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Summary. In this paper we consider second order scalar elliptic boundary
value problems posed over three–dimensional domains and their discretiza-
tion by means of mixed Raviart–Thomas finite elements [18]. This leads
to saddle point problems featuring a discrete flux vector field as additional
unknown.

Following Ewing and Wang [26], the proposed solution procedure is
based on splitting the flux into divergence free components and a remainder.
It leads to a variational problem involving solenoidalRaviart–Thomas vector
fields.

A fast iterative solution method for this problem is presented. It exploits
the representation of divergence free vector fields as curls of theH(curl)–
conforming finite element functions introduced by Nédélec [43]. We show
that a nodal multilevel splitting of these finite element spaces gives rise to
an optimal preconditioner for the solenoidal variational problem: Duality
techniques in quotient spaces and modern algebraic multigrid theory [50,
10,31] are the main tools for the proof.
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1. Introduction

We are dealing with second order elliptic boundary value problems: Given
f ∈ L2(Ω) and g ∈ H1/2(∂Ω) we seek u such that

−div(a gradu) = f in Ω,
u = g on ∂Ω ,

(1)

where Ω ⊂ R
3 is a simply connected bounded domain with connected

polyhedral boundary and a ∈ L∞(Ω). Further we assume α ≤ a(x) ≤ α
a.e. in Ω for some α ≥ α > 0. Without loss of generality, we may drop a
altogether, i.e. a ≡ 1, since our central results are invariant with respect to
spectrally equivalent operators.

Mixed finite element methods are attractive for discretizing (1) in cases
where conservation of the flux j := gradu is paramount. They are based
on the dual variational formulation of (1) (see [18]):

Seek (j, u) ∈H(div;Ω)× L2(Ω) such that

(j,v)0 + (div v, u)0 = 〈g, 〈v,n〉〉
H

1
2 ×H− 1

2
∀v ∈H(div;Ω)

(div j, w)0 = − (f, w)0 ∀w ∈ L2(Ω) .
(2)

Here, (·, ·)0 denotes the L2(Ω)–inner product, 〈·, ·〉
H

1
2 ×H− 1

2
refers to the

duality pairing between H1/2(∂Ω) and H−1/2(∂Ω), and 〈·, ·〉 stands for
the Euclidean inner product in R

3. Besides, H(B,Ω), B = div, curl,
designates the Hilbert spaces of vector fields inL2(Ω), whose images under
the operator B are square integrable.

By replacing the continuous function spaces by appropriatefinite element
subspaceswe end upwith a systemof linear equations in saddle point form. It
will be our goal to develop a fast iterative solver for this saddle point problem.
In our terminology an iterative solver qualifies as “fast” or “optimal”, if its
speed of convergence does not sag, no matter how fine the mesh.

Whereas a fairly comprehensive understanding ofmultilevelmethods for
standard discretizations of (1) has been achieved, only partial breakthroughs
have been scored in the field of mixed schemes. Basically, two approaches
towards efficient multilevel methods for the iterative solution of the discrete
mixed problem have been pursued:

The first seeks to recover a positive definite system by eliminating the
flux. A sort of discrete representation of the Laplacian emerges, thus. The
elimination yields a Schur–complement system, which turns out to be eli-
gible for the treatment with special multigrid methods (see [13], Sect. 8).
Standardmethods fail due to the discontinuity of the finite element functions
approximating u.

Another way to retreat to a positive definite setting is offered by mixed
hybridization [3]. Recent research [2] revealed an equivalence between the
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discrete problems arising from hybridization and those obtained through
particular nonconforming finite element discretizations of the primal second
order elliptic problem. This paves theway for adaptingmultilevel techniques
which have been developed for nonconforming discretizations to the mixed
hybrid system [14,38,21,22]. The nonconforming nature of the underlying
finite element spaces entails devising special intergrid transfer operators.
If this is done properly, good convergence properties have been reported
(see citations above). However, if one is interested in an approximation of
the flux, additional post–processing has to be applied to the mixed hybrid
solution.

The second strategy retains the flux and drops the scalar unknown u.
This can be achieved by penalty methods [49], augmented Lagrangian mul-
tipliers [36], a direct elimination of the divergence constraint [27,26] or by
iteration in an appropriate subspace [37]. In either case one faces variational
problems set in finite element subspaces of H(div;Ω). For their solution
several multilevel decompositions have been explored: In the absence of a
zero order term, Ewing andWang [26,27] showed how a splitting of the flux
in a part satisfying the divergence condition and a divergence–free remainder
can pave the way to an optimal iterative solver. This has been generalized
in [37] covering the case of a non–vanishing Helmholtz term. Similar in
spirit is the approach of Vassilevski andWang [49], who rely on an approxi-
mateHelmholtz–decomposition of vector fields. Then they propose separate
multilevel decompositions of solenoidal and non–solenoidal parts. Later the
optimality of this multilevel decomposition could be established [36].

The Helmholtz–decomposition also underlies the scheme of Arnold,
Falk, and Winther [4,5], which yields an optimal multigrid method. All
these concepts are essentially confined to two dimensions, since inherently
they exploit that certain variational problems for solenoidal fluxes can be re-
cast asH1–elliptic problems in standard finite element spaces of continuous,
piecewise polynomial functions. Thus they become amenable to powerful
conventional multilevel solvers. Such a simple relationship no longer holds
in three dimensions.

Conversely, a valid decomposition in two and three dimensions alike is
provided by the hierarchical basis method introduced by Cai, Goldstein, and
Pasciak in [19]. In the 2D case, it has been shown by Wohlmuth and one of
the authors [37] that this scheme leads to a slightly suboptimal growth like
O(L2) of the condition number of the preconditioned system, where L is
the total number of levels.

The three dimensional case is also dealt with in [20], where the authors
take the cue from thework of Ewing andWang [26] and construct an iterative
scheme based on domain decomposition supplemented with a coarse grid.
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Their analysis shows that an h–independent rate of convergence can be
achieved.

The method presented in this paper falls into the second category, since
our preconditioner acts on vector fields. It can be viewed as a consistent
generalization of the ideas of Ewing and Wang: The treatment of the non-
solenoidal part of the flux is rather the same. In contrast, the treatment of
the solenoidal vector fields is much compounded by the fact that their rep-
resentation now involves curls ofH(curl;Ω)–conforming finite element
spaces. Moreover, the variational problems in these spaces are related to the
degenerate bilinear form (curl ·, curl ·)0.

“Ellipticity” of this bilinear form, which is a vital prerequisite for multi-
level methods, does only hold on the orthogonal complement of the ker-
nel Ker(curl) of the curl–operator. More precisely, we have for u ∈
Ker(curl)⊥ the equivalence ‖curlu‖L2(Ω) ≈ |u|H1(Ω) (see [30], The-
orem 3.9), provided thatΩ is convex. The latter is the classical energy norm
on H1

0 (Ω), for which nodal BPX–type decompositions (cf. [13]) have the
desired stability properties (see [45,11]). This hints that a similar splitting
into one–dimensional subspaces spanned by localized canonical basis func-
tions on each level might be a promising option for 3D stream functions, as
well. Of course, orthogonality with respect toKer(curl) has to be relaxed to
get a computationally feasible scheme. Yet, nothing more than approximate
orthogonality is sufficient for two reasons. Firstly, we are only interested
in the curls of stream functions, so that components in Ker(curl) do not
matter. Secondly, the concept of stable splittings [46] is rather flexible and
permits us to absorb moderate deviations from orthogonality into constants.
This paper furnishes a rigorous underpinning of these heuristic arguments
for the cause of a nodal multilevel decomposition of stream function spaces.

