sets

Dd(θ) :=
{

z ∈ C : |Im(z)| < d(θ)
}
, and Dexp

δ :=
{

z ∈ C : |Im(z)| < δe−|Re(z)|},
(3.1)

where for each θ , d(θ) is a constant which is assumed sufficiently small in order for
Lemmas A.3, A.4, and A.8 to hold.

Since all the proofs analyzing the properties of ψσ,θ are elementary but somewhat
lengthy and cumbersome, they have been relegated toAppendixA. Themost important
properties are, that y �→ ψσ,θ (y) for y ∈ R traces the contour in the definition of the
Riesz Dunford calculus (see Definition 1.5), and that it is analytic in Dd(θ). The other
important results concern the points where ψσ,θ crosses the real axis, as these points
correspond to (possible) poles in the integrand of Definition 1.5. The location of these
points, as well as other important estimates are collected in Lemma A.8. Roughly
summarizing, the finitely many points y satisfyingψσ,θ (y) = λ have distance 1/ ln(λ)

from the real axis. Away from such points
∣∣ψσ,θ (y) − λ

∣∣ � λ holds and for y → ±∞
the function ψσ,θ behaves doubly-exponential (Lemma A.4).

3.1 Abstract analysis of sinc-quadrature

In this section, we collect some results on sinc-quadrature formulas.
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Remark 3.1 As is common in the literature, we define the sinc function as

sinc(ζ ) :=
{

sin(πζ )
πζ

ζ �= 0

1 ζ = 0.

The following result is the main work-horse when analyzing sinc-quadrature
schemes. In order to reduce the required notation, we use a simplified version of
[32, Problem 3.2.6].

Proposition 3.2 (Bialecki, see [32, Problem 3.2.6 and Theorem 3.1.9]) We make the
following assumptions on g:

(i) g is a meromorphic function on the infinite strip Dd(θ). It is also continuous on

∂ Dd(θ). The poles
(

p�

)Np

�=1 are all simple and located in Dd(θ) \ R.
(ii) There exists a constant C > 0 independent of y ∈ R such that for sufficiently large

y > 0,

∫ d(θ)

−d(θ)

|g(y + iw)| dw ≤ C . (3.2)

(iii) We have

N (g, Dd(θ)) :=
∫ ∞

−∞
|g(y + id(θ))| + |g(y − id(θ))| dy < ∞. (3.3)

Denote by res(g; p�) the residue of g at p�, and define γ (k; p�) := 1
sin(π p�/k)

.

Then for all k > 0, using s� := sign(Im(p�)):

∣∣∣
∫

R

g(t) dt − k
∞∑

n=−∞
g(k n) − π

Np∑
�=1

ei
s�π p�

k res(g; p�)γ (k; p�)

∣∣∣

≤ e−2πd(θ)/k

1 − e−2πd(θ)/k
N (g, Dd(θ)). (3.4)

Proposition 3.2 requires certain decay properties for the integrand in a complex
strip, and thus is not always applicable. As is shown in Appendix A, the transformation
ψσ,θ maps partly into the left-half plane. One can even show that the real part changes
sign infinitely many times when evaluating along a line of fixed imaginary part. If we
therefore consider the case when f (z) := e−z is the exponential function, this means
that f ◦ψ is exponentially increasing in such regions. This puts showing estimates of
the form required in Proposition 3.2 (iii) out of reach.

On the other hand, Lemma A.5 shows that for σ = 1, restricted to the domain
Dexp

δ , the map ψσ,θ stays in the right half-plane. Here the exponential function is
decreasing. Similarly, the Mittag–Leffler function eα,μ is decreasing on slightly larger
sectors, allowing for the choice of σ = 1/2 if α < 1. This motivates the following
modification of Proposition 3.2.
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Lemma 3.3 Assume that g : Dexp
δ → C is holomorphic and is doubly-exponentially

decreasing, i.e., there exist constants Cg > 0, μg > 0, such that g satisfies

|g(y)| ≤ Cg exp
(− μgeRe(y)

) ∀y ∈ Dexp
δ . (3.5)

Then, for all 0 < ε < μg/2, there exists a constant C > 0 which is independent of
k, μ and g such that the following error estimate holds:

∣∣∣∣∣
∫

R

g(t)dt − k
∞∑

n=−∞
g(k n)

∣∣∣∣∣ ≤ CCgk exp
(
−√

8πδ

√
μg − 2ε√

k

)
. (3.6)

Proof We closely follow the proof of [21, Theorem 2.13], but picking a different
contour and later exploiting the strong decay properties of g.

For N ∈ N, set RN :=
{

y ∈ C : |Re(y)| ≤ (N + 1
2 ), |Im(y)| � δ e−|Re(y)|

}
. For

fixed t ∈ R, we fix N large enough such that t ∈ RN . By applying the residue theorem
to the function

h(y) := sin(π t/k)g(y)

(t − y) sin(π y/k)
,

one can show the equality

g(t) − k
N∑

n=−N

g(n k)sinc
( t − nk

k

)
=
∫

∂ RN

sin(π t/k)g(y)

(t − y) sin(π y/k)
dy.

Since asymptotically g(t) decreases doubly exponentially, while 1/ sin(π y/k) only
grows exponentially along the path {(ξ, δ e−ξ ), ξ ∈ R}, we can pass to the limit
N → ∞ to get the representation

g(t) − k
∞∑

n=−∞
g(k n)sinc

( t − nk

k

)
=
∫

∂ Dexp
δ

sin(π t/k)g(y)

(t − y) sin(π y/k)
dy. (3.7)

Integrating (3.7) over R and exchanging the order of integration gives:

∫

R

g(t) dτ − k
∞∑

n=−∞
g(k n) =

∫

∂ Dexp
δ

g(y)

sin(π y/k)

∫

R

sin(π t/k)

t − y
dt dy.

= π

∫

∂ Dexp
δ

g(y)

sin(π y/k)
e

i sign(Im(y))π y
k dy, (3.8)

where in the last step we invoked [21, Lemma 2.19] to explicitly evaluate the integral.
What remains to be done is bound the integral on the right-hand side. For simplicity,
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we focus on the upper-right half-plane. The other cases follow analogously. There, we
can parameterize ∂ Dexp

δ as y = ξ + iδ e−ξ . We estimate

∣∣∣∣
g(y)

sin(π y/k)
e

i sign Im(y)π y
k

∣∣∣∣ = |g(y)| |e iπ y
k |

|eiπ y/k − e−iπ y/k |

= |g(y)|
exp

(
−πδ e−ξ

k

)

exp
(
πδ e−ξ

k

)
− exp

(
−πδ e−ξ

k

)

= |g(y)|
exp

(
−2πδ e−ξ

k

)

1 − exp
(
−2πδ e−ξ

k

)

� |g(y)| k eξ exp
(
−2πδ

e−ξ

k

)

(3.5)

� Cgk exp
(

− μgeξ + ξ − 2π δe−ξ

k

)
(3.9)

For ε > 0, we can absorb the linear ξ -term into the first exponential, and estimate:

(3.9) � ε−1Cgk exp
(

− (μg − 2ε)eξ − 2π δe−ξ

k

)
exp

(
− εeξ

)

where the second term will be used to regain integrability, whereas the first one will
give us approximation quality. For ξ = 0 and ξ → ∞, we get sufficient bounds to
prove (3.6). We thus have to look for maxima of the function with respect to ξ in
between (0,∞). Due to monotonicity of the exponential, we focus on the argument
and set τ := eξ . By setting its derivative to zero we get that the map

τ �→ −(μg − 2ε)τ − 2π δ

τ k
is maximized for τmax =

√
2δπ

k(μg − 2ε)
.

Inserting all this into (3.8), we get

∣∣∣
∫

R

g(t)dτ − k
∞∑

n=−∞
g(k n)

∣∣∣ � Cgk exp
(
−√

8πδ

√
μg − 2ε

k

)∫ ∞

0
exp(−εe|Re(y)|) dξ

� Cgk exp
(

− 2
√
2πδ

√
μg − 2ε

k

)
.

��
Remark 3.4 It is also possible to admitmeromorphic functionswith finitelymany poles
into Lemma 3.3, as long as additional error terms analogous to (3.4) are introduced.
Since we will not need this generalization we stay in the analytic setting. ��
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While Lemma 3.3 provides a reduced rate of convergence compared to the
more-standard sinc-quadrature of Proposition 3.2 (k−1/2 vs k−1), thus removing the
advantage we want to achieve by using the double exponential transformation, we
will later consider a class of functions which decay fast enough to allow us to tune the
parameter μ ∼ k−1 to regain almost full speed of convergence.

Finally,we showhow the transformationψσ,θ and the operatorL enter the estimates.
The next corollary also showcases how the cutoff error is controlled.

Corollary 3.5 Let O ⊆ C contain the right half-plane, and if σ = 1/2 also a sector

Sω := {
z ∈ C : |Arg(z)| ≤ ω

}
for some ω >

π

2
.

Assume that g : O → C is analytic and satisfies the polynomial bound

|g(z)| ≤ Cg(1 + |z|)−μ for μ ∈ R.

Then, for all ε > 0, s, r ∈ R such that μ − r + s − 2ε > 0, the quadrature errors can
be bounded by:

∥∥∥EL(g,Nq)

∥∥∥
H2s→H2r

≤ C Cg

[
e
−γ̂

√
μ−r+s−2ε√

k + exp
(−(μ − r + s)γ ekNq

)]
.

The constant C is independent of g, k,r ,s and β, but may depend on ε, σ , θ . The rate
γ̂ depends on θ and ω. γ depends on σ .

Proof Let (λ j , v j )
∞
j=0 denote the eigenvalues and eigenfunctions of the self-adjoint

operator L. Following [3], plugging the eigen-decomposition of a function u into the
Riesz–Dunford calculus, we can write the exact function g(L)u as

g(L)u =
∞∑
j=0

( 1

2π i

∫

C
g(ψσ,θ (y))(ψσ,θ − λ j )

−1ψ ′
σ,θ (y)

(
u, v j

)
L2(
)

dy
)

v j

and analogously for the discrete approximation QL(g,Nq)u. For the norm, as defined
in (1.1), this means:

∥∥∥EL(g,Nq)

∥∥∥
2

H2r
= 1

4π2

∞∑
j=0

∣∣∣(1 + λr
j )Eλ j (g,Nq)

(
u, v j

)
L2(
)

∣∣∣
2

� sup
λ≥λ0

∣∣(1 + λr−s)Eλ(g,Nq)
∣∣2 ‖u‖2

H2s .

We have thus reduced the problem to one of scalar quadrature, for which we aim
to apply Lemma 3.3. We fix λ > λ0 > κ . ψσ,θ maps Dexp

δ analytically to O via
Lemma A.5 (δ depends on θ and ω). What remains to be shown is a pointwise bound
for the function

hλ(y) := λr−s g(ψσ,θ (y))(ψσ,θ − λ)−1ψ ′
σ,θ (y) ∀y ∈ Dexp

δ .
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By distinguishing the cases
∣∣ψσ,θ (y)

∣∣ < λ/2 and
∣∣ψσ,θ (y)

∣∣ ≥ λ/2 we get using either
(A6) or Lemma A.5

λ
∣∣ψσ,θ (y) − λ

∣∣−1 ∣∣ψ ′
σ,θ (y)

∣∣ �
∣∣ψσ,θ (y)

∣∣ cosh(Re(y)).

We conclude using Lemma A.5:

|hλ(y)| ≤ Cg
∣∣ψσ,θ (y)

∣∣−μ (
λ
∣∣ψσ,θ (y) − λ

∣∣−1 ∣∣ψ ′
σ,θ (y)

∣∣ )r−s

× ( ∣∣ψσ,θ (y) − λ
∣∣−1 ∣∣ψ ′

σ,θ (y)
∣∣ )1−r+s

� Cg
∣∣ψσ,θ (y)

∣∣−μ+r−s cosh(Re(y)).

