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ABSTRACT

Distribution theory is used to construct minimally supported Peano kernel type rep-
resentations for linear functionals such as the error in multivariate Hermite interpolation.
The simplest case is that of representing the error in approximation to f by the constant
polynomial f(a) in terms of integrals of the first order derivatives of f . This is discussed
in detail. Here it is shown that suprisingly there exist many representations which are not
minimally supported, and involve the integration of first order derivatives over multidi-
mensional regions. The distance of smooth functions from the constants in the uniform
norm is estimated using our representations for the errror.

Key Words: minimally supported error representation, distribution theory, intrinsic
(geodesic) metric, Friedrichs’ inequality, Poincaré inequality, Sobolev’s inequality
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1. Introduction

The motivation of this paper is the following general problem. Suppose that P is
a linear projector onto Πk := Πk(IRd) (the polynomials of degree ≤ k in IRd) such as
Lagrange interpolation at some suitable set of points in IRd. Let Dk+1f denote the (k+1)th
derivative of f , which can be represented by

(Dαf)|α|=k+1

the sequence of (k + 1)–order partial derivatives of f . Since the kernel of Dk+1 is Πk, it is
possible to express the error in approximation by P at x ∈ IRd in the form

f(x) − Pf(x) = Rx(Dk+1f), (1.1)

for sufficiently smooth f , where Rx is some linear functional defined on the (k + 1)th
derivatives. This can be viewed as a nonconstructive multivariate version of Peano’s ker-
nel theorem. Recently there has been interest in obtaining explicit representations of
Rx(Dk+1f) as a sum of integrals of (k + 1)th derivatives of f over various regions in IRd

from which estimates of the error f −Pf in terms of some appropriate norm on Dk+1f can
be obtained, and even more general forms of this problem (see, e.g., de Boor [2], Waldron
[12]).

This paper uses distribution theory to analyse representations like (1.1), with partic-
ular emphasis on the simplest case when k = 0

Pf := f(a), a ∈ IRd.

In Section 2, the ‘support’ of a representation of Rx(Dk+1f) is defined, and a family
of representations which are ‘minimally supported’ is constructed. In Section 3, another
family of minimally supported error representations for the case Pf := f(a) is given, and
these are used to show that there exist representations which involve integrals of first order
derivatives over a wide variety of multidimensional regions. This striking example shows
that even in the most simple cases when one extends the Peano kernel theory from the
univariate to multivariate setting there is a large choice in the derivatives that appear and
the regions over which they are integrated. In Section 4, these representations are used to
estimate the L∞–distance of smooth functions from the constants, and Lp–estimates are
discussed.

2. Minimally supported error representations

Some basic results and notation from distribution theory will be used (see, e.g.,
Barros–Neto [3]). Suppose that the error in approximation to f by Pf can be expressed
as

f(x) − Pf(x) =
∑

i

Ri(D
k+1f), ∀f ∈ Ck+1(IRd), (2.1)
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where {Ri} is a finite collection of linear functionals for which Ri ◦ Dk+1 is continuous
on Ck+1(IRd), i.e., in conventional distribution terminology Ri ◦ Dk+1 is a compactly
supported distribution of order k + 1, or, for short, Ri ◦Dk+1 ∈ E ′

k+1(IR
d). The support

of Ri is defined to be the support of the distribution Ri ◦ Dk+1, i.e, the compact set

suppRi := supp(Ri ◦ Dk+1),

and the support of the representation (2.1) is the compact set

K :=
⋃

i

suppRi :=
⋃

i

supp(Ri ◦ Dk+1). (2.2)

A representation (2.1) with support K is said to be minimally supported if there is no
other representation with support properly contained within K.

Consider first the case

f(x) − f(a) =
∑

i

Ri(Df), ∀f ∈ C1(IRd). (2.3)

If a distribution is expressed as a finite sum

λ =
∑

i

λi, λi ∈ D′(IRd),

then it can easily be shown that

suppλ ⊂
⋃

i

suppλi. (2.4)

In particular, the support of a representation of the form (2.3) must contain {a, x}. In
addition, it can be shown that this support must be connected, and so the representation

f(x) − f(a) =

∫ 1

0

Dx−af(a + t(x − a)) dt, (2.5)

involving integration of Dx−af over the line segment joining a and x is minimally supported
on this line segment. We now prove a general form of this result. The differential operator
induced by q ∈ Πk is written q(D), and the derivative of f in the direction ξ ∈ IRd as Dξf .