The paper is organized as follows: In the next section we briefly de-
scribe the finite element spaces used for discretizing (2) and needed for the
formulation of themultilevel algorithm.We are concernedwithH(div;Ω)–
conforming Raviart–Thomas spaces andH(curl;Ω)–conforming Nédélec
spaces. A brief discussion of some of their essential properties is included.

In the third section, we specify the multilevel algorithm used to solve
the discrete saddle point problem. We outline, how both the non–solenoidal
parts and divergence–free parts of the flux can be computed in a multilevel
framework. To this end we introduce the nodal multilevel decomposition of
Nédélec spaces. A preliminary discussion of its stability is included.

The next section examines discrete and semicontinuous quotient spaces
with respect toKer(curl). They are the main tools for the proof of stability.
A thorough examination of their interrelationships is given.

In the fifth section, we temporarily switch to a problem on a cube. This
guarantees sufficient regularity for duality techniques which are applied in
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those semicontinuous spaces. Thus we arrive at a stability estimate on a
cube.

Then, we employ an extension trick to return to general domains. This
completes the proof of stability, which, according to the central result of
algebraic multilevel theory, guarantees uniformly fast convergence of pre-
conditioned iterative methods.

In the last but one section, the amount of computation involved in crucial
steps of the algorithm is investigated. For lowest order hexahedral finite
elements, we establish an operation count that is a small multiple of the
number of unknowns for both the preprocessing step and the evaluation of
the preconditioner.

In the final section we discuss the the algorithm and report on a few
numerical experimentswhich illustrate the actual performance of themethod
in different settings.

2. Finite element spaces

Let Th := {Ti}i denote a quasiuniform simplicial or hexahedral triangu-
lation of Ω with meshwidth h := max{diamTi}. Besides we write Fh

for the set of faces of Th, and Eh for the set of edges. We demand that the
tetrahedra are uniformly shape–regular. Based on this mesh we introduce
several conforming finite element spaces:
Sd(Ω; Th) ⊂ H1(Ω) : The space of continuous finite ele-

ment functions, piecewise polynomial
of degree d ∈ N

NDd(Ω; Th) ⊂H(curl;Ω) : Nédélec finite element space of order
d ∈ N (see [43,44])

RT d(Ω; Th) ⊂H(div;Ω) : Raviart–Thomas finite element space
of order d ∈ N0 (see [43,18,47])

Qd(Ω; Th) ⊂ L2(Ω) : Space of discontinuous functions,
piecewise polynomial of degree d ∈
N0

If no ambiguity can arise, the domain may be omitted. Supplemented
with a subscript 0 the same notations cover the spaces equipped with homo-
geneous boundary conditions (in the sense of an appropriate trace operator).
In addition, Qd,0(Ω; Th) contains only functions with zero mean value.

All finite element spaces are equipped with sets Ξ(Xk, Th), X = S,
ND, RT , Q, of global degrees of freedom which ensure conformity.
They can be defined in a canonical fashion so that they remain invariant
under the respective canonical transformations of finite element functions.
Consequently, all finite element spaces form affine families in the sense
of [23]. We refer to [43] for a comprehensive exposition. Besides, we im-
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pose a p–hierarchical structure on the sets of degrees of freedom by requir-
ing that Ξ(Xd−1, Th) is contained in Ξ(Xd, Th) and all functionals from
Ξ(Xd, Th)/Ξ(Xd−1, Th) have to vanish on Xd−1.

Based on the degrees of freedom, sets of canonical nodal basis functions
can be introduced as bidual bases forΞ(Xd, Th). They are locally supported
and form an L2–frame. For instance, in the case of Nédélec spaces we can
find generic constants C,C > 0, independent of the meshwidth h and only
depending on d, such that

C‖ξ‖2L2(Ω) ≤ h
∑

κ∈Ξ(NDd,Th)

κ(ξ)2 ≤ C ‖ξ‖2L2(Ω) ∀ξ ∈NDd(Ω; Th) .
(3)

Following a popular convention a capital C will be used as a token for a
generic constant. Its value can vary between different occurrences, but we
will always specify what it must not depend on.

Now, given the degrees of freedom, for sufficiently smooth functions the
nodal projections (nodal interpolation operators)ΠXk

Th
, X = S,ND,RT ,

Q are well defined . The nodal interpolation operators are exceptional in
that they satisfy (for d ∈ N0) the following commuting diagram property
[24,29,18]

C∞(Ω)
grad−−−−→ C∞(Ω) curl−−−−→ C∞(Ω) div−−−−→ C∞(Ω)



yΠ

Sd+1
Th



yΠ

NDd+1
Th



yΠ

RT d
Th



yΠ

Qd
Th

Sd+1(Ω; Th)
grad−−−−→ NDd+1(Ω; Th) curl−−−−→ RT d(Ω; Th) div−−−−→ Qd(Ω; Th) ,

which links nodal projectors and differential operators. The commuting dia-
gramproperty is the key to the proof of the following representation theorem:

Theorem 1. The following sequences of vector spaces are exact for any
d > 0:

{const.} Id−→ Sd(Th)
grad−→ NDd(Th) curl−→RT d−1(Th)

div−→ Qd−1(Th) −→ {0}
{0} Id−→ Sd,0(Th)

grad−→ NDd,0(Th) curl−→RT d−1,0(Th)
div−→ Qd−1,0(Th) −→ {0}

Proof. See [30,43] and in particular [33, Theorem 20]. ut
Another consequence of the commuting diagram property is that p–hierar-
chical surpluses are preserved when the appropriate differential operator is
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applied. For Nédélec spaces this reads:

curl Π
NDd+1
Th

−ΠNDd
Th

NDd+1(Th)

⊂ ΠRT d
Th

−ΠRT d−1
Th

RT d(Th) .(4)

Remark 1. An inconvenient trait of the nodal projectors has to be stressed:
Except in the case of Qk, they cannot be extended to the respective con-
tinuous function spaces. A slightly enhanced smoothness of the argument
function is required (cf. Lemma 4.7 in [1] for the case of Nédélec’s spaces),
which drastically complicates the use of these projectors. Nevertheless, we
cannot dispense with them; no other projectors are known, which satisfy the
commuting diagram property (compare Remark 3.1 in [29]).

To cope with the projectors’ need for smooth arguments, we have to resort
to the following approximation property in fractional Sobolev spaces: For
d ≥ 2 from a variant of the Bramble–Hilbert lemma ([25], Theorem 6.1)
we get ∥∥∥ξ −ΠNDd

Th
ξ
∥∥∥

L2(Ω)
≤ C hs‖ξ‖Hs(Ω)

∀ξ ∈Hs(Ω), 1 < s ≤ 2 ,(5)

with C > 0 only depending on s, d and the shape–regularity of Th Another
important estimate is obtained via the commuting diagram property [43,30]:
For d ≥ 1 ∥∥∥curl ξ −ΠNDd

Th
ξ
∥∥∥

L2(Ω)
≤ C h |curl ξ|H1(Ω)

∀ξ; curl ξ ∈ H1(Ω) ,(6)

with C > 0 independent of h.