The double exponential growth of ψσ,θ (see Lemma A.4) then gives after absorbing
the cosh term by slightly adjusting ε:

|hλ(y)| ≤ Cgc1 exp
(− γ1(μ − r + s)e|Re(y)|) cosh(Re(y))

� Cg exp
(− γ1(μ − r + s − ε)e|Re(y)|). (3.10)

Using Lemma 3.3, with μg := γ1(μ − r + s − ε) then gives, after readjusting ε:

λr−s
∣∣Eλ(g)

∣∣ = 1

2π

∣∣∣
∫

R

hλ(y) dy − k
∞∑

n=−∞
hλ(k n)

∣∣∣ � Cge
−γ̂

√
μ−r+s−2ε√

k

with γ̂ := √
8πδγ1. The cutoff error is handled easily, also using the estimate (3.10).

We calculate

∣∣Qλ(g) − Qλ(g,Nq)
∣∣ ≤ k

∑
| j |≥Nq+1

∣∣hλ(ψσ,θ ( j k))
∣∣

≤ Cg kλ−r+s
∑

| j |≥Nq+1

exp
(− γ1(μ − r + s)e jk)

� Cgλ
−r+s exp

(− γ1(μ − r + s)eNqk),

where the last step follows by estimating the sum by the integral and elementary
estimates. ��

3.2 The elliptic problem

In this section, we analyze the error when discretizing the elliptic fractional diffusion
problem from Sect. 2.1. In order to analyze the quadrature error, we need to understand
a specific scalar function. This is done in the next Lemma.

Lemma 3.6 Fix λ > λ0 > κ and β > 0. For y ∈ R, define the function

gβ
λ (y) := (

ψσ,θ (y)
)−β

(
ψσ,θ (y) − λ

)−1
ψ ′

σ,θ (y).
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Then the following statements hold:

(i) gβ
λ can be extended to a meromorphic function on Dd(θ). It has finitely many poles.

All poles p satisfy ψσ,θ (p) = λ and are all simple. For any ν ≥ 0, the number of
poles within the strip

ν − 1

ln(λ/κ)
≤ |Im(y)| ≤ ν + 1

ln(λ/κ)

can be bounded independently of ν, β and λ. The imaginary part of p can be
bounded away from zero and for large λ, the following asymptotics hold:

|Im(p)| ≥
⎧⎨
⎩

tan−1(θ)
ln(λ/κ)

− O
(

1
ln(λ/κ)2

)
if σ = 1,

π
2 ln(λ/κ)

− O
(

1
ln(λ/κ)2

)
if σ = 1/2.

(3.11)

where the implied constants depend on θ , κ , and λ0.
(ii) There exist constants C > 0, γ > 0, independent of λ and β and a value dλ ∈

(d(θ)/2, d(θ)) such that gβ
λ satisfies the bounds

∣∣(1 + λ
β
2 )gβ

λ (a ± i dλ)
∣∣ ≤ C exp

(− γβea) ∀a ∈ R. (3.12)

(iii) There exists a constant C > 0 such that for dλ from (ii) and β ≥ β with β ∈ (0, 1]

∫

R

(1 + λ
β
2 )
∣∣gβ

λ (w ± idλ)
∣∣ dw ≤ C < ∞.

The constant C may depend on β but can be chosen independently of λ and β.

Proof Proof of (i): We note that by Lemma A.3,ψσ,θ is non-vanishing in Dd(θ). Since
Dd(θ) is simply connected, we may define

h(y) := ln(κ) +
∫ y

0

ψ ′
σ,θ (ζ )

ψσ,θ (ζ )
dζ .

It is easy to check that on R we have h(y) = ln(ψσ,θ (y)) since the derivative as well
as the value at y = 0 coincide. Thus, defining

gβ
λ (y) := e−βh(y)

(
ψσ,θ (y) − λ

)−1
ψ ′

σ,θ (y)

provides a valid meromorphic extension. The only poles are located where ψσ,θ (z) =
λ. By Lemma A.8 (i), the number of such poles within strips of width ln(λ)−1 is uni-
formly bounded. By LemmaA.3,ψ ′

σ,θ has no zeros in the domain Dd(θ), which means
all the poles are simple. The bound on the imaginary part follows from Lemma A.8
(ii).
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Proof of (ii): We first note for y = a ± idλ, if λ <
∣∣ψσ,θ (y)

∣∣ /2, the trivial estimate∣∣ψσ,θ (y) − λ
∣∣−1 ≤ 2

|ψ(y)| holds. Otherwise, we use Lemma A.8(iii) to get

∣∣ψσ,θ (y) − λ
∣∣−1 � λ−1 ≤ 2

∣∣ψσ,θ (y)
∣∣−1

.

Overall, we can estimate using Lemma A.4

|gβ
λ (y)| �

∣∣ψσ,θ (y)
∣∣−β ∣∣ψσ,θ (y) − λ

∣∣−1 ∣∣ψ ′
σ,θ (y)

∣∣ �
∣∣ψσ,θ (y)

∣∣−β−1 ∣∣ψ ′
σ,θ (y)

∣∣
� exp(−γβeRe(y)),

where in the last step, we used that ψ ′
σ,θ has the same asymptotic behavior as ψσ,θ up

to single exponential terms, which we absorb into the double exponential by slightly
reducing γ .

Looking at |λβ
2 gβ

λ (y)|, one can calculate using two different ways to estimate
ψσ,θ (y) − λ:

λβ/2|gβ
λ (y)| �

∣∣ψσ,θ (y)
∣∣−β(

λ
∣∣ψσ,θ (y) − λ

∣∣−1

︸ ︷︷ ︸
�1

)β/2(∣∣ψσ,θ (y) − λ
∣∣−1

︸ ︷︷ ︸
�|ψσ,θ (y)|−1

)1−β/2∣∣ψ ′
σ,θ (y)

∣∣

�
∣∣ψσ,θ (y)

∣∣−β ∣∣ψσ,θ (y)
∣∣−1+β/2 ∣∣ψ ′

σ,θ (y)
∣∣

Lemma A.4
� exp

(
− γβ

2
eRe(y)

)
.

The integral bound then follows easily from the pointwise ones. ��
Theorem 3.7 Fix λ0 > κ , β ∈ (0, 1] and r ∈ [0, β/2]. Then there exist constants
C > 0, γ > 0, γ1 > 0 such that for λ > λ0, β ≥ β, k > 0, Nq ∈ N, the following
estimate holds

λr
∣∣Eλ(z−β,Nq)

∣∣ � k2 max(1, ln(λ))2λ−β+r e−max{p(σ,θ,λ),γ1}
k max(1,ln(λ/κ))

+ e− γ
k + exp

(− γβekNq
)
, (3.13a)

where the rate is given by

p(σ, θ, λ) =
{
2π tan−1(θ) − c2

ln(λ/κ)
if σ = 1,

π2 − c2
ln(λ/κ)

if σ = 1/2.
(3.13b)

Thus for k ∼ ln(Nq)/Nq we get (almost) exponential convergence:

λr
∣∣∣Eλ(z−β,Nq)

∣∣∣ � k2 max(1, ln(λ/κ))2λ−β+r e
−max

{
p(σ,θ,λ),γ1

}
Nq

ln(λ/κ) ln(Nq) + e
−γ ′ Nq

ln(Nq) .

(3.14)
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The implied constants and γ may depend on λ0, β, σ , θ and κ .

Proof To cut down on notation, we only consider the case ln(λ/κ) ≥ c1 > 1 so that
the first term in the minimum of (3.11) dominates. If λ is small, the error can be
absorbed into the e−γ /k term. The error Eλ(z−β,Nq) corresponds to approximating

gβ
λ by sinc quadrature. We split the error into two parts, the quadrature error and the

cutoff error.

λr
∣∣∣
∫ ∞

−∞
gβ
λ (y) dy − k

Nq∑
j=−Nq

gβ
λ ( j k)

∣∣∣

≤ λr
∣∣∣
∫ ∞

−∞
gβ
λ (y) dy − k

∞∑
j=−∞

gβ
λ ( j k)

∣∣∣
︸ ︷︷ ︸

=Eλ(z−β)

+ kλr
∑

| j |>Nq+1

∣∣∣gβ
λ ( j k)

∣∣∣
︸ ︷︷ ︸

=:Ec

.

The term Ec can be handled by the same argument as in Corollary 3.5. We therefore
focus on the quadrature error Eλ(z−β) and apply Proposition 3.2. By Lemma 3.6(iii)
it holds that N

(
gβ
λ , Dd(θ)

)
< ∞. To satisfy assumption (ii), it suffices that (for suf-

ficiently large y) the vertical strips do not contain any poles and we can use the
asymptotics of Lemma 3.6(ii).

By Lemma 3.6, there are at most finitely many simple poles. The residue of the
function at these poles can be easily calculated using the well-known rule

res
(

f /g : z0
) = f (z0)

g′(z0)
,

provided that f is analytic and g′(z0) �= 0. In our case this means, if ψσ,θ (yλ) = λ:

res(gβ
λ ; yλ) = e−βh(yλ)ψ ′(yλ)

ψ ′(yλ)
= e−2iπβζ (ψ(yλ))

−β = e−2iπβζ λ−β,

where ζ ∈ N0 denotes the branch of the complex logarithm picked by h.
Thus, for a single pole yλ with syλ := sign(Im(yλ)), recalling the definition of

γ (k; yλ) = 1/sin(π yλ/k, we can estimate

∣∣∣ei
πsyλ yλ

k res(gβ
λ , yλ) γ (k; yλ)

∣∣∣ � λ−β
∣∣∣ eiπsyλ yλ/k

eiπsyλ yλ/k − e−iπsyλ yλ/k

∣∣∣

= λ−β e−2π |Im(yλ)|/k

1 − e−2π |Im(yλ)|/k
.

By Lemma 3.6(i), we can group poles into buckets of size 1
ln(λ/κ)

, denoted by

B� :=
{

y : ψσ,θ (y) = λwith
p(σ,θ,λ)

2π + �

ln(λ/κ)
≤|Im(y)|≤min

( p(σ,θ,λ)
2π + � + 1

ln(λ/κ)
, d(θ)

)}
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such that the number of elements in each bucket B� is uniformly bounded (inde-
pendently of λ, β and �). This allows us to calculate for the pole contribution in
Proposition 3.2:

∣∣∣π
∑

yλ∈P y
λ

ei sλπ yλ
k res(gβ

λ ; yλ) γ (k; yλ)

∣∣∣

≤ λ−βπ

∞∑
�=0

∣∣∣
∑

yλ∈B�

ei
πsyλ yλ

k γ (k; yλ)

∣∣∣ � λ−β
∞∑

�=0

e− p(σ,θ,λ)+�
k ln(λ/κ)

1 − e− p(σ,θ,λ)+�
k ln(λ/κ)

� λ−β

1 − e− p(σ,θ,λ)
k ln(λ/κ)

∞∑
�=1

e− p(σ,θ,λ)+�
k ln(λ/κ) � λ−β ln(λ)2k2e− p(σ,θ,λ)

k ln(λ/κ) ,

where we used the elementary estimate 1 − e−2x � min(x, 1) for x ≥ 0.
Applying Proposition 3.2 and inserting this estimate for the pole-contributions

gives:

λr Eλ(z−β) = Eλ(λr z−β)

Prop. 3.2
� e−2πdλ/k

1 − e−2πdλ/k
N (λr gβ

λ ,Ddλ) + λ−β+r ln(λ)2k2e− p(σ,θ,λ)
k ln(λ/κ) .

The bound from Lemma 3.6(iii) then completes the proof. ��
The previous estimate gives (almost) exponential convergence with respect toNq.

But the rate of the exponential deteriorates like 1/ ln(λ) for large λ. In the following
corollary, we give a λ-robust version of this estimate. We allow for an additional
factor λρ which will allow us to make use of possible additional smoothness when
considering function-valued integrals.

Corollary 3.8 Fix λ0 > κ > 0, β ∈ (0, 1] and r ∈ [0, β/2]. Then, for every ε ≥ 0,
there exist constants C > 0, γ > 0 such that for λ > λ0, β > β, ρ ≥ 0, k > 0,
Nq ∈ N, the following estimate holds

λr
∣∣∣Eλ(z−β,Nq)

∣∣∣ � exp
(

− [p(σ, θ) − ε]√β + ρ − r√
k

)
λρ + exp(−γ

k
)

+ exp(−γ ekNq). (3.15)

where the rate is given by (2.6). For ε > 0, the implied constant in the estimate and γ

may depend on λ0, σ , θ , β, κ . If ε = 0, the constants in addition depend on ρ and β.

