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Abstract
This study presents the convergence and stability analysis of a recently developed fixed
pivot technique for fragmentation equations (Liao et al. in Int J NumerMethods Fluids
87(4):202–215, 2018). The approach is based on preserving two integral moments
of the distribution, namely (a) the zeroth-order moment, which defines the number
of particles, and (b) the first-order moment, which describes the total mass in the
system. The present methodology differs mathematically in a way that it delivers the
total breakage rate between a mother and a daughter particle immediately, whereas
existing numerical techniques provide the partial breakup rate of amother and daughter
particle. This affects the computational efficiency andmakes the currentmodel reliable
for CFD simulations. The consistency and unconditional second-order convergence
of the method are proved. This demonstrates efficiency of the method over the fixed
pivot technique (Kumar and Warnecke in Numer Math 110(4):539–559, 2008) and
the cell average technique (Kumar and Warnecke in Numer Math 111(1):81–108,
2008). Numerical results are compared against the cell average technique and the
experimental order of convergence is calculated to confirm the theoretical order of
convergence.
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1 Introduction

In the past few decades, population balance equations have been investigated and
employed for modelling real life applications including depolymerization [1, 27],
aerosol [3], granulation [6, 24], crystallization [15, 26] and liquid-liquid dispersions
[19] related to particle technology. Mathematically, these equations are represented by
an integro-partial differential equation that arises due to aggregation, fragmentation,
growth and nucleation mechanisms. Among all these processes, the fragmentation
event is of our interest in the current work. Fragmentation is a size reduction process
during which particles of smaller size (or volume) are formed after breaking the bigger
particles. Fragmentation process produces particles of varying sizes within the system,
which can be tracked by the temporal change in the number density function via the
population balance equation.

1.1 Fragmentation equation

The temporal change of particle number density, n(t, v) ≥ 0 of volume v ≥ 0 at
time 0 ≤ t ≤ T < ∞ in a spatially homogeneous physical system undergoing
fragmentation is written as

∂n(t, v)

∂t
=
∫ ∞

v

n(t, y)�t (y) β(v, y)dy
︸ ︷︷ ︸

B(v)

− n(t, v)�t (v)︸ ︷︷ ︸
D(v)

, (1.1)

and is supplemented by the initial condition (IC)

n(0, v) = n0(v) ≥ 0. (1.2)

In Eq. (1.1), β(v, y) is the breakage function and satisfies the following properties;

∫ y

0
vβ (v, y) dv = y,

∫ y

0
β (v, y) dv = ζ(y) ≥ 2 and β(v, y) = β(y − v, y).

(1.3)

The first relation in the above expression (1.3) describes the mass conservation
property, that is, when the particle of size y splits into smaller fragments then the
total mass of those fragments must be equal to y. The second relation defines the total
number of fragments ζ(y) produced during the breakup of particles size y. The last
expression, indicates the symmetric nature of the breakage function.

Additionally, �p(v, y) is the partial breakage kernel with an incorporated binary

size distribution, which is mirror symmetrical about v = y

2
and defined by the product

of the total breakup rate and the daughter size distribution

�p(v, y) = �t (y) β(v, y) and �t (y) = 1

2

∫ y

0
�p(v, y)dv. (1.4)
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The first term on the right-hand side of Eq. (1.1) denotes the accumulation (or
birth) of particle size v in the system, whereas the second term defines the loss (or
death) of particle size v from the system. For fragmentation equations, number density
function is not the only important parameter to be approximated. Several integral
properties of the number density function, known as moments, indicate significant
real life properties which also need to be predicted with good accuracy. Therefore, the
moments are defined as

Mi (t) =
∫ ∞

0
vi n(t, v)dv, (1.5)

where M0(t) (zeroth moment) and M1(t) (first moment) provide the total number and
total mass of particles in the system during a multiple fragmentation event, respec-
tively. The focus of this study is to deal with the binary fragmentation equation which
estimates the number density, zeroth and first moments with improved accuracy. In the
following discussion, the zeroth and first order moments for the binary fragmentation
Eq. (1.1) are calculated.

1.2 Zeroth and first order moments for the case of binary fragmentation

Consider that y breaks in two components v and y − v = x (say). Then

(i) v ≤ y

2
, implies x ≥ y

2
, therefore θ

(
v ≤ y

2

)
is true (= 1), and θ

(
x ≤ y

2

)
is false

(= 0), and

(ii) v ≥ y

2
, implies x ≤ y

2
, therefore θ

(
v ≤ y

2

)
is false (= 0), and θ

(
x ≤ y

2

)
is true

(= 1),

where θ is the step function θ(v) :=
{
0, when v is false,
1, when v is true.

Thus the first term of the main Eq. (1.1) is redefined as

B(v) =
∫ ∞

v

n(t, y)�t (y) β(v, y)θ
(
v ≤ y

2

)
dy

︸ ︷︷ ︸
B1(v)

+
∫ ∞

v

n(y)
∫ y

0
�t (y) β (x, y) δ [x − (y − v)] θ

(
x ≤ y

2

)
dxdy

︸ ︷︷ ︸
B2(v)

. (1.6)

To summarize, the first component B1(v) represents the accumulation of particle

sizes smaller than
y

2
, and the second component B2(v) represents the accumulation

of particle sizes greater than
y

2
, through the complementary particles x .
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Mass conservation: We first focus on the term B1(v). Changing the order of inte-
gration

∫ ∞

0
vB1(v)dv =

∫ ∞

0
v

∫ ∞

v

n(t, y)�t (y)β(v, y)θ
(
v ≤ y

2

)
dydv

=
∫ ∞

0
n(t, y)�t (y)

[∫ y

0
vβ(v, y)θ

(
v ≤ y

2

)
dv

]
dy.