Theorem 2.6 (minimally supported representations). Let λ ∈ D′(IRd) be a distri-
bution of the form

λ(f) :=

m
∑

j=1

qj(D)f(aj), ∀f ∈ Ck+1(IRd), (2.7)

where 0 6= qj ∈ Πk, and aj ∈ IRd are distinct points. If λ vanishes on Πk, then there exist

a finite number of linear maps Ri with Ri ◦ Dk+1 ∈ E ′
k+1(IR

d), such that

λ(f) =
∑

i

Ri(D
k+1f), ∀f ∈ Ck+1(IRd). (2.8)
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The support of any representation of the form (2.8), i.e., the compact set

K :=
⋃

i

supp(Ri ◦ Dk+1), (2.9)

contains the points {aj}. Suppose in addition that no (notrivial) proper subsum of (2.7)

vanishes for all f ∈ Πk. Then the support K is connected, and for any c ∈ IRd, it is
possible to choose Ri so that K is the union of the line segments from c to the aj , thereby
obtaining a minimally supported representation (2.8).

Proof: Properties. If a representation (2.8) exists, then it follows from (2.4) that

supp λ = {aj} ⊂ K.

Suppose that K is not connected, and let K1 be the component of K containing a1. Then
the condition that no subsum of (2.7) vanishes for all f ∈ Πk implies that there exists a
polynomial p ∈ Πk with

∑

aj∈K1

qj(D)p(aj) 6= 0. (2.10)

Let f ∈ D(IRd) be a function which is equal to p on a small neighbourhood of K1 and
is zero on a small neighbourhood of the other components of K. Then Dk+1f = 0 on a
neighbourhood of K, which implies

∑

i

Ri(D
k+1f) = 0,

whilst

λ(f) =
∑

aj∈K1

qj(D)f(aj) +
∑

aj∈K\K1

qj(D)f(aj) =
∑

aj∈K1

qj(D)p(aj) 6= 0,

which contradicts (2.8). Hence K must be connected.
Existence. We now construct minimally supported representations (2.8). This is done

by using a formula of the form (2.8) for the error at x ∈ IRd in approximation by Tk,c

(the operator of Taylor interpolation from Πk at c ∈ IRd) to convert (2.7) into such a
representation. For q ∈ Π0

`(IR
d), 0 ≤ ` ≤ k (the homogeneous polynomials of degree `)

q(D)(Tk,cf) = Tk−l,c(q(D)f),

and so by the univariate integral remainder theorem for Taylor interpolation

q(D)(f − Tk,cf)(x) =
1

k!

∫ 1

0

(1 − t)k(Dk+1−`
x−c q(D)f)(c + t(x − c)) dt =: R(Dk+1f).

(2.11)
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It is easily verified that R ◦ Dk+1 ∈ E ′
k+1(IR

d), and for q 6= 0 the support of R is the line
segment from x to c. Express each qj as a sum of its homogeneous terms, i.e.,

qj =

k
∑

`=0

q`
j , q`

j ∈ Π0
`(IR

d). (2.12)

Since λ ∈ E ′
k+1(IR

d) and vanishes on Πk, (2.7) can be expanded using (2.11) and (2.12) as
follows

λ(f) = λ(f − Tk,cf) =
m
∑

j=1

k
∑

`=0

q`
j(D)(f − Tk,cf)(aj)

=
1

k!

m
∑

j=1

k
∑

`=0

∫ 1

0

(1 − t)k(Dk+1−`
aj−c q`

j(D)f)(c + t(aj − c)) dt,

(2.13)

which is a representation of the form (2.8). The support of the representation (2.13) is
the union of the line segments from c to the aj . No proper subset of this support which
contains {aj} is connected, and so (2.13) is a minimally supported representation.

Theorem 2.6 is a multivariate extension of the Peano kernel theorem for functionals
of the form (2.7). Similar extensions for more general linear functionals can be obtained
along the same lines. This result applies to a number of linear functionals of practical
interest, such as the pointwise error in multivariate Hermite interpolation from Πk(IRd).
Here is a typical example.