Remark 2. Suitable finite elements are also available for prismatic elements
[44,39] and the construction of isoparametric variants is straightforward.
Also a variety of other H(div;Ω)– and H(curl;Ω)–conforming finite
element spaces has been constructed (see e.g. [16,17,44,18]). If the com-
muting diagram property and the analogue of Theorem 1 hold, our method
directly carries over to them. Yet, we will not elaborate on this subject any
further.

3. Multilevel iterative solution procedure

To fix themultilevel setting, let T0, T1, . . . , TL,L ∈ N, denote a hierarchy of
quasiuniform simplicial meshes, created by regular refinement of a shape–
regular initial coarse mesh T0. See [7] for an algorithm, how this can be
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done in the case of a tetrahedral mesh. We write hl for the meshwidth of Tl,
l = 0, . . . , L. Please note that during the refinement process each element
is subdivided into eight smaller ones.

Following Ewing and Wang [26], we tackle the discrete saddle point
problems arising from theRT d(Ω; TL)×Qd(Ω; TL), d ≥ 0, finite element
discretization of (2) in two successive steps:

1st step. To begin with, we compute a discrete flux j∗
h ∈ RT d(Ω; TL)

with divergenceΠQd
TL
f . To do so efficiently, the hierarchy of triangulations

is employed. We start with an L2–orthogonal decomposition of the source
term:

ΠQd
TL
f = ΠQd

T0
f +

L∑
j=1

ΠQd
Tj
−ΠQd

Tj−1
f .(7)

We refer to its individual terms as fj , j = 0, . . . , L. Note that the canonical
projections ΠQd

Tl
coincide with L2–orthogonal projections on Qd(Ω; Tl).

Nevertheless, they are readily available, since functions in Qd(Ω; Tj) are
fully decoupled across interelement boundaries.

The fj , j = 1, . . . , L have vanishing mean value over every element
T ∈ Tj−1. This permits us to solve Neumann problems on the elements
of the next coarser grid. Thus, for each T ∈ Tj−1 we can determine a flux
j∗

j,T ∈ RT d(T ; Tj|T ) such that div j∗
j,T = fj on T and 〈j∗

T ,n〉|∂T = 0.
On the coarsest mesh T0 we have to solve a saddle point problem to get
j∗

0 ∈RT d(Ω; T0) with div j∗
0 = f0. It is easy to see that

j∗
h = j∗

0 +
L∑

j=1

∑
T∈Tj−1

j∗
j,T

gives us what we have been looking for.

2nd step. At the second step we look for a divergence–free correction
j0

h ∈ RT 0
d(Ω; TL) of j∗

h as the solution of the symmetric, positive def-
inite variational problem

Find j0
h ∈RT 0

d(Ω; TL) such that(
j0

h,v
0
h

)
0 = − (j∗

h,v
0
h

)
0

+
〈
g,
〈
v0

h,n H
1
2 ×H− 1

2
∀v0

h ∈RT 0
d(TL) .(8)

(The superscript 0 marks subspaces of divergence free vector fields.) Then
jh := j∗

h +j0
h yields the solution for the discrete flux. The variational prob-

lem (8) would be benign, unless an explicit localized basis of RT 0
d(Ω; TL)

proved elusive. Thus it is not possible to convert (8) into a sparse system of
linear equations.
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The representation theorem offers a remedy. It reveals that

RT 0
d(Ω; TL) = curlNDd+1(Ω; TL) .

Therefore j0
h can be obtained as curl ξh where ξh ∈ NDd+1(Ω; TL)

satisfies

a(ξh,ηh) = − (j∗
h, curlηh)0

+ 〈g, 〈curlηh,n〉〉H 1
2 ×H− 1

2
∀ηh ∈NDd+1(TL) ,(9)

where we have written a(·, ·) for the “energy” bilinear form (curl ·, curl ·)0
onH(curl;Ω). Occasionally, ‖·‖A will denote the related seminorm. On
the one hand, (9) seems to be a normal linear system of equation arising
from the finite element discretization of a linear variational problem. On the
other hand, (9) is degenerate due to the large kernel of the curl–operator;
we confront a singular matrix and solutions of (9) are by no means unique.
This does not need to worry us, since the right hand side of (9) is consistent
and we are only interested in curl ξh, anyway.

Under these circumstances, the conjugate gradient method is well known
to provide a viable iterative solver even for semidefinite systems. When
applied to (9) it will return a valid approximate solution. The speed of
convergence is governed by the ratio of the largest and smallest nonzero
eigenvalue of the system matrix. Since this ratio grows like h−2 in the case
of (9), the speed of the CG iteration is likely to deteriorate severely on fine
meshes. Preconditioning is indispensable, hence.

Following the considerations laid out in the introduction, we opt for an
additive Schwarz preconditioner based on a nodal decomposition. Writing
ψl,κ for the canonical NDd+1–basis function associated with the degree
of freedom κ on level l, the concrete decomposition runs

NDd+1(TL) = NDd+1(T0) +
L∑

l=1

∑
κ∈Ξ(NDd+1,Tl)

span(ψl,κ)(10)

Since the subspaces involved in the decomposition (10) are small, a single
evaluation of the related additive Schwarz preconditioner can be done with
O(dimNDd+1(TL)) operations. Obviously, we have an optimal method at
our disposal, if we can show that (10) is stable uniformly in L.

It is one of themajor insights of the algebraic theory of Schwarzmethods
(see [50,53,46]) that the proof of h–independent stability boils down to
verifying the following two estimates:

The first states a geometric decrease of the constants in a strengthened
Cauchy Schwarz inequality, namely the existence of CU > 0 independent
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of L such that for all φk ∈ Vk,κ1 ,ηl ∈ V l,κ2 (V l,κ := span(ψl,κ))

a(φk,ηl) ≤ εk,l‖φk‖A‖ηl‖A with εk,l ≤ CU

√
1
2

)|k−l|
.(11)

The proof of this property for the decomposition (10) is fairly elementary.We
can proceed almost exactly as in the case of piecewise linear finite elements,
which is studied in [9,8,51] in great detail. We can thus skip the proof at
this site.

The second estimate claims that for all ξh ∈NDd+1(TL)

inf

∑
l,κ

‖νl,κ‖2A; curl
∑
l,κ

νl,κ = curl ξh, νl,κ ∈ V l,κ

 ≤ CL‖ξh‖2A

(12)

with a universal constant CL > 0 for all depths of refinement. To establish
(12) is the hard part. The following sections are devoted to this task.

If (11) and (12) hold, we know that the generalized condition number
of the multilevel preconditioned matrix related to (9) remains bounded as
L→∞, h→ 0. So the preconditioned conjugate gradient iteration indeed
meets our criterion for an optimal algorithm.