Now θ
(
v ≤ y

2

)
represents the accumulation of particle sizes smaller than

y

2
, so

we can write

∫ ∞

0
vB1(v)dv =

∫ ∞

0
n(t, y)�t (y)

⎡
⎣
∫ y

2
0

vβ(v, y)dv

⎤
⎦ dy.

We next consider B2(v), and note that it represents the accumulation of particles

v which are larger than
y

2
. Therefore, x = y − v ≤ y

2
, and thus θ

(
x ≤ y

2

)
= 1. In

the first step, we change the order of integration

∫ ∞

0
vB2(v)dv =

∫ ∞

0
v

∫ ∞

v

n(t, y)
∫ y

0
�t (y) β (x, y) δ [x − (y − v)]

θ
(
x ≤ y

2

)
dxdydv

=
∫ ∞

0
n(t, y)�t (y)

∫ y

0

∫ y

2
0

vβ(x, y)δ [x − (y − v)] dxdvdy

=
∫ ∞

0
n(t, y)�t (y)

∫ y

0

∫ y

2
0

vβ(x, y)δ [v − (y − x)] dxdvdy

=
∫ ∞

0
n(t, y)�t (y)

∫ y

y

2

vβ(v, y)dvdy.

Therefore,

∫ ∞

0
vB(v)dv =

∫ ∞

0
vB1(v)dv +

∫ ∞

0
vB2(v)dv

=
∫ ∞

0
n(t, y)�t (y)

⎡
⎣
∫ y

2
0

vβ(v, y)dv

⎤
⎦ dy +

∫ ∞

0
n(t, y)�t (y)

∫ y

y

2

vβ(v, y)dvdy

=
∫ ∞

0
n(t, y)�t (y)

∫ y

0
vβ(v, y)dvdy
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=
∫ ∞

0
yn(t, y)�t (y)dy.

Also

∫ ∞

0
vD(v)dv =

∫ ∞

0
yn(t, y)�t (y)dy.

Therefore the mass conservation law follows. Similarly we can calculate the zeroth
moment as

dM0(t)

dt
=
∫ ∞

0
[B(v) − D(v)] dv =

∫ ∞

0
n(t, y)�t (y)dy

1.3 State-of-the-art andmotivation

Due to the complex nature of the fragmentation equation, few analytical solutions
are available even for simple fragmentation kernels [2, 28–30]. For complex kernels,
various numerical methods have been proposed during the last few decades including
the fixed pivot technique [8], the cell average technique [9] and finite volume schemes
[7, 17, 21, 23, 25]. Some other numerical methods related to multidimensional frag-
mentation equations can be found in [16, 18, 20, 22]. The merits and shortcomings of
the fixed pivot technique and cell average methods have been discussed in detail by
[9, 24]. It was shown that the fixed pivot technique is second order convergent on uni-
form and non-uniform grids whereas first order convergence on locally uniform grids.
Moreover, for non-uniform random grids, the fixed pivot technique is inconsistent.
In addition, Kumar and Warnecke [9] demonstrated that the cell average technique is
second order convergent on uniform, non-uniform and locally uniform grids. The cell
average technique was shown to exhibit first order convergence on non-uniform ran-
dom grid and perform better than the fixed pivot technique. The main disadvantage of
these two techniques is that both methods are inefficient in the case of partial breakup
kernels [12, 14].

Furthermore, it was demonstrated that the recently developedfinite volumemethods
aremore efficient than both the fixed pivot and the cell average technique, however they
requiremodification of themathematical formulations to accommodate partial breakup
kernels. However, regardless of the choice of grid existing finite volume schemes
exhibit second order convergence. The recently developed fixed pivot technique [11]
overcomes all of the shortcomings of the aforementioned numerical methods and
seems to be more flexible in terms of implementing any kind of breakup kernel.
Furthermore, because the breakup rate in a CFD simulation is dependent on flow field
parameters, the integration (1.4) would have to be performed for each control volume,
and that significantly increases the computational cost [11]. Due to these reasons,
the modified fixed pivot technique [11] is more powerful and flexible for tackling
real life applications in chemical engineering and pharmaceutical sciences. However,
the convergence analysis of the recently developed fixed pivot technique for a binary
fragmentation equation is still incomplete and continues to be a major problem in
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the literature. The complexity in conducting the convergence analysis of the recently
developed fixed pivot technique is due to the presence of the two tedious factors (2.1)
and (2.2) related to the distribution of the particle properties to the neighbouring nodes.
In order to show the reliability of the method, the comparison with the existing cell
average technique [9] is conducted. Moreover, the experimental order of convergence
is used to confirm the theoretical rate of convergence for different grids.

The rest of the current article is structured as follows: Sect. 2 is devoted for providing
the mathematical formulation of the fixed pivot technique along with the theoretical
proofs of mass conservation law and number preservation. Next Sect. 3 focuses on
the convergence and stability analysis of the fixed pivot technique while discussing
consistency of the method in detail. Further, numerical results in terms of moments,
number of particles, average size particles and experimental order of convergence are
compared and discussed in Sect. 4. Finally, some remarks, conclusions and future
aspects are discussed in Sect. 5.