Suppose that

λ(f) := f(x) − LΘf(x) = f(x) −
∑

v∈Θ

`v(x)f(v), x 6∈ Θ (2.14)

is the error in linear interpolation (interpolation by linear polynomials) at the points
Θ ⊂ IRd, where `v are the Lagrange polynomials (which are the barycentric coordinates).
This satisfies the conditions of Theorem 2.6 with Πk = Π1. Taking c = x in the expansion
(2.13) gives the multipoint Taylor formula of Ciarlet and Wagschal [4:Th.2], while the
choice c = w ∈ Θ gives (in the notation used in [12])

f(x) − LΘf(x) =

∫

[w,w,x]

D2
x−wf −

∑

v∈Θ
v 6=w

`v(x)

∫

[w,w,v]

D2
v−wf, (2.15)

which is a new formula. There also exist representations of (2.14) which are not minimally
supported, see, e.g., Gregory [9] or Waldron [13]. Simpler examples of representations
which are not minimally supported are examined in the next section.
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c = x

u
v

w c = w

x
c

x

Fig. 2.1. The support K of minimally supported error formulæ for linear inter-
polation at the vertices of a triangle (shaded) given by (2.13). First the multipoint
Taylor formula, followed by formula (2.15), and an example where c 6∈ {Θ, x}.

3. Error representations for approximation by the constants

In this section we consider error representations of the form (2.3) for approximation
by the constant Pf := f(a), i.e., the linear functional

λ(f) := f(x) − f(a), x 6= a.

First we give a family of minimally supported representations for λ which contains
those given by (the proof of) Theorem 2.6 as particular cases. These representations are
then “averaged” to obtain ones which are supported on a variety of multidimensional
regions. This example illustrates a basic difficulty in developing a constructive and useful
multivariate Peano kernel theory, namely deciding

• Which (k + 1)–order derivatives should appear in (2.1)?
• What regions should they be integrated over?

when it is known that many such formulæ exist.
A path in IRd is a continuous, piecewise differentiable map γ : [0, 1] → IRd. Let T

denote the unit tangent vector along the curve γ, i.e.,

T :=
Dγ

‖Dγ‖
,

length(γ) the length of γ, and ds the arc length element. A restatement of the fundamental
theorem of calculus shows that there is a representation (2.3) which is supported on

K = γ∗ := γ([0, 1]),

where γ is any path from a to x, i.e., γ(0) = a, γ(1) = x. Here ∇f is the gradient of f .
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Lemma 3.1. Let γ : [0, 1] → IRd be a path from a to x, then

λ(f) := f(x) − f(a) =

∫

γ

DTf ds, ∀f ∈ C1(γ∗), (3.2)

and in particular,

|f(x) − f(a)| ≤

(

max
γ∗

‖∇f‖

)

length(γ). (3.3)

Proof: Let g := f ◦ γ, then by the fundamental theorem of calculus

f(x) − f(a) = g(1) − g(0) =

∫ 1

0

Dg =

∫ 1

0

(DTf ◦ γ)‖Dγ‖ =

∫

γ

DTf ds,

and hence

|f(x) − f(a)| ≤

∫

γ

|DTf | ds ≤

∫

γ

‖∇f‖ ds ≤

(

max
γ∗

‖∇f‖

)

length(γ).

Thus, if γ has no self intersections, then Theorem 2.6 implies that (3.2) provides a
minimally supported error representation. A number of these representations are well–
known, and have been used in numerical analysis. For example, if γ is the line segment
from a to x, then (3.2) is the univariate Taylor error formula (2.5) for approximation by
a constant, while if γ is the path in IR2 consisting of the line segment from (a, b) to (x, b)
followed the line segment from (x, b) to (x, y), then (3.2) becomes

f(x, y) − f(a, b) =

∫ x

a

D1f(s, b) ds +

∫ y

b

D2f(x, t) dt. (3.4)

The formula (3.4) is an example of the Taylor formula given by Sard [11:p163] for certain
spaces, denoted by Bp,q, of functions defined on some rectangle I in IR2. This example is
for the space B0,1 = B0,1(I; a, b), where (a, b) ∈ I. If γ∗ is the union of the line segments
from c to a and x, then (3.2) is the representation (2.13).

a

x

a

x

a

x

a

x

Fig. 3.1. The support K = γ∗ of some error representations given by (3.2). The
first is (2.5) the ‘univariate Taylor formula for approximation by a constant’, and
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the second is (3.4), which was used by Sard. All but the last (which has a self
intersection) are minimal supports.