Proof We first show the estimate for ε > 0. We note that for ln(λ/κ) ≥ k−1, we
can bound the error in Theorem 3.7 by exp(−γ /k) (for an appropriate choice of
constant γ ) due to the smallness of the term λ−β . Thus it remains to consider the
case ln(λ/κ) < k−1. Similarly, if ln(λ) ≤ max( c2

ε
,− ln(κ)

p(σ,θ)−2ε
ε

, 1) =: μ0, the
leading error term behaves like exp(−γ

μ0
k ). We are left to consider the remaining

case. Writing μ := ln(λ), the error term can be estimated:
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k2 ln(λ/κ)2λ−β+r−ρe− p(σ,θ,λ)
max(1,ln(λ/κ))k λρ

� exp
(
− (β + ρ − r)μ − p2(σ, θ)/4 − c2

μ

(μ − ln(κ))k

)
λρ

� exp
(
− (β + ρ − r)μ − p2(σ, θ) − 2ε

4μk

)
λρ. (3.16)

We look for the minimum of the exponent. Setting the derivative of the map

μ �→ −(β + ρ − r)μ − p2(σ, θ) − 2ε

4μk

to zero, we get that the minimum satisfies

0 = −(β + ρ − r)μ2
min + p2(σ, θ) − 2ε

4k
, or μmin :=

√
1

(β + ρ − r)

p2(σ, θ) − 2ε

4k
.

Inserting this value into (3.16) gives the stated result (after slightly changing ε to get
to the stated form).

To see the case for ε = 0, we note that if ln(λ/κ) ≤ γ1k−1/2

p(σ,θ)
√

β+ρ−r
, we can estimate

for the leading term in Theorem 3.7:

k2 ln(λ/κ)2λ−β+r−ρe− γ1
μk λρ ≤ k2 ln(λ/κ)2λ−β+r−ρe

− p(σ,θ)
√

β+ρ−r√
k λρ.

In the remaining case,we can estimate the higher order term in the ln(λ/κ)-asymptotics
as

e
c2

ln(λ/κ)2k ≤ e
c2 p(σ,θ)

√
β+ρ−r

γ1 =: C(σ, θ, β, ρ).

We can also write

λ−β+r−ρ = κ−β+r−ρ
(λ

κ

)−β+r−ρ

and continue as in the proof for δ > 0 but using μ := ln(λ/κ). This time we no longer
have to compensate for the factors involving c2/μ and − ln(κ) by slightly reducing
the rate. The price we pay is that the constant may blow up for ρ → ∞. ��

We can now leverage our knowledge about the function gβ
λ to gain insight into the

discretization error for (2.5). This allows us to prove the two main theorems of this
section. First we deal with the finite regularity case.

Proof of Theorem 2.5 Let (λ j , v j )
∞
j=0 denote the eigenvalues and eigenfunctions of

the self-adjoint operator L. Just as we did in the proof of Corollary 3.5, we plug the
eigen-decomposition into the Riesz–Dunford calculus and Definition 2.1 to get for the
discretization error:
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‖u − uk‖2H2r =
∞∑
j=0

∣∣∣(1+λr
j )

1

2π i

∫

C
gβ
λ j

(y) dy− 1

2π i

Nq∑
n=−Nq

gβ
λ j

(k n)

∣∣∣
2 ∣∣( f , v j

)
X
∣∣2.

Applying Corollary 3.8 then gives for ρ ≥ 0

‖u − uk‖2H2r � e
− 2[p(σ,θ)−ε]√β+ρ−r√

k

∞∑
j=0

λ
2ρ
j

∣∣( f , v j
)
X
∣∣2 + [

e− γ
k + e−γ ekNq ]2 ‖ f ‖2X

� e
− 2[p(σ,θ)−ε]√β+ρ−r√

k ‖ f ‖2
H2ρ +

[
e− γ

k + e−γ ekNq
]2 ‖ f ‖2X .

��
Next we prove the improved estimates for the case of GL(C f , R f , ω)-regularity.

Proof of Theorem 2.8 For simplicity of notation, we ignore the cutoff error, i.e., for
now consider Nq = ∞. The cutoff error can either be easily tracked throughout the
proof or added at the end, analogously to Corollary 3.5.

We first note, that by Stirling’s formula, we can estimate the derivatives of f by

‖ f ‖Hρ ≤ C̃ f exp
(
ρ(ω ln(ρ) + c2)

)
.

By assumption, we can apply Theorem 2.5 for any ρ ≥ 0. Picking ρ = δ
k ln(k)2

for
δ sufficiently small and ε := p(σ, θ)/2 (because we need ρ-robust error estimates)
gives:

‖u − uk‖Hβ � exp
(

− p(σ, θ)

√
β/2 + δk−1|ln(k)|−2

2
√

k

)
‖ f ‖

H

2δ
k ln(k)2

+ e− γ
k ‖ f ‖X

� e−
√

δγ ′
k|ln(k)| C f e

2δ
k|ln(k)|2

(
ω ln( 2δ

k|ln(k)|2 )+c2
)
+ e− γ

k ‖ f ‖X
� e

−
√

δ
k|ln(k)|

(
γ ′− 2

√
δ

|ln(k)| (ω ln
(

2δ
k|ln(k)|2

)
+c2
)

+ e− γ
k ‖ f ‖X . (3.17)

We need to show that the bracket in the exponential is positive. In order to do this, we
expand the logarithmic term as

ln
( 2δ

k |ln(k)|2
)

= ln(2δ) − ln(k) − 2 ln(| ln(k)|).

This first term is negative, and for the others we note that

2ω
√

δ

|ln(k)|
(

− ln(k) − 2 ln(| ln(k)|) + c2
)

is uniformly bounded as | ln(| ln(k)|)| grows slower than | ln(k)| as k → 0. Due to the
leading

√
δ term, we can make δ small enough (independently of k) to ensure that the
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second term in the exponent of (3.17) is smaller than γ ′ and the statement follows. If
ω = 0, we don’t have to compensate the factor eωρ ln(ρ), therefore picking ρ ∼ k−1 is
sufficient and the improved statement follows. ��

3.3 The parabolic problem

Now that the stationary problem is well understood, we can move on to analyzing the
discretization of the time dependent problem introduced in Sect. 2.2.

3.3.1 The Mittag Leffler function

The representation (2.8) hints that it is crucial to understand theMittag–Leffler function
if one wants to analyze the time dependent problem (2.7). We follow [20, Section 1.8].
For parameters α > 0, μ ∈ R, the Mittag–Leffler function is an analytic function on
C and given by the power series

eα,μ(z) :=
∞∑

n=0

zn

(nα + μ)
. (3.18)

We collect some important properties wewill need later on.We start with the following
decomposition result, also giving us asymptotic estimates.

Proposition 3.9 For 0 < α < 2, μ ∈ R and απ
2 < ζ < απ , we can decompose the

Mittag–Leffler function as

eα,μ(z) = −
N∑

n=1

1

(μ − αn)

1

zn
+ RN

α,μ(z) for ζ ≤ |Arg z| ≤ π. (3.19)

where RN
α,μ is analytic away from zero and satisfies

∣∣∣RN
α,μ(z)

∣∣∣ ≤ C (αN ) |z|−(N+1) ∀ |z| ≥ z0 > 0 (3.20)

for a constant C > 0 depending only on z0 and ζ .

Proof The statement can be found in [20, Eqn 1.8.28] where the dependence of the
remainder term on N is notmade explicit. To get the explicit estimate on the remainder,
we follow [14, Section 18.1]. There, it is proven that the remainder can be written as

RN
α,μ(z) = z−N−1

2π i

∫

C̃

(
1 − tα

z

)−1
t (N+1)α−μet dt,

where C̃ can be taken as two rays {rζ0 : r ≥ 1}, {rζ0 : r ≥ 1} and a small circular arc
connecting the two without crossing the negative real axis. ζ0 is taken in the left half-
plane such that the opening angle of C̃ is sufficiently large in order to avoid possible
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poles of the integrand and ensure that the term (1 − tα/z)−1 is uniformly bounded.
The stated result then follows easily by comparing the integral under consideration to
the definition of the Gamma function. ��
Setting N = 1 in Proposition 3.9 and simple calculation yields the following estimates:

∣∣eα,μ(z)
∣∣ ≤ C

1 + |z|s for ζ ≤ |Arg z| ≤ π, s ∈ [0, 1] (3.21)

For α = μ = 1, the Mittag–Leffler function e1,1 is the usual exponential function.
For the decomposition result, we can skip the terms involving powers z−n in this case
as ez already decays faster than any polynomial.

Finally, we need a way of computing antiderivatives of the convolution kernel in
(2.8).

Proposition 3.10 For n ∈ N0, α > 0, z ∈ C \ {0}, λ ∈ C, it holds that

zα−1eα,α(λ zα) =
( ∂

∂z

)n(
zα+n−1eα,α+n(λ zα)

)
. (3.22)

Proof Follows from [20, Eqn. 1.10.7] by taking β := α + n. ��
3.3.2 Double exponential quadrature for the parabolic problem

The case of finite regularity In this section, we investigate the convergence of our
method in the case that u0 and f have finite H

2ρ-regularity for some ρ ≥ 0. It
will showcase most of the new ingredients needed to go from the elliptic case to the
time dependent one while keeping the technicalities to a minimum. The step towards
Gevrey-regularity will then mainly consist of carefully retracing the argument and
fine-tuning parameters. We start with the case if f = 0.

Lemma 3.11 Assume that either α + β < 2 or σ = 1 (i.e., the case α = β = 1 and
σ = 1/2 is not allowed). Let u(t) := eα,μ(−tαLβ)u0 and assume u0 ∈ H

2ρ(
) for
some ρ > 0. Let uk := QL(eα,μ(−tαzβ),Nq

)
u0 be the corresponding discretization

using stepsize k > 0 and Nq ∈ N quadrature points.
Then, the following estimate holds for all η ≥ 1 and r ∈ [0, β/2]:

‖u(t) − uk(t)‖H2r � t−ηα
(

e
−min

{
p(σ,θ)

√
β+ρ−r ,

√
βη γ1

}
1√
k + e− γ

k

)
‖u0‖H2ρ

+t−α/2 exp(−γ ekNq) ‖u0‖H2ρ .

Here γ1 is the constant from Corollary 3.5. The implied constant and γ may depend
on r, the smallest eigenvalue λ0 of L, β,α, κ , θ , σ and ρ.

Proof We start withNq = ∞ and split theMittag–Leffler function according to (3.19).
We write

EL(eα,μ(−tαzβ)
)

=
N∑

n=1

(−1)n t−αn

(μ − αn)
EL(z−βn) + EL(RN

α,μ(−tαzβ)
)
. (3.23)

123



Double exponential quadrature... 383

For the first terms, we apply Theorem 2.5, and for the final term we use the decay
estimate (3.20) and Corollary 3.5. Note that this is where we have to exclude the case
α = β = 1 and σ = 1/2. If α < 1 the Mittag–Leffler function is contractive on a
large enough sector. If β < 1, the map z �→ zβ maps the required sector into the right
half plane. Otherwise, the exponential function only decays in the right half-plane, not
any slightly bigger sector. Thus, if σ = 1/2, Corollary 3.5 does not apply.

Overall, we get the estimate:

∥∥∥EL(eα,μ(tαzβ)
)∥∥∥

H2r
�

N−1∑
n=1

t−αn

(μ − αn)
e
−min

{
p(σ,θ)

√
βn+ρ−r√
k

,
γ
k

}
‖u0‖H2ρ

+ (αN )t−αN e
−γ1

√
β(N+1)+ρ−r−2ε√

k ‖u0‖H2ρ .

To simplify the calculations, we make use of the fact that β − r − 2ε ≥ β/2− 2ε > 0
and ρ > 0. That way, the last term can be simplified to

(αN )t−αN exp
(

− γ1

√
βN√
k

)
‖u0‖H2ρ .

If η is an integer, we can pick N = η to get the statement for Nq = ∞. For
general η ≥ 1, we can interpolate between �η� and �η� + 1. The treatment of the
cutoff error follows as in Corollary 3.5, exploiting that eα,μ(z) decays like (3.21) with
s := β/2. ��

Picking η large enough, Lemma 3.11 shows that for fixed times t > 0 we get the
same convergence rate as for the elliptic problem, though the approximation deterio-
rates as t gets small.