2 Computational domain and numerical scheme

Let the computational domain [0, xmax] be subdivided into I subintervals �i :=[
bi , bi+1

]
. Themidpoint of each cell�i is denoted by xi , and the cell width is denoted

by 	xi := bi+1 − bi . Accordingly, the discrete number of particles in each cell (Ni )
calculated from the number density function reads as

Ni ≈
∫ bi+1

bi
n(t, v)dv,

To derive the mathematical formulation of the scheme, the birth term is integrated
over the size range �i ,

∫ bi+1

bi
B(v)dv =

∫ bi+1

bi

∫ ∞

v

n(t, y)�t (y) β(x, y)θ
(
v ≤ y

2

)
dydv

+
∫ bi+1

bi

∫ ∞

v

n(t, y)
∫ y

0
�t (y) β(x, y)δ [x − (y − v)]

θ
(
x ≤ y

2

)
dxdydv.

Applying several approximations, the birth term of the modified fixed pivot tech-
nique is written as

B̂ (xi ) =
I∑
j=i

N̂ j�t
(
x j
)
β
(
xi , x j

) ∫ bi+1

bi
θ
(
v ≤ x j

2

)
dv

+
I∑
j=i

j∑
k=1

N̂ j�t
(
x j
)
β
(
xk, x j

) ∫ bi+1

bi
δ
[
xk − (

x j − v
)]
dv
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∫ bk+1

bk
θ
(
x ≤ x j

2

)
dx

=
I∑
j=i

N̂ j

⎡
⎣�t

(
x j
)
β
(
xi , x j

)
	νi ( j) +

j∑
k=1

�t
(
x j
)
β
(
xk, x j

)
Yi jk	νk( j)

⎤
⎦

=: B̂1 (xi ) + B̂2 (xi ) .

Here, N̂i is the numerical approximation of the number of particles in each cell,
	νi ( j),Yi jk are thebirth-modification factorswhich assign theparticles to their nearest
representatives, and are defined as

	νi ( j) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bi+1 − bi , when bi+1 ≤ x j
2

,

x j
2

− bi , when bi ≤ x j
2

< bi+1,

0, when bi ≥ x j
2

,

(2.1)

Yi jk :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
x j − xk

)− xi−1

xi − xi−1
, when xi−1 ≤ x j − xk < xi ,

xi+1 − (
x j − xk

)
xi+1 − xi

, when xi ≤ x j − xk < xi+1,

0, otherwise.

(2.2)

Similarly, integrating the death term over each subinterval gives

D̂ (xi ) := N̂i

i∑
j=1

�t
(
x j
)
β
(
xi , x j

)
	νi ( j).

Note that Liao et al. [11] have written the discrete partial breakage kernel �p as
follows:

�p
(
xi , x j

) := �t
(
x j
)
β
(
xi , x j

)
and �t (xi ) :=

i∑
j=1

�p
(
x j , xi

)
	νi ( j).

Under the above consideration, the modified fixed pivot technique of [11] is written
as

dN̂i

dt
=

I∑
j=i

N̂ j

⎡
⎣�p

(
xi , x j

)
	νi ( j) +

j∑
k=1

�p
(
xk, x j

)
Yi jk	νk( j)

⎤
⎦

︸ ︷︷ ︸
=B̂(xi )
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− N̂i

i∑
j=1

�p
(
x j , xi

)
	ν j (i)

︸ ︷︷ ︸
=D̂(xi )

. (2.3)

2.1 Zeroth order moment consistency

During fragmentation of x j , the distribution of daughter particles is based upon their

sizes relative to
x j
2
. Consider that

x j
2

falls in some cell � j ′ where 1 ≤ j ′ ≤ j .

Then B̂1 (xi ) and B̂2 (xi ), respectively, gives the distribution of particles smaller and
larger than the half-range size of x j . In this regard, we first consider the particle size

distribution smaller than
x j
2

and get

I∑
i=1

B̂1 (xi ) =
I∑

i=1

I∑
j=i

N̂ j�t
(
x j
)
β
(
xi , x j

) ∫ bi+1

bi
θ
(
v ≤ x j

2

)
dv

=
I∑

j=1

N̂ j�t
(
x j
) j∑
i=1

β
(
xi , x j

) ∫ bi+1

bi
θ
(
v ≤ x j

2

)
dv.

=
I∑

j=1

N̂ j�t
(
x j
) j ′∑
i=1

β
(
xi , x j

)
	νi ( j).

The distribution of particles larger than
x j
2

is achived through the complementary

particles x
(
≤ x j

2

)
. Due to symmetry of the breakage function, x falls in the same

interval 1 ≤ j ′ ≤ j , and thus we get

I∑
i=1

B̂2 (xi ) =
I∑

j=1

N̂ j�t
(
x j
) j∑
i=1

j∑
k=1

β
(
xk, x j

) ∫ bi+1

bi
δ
[
xk − (

x j − v
)]
dv

∫ bk+1

bk
θ
(
x ≤ x j

2

)
dx .

=
I∑

j=1

N̂ j�t
(
x j
) j∑
i=1

j ′∑
k=1

β
(
xk, x j

)
	νk( j)

∫ bi+1

bi
δ
[
v − (

x j − xk
)]
dv

=
I∑

j=1

N̂ j�t
(
x j
) j∑
i= j ′

β
(
xi , x j

)
	νi ( j).