Given the error formulæ (3.2) of Lemma 3.1, it is not difficult to imagine taking an average
(or even weighted average) of some family of them to obtain an error representation (2.3)
which is supported on some multidimensional region. We illustrate this idea in the bivariate
case with the construction of a representation for the error f(x) − f(a) in terms of Df
which is supported on the rectangle aligned in the coordinate directions with opposite
vertices given by a and x. To the author at least, the existence of such a formula is
suprising. In principle, an error representation supported on any compact path–connected
set containing a and x could be obtained in this way.

For simplicity, suppose that a = (0, 0) and (x, y) is in the first quadrant. Let γλ be
the path given by the line segments from (0, 0) to ξλ := ((1 − λ)x, λy) and ξλ to (x, y).
Taking the average over λ1 ≤ λ ≤ λ2 of the corresponding representation (3.2) gives

f(x, y) − f(0, 0) =
1

λ2 − λ1

∫ λ2

λ1

∫

γλ

DTf ds dλ, (3.5)

which is supported on Q the quadrilateral with vertices (0, 0), ξλ1 , (x, y), ξλ2 (ordered in
the positive angular direction).

(0, 0)

(x, y)

γ0

γ 1
4

γ 1
2

γ1

ξλ2

ξλ1

T1

T2

Fig. 4.1. The family of curves γλ (λ = 0, 1/4, 1/2, 1), followed by the support
of the formula (3.5) for 0 < λ1 < λ2 < 1/2, and the support Q = T1

⋃

T2 of the
formula obtained by taking λ1 = 0, λ2 = 1.

If λ1 = 0, λ2 = 1, then Q is the rectangle with vertices (0, 0), (x, 0), (x, y), (0, y). For this
case we now compute the weight functions w1, w2 that occur when (3.5) is rewritten in
the form

f(x, y) − f(0, 0) =

∫

Q

w1 D1f +

∫

Q

w2 D2f. (3.6)

Since

f(x, y) − f(0, 0) = {f(x, y) − f(ξλ)} + {f(ξλ) − f(0, 0)},
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by using (2.5), (3.5) can be rewritten as

f(x, y) − f(0, 0) =

∫ 1

0

∫ 1

0

(

(1 − λ)xD1f(t(1 − λ)x, tλy) + λyD2f(t(1 − λ)x, tλy)
)

dt dλ

+

∫ 1

0

∫ 1

0

(

λxD1f((1 − λ)x + tλx, λy + t(1 − λ)y)

+ (1 − λ)yD2f((1 − λ)x + tλx, λy + t(1 − λ)y)
)

dt dλ.

(3.7)
The first of these iterated integrals is of Df over the triangle T1 with vertices (0, 0), (x, 0),
(0, y). In this integral make the change of variables:

u = t(1 − λ)x, v = tλy,

to obtain
∫

T1

xyu

(yu + xv)2
D1f(u, v) +

xyv

(yu + xv)2
D2f(u, v) du dv.

Using a symmetry argument, this can be used to express the second iterated integral in
(3.7) as an integral over T2 the triangle with vertices (x, 0), (x, y), (0, y). In this way, we
obtain that the weight functions w1, w2 occuring in (3.6) are given by

w1(u, v) = xy

{

u
(yu+xv)2 , (u, v) ∈ T1

x−u
(y(x−u)+x(v−y))2 , (u, v) ∈ T2

and

w2(u, v) = xy

{

v
(yu+xv)2 , (u, v) ∈ T1

y−v
(y(x−u)+x(v−y))2 , (u, v) ∈ T2.

These integrable functions wi : Q → IR are supported on Q and continuous at every point
except (0, 0) and (x, y), near which they are unbounded.