Now that we understand the homogeneous problem, we can look at the case of
allowing inhomogeneous right-hand sides f by using the representation formula (2.8),
and finally prove the main result Theorem 2.10. We point out that naive application of
Corollary (3.16) also inside the time-convolution integral would fail to give good rates,
as the error may blow up faster than τ−α for small times, leading to a non-integrable
function. Instead, the following proof relies on integration by parts and (3.22) to
split the convolution into point evaluations similar to Lemma 3.11 and an integrable
remainder term.

Proof of Theorem 2.10 As we have already estimated the error of the homogeneous
part, we only consider the part corresponding to the inhomogenity, i.e., for now let
u0 = 0. We integrate by parts m times, using (3.22):

∫ t

0
τα−1eα,α

(− ταλβ
)

f (t − τ) dτ =
m∑

j=1

tα+ j−1eα,α+ j (−tαλβ) f ( j−1)(0)

+
∫ t

0
τα+m−1eα,α+m

(− ταλβ
)

f (m)(t − τ) dτ
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Transferring this identity to the operator-valued setting, this means that we can
analyze the quadrature error for these terms separately.

‖u(t) − uk(t)‖H2r = ∥∥
∫ t

0
τα−1EL(eα,α

(− ταzβ
))

f (t − τ) dτ
∥∥
H2r

≤
m∑

j=1

tα+ j−1
∥∥EL(eα,α+ j (−tαzβ)

)
f ( j−1)(0)

∥∥
H2r

+
∫ t

0
τα+m−1

∥∥EL(eα,α+m
(− ταzβ

))
f (m)(t − τ)

∥∥
H2r dτ .

(3.24)

All the terms appearing are of the structure in Lemma 3.11. Most notably, the first m
terms are evaluated at a fixed t > 0 thus we don’t have to analyze them further and
can just accept some t-dependence.

Investigating the remaining integral, we get by using η := m/α+q in Lemma 3.11:

∫ t

0
τα+m−1

∥∥∥EL(eα,α+m(−ταzβ)
)

f (m)(t − τ)

∥∥∥
H2r

dτ

�
∫ t

0
τα+m−1−m−αq

[
e
−min{p(σ,θ)

√
β+ρ−r ,γ1

√
η}√

k +e− γ
k

]∥∥ f (m)(t − τ)
∥∥
H2ρ dτ .

For q < 1, this is an integrable function (with respect to τ ) and the integral grows like
tα(1−q).

We now focus on extracting the correct t dependencies. For small times, the dom-
inating t-dependence in the estimates above can be found in the first term of (3.24),
which behaves like t−mα(1−q). If we put back the homogeneous contribution from
Lemma 3.11, this term will dominate for small times like t−m−qα . For larger times,
the initial error term in (3.24) is dominant, giving behavior T α . The cutoff error is
treated like before, making use of the decay of eα,α . We just point out that the homo-
geneous cutoff error behaves like t−α/2 and the inhomogeneous part tα/2. We crudely
estimated both by max(t−m−qα, T α) to simplify the statement of the theorem). ��
Remark 3.12 Corollary 2.10 shows that, as long as we assume that f is smooth enough
in time we recover the same convergence rate p(σ, θ)

√
β + ρ − r as in the homoge-

neous and elliptic case. ��
The case of Gevrey-type regularity If the data not only satisfies some finite regularity
estimates but instead is even in some Gevrey-type class of functions, we can again
improve the convergence rate, and almost get rid of the square root in the exponent.We
go back to the homogeneous problem and assume that k < 1/2 so that the logarithmic
terms can be written down succinctly.

Lemma 3.13 Assume that either α + β < 2 or σ = 1 (i.e., the case α = β = 1 and
σ = 1/2 is not allowed). Let u(t) := eα,μ(−tαLβ)u0 and assume that there exist
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constants Cu0 , ω, Ru0 > 0 such that

‖u0‖Hρ ≤ Cu0 Rρ
u0

(
(ρ + 1)

)ω
< ∞ ∀ρ ≥ 0.

Let uk(t) := QL(eα,μ(−tαzβ),Nq
)
u0 be the discretization of u using stepsize k ∈

(0, 1/2) and Nq ∈ N quadrature points. Then, the following estimate holds:

‖u(t) − uk(t)‖Hβ � Cu0 exp
(− γ

k |ln(t�)| |ln k|
)+ Cu0 t−α/2 exp

(− γ ekNq
)
.

with t� := min(t, 1/2). The implied constant and γ may depend on ε, the smallest
eigenvalue λ0 of L, β, α, κ , θ , σ , Ru0 and ω.

Proof Wego back to (3.23), but apply Theorem 2.8 to each of the first N terms, getting:

∥∥∥EL(eα,μ(−tαzβ)
)

u0

∥∥∥
Hβ

� Cu0

N∑
n=1

t−αn

(μ − αn)
exp

(
− γ

k |ln(k)|
)

+ (αN )t−αN exp
(

− γ

√
N − 2ε√

k

)
‖u0‖X .

(3.25)

We estimate the first N terms by

t−αn

(μ − αn)
exp

(
− γ

k |ln(k)|
)

� exp

(
− α ln(t)n + c1n log(n) − γ

k |ln(k)|
)

.

For n ≤ δ

k|ln(t�)|2|ln(k)|2 , we can estimate the exponent by

− 1

k |ln(t�)| |ln(k)|
[
− αδ

|ln(k)| − c1δ

|ln(t�)| |ln(k)| ln
( δ

ln(t�)2 ln(k)2k

)
+ γ ln(2)

]

For δ small enough, depending on c1, α and γ , the term in brackets is uniformly
positive (i.e., independently of t and k), we can thus estimate for some γ1 > 0:

t−αn

(μ − αn)
exp

(
− γ

k |ln(k)|
)

� e− γ1
k|ln(t�)||ln(k)| .

The remainder term behaves like

t−αN (αN ) exp
(

− γ

√
N − 2ε√

k

)
� exp

(
− αN ln(t) − c2N ln(N ) − γ

√
N − 2ε√

k

)
.

By picking N = ⌈
δ

k|ln(t�)|2|ln(k)|2
⌉
, the exponent be bounded up to a constant by

−
√

δ

k |ln(t�)| |ln(k)|
[
− γ

√
δ

|ln(k)| − c1
√

δ

|ln(t�) ln(k)| ln
( δ

k |ln(t�)|2 |ln(k)|2
)

+ γ ln(2)

]
.
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By taking the factor δ sufficiently small,we get that the term in brackets stays uniformly
positive, which shows

∥∥∥EL(eα,μ(−tαzβ)
)∥∥∥

Hβ
� exp

(
− γ

|ln(t�)| |ln(k)| k

)
.

The cutoff error can easily be dealt with as in the previous results, as theMittag–Leffler
function satisfies the decay bound (3.21) for s = 1/2. ��

Finally, we are in a position to also include the inhomogenity f into our treatment.
This means we can prove the main result Theorem 2.11. Just as in Lemma 2.10, we
use integration by parts to decompose the error into parts for positive times and a
remainder integral with “nice enough” behavior with respect to τ .

Proof of Theorem 2.11 We again work under the assumption u0 = 0 and focus on the
error when dealing with the inhomogenity f alone and also start with Nq = ∞. We
also for now take t ≤ 1.

Going back to (3.24) we get for N ∈ N0 to be fixed later

‖u(t) − uk(t)‖H2r ≤
N∑

j=1

tα+ j−1
∥∥EL(eα,α+N (−tαzβ)

)
f ( j−1)(0)

∥∥
Hβ

+
∫ t

0
τα+N−1

∥∥EL(eα,α+n(−ταzβ)
)

f (N )(t − τ)
∥∥
Hβ dτ .

(3.26)
For the first terms, we apply Lemma 3.13 to get exponential convergence, as long as
f ( j) is in the right Gevrey-type class. Namely, we note that we can estimate

∥∥∥ f (n)(t)
∥∥∥
H2ρ

� eω̃N ln(N )eω̃ρ ln(ρ)

by possibly tweaking ω̃ compared to ω. This allows us to estimate

N∑
j=1

tα+ j−1
∥∥∥EL(eα,α+ j (−tαzβ)

)
f ( j−1)(0)

∥∥∥
H2r

� eω̃N ln(N )e− γ
|ln(t�)||ln(k)|k . (3.27)

Again restricting ω̃ to absorb the factor N due to the summation.
For the remainder in (3.26), we look at the pointwise error at fixed 0 < τ < t ,

shortening f̃ (N ) := f (N )(t − τ). Going back to (3.25), we can use the additional
powers of t to get rid of the ln(t) term in the exponential:

τα+N−1
∥∥∥EL(eα,α+n

(− ταzβ
))

f̃ (N )
∥∥∥
Hβ

�
N−1∑
n=1

C f eω̃N ln(N ) τ
−α(n−1)+N−1

(μ − αn)
exp

(
− γ

k |ln(k)|
)

+(αN )τ (1−α)(N−1)C f eω̃N ln(N ) exp
(

− γ

√
N − 2ε√

k

)
.
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We then proceed as in the proof of Lemma 3.13, noting that since the τ -dependent
terms can be bounded independently of N we can get by without the ln(t�)-term in the
exponent. Overall, we get by tuning N ∼ δ/(|ln(k)|2 k) (also in (3.27)) appropriately:

‖u(t) − uk(t)‖H2r � exp
(

− γ

k |ln(t�)| |ln(k)|
)

+
∫ t

0
exp

(
− γ

k |ln(k)|
)

dτ .

which easily gives the stated result. If t > 1, we can skip the integration by parts
step for the integration over (1, t) and directly apply Lemma 3.13. The cutoff error is
treated as always. ��

4 Numerical examples

In this section, we investigate, whether the theoretical results obtained in Sects. 3.2 and
3.3 can also be observed in practice. We compare the following quadrature schemes:

(i) DE1: double exponential quadrature using σ = 1/2 and θ = 4,
(ii) DE2: double exponential quadrature using σ = 1 and θ = 4,
(iii) DE3: double exponential quadrature using σ = 1 and θ = 1,
(iv) sinc: standard sinc quadrature
(v) Balakrishnan: a quadrature scheme based on the Balakrishnan formula
(vi) BURA: best uniform rational approximation

For the double exponential quadrature schemes, we used k = 0.9 ln(rNq)/Nq with
r := 1 for β > 0.4 and r := 5 for β < 0.4. This makes the cutoff error decay like

e−βrN 0.9
q , which is sufficiently fast to not impact the overall convergence rate. The

factor 0.9 was observed to have some slightly improved stability compared to 1. The
damping constant r was introduced to get good behavior for small β; see Sect. 4.3.

For the standard sinc-quadrature, the proper tuning of k and Nq is more involved.

Following [4], we picked k =
√

2πd
βNq

with d = π/5. The Balakrishnan formula is only

possible for the elliptic problem. It is described in detail in [5]. Following [5, Remark
3.1] we used

k :=
√

π2

1.8βN
M :=

⌈
π2

2(1 − β)k2

⌉
,

where M is the number of negative quadrature points. This corresponds (in their
notation) to taking s+ := β/10, which was taken because it yielded good results
(Fig. 4).