Combining the two cases, we get

I∑
i=1

B̂ (xi ) =
I∑

i=1

B̂1 (xi ) +
I∑

i=1

B̂2 (xi ) =
I∑

j=1

N̂ j�t
(
x j
) j∑
i=1

β
(
xi , x j

)
	xi
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= 2
I∑

j=1

N̂ j�t
(
x j
)
.

Hence, the time evolution of the discrete zeroth moment is calculated as

d M̂0

dt
=

I∑
j=1

N̂ j�t
(
x j
)
.

2.2 Mass conservation law

First consider the distribution of the particles of size smaller than
x j
2
.

I∑
i=1

xiB̂1 (xi ) =
I∑

i=1

xi

I∑
j=i

N̂ j�t
(
x j
)
β
(
xi , x j

) ∫ bi+1

bi
θ
(
v ≤ x j

2

)
dv

=
I∑

j=1

N̂ j�t
(
x j
) j∑
i=1

xiβ
(
xi , x j

) ∫ bi+1

bi
θ
(
v ≤ x j

2

)
dv.

Now the argument of cell allocation for particles follows similarly to the previous

description, that is, consider that
x j
2

falls in some cell � j ′ such that 1 ≤ j ′ ≤ j .

Therefore,

I∑
i=1

xiB̂1 (xi ) =
I∑

j=1

N̂ j�t
(
x j
) j ′∑
i=1

xiβ
(
xi , x j

)
	νi ( j).

For the distribution of particles larger than
x j
2
, we compute

I∑
i=1

xiB̂2 (xi ) =
I∑

i=1

xi

I∑
j=i

N̂ j�t
(
x j
) j∑
k=1

β
(
xk, x j

) ∫ bi+1

bi
δ
[
xk − (

x j − v
)]
dv

∫ bk+1

bk
θ
(
x ≤ x j

2

)
dx

=
I∑

j=1

N̂ j�t
(
x j
) j∑
i=1

xi

j∑
k=1

β
(
xk, x j

) ∫ bi+1

bi
δ
[
xk − (

x j − v
)]
dv

×
∫ bk+1

bk
θ
(
x ≤ x j

2

)
dx .

=
I∑

j=1

N̂ j�t
(
x j
) j∑
i=1

xi

j ′∑
k=1

β
(
xk, x j

)
	νk( j)
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×
∫ bi+1

bi
δ
[
v − (

x j − xk
)]
dv

=
I∑

j=1

N̂ j�t
(
x j
) j∑
i= j ′

xiβ
(
xi , x j

)
	νi ( j).

Combining the two cases, we get

I∑
i=1

xiB̂ (xi ) =
I∑

i=1

xiB̂1 (xi ) +
I∑

i=1

xiB̂2 (xi ) =
I∑

j=1

N̂ j�t
(
x j
) j∑
i=1

xiβ
(
xi , x j

)
	xi

=
I∑

j=1

x j N̂ j�t
(
x j
)
.

Hence, time evolution of the discrete first moment is calculated as

d M̂1

dt
= 0.

3 Convergence analysis

Consider the numerical solution expressed in the vector form N̂ = {N̂1, N̂2, . . . , N̂I }.
Then the semi-discrete system (2.3) is expressed as

dN̂
dt

= A N̂, (3.1)

where A is the I × I upper triangular matrix

A :=

⎡
⎢⎢⎢⎣

α11 − �t (x1) α12 α13 · · · α1I
0 α22 − �t (x2) α23 · · · α2I
...

...
...

. . .
...

0 0 0 · · · αI I − �t (xI )

⎤
⎥⎥⎥⎦ ,

with the components αi j := �t
(
x j
)
β
(
xi , x j

)
	νi ( j) +

∑ j

k=1
�t

(
x j
)
β
(
xk, x j

)
Yi jk	νk( j).

Throughout the subsequent discussion, weworkwith the discrete L1−normdefined
as follows

∥∥∥N̂ (t)
∥∥∥ =

I∑
i=1

∣∣∣N̂i (t)
∣∣∣ .
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The consistency and stability of the model are analyzed with the help of following
definitions and theorems which are quoted from Hundsdorfer and Verwer [4].

Definition 3.1 The spatial truncation error is defined by the residual resulting from
substituting the exact solution N = {N1, N2, . . . , NI } into the discrete system as

σ(t) = dN(t)

dt
− A N(t).

The scheme is called consistent of order q if, for 	x → 0,

‖σ(t)‖ = O (
	xq

)
uniformly for all 0 ≤ t ≤ T .

Definition 3.2 Consider a matrix A := [
ai j
] ∈ R

m×m . Then for the L p vector norm,
the corresponding logarithmic norm of A is defined as

μ̃(A) = lim
τ→0

‖I + τ A‖ − 1

τ
.

Moreover, the logarithmic norm of a matrix A corresponding to the L1 norm on
R
m is given by

μ̃1(A) = max
j

⎡
⎣a j j +

∑
i 
= j

∣∣ai j ∣∣
⎤
⎦ .

Theorem 3.1 If A := [
ai j
] ∈ R

m×m and ω ∈ R then

μ̃(A) ≤ ω if and only if ‖exp(t A)‖ ≤ ‖exp(tω)‖ for all t ≥ 0.