4. The distance of smooth functions from the constants

In this section we use the (minimally supported) error formulæ of Section 3 to obtain
estimates of the L∞(Ω)–distance of smooth functions from Π0 (the constants). In contrast
to previous results, these estimates do not require special conditions on the domain Ω,
such as being convex or starshaped.

Specifically, we are interested in the best constant CΩ in the estimate

dist L∞(Ω)(f,Π0) ≤ CΩ ‖Df‖L∞(Ω), (4.1)

for all sufficiently smooth f , such as f from W∞
1 (Ω), C1(Ω), or C1(Ω̄). This turns out

to be an involved question, with CΩ depending not only on the geometry of the domain
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Ω, but also, in some cases, on the definition of sufficiently smooth used. We will deal
primarily with the most technical and interesting case when f ∈ W∞

1 (Ω).
Suppose that Ω ⊂ IRd is a domain, i.e., is open and path–connected. Our estimates

of CΩ in (4.1) will be described in terms of dΩ the intrisic (or geodesic) metric on Ω,

dΩ(a, x) := the infimum of the lengths of the paths from a to x that lie in Ω.

If the line segment from a to x lies in Ω̄, then dΩ(a, x) = ‖x − a‖, otherwise dΩ(a, x) >
‖x − a‖. We define an “intrinsic” radius of Ω about a, which measures the length of the
longest path needed to connect a with a point in Ω, as follows

r(a,Ω) := sup
x∈Ω

dΩ(a, x) (4.2)

(which may be infinite, even when Ω is bounded), and let

r(Ω) := inf
a∈Ω

r(a,Ω) = inf
x∈Ω

sup
y∈Ω

dΩ(x, y). (4.3)

It follows from the triangle inequality that

r(Ω) ≤ sup
x,y∈Ω

dΩ(x, y) ≤ 2r(Ω). (4.4)

Let diamΩ be the (Euclidean) diameter of Ω. It can easily be shown that

1

2
diam Ω ≤ r(Ω) ≤ r(a,Ω), (4.5)

and that if Ω is starshaped with respect to a point a, then

r(Ω) ≤ r(a,Ω) ≤ diam Ω. (4.6)

2r(Ω)

2r(Ω)

x

dΩ(a, x)

a

Fig 4.2 The distance dΩ(a, x) for a domain Ω (shaded), followed by the distance
2r(Ω) for a convex and nonconvex bounded domain Ω.
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For any domain Ω, the Sobolev space W 1
∞(Ω) consists of the bounded locally Lipschitz

functions on Ω, i.e., those bounded functions f satisfying an inequality

|f(x) − f(y)| ≤ M ‖x − y‖, M < ∞, (4.7)

for all points x, y for which [x, y] the line segment from x to y is contained in Ω. It is easily
shown that the seminorm on W 1

∞(Ω) defined by

‖Df‖L∞(Ω) := the L∞(Ω)–norm of ‖∇f‖ (4.8)

coincides with the smallest constant M in the inequality (4.7), i.e.,

M := sup
[x,y]⊂Ω

x6=y

|f(x) − f(y)|

‖x − y‖
. (4.9)

We are now able to give the main result of this section.

Theorem 4.10 (approximation by constants). Suppose that Ω ⊂ IRd is open and
path–connected. Then there exists a finite constant CΩ for which

dist L∞(Ω)(f,Π0) := inf
c∈Π0

‖f − c‖L∞(Ω) ≤ CΩ ‖Df‖L∞(Ω), ∀f ∈ W 1
∞(Ω), (4.11)

if and only if
sup

x,y∈Ω
dΩ(x, y) < ∞. (4.12)

The best such constant satisfies

1

4
diamΩ ≤

1

2
r(Ω) ≤

1

2
r(a,Ω) ≤ CΩ ≤ r(Ω), ∀a ∈ Ω. (4.13)

For d > 1, the quotient CΩ/diam Ω can be arbitrarily large for a domain satisfying (4.12).
However, for Ω convex

CΩ =
1

2
diamΩ, (4.14)

and for Ω starshaped
1

4
diamΩ ≤ CΩ ≤ diamΩ. (4.15)

Proof: First, we prove the lower bound on CΩ, and the necessity of the condition
(4.12). Fix a ∈ Ω. Let

f := dΩ(a, ·), (4.16)

which is bounded if and only if r(a,Ω) < ∞, and (by the triangle inequality) satisfies