4.1 The pure quadrature problem

In this section, we focus on a scalar quadrature problem. Namely, we investigate
how well our quadrature scheme can approximately evaluate the following functions
using the Riesz–Dunford calculus (a) z−β and (b) eα,1(−tαzβ) at different values
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Fig. 1 Comparison of quadrature schemes—scalar problem

λ ∈ (4,∞). This is equivalent to solving the elliptic and parabolic problem with data
consisting of a single eigenfunction corresponding to the eigenvalue λ. Throughout,
we used κ := 3. Theoretical investigations revealed, that the quadrature error is largest
at ln(λ) ∼ k−1/2 (see the proof of Corollary 3.8). Therefore, we make sure that for

each k under consideration, such a value of e
1√
k is among the λ-values sampled. More

precisely, the sample points consist of

Nmax⋃
Nq=1

{
5 + exp

(
2
√

β/k(Nq)
)} ∪ {5 + exp(β/k(Nq))

}
,

with k(Nq) = 0.9 ln(Nq)/Nq, and we consider the maximum error over all these
samples. We used t := 1 for all experiments.
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Fig. 2 Comparison of λ dependence for different quadrature schemes

We observe that for the most part, choosing σ = 1/2 and θ moderately large gives
the best result. This agrees with our theoretical findings. This method fails to converge
though if α = β = 1 is chosen as the parameters for the Mittag–Leffler function. This
also agrees with the theory, because in this case, ψσ,θ fails to map into the domain
where eα,μ is decaying (see (3.21)). This shows that the restriction on σ in the theorems
of Sect. 3.3 is necessary. If we only consider the elliptic problem, no such restriction
is necessary, as the decay property is valid on all of the complex plane. All the other
methods perform well in all of the cases. The straight-forward double exponential
formula, i.e., σ = θ = 1, is often outperformed by the simple sinc quadrature scheme,
(except in the α = β = 1 case of the exponential). For comparison, we’ve included the
(rounded) predicted rate for the DE1 scheme in the plots. We observe that for several
applications our estimates appear sharp. For f (z) = z−1 the scheme outperforms the
prediction, but this might be due to a large preasymptotic regime. We note that for
e−zβ

, we expect better estimates than the ones presented in this article to be possible
due to the exponential decay. This is also true for the standard sinc methods, see [3].

Second, we look at the case of a single frequency λ and see how the convergence
rate decays as λ → ∞. In order to better see the λ-dependence of the quadrature
error, we consider the relative error of the quadrature, i.e., we look at Eλ(z−β)/λ−β

for β = 0.5. The theory from Theorem 3.7 predicts behavior of the form e− γ
ln(λ)k , i.e.,

the rate drops like ln(λ). In Fig. 2, we can see this behavior quite well. In comparison,
using standard sinc quadrature gives a λ-robust asymptotic rate, but only of order√Nq.

4.2 A 2d example

In order to confirm our theoretical findings in a more complex setting, we now look
at a 2d model problem with more realistic data than a single eigenfunction. Namely,
we work in the PDE-setting of Remark 1.2 using the unit square 
 = (0, 1)2 and
the standard Laplacian with Dirichlet boundary conditions. We focus on two cases:
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first we look at what happens if the initial condition does not satisfy any compatibility
condition, i.e., u0 /∈ H

2ρ for ρ ≥ 1/4. The second example is then taken such that the
data is (almost) in theGevrey-type class as required byTheorem2.8 andTheorem2.11.
The inhomogenity in time is taken as f (t) := sin(t)u0, thus possessing analogous
regularity properties. We computed the function at t = 0.1.

For the discretization in space and of the convolution in time of (2.8), we consider
the scheme presented in [26]. It is based on hp-finite elements for the Galerkin solver
and a hp-quadrature on a geometric grid in time for the convolution. As it is shown
there, such a scheme delivers exponential convergence with respect to the polynomial
degree and the number of quadrature points. Since we are not interested in these
kinds of discretization errors, we fixed these discretization parameters in order to give
good accuracy and only focus on the error due to discretizing the functional calculus.
Namely, we used 5 layers of geometric refinement towards the boundary and vertices
and a polynomial degree of p = 12.

Since the exact solution is not available, we computed a reference solution with
high accuracy and compared our other approximations to it. The reference solution is
computed by the DE1 scheme (as it outperformed the others) by using 8 additional
quadrature points to the finest approximation present in the graph. As the DE1 scheme
has finished convergence at this point, we can expect this to be a good approximation.

We start with the parabolic problem. The initial condition is given by

u0(x, y) := ω−1 exp
(

− (x − 0.5)2

ω

)
exp

(
− (y − 0.5)2

ω

)
.

For ω := 1, this function does not vanish near the boundary of 
 and therefore only
satisfies u0 ∈ H

1/2−ε. We are in the setting of Lemma 2.10. By inserting ρ = 1/4

(up to ε) and r = 0, the predicted rates for DE1 and DE2 are roughly e
− 6.13√

k and

e− 5.62
k respectively. Figure 3a contains our findings. We observe that all methods

converge with exponential rate proportional to
√Nq. The double exponential formulas

outperforming the standard sinc quadrature. We also observe that picking σ �= 1 and
θ �= 1 can greatly improve the convergence. The best results being delivered by DE1,
i.e. σ = 1/2 and θ = 4. For DE1 and DE2, we observe that for a large part of the
computation, the scheme outperforms the predicted asymptotic rate, but for DE2, the
rate appears sharp for large values of Nq.

As a second example, we used ω = 0.05. This function is almost equal to 0 in a
vicinity of the boundary of
. Thus wemay hope to achieve the improved convergence
rate of Theorem 2.11. Figure 3b shows that it is plausible that the exponential rate of
order Nq is achieved, and all the double exponential schemes greatly outperform the
standard sinc quadrature. The best results are again achieved by DE1 and DE2, which
also greatly outperform the predicted rate for the non-smooth case.

4.3 Elliptic problem and behavior for smallˇ

Thus far, all our estimates worked under the assumption of β > β > 0. In order to
shed some light on the behavior, and in addition gain insight into the behavior for the
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Fig. 3 Comparison of quadrature schemes for 2d parabolic example; α = 1/
√
2, β = 0.7

elliptic problem (2.4), we look at the following model problem for different values of
β.

As geometry we again used the unit square. We chose f = 1 as the constant
function. In this class, we also included the method based on the Balakrishnan formula
as well as a rational approximation method, namely the one based on computing the
best uniform rational approximation as described in [17].Where we approximate z1−β

on [0, 1] using a rational function and then divide by z−1 and scale back to the interval
[λmin, λmax]. For computing the approximation we used the brasil algorithm described
in [18], the implementation of which can be found in the baryrat python package [18].
To determine λmax, we used a simple power iteration with 10 iterations. This gave the
estimate λmax ≈ 6 · 1015. For λmin we used the constant κ := 3 also used in the other
algorithms.

For small β, preliminary experiments suggest a severe degrading of performance
if the choice k := 0.9 ln(Nq)/Nq is made. Therefore it was necessary to introduce
the constant r in our considerations. We point out that setting r := 1 for β > 0.4 is
not fully necessary and only gives small improvements for larger values of β. Thus,
if multiple values of β are of interest, in order to be able to reuse the approximate
inverses (L − ψσ,θ ( jk))−1, the choice of this damping factor should be according to
the smallest value of β one is interested in.

In Fig. 4, we again observe that with θ = 4 and σ ∈ {0.5, 1}, the double exponential
formulas significantly outperform the standard sinc based strategies, where σ = 0.5
again delivers the best performance. For comparison, we included the predicted rates
for the DE1 and DE2 schemes into the graphics. We observe that asymptotically
our estimates appear sharp, but with a large range of values, for which the scheme
outperforms the predictions. The rational approximation method performs very well
for small numbers of systems, but the performance degrades severely when higher
accuracy is required. This instability with respect to numerical errors is most likely
due to the requirement of rewriting the rational function in the partial fraction form
to apply it to a matrix as described in [17] – even though a multiprecision library is

123



392 A. Rieder

Fig. 4 Comparison of approximation schemes for 2d elliptic problems with different parameter β

used for computing the poles and residuals of the rational function. We also tried the
method based on the AAA-algorithm [30], but there the numerical instability was even
more problematic.
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Appendix A: Properties of the coordinate transform Ã�,�

In this appendix,we study the transformationψσ,θ in detail, as it is crucial to understand
the double exponential quadrature scheme. Since this transformation is itself defined
in a two-part way, we introduce the following nomenclature.

Definition A.1 Wecall the complex plane onwhichψσ,θ is defined the y-plane, mainly
using the parameter y for its points. The main subset of interest there is the strip Dd(θ).

Using the function y �→ π
2 sinh(y), the y-plane is mapped to the w-plane. The

most interesting set is the image of Dd(θ) under this deformation, denoted by Hθ :={
π
2 sinh(y), y ∈ Dd(θ)

}
(named due to its hyperbola shape).

Finally, using the function ϕσ,θ (w) := κ[cosh(σw)+ iθ sinh(w)], mapping Hθ →
C, we arrive at the z-plane which corresponds to the range of ψσ,θ , and the domain
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Fig. 5 Illustration of the different planes involved in the mapping ψσ,θ

of the functions used for the Riesz–Dunford calculus. The situation is summarized in
Fig. 5.

If we talk about generic complex numbers without relation to any of the specific
planes, we use the letter ζ instead.

We start out with some basic properties of sinh.

Lemma A.2 The map y �→ π
2 sinh(y) has the following properties:

(i) It is a bijective mapping Dd(θ) → Hθ , see Fig. 5.
(ii) For |Re(ζ )| ≥ ζ0 > 0, there exist constants c1, c2 > 0 depending only on ζ0 such

that

c1 |sinh(ζ )| ≤ |cosh(ζ )| ≤ c2 |sinh(ζ )| .

(iii) For any δ < π/2, sinh maps the domain Dexp
δ , as defined in (3.1), to a strip of size

δ, i.e.,

|Im(sinh(y))| < δ ∀y ∈ Dexp
δ . (A1)

Proof Proof of (i): It is well known that sinh is injective for |Im(y)| < π/2. Since Hθ

is defined as the range of the map this is sufficient.
Part (ii) is an easy consequence of the fact that sinh and cosh have the same asymp-

totic behavior for Re(ζ ) → ∞. To see (iii), we estimate for y ∈ Dexp
δ :

|Im(sinh(y))| = cosh(Re(y)) |sin(Im(y))| < δ cosh(Re(y))e−|Re(y)| ≤ δ.

��
Lemma A.3 ψσ,θ is analytic on the infinite strip Dd(θ). For d(θ) sufficiently small,
both ψσ,θ and ψ ′

σ,θ are non-vanishing on Dd(θ).
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Proof The analyticity of ψσ,θ is clear. In order to analyze the roots, we first rewrite
for w = a + ib, separating the real and imaginary parts:

cosh(σw) + iθ sinh(w) =
(
cosh(σa) cos(σb) − θ cosh(a) sin(b)

)

+ i
(
sinh(σa) sin(σb) + θ sinh(a) cos(b)

)
.

(A2)

We first focus on the case σ= 1. In this case, (A2) shows that any root y of ψσ,θ

must satisfy for w := π
2 sinh(y) =: a + bi :

cosh(a)
(
cos(b) − θ sin(b)

)
= 0 and sinh(a)

(
θ cos(b) + sin(b)

)
= 0.

Since cosh has no roots, we get cos(b) = θ sin(b). As cos(b) = θ sin(b) and
θ cos(b) = − sin(b) is impossible at the same time, we get that a = 0 and
b = tan−1(1/θ) + �π for some � ∈ Z.

It remains to show that π
2 sinh(y) does not map to these points. Looking at the

real part of sinh(y) we immediately deduce that if Im(y) ∈ (−π/2, π/2), in order to
produce a purely imaginary result, it must hold that Re(y) = 0. For the imaginary
part, we then get the equation:

sin(Im(y)) = 2� + 2 tan−1(1/θ)

π
for some � ∈ Z

which is not possible for |Im(y)| ≤ d(θ) < sin−1(
2 tan−1(1/θ)

π
). Next, we show that

ψ ′
σ,θ also does not vanish. A simple calculation shows

ψ ′
1,θ (y) = iθ ψ1, 1

θ
(−y)

π

2
cosh(y). (A3)

Since the restriction θ ≥ 1 was not crucial for the proof, ψ1, 1
θ
and cosh have no

roots in the symmetric (w.r.t. sign flip) domain Dd(θ). This shows that ψ ′
1,θ also is

non-vanishing.
The case σ = 1/2 is similar, but a little more involved. We first show that all zeros

of cosh(σw) + iθ sinh(w) satisfy Re(w) = 0 and |Im(w)| > w0 > 0 for a constant
w0 depending only on θ . If cosh(w/2) �= 0 we can use the double angle formula for
sinh to get

0 = cosh(w/2)
(
1 + 2θ i sinh(w/2)

)
which implies sinh(w/2) = i

2θ
.

Splitting into real and imaginary part, we get for w = a + ib:

sinh(a/2) cos(b/2) = 0 and cosh(a/2) sin(b/2) = 1

2θ
.
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If a �= 0, we get that cos(b/2) = 0 and thus sin(b/2) = ±1. This would imply that
|cosh(a/2)| = 1

2θ ≤ 1/2 which is a contradiction. If a = 0, we get that

|b| ≥ 2
∣∣sin−1

( 1

2θ

)∣∣ > 0.