Definition 3.3 The semi-discrete system
dw(t)

dt
= Aw(t) is stable if

‖exp(t A)‖ ≤ K exp (tω) for all 0 ≤ t ≤ T

holds for all grids with constant K ≥ 1 and ω ∈ R, both independent of 	x .

Theorem 3.2 The solution of the linear semi-discrete system
dw(t)

dt
= Aw(t) is non-

negative if and only if

ai j ≥ 0, for all i 
= j,

where ai j are the real entries of the matrix A.

Proof The proof of the above theorem can be found in [4] (Theorem 7.2, p. 117). ��
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3.1 Nonnegativity

Lemma 3.3 (Nonnegativity) The numerical solution of the semi-discrete scheme (3.1)
is nonnegative.

Proof From the definitions of all the functions and the matrixA , it can be easily seen
that αi j ≥ 0 for all i 
= j . Thus recalling Theorem 3.2, we deduce that the solution of
the semi-discrete system (3.1) is nonnegative. ��

3.2 Consistency

Let C2 [a, b] denote the space of twice continuously differentiable functions on the
nonempty bounded closed interval [a, b].

Lemma 3.4 (Consistency) Suppose that β ∈ C2 ([0, xmax] × [0, xmax]) and �t ∈
C2 ([0, xmax]). The semi-discrete scheme (3.1) is second order accurate, independent
of the choice of the spatial mesh used.

Proof The spatial truncation error is given by

σi (t) = dN
dt

− dN̂
dt

= A N − A N̂ =
[
B(xi ) − B̂(xi )

]
−
[
D (xi ) − D̂ (xi )

]
.

Integrating the birth termB (v) over each cell �i we get that

∫ bi+1

bi
B (v) dv =

∫ bi+1

bi

∫ xmax

v

n(t, y)�t (y) β(x, y)θ
(
v ≤ y

2

)
dydv

+
∫ bi+1

bi

∫ xmax

v

n(t, y)
∫ y

0
�t (y) β(x, y)δ [x − (y − v)]

θ
(
x ≤ y

2

)
dxdydv.

Applying quadrature rules for the outer integrals on the right-hand side, we get

B (xi ) =
∫ xmax

xi
n(t, y)�t (y) β(xi , y)θ

(
xi ≤ y

2

)
	xidy

+
∫ xmax

xi
n(t, y)

∫ y

0
�t (y) β(x, y)δ

[
x − (y − xi )

]
θ
(
x ≤ y

2

)
	xidxdy + O

(
	x3i

)

=
I∑

k=i

∫
�k

n(t, y)�t (y) β(xi , y)θ
(
xi ≤ y

2

)
	xidy

+
I∑

k=i

∫
�k

n(t, y)
∫ y

0
�t (y) β(x, y)δ

[
x − (y − xi )

]
θ
(
x ≤ y

2

)
	xidxdy
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−
∫ xi

bi
n(t, y)�t (y) β(xi , y)θ

(
xi ≤ y

2

)
	xidy

︸ ︷︷ ︸
E1

−
∫ xi

bi
n(t, y)

∫ y

0
�t (y) β(x, y)δ

[
x − (y − xi )

]
θ
(
x ≤ y

2

)
	xidxdy

︸ ︷︷ ︸
E2

+O
(
	x3i

)
.

Again we apply the midpoint rule to the outer integrals of the first two terms and
get

B (xi ) =
I∑

k=i

N̂k�t (xk) β(xi , xk)θ
(
xi ≤ xk

2

)
	xi

+
I∑

k=i

N̂k�t (xk)
∫ xk

0
β(x, xk)δ [x − (xk − xi )] θ

(
x ≤ xk

2

)
	xidx

− E1 − E2 + O
(
	x3i

)
.

Before we proceed further, let us first gather the estimates of a few terms which will
be required in the subsequent discussions. Application of midpoint quadrature rules
gives

∫
�i

θ
(
x ≤ xk

2

)
dx = θ

(
xi ≤ xk

2

)
	xi + O

(
	x3i

)
.

Therefore,

B (xi ) =
I∑

k=i

N̂k�t (xk) β(xi , xk)
∫

�i

θ
(
x ≤ xk

2

)
dx

+
I∑

k=i

N̂k�t (xk)
k∑
j=1

∫
� j

β(x, xk)δ [x − (xk − xi )] θ
(
x ≤ xk

2

)
	xidx

− E1 − E2 − E3 + O
(
	x3i

)
.

Here,

E3 =
I∑

k=i

N̂k�t (xk)
∫ bk+1

xk
β(x, xk)δ [x − (xk − xi )] θ

(
x ≤ xk

2

)
	xidx .
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By the application of the midpoint rule, the definition of 	νi ( j), Yi jk and other
simple computations, we get

B (xi ) =
I∑

k=i

N̂k�t (xk) β(xi , xk)
∫

�i

θ
(
x ≤ xk

2

)
dx

+
I∑

k=i

N̂k�t (xk)
k∑
j=1

β(x j , xk)
∫

�i

δ
[
x j − (xk − v)

]
dv
∫

� j

θ
(
x ≤ xk

2

)
dx

− E1 − E2 − E3 + O
(
	x3i

)

=
I∑

k=i

N̂k�t (xk) β(xi , xk)	νi (k) +
I∑

k=i

N̂k�t (xk)
k∑
j=1

β(x j , xk)Yi jk	ν j (k)

− E1 − E2 − E3 + O
(
	x3i

)

= B̂ (xi ) − E1 − E2 − E3 + O
(
	x3i

)
.