4. Discrete and semicontinuous quotient spaces

The degeneracy of the bilinear form a(·, ·) thwarts a straightforward ap-
plication of the standard techniques of multilevel theory. To recover the
usual setting, which requires a(·, ·) 1

2 to give rise to a valid energy norm, we
formally switch to quotient spaces with respect to the null spaces of curl.

Since many basic estimates heavily rely on duality techniques, we carry
out the bulk of the proof of (12) on a cube shaped domain. Further, we
demand homogeneous boundary conditions for H(curl;Ω)–vector fields
throughout. So, for the time being, assume Ω = C :=]0;1[3. This is moti-
vated by the ease with which results on the regularity of solutions of bound-
ary value problems can be obtained on this particular domain. We can apply
reflection principles to get:

Theorem 2. A vector field ξ ∈ H0(curl;C) with vanishing divergence
and its curl in Hε(C), 0 ≤ ε ≤ 1, belongs to H1+ε(C). In addition, we
have the estimate

‖ξ‖H1+ε(C) ≤ C ‖curl ξ‖Hε(C) ,(13)

with C > 0 independent of ξ.
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Proof. The proof uses a standard argument based on a symmetric extension
and is given in [34]. By more elaborate techniques the theorem can also be
proved for general convex polyhedra [48, Theorem. 2.3]. ut
In a Hilbert space setting, orthogonal complements of Ker(curl) offer an
isomorphicmodel for quotient spacesmoduloKer(curl). Firstwe introduce
the function space

H⊥
0 (curl;C) :=

{
ξ ∈H0(curl;C); (ξ, gradϕ)L2(C) = 0

∀ϕ ∈ H1
0 (C)

}
It is plain to see that a(·, ·) becomes truly H(curl;C)–elliptic on
H⊥

0 (curl;C).
Thanks to the discrete representation theorem (Theorem 1), for d ≥ 1

we have

Ker(curl) = {ξh ∈NDd,0(C; Tl); curl ξh = 0} = gradSd,0(Ω; Tl)
so that the orthogonal complements ofKer(curl) in thefinite element spaces
are given by

ND+
d,0(C; Tl) :=

{
ξh ∈NDd,0(C; Tl); (ξh, gradϕh)0 = 0

∀ϕh ∈ Sd,0(C; Tl)
}
.

These spaces serve as an isometrically isomorphic model for the quotient
spaces NDd,0(C; Tl)/Ker(curl). H(curl;C)–ellipticity of a(·, ·) also
holds on these spaces with a constant independent of hl:

Lemma 1. For all l ∈ N0 and d ∈ N we have the estimate

‖ξh‖L2(Ω) ≤ C ‖curl ξh‖L2(Ω) ∀ξh ∈ND+
d,0(C; Tl)

with C > 0 independent of the level l of refinement.

Proof. This is a special case of Theorem 9 in [43] or Proposition 5.1 in [30],
which cover general convex domains. ut
Unfortunately, these orthogonal complements are not nested nor are they
contained in the continuous space, i.e., for 0 ≤ l < L

ND+
d,0(C; Tl) 6⊂ND+

d,0(C; Tl+1) 6⊂H⊥
0 (curl;C) .

This makes them an awkward environment for the intended proof, as the
duality techniques we are aiming at depend on nested spaces. To steer
clear of these difficulties we introduce a mapping θ : H0(curl;C) 7→
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H⊥
0 (curl;C) by θ(ξ) := ξ + gradψ, where ψ ∈ H1

0 (Ω) is uniquely
characterized as the solution of

(gradψ, gradϕ)0 = − (ξ, gradϕ)0 ∀ϕ ∈ H1
0 (Ω) .

Note that θ preserves the curl of a vector field and cannot increase its
L2–norm.

This mapping is used to define the semicontinuous spaces

ND⊥
d,0(C; Tl) := θ(ND+

d,0(C; Tl)) .
They have a hybrid nature: Their dimensions are finite, but their elements are
no longer piecewise polynomial. Theircurls belong tofinite element spaces,
however. Obviously ND+

d,0(C; Tl) and ND⊥
d,0(C; Tl) are isomorphic, an

isomorphism given by θ. It is also immediate that the spaces ND⊥
d,0(C; Tl)

are perfectly nested.
We intend to stick to a double track strategy: we want to make use of

the nestedness of the ND⊥
d,0(Ω; Tl)–spaces and benefit from the properties

of the finite element spaces ND+
d,0(Ω; Tl+1) as well. So we need a link

between these two families of spaces. θ is a promising candidate. Unfor-
tunately, the inverse of the mapping θ : ND+

d,0(C; Tl) 7→ ND⊥
d,0(C; Tl)

fails to be uniformly bounded in theL2–normwith respect to the meshwidth
hl. A weaker estimate holds, however:

Lemma 2. Let d ≥ 2. With C > 0 independent of the depth l of refinement
and the function ξh, otherwise only depending on d and T0, we have

‖ξh‖L2(Ω) ≤ C ‖θ(ξh)‖L2(Ω) + hl‖curl ξh‖L2(Ω)

∀ξh ∈ND+
d,0(C; Tl) .

Proof. Pick an arbitrary ξh ∈ ND+
d,0(C; Tl). Since, evidently, the map-

ping θ : ND+
d,0(C; Tl) 7→ ND⊥

d,0(C; Tl) does not affect the curl of its
argument, curl θ(ξh) = curl ξh is piecewise polynomial.

Now, recall the important fact that any piecewise polynomial function
f ∈ L2(C) belongs to Hε(C) for all ε < 1/2 and fulfills the inverse
estimate

‖f‖Hε(C) ≤ C(ε)h−ε
l ‖f‖L2(C)(14)

with C(ε) independent of f (cf. the appendix of [13]).
We conclude that curl θ(ξh) ∈ Hε(C) for ε ∈ ]0; 1/2[. According to

Theorem 2, this means that θ(ξh) ∈H1+ε(C) and

‖θ(ξh)‖Hε+1(C) ≤ C‖curl θ(ξh)‖Hε(C) ,
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where we made tacit use of div θ(ξh) = 0. This makes sure that the nodal
interpolation operatorΠNDd

Tl
is well defined for θ(ξh).

In addition, we can rely on the estimate (5) and the triangle inequality to
see that∥∥∥ΠNDd

Tl
(θ(ξh))

∥∥∥
L2(C)

≤ ‖θ(ξh)‖L2(C) + C h1+ε
l ‖θ(ξh)‖H1+ε(C) ,

where ε enters the constant C, of course. Now we fix ε ∈ ]0; 1/2[, so that
it can be regarded as a constant from now on. Again Theorem 2 is used to
proceed with the estimate:∥∥∥ΠNDd

Tl
(θ(ξh))

∥∥∥
L2(C)

≤ ‖θ(ξh)‖L2(C) + C h1+ε
l ‖curl ξh‖Hε(C)

≤ ‖θ(ξh)‖L2(C) + C hl ‖curl ξh‖L2(C) .(15)

In the final step above we employed the inverse estimate (14).
From basic properties of the mapping θ we conclude

curl (ξh − θ(ξh)) = 0 .(16)

We have already found out that the nodal projection is defined for both
summands in (16) so thatwe can infer from the commuting diagramproperty
of the nodal projectors:

curl ΠNDd
Tl

(ξh − θ(ξh)) = 0 .