Similarly, one can argue if cosh(w/2) = 0, that a = 0 and b = π(2� + 1). We then
proceed just like in the case σ = 1 to conclude that π

2 sinh does not map to such points.
In order to investigate its roots, we compute the derivative of ψ 1

2 ,θ as

ψ ′
1
2 ,θ

(y) =
(1
2
sinh

(
π sinh(y)/4

)+ iθ cosh
(
π sinh(y)/2

))π

2
cosh(y). (A4)

Our main concern is when the first bracket reaches zero. Substituting t :=
sinh(π sinh(y)/4) and using the double angle formula for cosh we get

0 = t

2
+ iθ(1 + 2t2).

Solving this equation, we get that t is purely imaginary and for θ ≥ 1 satisfies 0 <

|Im(t)| < 1. Again writing w =: a + ib we get

sinh(a/2) cos(b/2) = 0 and cosh(a/2) sin(b/2) = Im(t).

Just like we did when showing ψ 1
2 ,θ �= 0 we can argue that a = 0. We get sin(b/2) =

Im(t). Since t only depends on θ , we get that |b| > b0 > 0 with a constant only
depending on θ . We proceed as when showing ψ 1

2 ,θ �= 0 to conclude that ψ ′
1
2 ,θ

has no

root in Dd(θ) for d sufficiently small (depending on θ ). ��

Next, we study the growth of ψσ,θ (y) as |Re(y)| → ∞.

Lemma A.4 Assume that d(θ) < 1/2. Then there exist constants c1, c2, γ1, γ2 > 0
such that for y ∈ Dd(θ) we can estimate

c1 exp(γ1e|Re(y)|) ≤ ∣∣ψσ,θ (y)
∣∣ ≤ c2 exp(γ2e|Re(y)|), (A5)

i.e., the growth of ψ is double exponential. Additionally, we can bound

|ψ ′
σ,θ (y)| � |ψσ,θ (y)| cosh(Re(y)). (A6)

Proof We start with the simple case σ= 1, and focus on what happens if |Re(y)| >

y0 > 0 for a to be tweaked constant y0. The values with 0 ≤ |Re(y)| ≤ y0 can
be covered by adjusting c1 and c2, due to the compactness of the set {y ∈ Dd(θ) :
|Re(y)| ≤ y0} and the fact that

∣∣ψσ,θ (y)
∣∣ > 0 by Lemma A.3. We first only consider
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the y − w part of the transformation. We compute, since 1
2 < cos(t) ≤ 1 for t ∈

(−1/2, 1/2):

|Re(sinh(y))| = |sinh(Re(y))| cos(Im(y)) ∼ |sinh(Re(y))| ∼ c1e|Re(y)|.

Easy calculation shows that for h1(η) := |cos(η) − θ sin(η)| and h2(η) :=
|θ cos(η) + sin(η)| it holds that [h1(η)]2 + [h2(η)]2 = 1 + θ2. Thus, for w ∈ Hθ

with |Re(w)| ≥ 1, we can calculate:

|cosh(w) + iθ sinh(w)|2 = |cosh(Re(w))|2 [h1(Im(w))]2
+ |sinh(Re(w))|2 [h2(Im(w))]2

� min
(
cosh(Re(w)), |sinh(Re(w))| )2(1 + θ2)

� e2|Re(w)|. (A7)

Overall, we see the lower bound of (A5). The upper bound is easily seen, as |sinh(y)|
and |cosh(y)| both grow exponentially and the bound only depends on the real part of
the argument. (A6) follows from (A3) and the asymptotics (A7)and (A5).

We now look at how to adapt the proof to the case σ= 1/2. If |Re(w)| ≥ 2 ln(1+√
5), we get

|cosh(w/2) + iθ sinh(w)|
≥ θ |sinh(w)| − |cosh(w/2)| ≥ 1

2

(
e|Re(w)| − 2 − e|Re(w)/2|) ≥ 1

4
e|Re(w)|, (A8)

where in the last step we used the monotonicity of the expression and the fact that
e|Re(w)|

2 − e|Re(w)/2| = 2 for Re(w) = 2 ln(1 + √
5). The argument for the y − w-

transformation stays the same. The upper bound also follows easily from the triangle
inequality and the growth of sinh and cosh.

To see (A6), we combine (A4) with the asymptotic estimate (A8) to get

|ψ ′
σ,θ (y)| � eπ |Re(sinh(y))|/2 cosh(Re(y)) � |ψσ,θ (y)| cosh(Re(y)).

��
While on the full strip Dd(θ), the image of the transformation is difficult to study,

the restriction to a certain subdomain is much better behaved.

Lemma A.5 For σ = 1, there exists a constant δ > 0, depending on θ , such that
restricted to the domain Dexp

δ , ψ1,θ maps to a sector in the right-half plane,

Sω := {
z ∈ C : |Arg(z)| ≤ ω

}
with ω <

π

2
.

For σ = 1/2, and for all ε > 0, there exists a constant δ > 0, depending on θ and
ε, such that restricted to the domain Dexp

δ the transformation ψ 1
2 ,θ maps to the sector

Sπ/2+ε.
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In both cases, there exist constants c1, c2 > 0 such that ψσ,θ satisfies for all
λ ≥ λ0 > κ :
∣∣ψσ,θ (y) − λ

∣∣ ≥ c1 and
∣∣∣ψ ′

σ,θ (y)(ψσ,θ (y) − λ)−1
∣∣∣ ≤ c2 cosh(Re(y)) ∀y ∈ Dexp

δ ,

(A9)

where c1, c2 only depend on λ0 and θ .

Proof By Lemma A.2(iii) it is sufficient to consider the mapping of ϕσ,θ restricted to
small strips in the w-plane around the real axis. We start with the simpler case σ= 1.
Going back to (A2) and writing w := π

2 sinh(y) =: a + ib, we note that if |b| is
sufficiently small, we can guarantee that cos(b) − θ sin(b) > c > 0 for some constant
c > 0 depending on θ .

We have

Re(ϕσ,θ (w)) = κ cosh(a)
(
cos(b) − θ sin(b)

)
> c κ cosh(a),

∣∣Im(ϕσ,θ (w))
∣∣ = κ |sinh(a)| |θ cos(b) + sin(b)| ≤ (1 + θ)κ |sinh(a)| .

This implies

0 ≤
∣∣Im(ϕσ,θ (w))

∣∣
Re(ϕσ,θ (w))

≤ (1 + θ)c−1 ∀w ∈ C, |Im(w)| sufficiently small.

Next, we show that for σ = 1/2, sufficiently thin strips in thew-domain aremapped
to sectors with opening angle π/2 + ε. Such sectors are characterized by

−Re(ϕσ,θ (w)) ≤ ε̃
∣∣Im(ϕσ,θ (w))

∣∣ ∀ |Im(w)| < b0(̃ε)

for ε̃ > 0 depending on ε. The interesting case is Re(ϕσ,θ (w)) < 0. There, we get for
|b| ≤ π :

−Re(ϕσ,θ (w)) = −κ cosh(a/2) cos(b/2) + κθ cosh(a) sin(b) ≤ κθ cosh(a) |sin(b)| .

For the imaginary part, the double angle-formula gives:

∣∣Im(ϕσ,θ (w))
∣∣ ≥ κθ |sinh(a) cos(b)| − κ |sinh(a/2) sin(b/2)|
≥ κθ

2
|sinh(a) cos(b)| + κ |sinh(a/2)| (θ cosh(a/2) |cos(b)| − |sin(b/2)| ).

For |b| sufficiently small, we get θ cos(b) − |sin(b/2)| > 0, and thus the last term is
non-negative. We conclude

−Re(ϕσ,θ (w)) ≤ 2

∣∣∣∣
cosh(a)

sinh(a)

sin(b)

cos(b)

∣∣∣∣
∣∣Im(ϕσ,θ (w))

∣∣ .
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For a > 1, the ratio cosh(a)/sinh(a) is uniformly bounded. By making b sufficiently
small, we can ensure |sin(b)| /cos b < ε̃. For a < 1, we note that by restricting the
values of b it can be easily seen that Re(ϕσ,θ (w)) ≥ 0. Thus we can conclude that
ψσ,θ maps to the stated sectors.

Next,we prove the bounds on the distance to the real axis, again primarily investigat-
ing the behavior of ϕσ,θ in thin strips. We focus on σ = 1/2. Since ϕσ,θ (0) = κ < λ0
and ϕσ,θ is continuous, there exist constants 0 < q < 1 and δ̃ > 0 such that∣∣ϕσ,θ (w) − ϕσ,θ (0)

∣∣ < q(λ0 − κ) for all |w| < δ̃. This gives:

∣∣ϕσ,θ (w) − λ
∣∣ ≥ λ − ∣∣ϕσ,θ (w)

∣∣ ≥ λ0 − ∣∣ϕσ,θ (0)
∣∣− ∣∣ϕσ,θ (w) − ϕσ,θ (0)

∣∣
> λ0 − κ − q(λ0 − κ) ≥ (1 − q)(λ0 − κ) > 0 ∀ |w| ≤ δ̃.

By selecting δ < δ̃/2 in the definition of Dexp
δ , we may then continue by only

considering |a| := |Re(w)| > δ̃/2. The imaginary part of ϕ 1
2 ,θ (y) satisfies:

Im(ϕ 1
2 ,θ (y)) = κ sinh(a/2) sin(b/2) + κθ sinh(a) cos(b)

= κ sinh(a/2)
(
sin(b/2) + 2θ cosh(a/2) cos(b)

)
.

For |b| ≤ π/4 we have sin(b/2) + 2 cos(b) > 0 and thus can conclude that
|Im(ϕ 1

2 ,θ (y))| ≥ c > 0 and in turn |ϕ 1
2 ,θ (y) − λ| ≥ c > 0. The case σ = 1 fol-

lows similarly, but not using the double angle formula.
To see that ψ ′

σ,θ (y)(ψσ,θ (y) − λ)−1 can also be uniformly bounded, we only need
to focus on large values of y (and therefore w). Asymptotically, we estimate for
|b| < π/4:

∣∣Im(ψσ,θ (y))
∣∣ ≥ −κ |sinh(σa)| |sin(σb)| + κθ |sinh(a) cos(b)| � |sinh(a)|
(A7) or (A8)

�
∣∣ψσ,θ (y)

∣∣ .

Using (A6) then concludes the proof. ��
In order to apply the double exponential formulas for the Riesz–Dunford calculus, it

is important to understandwhereψσ,θ (z) hits the real line.We start with thew-domain.

Lemma A.6 Fix λ ≥ λ0 > 1. Then the following holds for every w ∈ C with Re(w) �=
0 and

cosh(σw) + iθ sinh(w) = λ : (A10)

(i) There exist constants c1, c2, c3 > 0 such that w satisfies log(λ)− c1 ≤ |Re(w)| ≤
log(λ) + c1 and

|Im(w)| ≥
{
tan−1(θ) if σ = 1

max
(

π
2 − c2

θ
√

λ
, c3) if σ = 1/2

,
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where c1 depends on λ0 and θ , c2 depends on λ0, and c3 depends on θ .
(ii) Given 0 < r < R, the number Nw(λ, r , R) of points w satisfying (A10) with

r ≤ |Im(w)| ≤ R is bounded uniformly in λ by

Nw(λ, r , R) ≤ C |R − r |

The constant C depends only on θ .
(iii) There exist at most four values p1, . . . , p4 depending on λ, θ , and σ such that all

points satisfying (A10) can be written as

w = p j + 2�

σ
π i for some � ∈ Z, j ∈ 1, . . . , 4. (A11)

If w solves (A10) then −w does as well.

Proof We start with the simpler case σ = 1. By separating the real and imaginary
parts as in (A2), we can observe that the critical points w = a + ib with a �= 0 are
located at

cosh(a) = λ√
1 + θ2

, b = − tan−1(θ) + 2�π, � ∈ Z. (A12)

This implies that |a| ∼ ln(λ), and we also see that for each �, there are at most two
such points, one in each half-plane. All the statements follow easily. Note that in (iii)
only two families are needed.