Wenow proceed to estimate the error terms E1, E2 and E3. In general, the definition
of β yields that

β(x, y) = 0 whenever x ≥ y.

Therefore, the definition of E1 gives

∫ xi

bi
β (xi , y) dy = 0 which implies E1 = 0.

Similarly,

∫ bk+1

xk
β (x, xk) dx = 0 which implies E3 = 0.

Now for estimating E2, limits of the integrals give

bi ≤ y ≤ xi 
⇒ bi − xi ≤ y − xi ≤ 0 and 0 ≤ x ≤ y,

which then imply that

δ [x − (y − xi )] = 0 that is E2 = 0.

Hence, we get

B (xi ) − B̂ (xi ) = O
(
	x3i

)
.
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For the death term, direct application of midpoint quadrature formula leads to

D (xi ) − D̂ (xi ) = O
(
	x3i

)
.

Hence,

σi (t) = O
(
	x3i

)
which implies ‖σ(t)‖ = O

(
	x2

)
.

This proves that the scheme is second order consistent irrespective of the choice of
the spatial mesh. ��

3.3 Stability

Proof In order to establish the stability of the scheme,we now compute the logarithmic
norm (Def. 3.2) of the matrix A as

μ̃1(A) = max
j

⎡
⎣a j j +

∑
i 
= j

|ai j |
⎤
⎦ .

Since all non-diagonal entries of the matrixA are nonnegative, the above logarithmic
norm takes the following form

μ̃1(A ) = max
j

[∑
i

|ai j |
]

= max
j

[
I∑

i=1

|ai j |
]

= max
j

⎡
⎣

j∑
i=1

αi j − �t
(
x j
)
⎤
⎦ .

Now,

j∑
i=1

αi j =
j∑

i=1

�t
(
x j
)
β
(
xi , x j

)
	νi ( j) +

j∑
i=1

j∑
k=1

�t
(
x j
)
β
(
xk, x j

)
Yi jk	νk( j)

= �t
(
x j
) j∑
i=1

β
(
xi , x j

)
	νi ( j) + �t

(
x j
) j∑
i=1

j∑
k=1

β
(
xk, x j

)
Yi jk	νk( j).

Suppose that
x j
2

falls in some interval� j ′ satisfying 1 ≤ j ′ ≤ j . Then the definition

of 	νi ( j) redefines the formulation as

j∑
i=1

αi j = �t
(
x j
) j ′∑
i=1

β
(
xi , x j

)
	νi ( j) + �t

(
x j
) j∑
i=1

j ′∑
k=1

β
(
xk, x j

)
Yi jk	νk( j).

Again from the definition, the lower boundary of Yi jk is given by xi−1 ≤ x j − xk ≤
xi which implies that the indices i and k are together replaced by a new index i ′ which
ranges from j ′ + 1 → j . Therefore, further replacing i ′ by i , we get
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j∑
i=1

αi j = �t
(
x j
) j ′∑
i=1

β
(
xi , x j

)
	νi ( j) + �t

(
x j
) j∑
i= j ′+1

β
(
x j − xi , x j

)
	νi ( j)

≤ �t
(
x j
) j∑
i=1

β
(
xi , x j

)
	xi

≤ 2 max
x∈[0,xmax]

�t (x) = 2ω (say).

Therefore the logarithmic norm μ̃1(A) ≤ 2ω, and consequently by using Theorem 3.1
we get ‖ exp(t A)‖ ≤ exp(2ωt)which ensures the stability of the scheme with stability
constant 2ω. ��

Lipschitz condition: Consider the problem written as

dN̂
dt

= J(N̂),

where the numerical flux is defined by

J(N̂) :=
I∑
j=i

N̂ j

⎡
⎣�t

(
x j
)
β
(
xi , x j

)
	νi ( j) +

j∑
k=1

�t
(
x j
)
β
(
xk, x j

)
Yi jk	νk( j)

⎤
⎦

− N̂i�t (xi ) .

Theorem 3.5 (Ref. [13]) If J(N) satisfies the Lipschitz condition

∥∥∥J(N) − J(N̂)

∥∥∥ ≤ ξ

∥∥∥N − N̂
∥∥∥ , ξ < ∞,

for all 0 ≤ t ≤ T and N, N̂ ∈ R
I , then a consistent discretization is also convergent.

Furthermore, the order of convergence is the same as the order of consistency.

Therefore,

∥∥∥J(N) − J(N̂)

∥∥∥ ≤
∣∣∣∣∣∣

I∑
i=1

I∑
j=i

N j

⎡
⎣�t

(
x j
)
β
(
xi , x j

)
	νi ( j)

+
j∑

k=1

�t
(
x j
)
β
(
xk, x j

)
Yi jk	νk( j)

⎤
⎦

−
I∑

i=1

I∑
j=i

N̂ j

⎡
⎣�t

(
x j
)
β
(
xi , x j

)
	νi ( j)
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+
j∑

k=1

�t
(
x j
)
β
(
xk, x j

)
Yi jk	νk( j)

⎤
⎦
∣∣∣∣∣∣

+
∣∣∣∣∣

I∑
i=1

Ni�t (xi ) −
I∑

i=1

N̂i�t (xi )

∣∣∣∣∣ .