M := sup
[x,y]⊂Ω

x6=y

|f(x) − f(y)|

‖x − y‖
= 1. (4.17)
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Thus, if (4.12) holds, then f ∈ W 1
∞(Ω) and satisfies

inf
Ω

f = f(a) = 0, sup
Ω

f = r(a,Ω) < ∞, ‖Df‖L∞(Ω) = 1,

so that
dist L∞(Ω)(f,Π0)

‖Df‖L∞(Ω)
=

1

2
r(a,Ω) ≤ CΩ,

which together with (4.5) gives the lower bounds of (4.13). Suppose that (4.12) does not
hold, i.e.,

sup
x,y∈Ω

dΩ(x, y) = ∞, (4.18)

then f may be unbounded, and so not belong to W 1
∞(Ω). In this case, we slightly modify f

so that it belongs to W 1
∞(Ω), and thereby show that no finite constant can exist in (4.11).

By (4.18), we can choose a, x ∈ Ω for which

dΩ(a, x) ≥ N,

for any N > 0. Let f be defined by

f(y) := min{dΩ(a, y), N}.

This f satisfies (4.17), and

inf
Ω

f = f(a) = 0, sup
Ω

f = N, ‖Df‖L∞(Ω) = 1,

so it belongs to W 1
∞(Ω), and we obtain

dist L∞(Ω)(f,Π0)

‖Df‖L∞(Ω)
=

1

2
N ≤ CΩ.

Hence, when (4.12) fails there exists no finite constant in (4.11).
Next, we prove the upper bound on CΩ by using (3.3) for f ∈ W 1

∞(Ω). Suppose that
(4.12) holds, and so, by (4.4), r(Ω) < ∞. For a, x ∈ Ω, let γ be a path in Ω from a to x.
Since f ◦ γ is a Lipschitz function, (3.2) holds, and from it we obtain that

|f(x) − f(a)| ≤

∫

γ

|DTf | ds ≤

∫

γ

‖Df‖L∞(γ∗) ds ≤ ‖Df‖L∞(Ω) length(γ). (4.19)

Taking the infimum of the righthand side of (4.19) over all possible γ then gives

|f(x) − f(a)| ≤ ‖Df‖L∞(Ω) dΩ(a, x),

so that
‖f − f(a)‖L∞(Ω) ≤ ‖Df‖L∞(Ω) r(a,Ω). (4.20)
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Hence by (4.20)

dist L∞(Ω)(f,Π0) ≤ inf
a∈Ω

‖f − f(a)‖L∞(Ω) ≤ ‖Df‖L∞(Ω) r(Ω),

giving the upper bound CΩ ≤ r(Ω).
The remaining estimates of CΩ follow from (4.5) and (4.6). For example, if Ω is

convex, then

CΩ ≤ r(Ω) =
1

2
diamΩ,

while choosing a ∈ Ω with supx∈Ω ‖x − a‖ = diam Ω − ε, ε > 0, gives

1

2
(diamΩ − ε) =

1

2
r(a,Ω) ≤ CΩ.

Finally, we show for d > 1 that CΩ/diam Ω can be arbitrarily large. Let γ be some
path of length L (which can be as large as desired) contained in some ball of diameter 1,
e.g., a suitably tight spiral. For ε > 0, let Ω be a domain obtained from γ by taking the
union over a ∈ γ∗ of open balls of centre a and radius < ε chosen so that

L − ε < sup
x,y∈Ω

dΩ(x, y) < L + ε.

For this domain, it follows from (4.13) and (4.4) that

CΩ

diam Ω
≥

r(Ω)/2

diam Ω
≥

supx,y∈Ω dΩ(x, y)/4

diamΩ
≥

(L − ε)/4

1 + 2ε
,

which for suitably large L and small ε can be as large as desired.

The best constant CΩ in (4.1) also depends on the definition of sufficiently smooth
used, as we now show by example.