For the remainder of the proof we therefore focus on the case σ = 1/2. Proof
of (i): We start with the bound on the real part and write w = a + ib. We note
that if |a| > max

(
1, 2 ln

( 8
θ

))
one can estimate using elementary considerations that

e|a|/4 ≤ |sinh(w)| and e|a|/2/θ ≤ e|a|/8.
We then calculate:

e|a|

4
≤ |sinh(w)| = 1

θ
|λ − cosh(w/2)| ≤ λ

θ
+ e

|a|
2

θ
≤ λ

θ
+ e|a|

8
.

From this, the statement readily follows. The other direction is shown similarly:

e|a| ≥ |sinh(w)| = 1

θ
|λ − cosh(w/2)| ≥ λ

θ
− e

|a|
2

θ
≥ λ

θ
− e|a|

8
.

For |a| ≤ max
(
1, 2 ln

( 8
θ

))
, we use the bound

∣∣ϕσ,θ (w)
∣∣ � e|a| to see that λ =

ϕσ,θ (w) � e|a|, giving that ln(λ) must be uniformly bounded. By taking c1 large
enough we can make the ln(λ) − c1 negative, thus making the first estimate in (i)
trivial. Since ln(λ) ≥ ln(λ0) > 0, we can also immediately see

|Re(w)| ≤ max
(
1, 2 ln(8/θ)

)+ ln(λ).
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Thefinal boundon the real part ofw then follows for c1 :=max
(
ln(8/θ), ln(9θ/8), c̃

)
,

where c̃ is used to compensate for the case of small a.
Looking at the imaginary part of equation (A10), we get from the double-angle

formulas

0 = sinh(a/2) sin(b/2) + θ sinh(a) cos(b)

= sinh(a/2)
(
sin(b/2) + 2θ cosh(a/2)

(
1 − 2 sin2(b/2)

))
. (A13)

Since we assume a �= 0, we get by substituting τ := sin(b/2)

0 = τ + 2θ cosh(a/2)(1 − 2τ 2) or τ = 1 ±
√
1 + 32θ2 cosh2(a/2)

8θ cosh(a/2)
.

(A14)

From this, using the asymptotic behavior

τ = ± 1√
2

+ O
( 1

θ cosh(a/2)

)
and sin−1

( 1√
2

+ h
)

= π

4
+ O(h)

the statement follows for large a, since b = 2 sin−1(τ ) and cosh(a/2) �
√

λ by (i).
For small a, we note that (A14) shows that Im(w) �= 0. By continuity, it must therefore
hold that |Im(w)| > 0 uniformly.

Proof of (ii) and (iii): We square the defining equation (A10), getting

λ2 = cosh2(w/2) + 2iθ cosh(w/2) sinh(w) − θ2 sinh2(w)

= cosh2(w/2) + 4iθ cosh2(w/2) sinh(w/2) − 4θ2 sinh2(w/2) cosh2(w/2).
(A15)

Writing cosh2(w/2) = 1+ sinh2(w/2), we get that t := sinh(w/2) solves the quartic
equation

λ2 = 1 + t2 + 4iθ(1 + t2)t − 4θ2t2 − 4θ2t4. (A16)

This means there can be at most 4 such values t1, . . . t4 for any λ and it must hold that

sinh(w/2) = t j or w = w j + 4π�i � ∈ Z (A17)

Here w j for j = 1, . . . , 4 is the solution to sinh(w j/2) = t j with Re(w j ) > 0 and
minimal value of

∣∣Im(w j )
∣∣.

To see (ii), we note that for each t j at most ceil(R−r/4π) values lie in the sought
after strip. Therefore we can estimate

Nw(λ, r , R) ≤ 4
(|R−r |/4π + 1

)
.
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The statement (iii) follows readily from (A17). The fact that−w j also solves (A10)
follows by conjugating both sides of the Eq. (A16).

��

Next, we show that points which have positive distance to the poles in the w-plane
are mapped to points with distance λ in the z-plane. Note that in the following Lemma
we include some additional points in order to avoid distinguishing more cases. We
also exclude most of the imaginary axis, as for small values of λ it might contain poles
which are structurally different than the ones involving large λ.

Lemma A.7 Define

b0 := max
{
b ≥ 0 : ∣∣ϕσ,θ (iτ)

∣∣ ≤ (λ0 + κ)/2 ∀ |τ | ≤ b
}
.

Fix λ ≥ λ0 > κ and define the set

Mλ := {
pλ+i�π, with pλ ∈C such that ϕσ,θ (pλ)=λ and � ∈ Z

} ∪ {ib : |b| ≤ b0}.

For any δ > 0, there exists a constant c(δ) > 0, depending only on δ and θ , such that
for all w ∈ C with dist(w,Mλ) > δ we can estimate

∣∣ϕσ,θ (w) − λ
∣∣ ≥ c(δ)λ.

Proof Without loss of generality, we assume δ < b0. We first deal with the issues
close to the imaginary axis. Since

∣∣ϕσ,θ (ib)
∣∣ ≤ (λ0 + κ)/2 if |b| ≤ b0, we can find

ε ∈ (0, δ/2) such that

∣∣ϕσ,θ (w̃)
∣∣ < 3λ0/4 + κ/4 for all w̃ ∈ Uε := { |Re(w̃)| ≤ ε and |Im(w̃)| ≤ b0

}
.

If |Re(w)| ≤ ε, the distance condition to Mλ implies for all |b| ≥ b0:

δ2 ≤ |w − ib|2 = | Im(w) − b|2 + |Re(w)|2 ≤ | Im(w) − b|2 + δ2/4,

or | Im(w)− b| ≥ δ/2. Since all |b| ≥ b0 are admissible, it can not be that | Im(w)| ≥
b0. Therefore we readily see |Im(w)| ≤ b0 − δ/2 and thus w ∈ Uε.

We can therefore calculate:

∣∣ϕσ,θ (w) − λ
∣∣ ≥ λ − ∣∣ϕσ,θ (w)

∣∣ ≥ λ

4

(
1 − κ

λ0

)
.

Next, we deal with small values of λ. For constants �, Cw to be fixed later, consider
λ ∈ [λ0,�] and define the set

R := {w ∈ C : |Re(w)| ≥ ε, |w| ≤ Cw}.
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We show that the stated bound holds for w ∈ R. By Lemma A.6(iii), the points of
Mλ can be written as

Mλ =
{

p j + π�i, � ∈ Z, j = 1, . . . , 4
}

∪
{

ib : |b| ≤ b0
}

for some reference points p j ∈ C, w.l.o.g.
∣∣Im(p j )

∣∣ ≤ π . We introduce set

M�,Cw :=
{

p j + �π i, |�| ≤ L, j = 1, . . . , 4
}

(A18)

where L := �(Cw + 1)/π� is taken large enough that for all λ ∈ [λ0,�], it holds that

Mλ ∩ R ⊆ M�,Cw ,

i.e., it contains all the poles of size less or equal than Cw uniformly in λ (but possibly
also some larger ones). We consider the map

�(λ,w) := (
ϕσ,θ (w) − λ

)−1 ∏
pλ∈M�,Cw

(w − pλ).

By the inverse function theorem, the points p j = ϕ−1
σ,θ (λ) depend continuously on

λ since ϕ′
σ,θ �= 0 away from the imaginary axis (where we stay away from by con-

struction). Thus, also the other points pλ depend continuously on λ. Similarly, the
denominator only has simple zeros for w ∈ Mλ. Since, in that case the numerator
also vanishes one can argue that � has a continuous extension to [λ0,�] × R which
is bounded, i.e., it holds

∣∣∣∣∣

∏
pλ∈M�,Cw

(w − pλ)

ϕσ,θ (w) − λ

∣∣∣∣∣ ≤ C(�, Cw)

or

∣∣ϕσ,θ (w) − λ
∣∣ ≥ 1

C(�, Cw)

∏
pλ∈M�,Cw

|w − pλ|.

Thus, if w is separated fromMλ and the imaginary axis by δ, we get:

∣∣ϕσ,θ (w) − λ
∣∣ ≥ 1

C(�, Cw)

∏
pλ∈M�,Cw

|w − pλ|︸ ︷︷ ︸
≥δ

≥ δ#M�,Cw

C(�, Cw)

λ

�
=: C(�, δ, Cw)λ.

Here in the last step we used the fact that the number of elements in M�,Cw is
uniformly bounded, as can be seen from the definition in (A18).
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If λ ∈ [0,�] and |w| > Cw := max(log(2�/c1), 4 ln(2)), (where c1 is the constant
in (A7) or (A8)) we get:

∣∣ϕσ,θ (w) − λ
∣∣ ≥ ∣∣ϕσ,θ (w)

∣∣− λ
(A7),(A8)≥ c1e|Re(w)| − � ≥ � ≥ λ.

We therefore may from now on assume that λ is sufficiently large as we see fit. In
preparation for the rest of the proof, we note that for ζ, μ ∈ R, w.l.o.g., |ζ | ≤ |μ|:

|cosh(μ) − cosh(ζ )| = cosh(|μ|) − cosh(|ζ |) =
∫ |μ|

|ζ |
sinh(τ ) dτ

≥ sinh(|ζ |)(|μ| − |ζ |). (A19)

Because it is much simpler, we start with the case σ= 1. We note that in this case
Mλ consists of the points mapped to ±λ. We distinguish three cases, depending on
whether Re(w) is small and if Im(w) is close to a pole or not.

Case 1: (1 + θ)κ cosh(Re(w)) < λ/2 : The triangle inequality gives:

|κ[cosh(w) + iθ sinh(w)] − λ| ≥ λ − (1 + θ)κ cosh(Re(w)) ≥ λ

2
.

Case 2: 2(1 + θ)κ cosh(Re(w)) ≥ λ and there exists a point p ∈ Mλ with
|Imw − Im p| ≤ ε1 for ε1 sufficiently small. We note that this implies that
|Re(w) − Re(p)| is positive. Due to the symmetry in (A11)wemay in addition assume
that sign(Re(w)) = sign(Re(p)).

By Lemma A.2 and Lemma A.6(i) we note the following estimates:

| sinh(Re(w))| ∼ | cosh(Re(w))| � λ, and | sinh(Re(p))| ∼ | cosh(Re(p))| � λ.

(A20)

Writing h(η) := cos(η)− θ sin(η), we note that |h(Im(w))| > c > 0 by (A12) and
the fact that adding π� might only change the sign. If h(Im(p)) ≥ 0, we consider the
real part of ϕσ,θ (w) − λ to get:

|cosh(Re(w))h(Im(w))) − λ|
= ∣∣cosh(Re(w))h(Im(p)) − λ + cosh(Re(w))

(
h(Im(w)) − h(Im(p))

)∣∣
≥ |cosh(Re(w))h(Im(p)) − λ| − cosh(Re(w)) |h(Im(w)) − h(Im(p))|

(A19)

� min
( |sinh(Re(w))| , |sinh(Re(p))| ) |Re(w) − Re(p)| − (1 + θ) cosh(Re(w))ε1

(A20)

� λ,

where in the last step we chose ε1 sufficiently small (but independent of λ). If
h(Im(p)) ≤ 0, by continuity we can enforce h(Im(w)) ≤ 0 as long as ε1 is sufficiently
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small. The necessary calculation then is even easier because ϕσ,θ (w) maps to the left
half-plane.

Case 3: 2(1+ θ) cosh(Re(w)) ≥ λ and |Im(w) − Im(p)| ≥ ε1 > 0 for all p ∈ Mλ.
We estimate imaginary part of ϕσ,θ . Since Im(w) has positive distance from the points
in (A12), we get |sin(Im(w)) + θ cos(Im(w))| > c > 0. Which in term gives

|sinh(Re(w))| |sin(Im(w)) + θ cos(Im(w))| ≥ c |sinh(Re(w))| � λ

where the last part only holds for large enough cases of Re(w) not covered by Case 1.
Nowwe show, how the proof has to be adapted for the case σ= 1/2, again focusing

on the asymptotic case of large λ. By Lemma A.6(i), all the points p ∈ Mλ satisfy
|Re(p)| ∼ log(λ). Looking at the imaginary part of the defining equation for p we
get that

|cos(Im(p))| =
∣∣∣∣
sinh(Re(p)/2)

θ cosh(Re(p))
sin(Re(p))

∣∣∣∣ � e−Re(p)/2

θ
� λ−1/2.