Changing the order of the summation, we get

∥∥∥J(N) − J(N̂)

∥∥∥ ≤
I∑

j=1

∣∣∣N j − N̂ j

∣∣∣�t
(
x j
)
⎡
⎣

j∑
i=1

β
(
xi , x j

)
	νi ( j)

+
j∑

i=1

j∑
k=1

β
(
xk, x j

)
Yi jk	k( j)

⎤
⎦

+
I∑

i=1

∣∣∣Ni − N̂i

∣∣∣�t (xi ) .

Supposing that
x j
2

falls on some interval 1 ≤ j ′ ≤ j , we get

∥∥∥J(N) − J(N̂)

∥∥∥ ≤
I∑

j=1

∣∣∣N j − N̂ j

∣∣∣�t
(
x j
)
⎡
⎣

j ′∑
i=1

β
(
xi , x j

)
	νi ( j)

+
j∑

i=1

j ′∑
k=1

β
(
xk, x j

)
Yi jk	k( j)

⎤
⎦+

I∑
i=1

∣∣∣Ni − N̂i

∣∣∣�t (xi )

≤
I∑

j=1

∣∣∣N j − N̂ j

∣∣∣�t
(
x j
)
⎡
⎣

j ′∑
i=1

β
(
xi , x j

)
	xi

+
j∑

i= j ′+1

β
(
xi , x j

)
	xi

⎤
⎦+

I∑
i=1

∣∣∣Ni − N̂i

∣∣∣�t (xi )

≤3ω
∥∥∥N − N̂

∥∥∥ ,

where ω := max
x∈[0,xmax]

�t (x). Therefore the Lipschitz constant ξ := 3ω < ∞. ��

4 Numerical results and discussion

This part of the paper is devoted to checking the accuracy of the modified fixed pivot
technique (MFPT) against the cell average technique (CAT) [9] and exact results
[29, 30] for different initial conditions. The detailed comparison of the traditional
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fixed pivot technique [10] against the modified one is provided in Liao et al. [11] for
different selection functions and binary breakage kernels. It has been shown that the
MFPTperformsmuch better than the traditional fixed pivot technique [10]. In addition,
Liao et al. [11] have also shown that the MFPT can be easily adjusted to incorporate
partial breakup kernels which is one of the main requirements when solving problems
in chemical and pharmaceutical sciences using CFD tools. So we omit these results
in our study.

Due to the extensive usage of the CAT for solving real life applications such as
depolymerization [1] and granulation [5], the comparison of the MFPT is extended
against the CAT. The optimization of various breakage kernel and selection function
parameters is essential for resolving the accurate numerical solution of problems that
arise from applications. The number of grid points used to discretize the computational
domain has a significant impact on the speed of the optimization process. To take this
issue into account, only 20 non-uniform cells are considered in our comparisons to
test accuracy. The numerical results are compared in terms of integral moments, the
average size of particles formed in the system and the number of particles in each cell.
The integration of the discrete form of MFPT (2.3) is done using the MATLAB ODE45
solver.

The average particle size (x̄) can be calculated using the zeroth and first moments
from the following relation:

x̄ = M1(t)

M0(t)
. (4.1)

The absolute maximum relative error in the moments is calculated using the fol-
lowing expression:

ηi (t) =
∣∣∣∣∣
Mi − M̂i

Mi

∣∣∣∣∣ , (4.2)

where Mi and M̂i denote the exact and numerical i th moments, respectively. In addi-
tion, the sectional relative errors in the number density functions are estimated by
means of the following relation:

σi (t) =
∑I

j=1 |N j − N̂ j |xij∑L
j=1 N j xij

. (4.3)

Moreover σi (t) provides the relative weighted sectional error in the number density
function over the whole volume domain for i = 0.
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4.1 Binary breakage kernel with linear selection function corresponding to
exponential initial condition

For comparing the results, the binary breakage kernel with linear selection func-
tion (�t (x) = x) is chosen corresponding to an exponential initial condition
n(0, x) = e−x . For running the numerical simulations, the computational size domain
xmin = 10−9 to xmax = 3 considered is subdivided into 20 non-uniform cells and
the simulations are run till time t = 5s. One can see from Fig. 1a that the zeroth
moment approximated by MFPT is more accurate than the cell average technique.
Moreover, both numerical methods satisfy the mass conservation law, that is, the total
mass remains consistent over the time domain (refer to Fig. 1b). In addition, the second
order moment used to calculate the total area of the particles plays a significant role
in many real life applications that arise in chemical engineering and pharmaceutical
sciences is estimated with higher precision by the MFPT than the cell average tech-
nique (see Fig. 1c). The number of particles in each cell (Ni ) calculated are plotted
against the indices of the cell xi in Fig. 1d. It shows that the MFPT and CAT exhibit
almost equal accuracy but still the MFPT has the ability to trace the particles of larger
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Fig. 1 Comparisons of numerical and exact results for binary breakage kernel with linear selection function
using 20 cells
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Fig. 2 Comparisons of numerical and exact results for binary breakage kernel with linear selection function
using 40 cells

Table 1 Maximum error in
different moments for binary
breakage kernel with linear
selection function for CAT and
MFPT

η CAT MFPT CAT MFPT

20 cells 20 cells 40 cells 40 cells

η0 0.18698 0.11959 0.04371 0.04371

η1 0.00324 0.00324 9.4×10−4 9.4×10−4

η2 0.03115 0.03115 0.01984 0.01984

size whereas the CAT fails to do so. However, it is worth noting that the the accuracy
of the results can be improved to the desired level by assuming a more refined grid.
The results obtained using a non-uniform grid with 40 cells are shown in Fig. 2. Still,
the MFPT performs better than the existing method.