Let Ω := (0, 1) × (−δ, δ) ⊂ IR2, for small δ > 0. For f from W 1
∞(Ω) and C1(Ω̄) the

best constant CΩ is the same, and close to 1/2 (approximate f by f(1/2, 0) to estimate
CΩ from above, and use f(x) := x to get the lower bound). Now make a slit along
(δ, 1) × {0} to obtain Ω∗ := Ω \ (δ, 1) × {0}. This effectively gives a strip of length
2 instead of 1 as previously. For f from W 1

∞(Ω) the approximation f(δ/2, 0) is nearly
optimal, and multiplies the previous constant by almost 2, i.e., CΩ∗ ≈ 2CΩ. But for f
from C1(Ω̄∗) = C1(Ω̄) the best constant remains the same, i.e., CΩ∗ = CΩ.

Remarks on Lp–estimates

From the beginnings of the theory of Sobolev spaces it has been known that for a
suitably regular domain Ω there exists a finite constant Cp,Ω for which

dist Lp(Ω)(f,Π0) := inf
c∈Π0

‖f − c‖Lp(Ω) ≤ Cp,Ω ‖Df‖Lp(Ω), ∀f ∈ W 1
p (Ω), (4.21)
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where ‖Df‖Lp(Ω) is some seminorm measuring the Lp(Ω)–size of Df . The argument for
this, which is by contradiction (see Morrey [10:Th.3.6.11]) , does not give any information
about how the best such constant Cp,Ω depends on the geometry of the domain Ω (or on
p). From now on, let

‖Df‖Lp(Ω) := the Lp(Ω)–norm of ‖∇f‖.

There have been many constructive estimates of Cp,Ω (and similar constants), see,
e.g., Dupont and Scott [7], or Dahmen, DeVore and Scherer [5]. For the specific case
(4.21), the best of these is the following. Suppose that p > d and Ω is starshaped with
respect to a. By a slight refinement of the estimate of Arcangeli and Gout [1:Th.1-1] one
obtains

dist Lp(Ω)(f,Π0) ≤ ‖f − f(a)‖Lp(Ω) ≤
r(a,Ω)

1 − d/p
‖Df‖Lp(Ω), ∀f ∈ W 1

p (Ω), (4.22)

and Dechevski and Quak [6:p491] give the bound

dist Lp(Ω)(f,Π0) ≤ ‖f − f(a)‖Lp(Ω) ≤
diamΩ

1 − d/p

d
∑

i=1

‖Dif‖Lp(Ω), ∀f ∈ W 1
p (Ω). (4.23)

From (4.13) it is seen when p = ∞ the dependence of the best constant Cp,Ω on Ω is
in terms of the equivalent quantities

r(Ω) := inf
a∈Ω

sup
x∈Ω

dΩ(a, x), d(Ω) := sup
x,y∈Ω

dΩ(x, y),

rather than on diam Ω. Presumably this behaviour also holds to some extent for other
values of p (particularly large p). One might conjecture that for 1 ≤ p ≤ ∞, there exist
constants An,p and Bn,p (depending only on n and p), for which

An,p r(Ω) ≤ CΩ ≤ Bn,p r(Ω),

for all sufficiently regular domains Ω. It is not at all obvious how the proof of Theorem
4.10 could be modified to obtain such a result. However, for f := dΩ(a, ·) one does have

‖Df‖Lp(Ω) = (measure of Ω)1/p,

and so, for the lower bound at least, there is some hope of obtaining at least a partial
result.

Inequalities of the form (4.21) are closely related to several classical Sobolev inequalities

from the theory of partial differential equations. These include Friedrichs’ inequality

‖f − fΩ‖Lp(Ω) ≤ C ‖Df‖Lp(Ω), ∀f ∈ W 1
p (Ω),

where fΩ is the constant function given by

fΩ :=
1

meas Ω

∫

Ω

f,

(it can easily be shown that ‖f−fΩ‖Lp(Ω) ≤ 2 distLp(Ω)(f,Π0)), and the Poincaré inequality

‖f‖Lp(Ω) ≤ C ‖Df‖Lp(Ω), ∀f ∈ C∞
0 (Ω).

Most of the work on these involves determining conditions on the domain Ω that are
necessary and sufficient for these inequalities to exist for an appropriately defined Sobolev
space, see, e.g., Edmonds and Opic [8] where weighted Sobolev spaces are considered.
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