Thus, for any ε2 ∈ (0, 1), assuming λ is sufficiently large, all the points p ∈ Mλ

satisfy cos(Im(p)) < ε2. We again have to distinguish three cases:

Case 1: (1 + θ) cosh(Re(w)) < λ/2 : One can argue just like in the σ = 1 case.

Case 2: 2(1 + θ) cosh(Re(w)) ≥ λ and there exists a point p ∈ Mλ with
|Imw − Im p| ≤ ε1 for ε1 sufficiently small. We note that this implies that
|Re(w) − Re(p)| is positive. Since |cos(w)| < ε2, we note that |sin(w)| > 1− ε2. By
possibly adding i�π , we can write

λ = −θ cosh(Re(p)) sin(Im(p + �iπ)) + cosh(Re(p/2)) sin(Im(p + �iπ)/2).
(A21)

For large values of λ, the cosh(Re(p)) term is dominating. Therefore, we have
sign(Re(ϕσ,θ (p))) = − sign(sin(Im(p))). By continuity we can enforce that
sign(sin(Im(w))) = sign(sin(Im(p))). Since for the case Re(ϕσ,θ (w)) ≤ 0 the state-
ment is trivial, we only have to consider the case sign(sin(Im(w))) = −1 or � = 0 in
(A21). We look at the real part of ϕσ,θ (w) − λ to get:

∣∣− θ cosh(Re(w)) sin(Im(w)) − λ + cosh(Re(w)/2) cos(Im(w)/2)
∣∣

≥ |−θ cosh(Re(w)) sin(Im(p)) + θ cosh(Re(p)) sin(Im(p))|
− ∣∣cosh(Re(w))

(
sin(Im(w)) − sin(Im p)

)∣∣− O( cosh(Re(w)/2)
)

� θ min
( |sinh(Re(w))| , |sinh(Re(p))| ) |Re(w) − Re(p)|−C cosh(Re(w))ε1

� λ
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where we absorbed the term cosh(Re(w)/2) into cosh(Re(w))ε1 by assuming λ suf-
ficiently large and in the last step we chose ε1 sufficiently small (but independent of
λ).

Case 3: 2(1 + θ) cosh(Re(w)) ≥ λ and |Imw − Im p| ≥ ε1 > 0 for all p ∈ Mλ.
Since all the points p ∈ Mλ satisfy |cos(Im(p))| < ε2 and for every zero of cos, there
exists a value p ∈ Mλ with Im(p) close to it, this means that |cos(Im(w))| ≥ δ2 for
a constant δ2 depending only on ε1 and ε2. We estimate

∣∣Im(ϕσ,θ (w))
∣∣ ≥ θ |sinh(Re(w))| |cos(Im(w))| − |cosh(w/2)| � |sinh(Re(w))| � λ

where the last part only holds for large enough cases of Re(w) not covered by the first
case. ��
Lemma A.8 Fix λ ≥ λ0 > κ . Consider the set

P y
λ :=

{
y ∈ Dd(θ) : ψσ,θ (y) = λ

}
,

where d(θ) is taken sufficiently small. Then the following holds:

(i) For any ν0 ∈ [0, d(θ)] and δ > 0 there are at most finitely many points
y1, . . . , yNp(λ,δ) ∈ P y

λ satisfying

ν0 − δ

ln(λ/κ)
< |Im(y�)| < ν0 + δ

ln(λ/κ)
∀� ∈ 1, . . . , Np(λ, δ).

The number Np(λ, δ) of such points can be bounded by a constant depending only
on δ, θ , σ and d(θ), but independently of λ and ν0 .

(ii) For λ ∈ (λ0,�), one can bound |Im(y)| ≥ γ (�) > 0 ∀y ∈ P y
λ , with a constant

γ (�) depending on �, θ , κ , λ0. For λ sufficiently large, the following asymptotic
holds:

|Im(y)| ≥
⎧⎨
⎩

tan−1(θ)
ln(λ/κ)

− O( 1
ln2(λ/κ)

)
if σ = 1,

π
2 ln(λ/κ)

− O( 1
ln2(λ/κ)

)
if σ = 1/2

∀y ∈ P y
λ , (A22)

where the implied constants depend only on θ , κ , λ0 .
(iii) There exists a parameter dλ ∈ (d(θ)/2, d(θ)] and a constant c > 0 such that

∣∣ψσ,θ (a ± idλ) − λ
∣∣ ≥ cλ/κ ∀a ∈ R. (A23)

c depends on θ , σ and λ0 but is independent of λ.

Proof For now, consider the case κ = 1 and λ0 > 1. Since ψσ,θ (0) = 1, due to
continuity, there exists a factor d(θ) > 0 and ε > 0 such that

∣∣ψσ,θ (y)
∣∣ < 1 + ε < λ0 < λ ∀ |y| ≤ d(θ).
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By taking d(θ) at last this small in the definition of Dd(θ) we can exclude the poles
satisfying Re(w) = Re(sinh(y)) = 0.

Proof of (i): Since sinh is injective by Lemma A.2(i) we only need to count the
points in Hθ which are mapped to λ by ϕσ,θ . Consider a point w = a + ib in the w

domain and let π
2 sinh(y) = w with y = ξ + iν ∈ Dd(θ). Then

|a| = π

2
|sinh(ξ)| |cos(ν)| and |b| = π

2
|cosh(ξ)| |sin(ν)| .

Simple computations give |a| tan(|ν|) ≤ |b| ≤ π/2 sin(|ν|) + |a| tan(|ν|). we only
show the second inequality:

|b| = π

2
|cosh(ξ)| |sin(ν)| ≤ π

2

(
1 + |sinh(ξ)| ) |sin(ν)| = π

2

(
1 + 2|a|

π | cos(ν)|
)

|sin(ν)|

≤ π

2
sin(|ν|) + |a| tan(|ν|).

By inserting Lemma A.6(i) we get

(
ln(λ) − c1

)
tan(|ν|) ≤ |b| ≤ π

2
sin(|ν|) + (c1 + ln(λ)) tan(|ν|). (A24)

For the length L of this interval, we compute for ν± := ν0 ± δ ln(λ/κ)−1 (without
changing the number of points, we may assume 0 ≤ ν− ≤ ν+ ≤ d(θ)):

L = ln(λ)
(
tan(|ν+|) − tan(ν−)

)+ π

2
sin(ν+) + c1 tan(ν+) + c1 tan(ν−)

≤ ln(λ)

∫ ν+

ν−

1

cos2(τ )
dτ + π

2
+ 2c1 ≤ 8δ

ln(λ)

ln(λ) − ln(κ)
+ π

2
+ 2c1,

where in the last step we used cos(τ ) > 1/2 for |τ | < 1/2 and the definition of ν±.
The right-hand side stays uniformly bounded for λ → ∞. Therefore, since the length
of this interval is bounded uniformly in λ, we can apply Lemma A.6(ii) to bound
Np(λ, δ).

Proof of (ii): We only show the asymptotics.
Fix y ∈ Dd(θ) and write w := π

2 sinh(y). For 0 < |y| < 1/2 it can be easily seen
that |y|+ 2

3 |y|3 > tan(|y|). Now, if |Im(y)| ≥ 2 ln(λ)−1 there is nothing left to show.
Otherwise, we can bound

|Im(y)| ≥ |tan(y)| − 4

3 ln(λ)3

(A24)≥ |Im(w)|
1 + c1 + ln(λ)

− 4

3 ln(λ)3

≥ |Im(w)|
ln(λ)

− O
( 1

ln(λ)2

)
.

The result follows from Lemma A.6(i).
Proof of (iii): For dλ = d(θ), we can not guarantee that ψ(ξ + i dλ) does not hit

the value λ. In this case, we have to modify dλ slightly to get robust estimates. For
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d ∈ R, consider the hyperbolas

γd(ξ) := π

2
sinh(ξ + i d) ξ ∈ R. (A25)

In the light of Lemma A.7 we need to ensure that dist(γdλ , wp) � 1 for all wp ∈
Mλ. We will be looking for dλ in a small strip around d(θ). To simplify notation we
define the length

ω := d(θ)
ln(λ0)

2 ln(λ)
such that d(θ)/2 ≤ d(θ) − ω ≤ d(θ).

To make things symmetric with respect to the real axis, we consider M̃λ := Mλ −
Mλ. It will therefore be sufficient to focus on the upper right quadrant of the complex
plane. All other cases follow by symmetry.

We write M̃y
λ := sinh−1( 2

π
M̃λ) for the corresponding points in the y-domain.

We start by noting that we can easily stay away from the problematic parts of the
imaginary axis by making d(θ) sufficiently small, as if |Re(sinh(y))| < ε we have
|Im(sinh(y))| < (1 + ε) sin(Im(y)); thus for small real parts we can ensure to fit
between (−b0, b0) on the imaginary axis. This also means that we only consider
points wλ ∈ M̃λ with |Re(wλ)| > ε > 0 since our path will have already positive
distance to other possible poles.

By (i), the number of points yλ in M̃y
λ in the strip d(θ) − ω ≤ Im(yλ) ≤ d(θ)

can be bounded by a constant N , independent of λ. In order to also avoid points in
M̃y

λ which are close but outside the critical strip we also avoid the boundary points
d(θ) − ω and d(θ). Since N + 2 strips of width ω

2N+4 can not cover a strip of width
ω, there exists a value dλ such that

d(θ) − ω ≤ dλ ≤ d(θ) and |Im(yλ) − dλ| ≥ ω

2(N + 2)
∀yλ ∈ M̃y

λ.

For ease of notation, we define δ := ln(λ0)/(4N + 8) and note that |Im(yλ) − dλ| ≥
δ ln(λ)−1. We show that

dist(γdλ , wp) ≥ μ > 0 ∀wp ∈ M̃λ

for a constant μ > 0 independent of λ. We fix yp := ξp + iνp ∈ M̃y
λ with wλ =

π sinh(yp)/2 and a point on γdλ denoted by yγ = ξγ +dλi . We write sp := sign(νp −
dλ) and distinguish two cases: (ξp − ξγ )sp ≤ 0 and (ξp − ξγ )sp > 0. For symmetry
reasons, we only consider the case ξγ , ξp, νp > 0. If (ξ p − ξγ )sp ≥ 0, we get:

Im(sp(sinh(yp) − sinh(yγ )))

= sp
(
cosh(ξp) sin(νp) − cosh(ξγ ) sin(dλ)

)

= cosh(ξp)sp
(
sin(νp) − sin(dλ)

)+ sp

(
cosh(ξp) − cosh(ξγ )

)
sin(dλ)

︸ ︷︷ ︸
≥0
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≥ cosh(ξp)sp

∫ νp

dλ

cos(τ )dτ � cosh(ξp)
δ

ln(λ)
.

For the case (ξ p − ξγ )sp < 0, we calculate:

− sp Re(sinh(yp) − sinh(yγ ))

= −sp sinh(ξp) cos(νp) + sp sinh(ξγ ) cos(dλ)

= −sp sinh(ξp)
(
cos(νp) − cos(dλ)

)+ sp

(
sinh(ξγ ) − sinh(ξp)

)
cos(dλ))

︸ ︷︷ ︸
≥0

≥ sinh(ξp)sp

∫ νp

dλ

sin(τ )dτ � sinh(ξp) sin(d(θ)/2)
δ

ln(λ)
. (A26)

We have, since sinh(ξp) ∈ 2
π
M̃λ and using Lemma A.6(i) that

sinh(ξp) = Re(sinh(ξ))

cos(νp)
= Re(wλ)

cos(νp)
� ln(λ) − c1

cos(νp)
.

Together with the previous assumption Re(wλ) ≥ ε, this gives cosh(ξp) ≥ sinh(ξp) �
max(ln(λ) − c1, ε). With this can conclude that for ln(λ) > 2c1:

dist(γdλ , wλ) � ln(λ) − c1
ln(λ)

� 1 − c1
2c1

≥ 1

2
.

For ln(λ) < 2c1 we get

dist(γdλ , wλ) � ε
1

ln(λ)
>

ε

2c1
> 0.

We can now apply LemmaA.7 to get to the final result. The general case κ �= 1 follows
by dividing the equation ψσ,θ (y) = λ by κ . We can therefore just replace λ by λ/κ in
all statements. ��
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