Further, linearity and idempotence of the projector ensure

curl ξh −ΠNDd
Tl

θ(ξh) = 0 .

Consequently, by the representation theorem we find a ϕh ∈ Sd,0(C; Tl)
such that

ξh −ΠNDd
Tl

(θ(ξh)) = gradϕh .

Now, we are going to exploit ξh ∈ND+
d,0(C; Tl):

‖ξh‖2L2(C) = ξh, gradϕh +ΠNDd
Tl

θ(ξh)
L2(C)

= ξh,Π
NDd
Tl

θ(ξh)
L2(C)

≤ ‖ξh‖L2(C)

∥∥∥ΠNDd
Tl

θ(ξh)
∥∥∥

L2(C)
.

Plugging (15) into this estimate completes the proof. ut
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5. Stable splitting on a cube

Still, we confine ourselves toΩ = C. For an arbitrary ξL ∈NDd,0(C; TL),
d ≥ 1, L ∈ N, we attempt to find a nodal decomposition according to (10)
that satisfies the estimate (12). Without loss of generality, we may assume
ξL ∈ND+

k,0(C; TL), since only curl ξL is relevant,
The construction of the multilevel splitting of ξL and the proof of its

stability loosely follows the ideas presented by Zhang in [54]. Similar tech-
niques based on duality arguments can be found in the appendix of [52] and
Sect. 3 in [53].

To begin with, we specify the wanted splitting of ξL ∈ ND+
d,0(C; TL)

intomultiples of nodal bases on all levels: Setξ⊥
L := θ(ξL) ∈ND⊥

d,0(C; TL)
Then define ζ⊥

k ∈ND⊥
d,0(C; Tk), k ∈ {0, . . . , L}, as solutions of the vari-

ational problems:
Seek η⊥

k ∈ND⊥
d,0(C; Tk) such that

a(η⊥
k ,φ

⊥
k ) = a(ξ⊥

L ,φ
⊥
k ) ∀φ⊥

k ∈ND⊥
d,0(C; Tk) .(17)

The existence of a unique solution of (17) is guaranteed, since a(·, ·) is an
inner product in H⊥(curl;C). Writing Pk : H⊥

0 (curl;C) 7→ ND⊥
d,0

(C; Tk), 0 ≤ k ≤ L, for the a(·, ·)–orthogonal projection we have ζ⊥
k =

Pk ξ
⊥
L . As usual P−1 = 0, and thus we get the a(·, ·)-orthogonal decompo-

sition

ξ⊥
L =

L∑
k=0

(Pk − Pk−1) ξ⊥
L =

L∑
k=0

ζ⊥
k − ζ⊥

k−1 .

Setting µ⊥
k := ζ⊥

k − ζ⊥
k−1, it has the evident property

L∑
k=0

‖curlµ⊥
k ‖

2
L2(C) = ‖curl ξ⊥

L‖
2
L2(C) .(18)

Thanks to the one–to–one correspondence of the spaces ND+
d,0(C; Tk)

and ND⊥
d,0(C; Tk) it is possible to define a unique finite element function

µk in ND+
d,0(C; Tk) formally by µk := θ−1(µ⊥

k ), k ∈ {0, . . . , L}. If
ψk,κ stands for the nodal basis function belonging to the degree of freedom
κ ∈ Ξ(NDd, Tk), the following sum does provide a decomposition of µk

µk =
∑

κ∈Ξ(NDd,Tk)

κ(µk)ψk,κ 1 ≤ k ≤ L ,
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which now consists of strictly locally supported components. In sum, the
desired specific multilevel splitting reads:

ξ′
L := µ0 +

L∑
k=1

∑
κ∈Ξ(NDd,Tk)

κ θ−1 (Pk − Pk−1) ξ⊥
L ψk,κ︸ ︷︷ ︸

=: µk,κ

.(19)

Recalling the properties of the mapping θ, we immediately confirm that
curl ξ′

L = curl ξL. The proof that the stability estimate (12) holds true for
(19) is divided among several lemmata. The first is the analogue of formula
(8) in [54] and formula (3.7) in [53].

Lemma 3. Using the notations introduced above for 0 ≤ k ≤ L we have∥∥∥µ⊥
k

∥∥∥
L2(C)

≤ C hk

∥∥∥curlµ⊥
k

∥∥∥
L2(C)

,

with a constant C > 0 not depending on k and L.

Proof. The proof is carried out in two steps: 1st step: To begin with, we
probe the approximation properties of the a(·, ·)–orthogonal projector Pk.
To this end, we rely on classical duality techniques (“Nitsche’s trick”, see
[15], Sect. 5.4) in the Hilbert space H⊥

0 (curl;C). For an arbitrary υ⊥ ∈
H⊥

0 (curl;C) we set υ⊥
k := Pkυ

⊥, i.e.

a(υ⊥
k ,φ) = a(υ⊥,φ) ∀φ ∈ND⊥

d,0(C; Tk) .

In addition, givenω ∈ L2(C)withdivω = 0,wewriteϑ⊥
ω ∈H⊥

0 (curl;C)
for the unique solution of:

Seek η⊥ ∈H⊥
0 (curl;C) such that

a(η⊥,φ) = (ω,φ)L2(C) ∀φ ∈H⊥
0 (curl;C) .(20)

Now we apply the customary duality technique:

‖υ⊥ − υ⊥
k ‖L2(C) = sup

ω∈H⊥
0 (curl;C)

‖ω‖−1
L2(C) ·

(
υ⊥ − υ⊥

k ,ω
)
L2(C)

= sup
ω∈H⊥

0 (curl;C)
‖ω‖−1

L2(C) · a(υ⊥ − υ⊥
k ,ϑ

⊥
ω)

≤ ∥∥curl
(
υ⊥ − υ⊥

k

)∥∥
L2 · sup

ω∈H⊥
0 (curl;C)

×
inf

ηk∈ND⊥
d,0(C;Tk)

‖curl ϑ⊥
ω − ηk ‖

L2(C)

‖ω‖L2(C)
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Note that the strong form of (20) is given by

curl curlϑ⊥
ω = ω in C

divϑ⊥
ω = 0 in C

ϑ⊥
ω × n = 0 on ∂C .

According to formula (4.6) from [28], curlϑ⊥
ω belongs to H1(C), as both

divω = 0 and C is convex. Furthermore,

| curlϑ⊥
ω |H1(C) ≤ C ‖ω‖L2(C) ,

where the constant depends only on C. Thus estimate (6) shows

inf
ηk∈ND⊥

d,0(C;Tk)

∥∥∥curl ϑ⊥
ω − ηk

∥∥∥
L2(C)

≤ C hk curlϑ⊥
ω

H1(C)
.

This permits us to continue the estimates:

‖υ⊥ − υ⊥
k ‖L2(C) ≤ C hk

∥∥curl
(
υ⊥ − υ⊥

k

)∥∥
L2(C)

≤ C hk

∥∥curlυ⊥∥∥
L2(C) .