Moreover, the comparison is enhanced by calculating the relative errors (4.2) in the
integral moments at the end time. From Table 1, it can be seen that theMFPT calculate
these errors with more precision corresponding to fewer (20) non-uniform cells than
the cell average technique. However, the two methods exhibit equal accuracy once the
refined grid of 40 non-uniform cells is considered. In addition, to capture the errors in
each cell of the computational domain, the sectional errors (4.3) are also estimated and
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Table 2 Weighted error of
number distribution for a binary
breakage kernel with a linear
selection function for the CAT
and the MFPT

σ CAT MFPT CAT MFPT

20 cells 20 cells 40 cells 40 cells

σ0 0.29259 0.19330 0.06958 0.07017

σ1 0.21033 0.13604 0.05883 0.07530

σ2 0.19293 0.09956 0.06346 0.09724

listed in Table 2. Once again, the MFPT provides the numerical results with higher
accuracy than the cell average technique.

4.2 Binary breakage kernel with quadratic selection function corresponding to
monodisperse initial condition

In contrast to the previous cases, the binary breakage kernel with quadratic selection
function (�t (x) = x2) is chosen corresponding to the monodisperse initial condi-
tion n(0, x) = δ(x − 1). The computational grid and time required for running the
simulation are taken to be same as in the previous case.

One can observe from Fig. 3 that the MFPT performs better than the cell average
technique in terms of calculating the zeroth order moment whereas other numerical
results agree for the two methods. Similarly, the weighted sectional errors in the
number density functions are calculated and listed in Table 3. Once again the MFPT
shows better accuracy than the cell average technique for both coarse and refined grids
consisting of 20 and 40 non-uniform grids, respectively.

It is worth mentioning here that for the other combination of binary breakage kernel
and quadratic selection function corresponding to both exponential and monodisperse
initial conditions, the numerical trends show similar behaviour for the case above. So
the numerical results for these kernels are not presented here. However, to confirm
the theoretical observations pertaining to the order of convergence, the experimental
order of convergence is calculated for the binary breakage kernel with linear selection
function corresponding to a monodisperse initial condition in the next section of the
paper.

4.3 Experimental order of convergence

The theoretical results concerning the order of convergence ofMFPT are tested against
the numerical estimated order of convergence (EOC) for analytically tractable kernels
similarly as by Kumar and Warnecke [8, 9] using the following formula:

EOC = ln

(
EI

E2I

)/
ln(2), (4.4)
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Fig. 3 Comparisons of numerical and exact results for binary breakage kernel with quadratic selection
function using 20 cells

Table 3 Weighted error of
number distribution for binary
breakage kernel with quadratic
selection function for the CAT
and the MFPT

σ CAT MFPT CAT MFPT

20 cells 20 cells 40 cells 40 cells

σ0 0.25599 0.20758 0.06534 0.06379

σ1 0.30680 0.27199 0.11652 0.11330

σ2 0.42889 0.39639 0.17521 0.16069

where EI is the L1 error norm calculated by

EI :=
I∑

j=1

|N j − N̂ j |. (4.5)

The subscript I corresponds to the degrees of freedom, and the relative L1 error is

computed by
∥∥∥N − N̂

∥∥∥
/

‖N‖.
The EOC is calculated for the binary breakage kernel with linear selection function

corresponding to a monodisperse initial condition n(0, x) = δ(x − 1) for uniform

123



Rate of convergence and stability analysis of a modified… 553

Table 4 Experimental order of
convergence corresponding to a
monodisperse initial condition

Grid point Relative L1 error EOC

(a) Uniform grid

30 0.0464 0

60 0.0138 1.7520

120 0.0038 1.8729

240 0.0010 1.9353

(b) Nonuniform grid

30 0.0602 0

60 0.0170 1.8252

120 0.0043 1.9873

240 0.0011 1.9346

and non-uniform grids (see Table 4). For calculating the EOC, the computational size
domain xmin = 10−9 to xmax = 2 considered is further subdivided into 30, 60, 120
and 240 non-uniform cells. All simulations are run until time t = 5s. Table 4 shows
that the MFPT exhibits second order convergence on both uniform and non-uniforms
grids similar to those consider by Kumar and Warnecke [8, 9].

5 Concluding remarks and future prospects

In this work, the rate of convergence of the modified fixed pivot technique [11] is
studied in detail. It is proved that the method has second order convergence rate
irrespective of the spatial meshes used. Moreover, it has been also demonstrated that
the rate of convergence is not dependent on the kind of breakage kernel and selection
functions considered. Our numerical case study ascertains that the method exhibits
improved accuracy compared to the existing cell average technique. This will allow
practitioners to adapt the current approach for solving real life problems in the area
of depolymerization, bubble column and granulation. Thanks to the mathematical
flexibility of the modified fixed pivot technique in terms of not requiring specification
of the total breakup rate of a mother particle and a daughter size distribution function
at the start of the simulations, makes a strong case for the proposed method being
easily coupled with CFD software.
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