What we have shown by now is∥∥∥(Id− Pk)υ⊥
∥∥∥

L2(C)
≤ C hk

∥∥∥curlυ⊥
∥∥∥

L2(C)

∀υ⊥ ∈H⊥
0 (curl;C) .(21)

2nd step: The previous result is applied toµ⊥
k . Owing to the basic properties

of projections, we conclude from (21):

‖µ⊥
k ‖L2(C) = ‖(Pk − Pk−1) ξ⊥

L‖L2(C)

= ‖(Id− Pk−1) (Pk − Pk−1) ξ⊥
L‖L2(C)

≤ C hk−1

∥∥∥curl (Pk − Pk−1) ξ⊥
L

∥∥∥
L2(C)

≤ C hk

∥∥∥curlµ⊥
k

∥∥∥
L2(C)

. ut

Lemma 4. For anyd ≥ 2, arbitraryµk ∈NDd(C, Tk)andκ ∈ Ξ(NDd,
Tk) the following estimate holds with constants independent of κ, µk, and
k ∈ {1, . . . , L}:∥∥curl

(
κ(µk)ψk,κ

)∥∥2
L2(Ωκ) ≤ C

(
‖curlµk‖2L2(Ωκ) + h−2

k ‖µk‖2L2(Ωκ)

)
,

where Ωκ stands for the support of the canonical basis function associated
with the degree of freedom κ.
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Proof. The proof relies on standard scaling arguments for affine families of
finite elements. ut
Theorem 3. There exists a constant C > 0, independent of L and ξL,
otherwise only depending on d ≥ 2, such that

‖curlµ0‖2L2(C) +
L∑

k=1

∑
κ∈Ξ(NDd,Tk)

∥∥curlµk,κ

∥∥2
L2(C)

≤ C
∥∥curl ξ′

L

∥∥2
L2(C) .

Proof. To begin with we apply Lemma 4. Afterwards, we take advantage of
uniform shape regularity, because it ensures that any element belongs to only
a small number of at most N of supports Ωκ of canonical basis functions.
Thus, initially we obtain

‖curlµ0‖2L2(C) +
L∑

k=1

∑
κ∈Ξ(NDd,Tk)

∥∥curlµk,κ

∥∥2
L2(C)

≤ ‖curlµ0‖2L2(C) + C

L∑
k=1

∑
κ∈Ξ(NDd,Tk)

×(‖curlµk‖2L2(Ωκ) + h−2
k ‖µk‖2L2(Ωκ))

≤ ‖curlµ0‖2L2(C) +NC

L∑
k=0

‖curlµk‖2L2(C)

+h−2
k ‖µk‖2L2(C) .

Now Lemma 2 bridges the gap to the semicontinuous spaces:

‖curlµ0‖2L2(C) +
L∑

k=1

∑
κ∈Ξ(NDd,Tk)

∥∥curlµk,κ

∥∥2
L2(C)

≤ ‖curlµ0‖2L2 +NC

L∑
k=1

∥∥∥curlµ⊥
k

∥∥∥2

L2

+C h−2
k

∥∥∥µ⊥
k

∥∥∥2

L2
+ h2

k

∥∥∥curlµ⊥
k

∥∥∥2

L2

)

≤ ‖curlµ0‖2L2 +N

L∑
k=1

C, h−2
k

∥∥∥µ⊥
k

∥∥∥2

L2

+(1 + C)
∥∥∥curlµ⊥

k

∥∥∥2

L2

)

                                     
                                    



270 R. Hiptmair, R.H.W. Hoppe

≤ C ‖curlµ0‖2L2 +
L∑

k=1

∥∥∥curlµ⊥
k

∥∥∥2

L2

)

= C
∥∥∥curl ξ⊥

L

∥∥∥2

L2
.

The final steps relied on Lemma 3 and (18). ut
So far, stability of the decomposition has been shown for higher order
Nédélec spaces, since Lemma 3 played a crucial role in the proof. By a
simple trick the result can be extended to lowest order finite element spaces:

Corollary 1. The decomposition (10) of ND1,0(C; TL) is stable in the
sense of estimate (12).

Proof. Pick an arbitrary ξL ∈ ND1,0(C; TL). Since ND1,0(C; TL) ⊂
ND2,0(C; TL), it can be regarded as a vector field from the second order
Nédélec space. Then, the previous theorem confirms the stability of the split-
ting (19), which, of course, contains multiples ofND2 basis functions. But
ξ′

L from (19) is not a generic ND2,0(C; TL) vector field, because its curl
coincides with that of theND1 finite element function ξL. We now contend
that switching back to the lowest orderNédélec spaces can be done by simply
dumping the higher order components in the nodal splitting (19). Remember
that the degrees of freedom in Ξ(ND2, Tk) are by default arranged in a
hierarchical fashion. WritingΞHB for the setΞ(ND2, Tk)/Ξ(ND1, Tk),
we can recast (19) as

µ
(1)
0︸︷︷︸

∈ ND1,0(C;TL)

+ µ
(2)
0︸︷︷︸

∈ NDHB
2,0 (C;TL)

+
L∑

k=1

∑
κ∈Ξ(ND1,Tk)

µk,κ︸ ︷︷ ︸
∈ ND1,0(C;TL)

+
∑

κ∈ΞHB

µk,κ︸ ︷︷ ︸
∈ NDHB

2,0 (C;TL)

= ξL + grad φ1︸︷︷︸
∈ S1(C;TL)

+ φ2︸︷︷︸
∈ SHB

2 (C;TL)

,

where the superscript HB tags p–hierarchical components. Then, we can
apply (4), which shows that gradφ2 ∈ NDHB

2,0 (C; TL). Thanks to the
uniqueness of the p–hierarchical decomposition we can relate

µ
(2)
0 +

L∑
k=1

∑
κ∈ΞHB

µk,κ = gradφ2 .

This teaches us that the overall sumof higher order components is curl–free.
Dropping them maintains the crucial equality of curls, hence. In addition,
the left hand side of the stability estimate can only decrease in the process.
In sum, (12) remains true for the resulting genuine ND1 splitting. ut
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6. Stability on general domains

The generalization of the stability result of the previous section to arbitrary
bounded domains Ω can be done by extending solenoidal vector fields to a
large cube engulfingΩ. For theH1–elliptic case this trick is used in [54,9].
It hinges on the following extension theorem:

Theorem 4. Let Ω and Ω̃ be two bounded polyhedral domains in R
3 such

that Ω̄ ⊂ Ω̃. Given a quasiuniform shape–regular simplicial triangulation
Th of Ω, we assume that it can be extended to a triangulation T̃h of Ω̃ with
the same meshwidth and without loss of shape–regularity. Then, there exists
a linear extension operator

ERT : RT 0
d(Ω; Th) 7→RT 0

d,0(Ω̃; T̃h)

such that

‖ERT vh‖L2(Ω̃) ≤ C‖vh‖L2(Ω) ∀vh ∈RT 0
d(Ω; Th) ,

with C > 0 independent of the meshwidth h, otherwise only depending on
the shape–regularity of the mesh T̃h and the polynomial order d ≥ 0 of the
finite element spaces.

Proof. The proof is inspired by ideas from Lemma 3.2 in [12]. We start with
an arbitrary vh ∈ RT 0

d(Ω; Th) and denote by µ ∈ H−1/2(Γ ) its normal
trace 〈vh,n〉|Γ . Since µ is piecewise polynomial, as in the proof of Lemma
2 we conclude that µ ∈ Hσ(Γ ) for a 0 < σ < 1/2. Consider the boundary
value problem

−∆Φ = 0 in Ω̃/Ω
∂Φ
∂n

= −µ on ∂Ω
∂Φ
∂n

= 0 on ∂Ω̃ .

Now, keep in mind that functions inHσ(Γ ) are fully decoupled ([40], The-
orem 11.4), i.e., no compatibility conditions over edges of Th|Γ need to be
enforced. The trace mapping

H3/2+σ(Ω̃/Ω) 7→ Hσ(Γ ) ; u 7→ ∂u

∂n

is surjective, hence. Then, a regularity result (Corollary 2.6.7 in [32]) states
that Φ ∈ H3/2+ε(Ω̃/Ω) with 0 < ε ≤ σ and ‖Φ‖

H3/2+ε(Ω̃/Ω)
≤ C‖µ‖Hε(Γ ). We fix a suitable ε.

Now,we set ṽ := gradΦ and observe ṽ ∈H0(div; Ω̃/Ω). This is also a
vector field inH1/2+ε(Ω̃/Ω) and, therefore, the interpolating finite element
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function ṽh := ΠRT d

T̃l
ṽ restricted to Ω̃/Ω is well defined. Thanks to the

commuting diagram property it belongs to RT 0
d(Ω̃/Ω; T̃l). Moreover, it

satisfies homogeneous boundary conditions on ∂Ω̃.
An approximation estimate in fractional Sobolev spaces (see formula

(1.5) in [41]) gives∥∥∥ṽ −ΠRT d

T̃l
ṽ
∥∥∥

L2(Ω̃/Ω)
≤ Ch1/2+ε

l ‖ṽ‖
H1/2+ε(Ω̃/Ω)

≤ Ch1/2+ε
l ‖Φ‖

H3/2+ε(Ω̃/Ω)

≤ Ch1/2+ε
l ‖µ‖Hε(Γ ) ≤ C ‖µ‖H−1/2(Γ )

≤ C ‖vh‖H(div;Ω) .

Again, the inverse estimate (14) has been applied to the piecewise polyno-
mial function µ. Moreover, we used a trace theorem forH(div;Ω).

Finally, we set

(ERT vh)(x) :=
vh(x) , for x ∈ Ω
ṽh(x) , for x ∈ Ω̃/Ω .

By definition of ṽ and ṽh, the normal components of this vector field are
continuous across the boundary ofΩ. Hence, the patched–together function
actually belongs toH(div; Ω̃). The uniform continuity of the extension op-
erators with respect to h is then an easy consequence of the above estimates.

The following core result is now an almost trivial consequence of earlier
theorems:

Theorem 5. Under the assumptions on the domain Ω and the hierarchy
of meshes T0, T1, . . . , Tl stated before, for any polynomial oder d ∈ N

the nodal multilevel decomposition of the Nédélec finite element space
NDd(Ω; TL),d ≥ 1, is stable in the sense of (12) with a constant CL > 0
independent of the depth L of the refinement.

Proof. First,Ω is embedded into a cubeC. Then, the hierarchy of meshes is
extended to a hierarchy of triangulations T̃0, T̃1, . . . , T̃L on this cube. This
can be done in many ways, preserving shape regularity in the process.

Given ξL ∈ ND+
d (Ω; TL), its curl is a vector field vL ∈

RT 0
d−1(Ω; TL). Employing the extension operator of Theorem 4, we ar-

rive at ṽL ∈ RT 0
d−1,0(C; T̃ )L such that ṽL|Ω = vL and ‖ṽL‖L2(C) ≤

C‖vL‖L2(Ω). The representation theorem (Theorem 1) gives us ξ̃L ∈
ND+

d,0(C; T̃L) with curl ξ̃L = ṽL.
According to Theorem 3 and Corollary 1 we can find a nodal multilevel

decomposition of ξ̃L such that the estimate (12) is satisfied. Restricting all
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components of the splitting toΩ provides the desired stable nodal multilevel
decomposition of ξL. ut

7. Analysis of the algorithm

Fast convergence of an iterative scheme is only necessary, but not sufficient
for the overall efficiency of the method. It also hinges on the computational
costs of preprocessing steps and the application of the preconditioner. These
must not exceed afixed small number of operations per unknownon thefinest
grid.

For the sake of simplicity, we perform a detailed investigation of the
computational effort involved in the algorithm for the case of lowest or-
der elements (d = 0) on a hexahedral grid only. The arguments remain
essentially valid for higher order elements and on simplicial meshes.

Recall that finite element functions inRT 0(Ω; Th) are characterized by
degrees of freedom located on faces, whereas the nodal values for
ND1(Ω; T )h are associated with edges. Further, we assume the canon-
ical definition of degrees of freedom (see [33]).

We first take a look at the preprocessing step, needed to determine j∗
h

(cf. Sect. 3). We single out T ∈ Tj , j = 0, . . . , L − 1, and temporar-
ily assume that fj+1 from (7) is already available. Remember that fj+1 is
piecewise constant on Tj+1; we can write fj+1(Tk,T ), k = 1, . . . , 8, for the
value of fj+1 on Tk,T . Let T1,T , . . . , T8,T denote the elements on level j+1
created by regular refinement of T . There are 12 faces F1,T , . . . , F12,T of
Fj+1 contained in T . Their associated RT 0–basis functions can all con-
tribute to j∗

j,T and the corresponding nodal values κ1, . . . , κ12 can to be
computed as follows:

fj(T )←∑8
k=1 fj+1(Tk,T )

κ1, κ2, κ3, κ4 ← 1
4
∑4

k=1 fj+1(Tk,T )− 1
8fj(T )

κ5, κ6 ← 1
2 (fj+1(T1,T ) + fj+1(T2,T )− κ1 − κ2)− 1

8fj(T )
κ2, κ8 ← 1

2 (fj+1(T5,T ) + fj+1(T6,T ) + κ1 + κ2)− 1
8fj(T )

κ9 ← fj+1(T1,T )− κ1 − κ5 − 1
8fj(T )

κ10 ← fj+1(T3,T )− κ3 + κ5 − 1
8fj(T )

κ11 ← fj+1(T5,T ) + κ1 − κ7 − 1
8fj(T )

κ12 ← fj+1(T7,T ) + κ1 + κ7 − 1
8fj(T )

Any other numbering of degrees of freedom can be taken into account by just
changing indices. Consequentlywe have to reckonwith about 40 elementary
operations per element. Exploiting the geometric decrease of the number of
elements on the coarser grids, we arrive at a total operation count of about
1
7 · 40 · ]TL for the computation of the j∗

j,T , j = 0, . . . , L− 1 (] designates
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the numbers of elements in a set). The costs for j∗
0 are negligible, if T0 is a

reasonable coarse grid.
To obtain j∗

h we rely on RT 0–prolongation based upon the embedding
RT 0(Ω; Tj) ⊂ RT 0(Ω; Tj+1). It means distributing the weighted nodal
values from coarse grid faces to neighboring fine grid faces of the same
orientation, which takes at most 24 operations per coarse grid face. In sum,
we get j∗

h with 1
7 · 24 · ]FL operations. Note that ]FL ≈ 3]TL to see that,

neglecting the corse grid solve, we have to pay about 10 · ]FL operations
for j∗

h.
In the second step of the algorithm we first have to set up the algebraic

system arising from (9). In the case of locally constant coefficient function
a the assembly of the stiffness matrix takes about 144 · ]TL operations.
The vector on the right hand side of (9) has an entry for each edge. This
is available through gathering the nodal values of j∗

h (and of the boundary
data) from all faces that share an element with the edge. This can be done
with as little as 16 operations per edge.

The preconditioner is used in the framework of a PCG method. Since
the stiffness matrix from (9) is sparse — thanks to the existence of a neatly
localized basis in NDd+1(Ω; TL) it has no more than 40 entries per row
—we face about 50 · ]EL operations plus the costs for the preconditioner in
each iteration (see [6]).

The implementation of the multilevel preconditioner is hardly different
from that of the classical BPX–preconditioner [13] for standard finite ele-
ments; only local intergrid transfer operators, prolongation and restriction,
and scalings of nodal values have to be carried out. The intergrid transfer
operator arise from the embedding ND1(Ω; Tj) ⊂ ND1(Ω; Tj+1). Re-
striction means that every edge on level j collects weighted nodal values
from all those edges on level j + 1 that lie inside adjacent elements of Tj .
This amounts to 36 elementary operations per edge in Ej . The same applies
to prolongation which boils down to distributing values to edges on the finer
level. Due to the geometric decline of the number of edges of coarser grids,
all transfers within the preconditioner require about 2· 17 ·36·]EL operations.

Another 8
7 · ]EL operations have to spent on scaling. Please note that

the scaling factors can be computed once and for all beforehand, which
costs about 3 · ]EL operations in the case of piecewise constant coefficient
function a. Neglecting the coarse grid solve, we end up with about 3 · ]EL
essential operations for the evaluation of the preconditioner, which is hardly
significant in the whole iteration.

Afer the iterations have terminated, the correction j∗
h, which is repre-

sented in ND1(Ω; TL) has to be expressed in terms of RT 0 nodal values.
Relying on the embedding curlND1(Ω; TL) ⊂ RT 0(Ω; TL) this can
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be achieved by distributing the nodal values from the edges to all adjacent
faces. This requires 4 · ]EL operations.

Compared to the multilevel method for the mixed hybrid system pre-
sented in [22] the current preconditioner is slightly cheaper, chiefly due
to the simpler transfer operators. Conversely, the stiffness matrix contains
more nonzero entries in our case, which about offsets the gain.

Remark 3. We point out to the local nature of all computations; they do not
rely on “geometrically distant” information when updating a nodal value.
This permits us to stick to local data access patterns,which is highly desirable
in a finite element code.

8. Numerical experiments

Even if the algorithm is economical, asymptotic optimality of the precondi-
tioner falls short of ensuring the practical efficiency of the iterative scheme.
In addition, the ominous constants occurring in the estimates have to be rea-
sonably small. Unfortunately the theory totally fails to provide information
about the size of those constants. By and large, even for simple model prob-
lems they remain elusive; only numerical experiments can provide clues: To
this end we conducted a few numerical experiments in which we examined
the convergence of the multilevel preconditioned CG–method when applied
to the variational problem

(α curl ξh, curlηh)0 = f(curlηh) ∀ηh ∈ND1(Ω; TL) ,

where f ∈ H(div;Ω)′ and α = α(x). All the computations relied on
hexaedralmeshes and regular refinementwas employed to created the nested
meshes T1, . . . , TL. The right hand side f and the initial guess were chosen
at random and we monitored the number of iterations required to achieve a
reduction of the Euclidean norm of the residual by a factor of 10−6. Three
runs and subsequent averaging were done in each case to offset the impact
of randomness.

The first experiment was carried out on the unit cube Ω :=]0; 1[3 and
for constant coefficient function α ≡ 1. The coarsest grid T0 comprised
eight equal cubes. In Table 1 the average number of PCG iterations for
different depths L of refinement are recorded. To highlight the superiority
of the multilevel preconditioned (PCG–BPX) iteration, the performance of
a plain symmetric Gauß–Seidel preconditioner (PCG–GS) was also exam-
ined. The figures clearly confirm the asymptotic optimality of the multilevel
preconditioner.

Compared to the iteration counts reported in [22] (Table 3 in Sect. 6) for
a very similar numerical experiment in 2D, the current method turns out to
be about 30% faster.
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Table 1. Average number of CG steps for Exp. 1

L 2 3 4 5 6
PCG–BPX 15 17 18 18 18
PCG–GS 46 86 145 208.3 316.6

Table 2. Average number of CG steps for Exp. 2

L 2 3 4 5 6
PCG–BPX 15 17 18 18 18.3
PCG–GS 46 86.3 142.3 210.3 325.3

Table 3. Average number of CG steps for Exp. 3

α0 105 104 103 102 101 10−1 10−2 10−3 10−4 10−5

L = 2 14 14 15 15 16 17 17 17 17 17
L = 3 16 16 17 17 17 18 19 19 19 19
L = 4 17 17 17 18 18 18 19 20 19.6 19.6
L = 5 18 18 18 18 18 18.3 19.3 20 20 19.6

The second experiment involved the same investigations as before on a
3D “L–shaped” domainΩ :=]0; 1[3/[0; 1

2 ]3. The results are given in Table 2.
We see that the conclusions from Exp. 1 carry over even to the case of a
more complex domain.

The third experiment was intended to probe the impact of strongly vary-
ing coefficient functions. It relied on the setting of the first numerical exper-
iment and used

α(x) := α0 ; for x ∈]1/3, 2/3[3

0 ; elsewhere in ]0, 1[3(22)

with values α0 ∈ {105, 104, 103, 102, 101, 10−1, 10−2, 10−3, 10−4, 10−5}.
The average number of CG iterations resulting for different numbers L of
refinement levels are reported in Table 3. The figures give evidence that the
multilevel preconditioned CG method can well cope with strongly varying
coefficients.

9. Conclusion

A novel multilevel decomposition of H(curl;Ω)–conforming Nédélec
spaces has been presented. Its stability with respect to the ‖ curl ·‖0–
seminorm could be established with constants independent on the depth
of uniform refinement. We immediately obtained an L2–stable multilevel
decomposition of solenoidal Raviart–Thomas vector fields giving rise to an
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optimal additive Schwarz preconditioner. No schemes with such properties
had been known previously. The preconditioner can be used for the fast iter-
ative solution of saddle point problems arising from themixed discretization
of second order elliptic boundary value problems in three dimensions. Be-
sides, the results obtained in this paper can serve as the starting point for the
design of multilevel methods for mixed problems in H(curl;Ω). Exam-
ples are problems from electromagnetism (see [43,42,48]) and nonstandard
schemes for Stokes’ equations (see [30]). This has been addressed in more
detail in [35].
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