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Abstract. The GMRES method is a popular iterative method for the solution of large linear
systems of equations with a nonsymmetric nonsingular matrix. However, little is known about the
behavior of this method when it is applied to the solution of nonsymmetric linear ill-posed problems
with a right-hand side that is contaminated by errors. We show that when the associated error-free
right-hand side lies in a finite-dimensional Krylov subspace, the GMRES method is a regularization
method. The iterations are terminated by a stopping rule based on the discrepancy principle.
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1. Introduction. Let X be a real separable Hilbert space with inner product
< ·, · > and norm ‖ · ‖ =< ·, · >1/2, and let A : X → X be a bounded linear operator.
The induced operator norm is also denoted by ‖ · ‖. Let R(A) denote the range of A
and assume that for every b ∈ R(A) the equation

Ax = b(1.1)

has a unique solution x ∈ X . Thus, the operator A has an inverse on R(A), which we
denote by A−1. We are interested in the situation when the solution x of (1.1) does
not depend continuously on the the right-hand side b, i.e., when the inverse operator
A−1 is not bounded on R(A). Then the determination of the solution x of (1.1) is
an ill-posed problem in the sense of Hadamard, and we refer to equation (1.1) as
an ill-posed problem; see, e.g., Groetsch [7, Chapter 1] for a discussion on ill-posed
problems.

In many linear ill-posed problems (1.1) that arise in science and engineering,
the right-hand side b, which is assumed to be in R(A), is not available. Instead, a
perturbation bδ ∈ X of b is known. The difference b−bδ often stems from measurement
errors and is referred to as “noise.” In the present paper, we assume that a bound
δ ≥ 0 of the norm of the noise is known, i.e.,

‖b− bδ‖ ≤ δ.(1.2)

We would like to compute an approximate solution of equation (1.1) with the
unknown right-hand side b by computing an approximate solution of the equation

Ax = bδ.(1.3)

Two possible difficulties may arise. The perturbed right-hand side bδ might be in
X\R(A), and then equation (1.3) does not have a solution. Further, when bδ ∈ R(A),
the solution xδ of (1.3) may be a poor approximation of the solution x of (1.1) even
when b and bδ are close, because A−1 is not bounded. Therefore, the determination
of a solution of (1.3), if it exists, is an ill-posed problem.
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Due to these difficulties, we do not try to compute the solution xδ of (1.3), even
if it exists. Instead, for a given right-hand side bδ ∈ X that satisfies (1.2), we replace
the operator A in (1.3) by an operator Aδreg : X → X that approximates A and has a
bounded inverse on X , and solve the equation

Aδregx = bδ.(1.4)

The replacement of the operator A by Aδreg is referred to as regularization, Aδreg as a

regularized operator and the solution xδreg of (1.4) as a regularized approximate solu-

tion of (1.3). We would like to choose Aδreg so that xδreg is a meaningful approximation
of the solution of the equation (1.1) with unknown right-hand side. When a bound
of the norm of the noise δ in the right-hand side bδ is known, the operator Aδreg is
commonly chosen so that the norm of the discrepancy

dδreg = bδ −Axδreg
associated with xδreg is of the order of magnitude δ. Then xδreg satisfies the discrepancy
principle defined as follows.

Definition (Discrepancy Principle). Let α > 0 be fixed and let bδ ∈ X satisfy
(1.2) for some δ ≥ 0. The regularized approximate solution xδreg of (1.3) is said to

satisfy the discrepancy principle if ‖bδ −Axδreg‖ ≤ αδ.
In the development below, we will keep α > 0 fixed and investigate the conver-

gence of xδreg to the solution of (1.1) as δ converges to zero.
One of the most popular regularization methods is Tikhonov regularization, which

in its simplest form yields an operator Aδreg with inverse

(Aδreg)
−1 = (A∗A+ µI)−1A∗;(1.5)

see Groetsch [7] for a thorough discussion. Here A∗ denotes the adjoint operator
to A and I denotes the identity operator. The parameter µ ≥ 0 is referred to as a
regularization parameter. It determines how sensitive the solution xδreg of (1.4) is to

perturbations in the right-hand side bδ and how close xδreg is to the solution x of (1.1).

In the present paper, we define the operator Aδreg by applying a few steps of the
Generalized Minimal Residual (GMRES) iterative method, due to Saad and Schultz
[16], to equation (1.3). The GMRES method is a popular iterative method for the
solution of equations of the form (1.1) with a bounded operator A with a bounded
inverse. It is the purpose of this paper to investigate the behavior of the GMRES
method when it is applied to the computation of approximate solutions of equations
of the form (1.3) with a bounded nonsymmetric operator with an unbounded inverse
and a right-hand side that is contaminated by noise. We show that under appropriate
conditions on the unperturbed equation (1.1), the GMRES method equipped with a
stopping rule based on the Discrepancy Principle is a regularization method.

Related investigations for linear ill-posed problems (1.3) with a symmetric oper-
ator A have been presented by Hanke [8]. In particular, Hanke [8, Chapters 3 and 6]
shows that the conjugate residual method and a variant thereof, the MR-II method,
which are minimal residual methods for equations with a symmetric operator, are
regularization methods when equipped with a stopping rule based on the Discrepancy
Principle. Studies of the behavior of the conjugate gradient method applied to the
normal equations associated with (1.3),

A∗Ax = A∗bδ(1.6)
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can be found in [8, 9, 11]. Plato [14] studied simple iterative methods, such as Richard-
son iteration, for the solution of linear ill-posed problems (1.3) with a nonsymmetric
operator. We are not aware of investigations of more general Krylov methods for the
solution of linear ill-posed problems with a nonsymmetric operator.

When the regularized operator Aδreg is defined by taking m steps of the GMRES
method, the number of steps can be thought of as a regularization parameter. In
order to emphasize the dependence on m, we denote the regularized operator defined
by taking m steps of the GMRES method by Aδm, its inverse by (Aδm)−1 and the
computed solution of (1.4) with initial approximate solution xδ0 = 0 by xδm, i.e.,

xδm = (Aδm)−1bδ.(1.7)

We remark that the bounded linear operator (Aδm)−1 depends not only on the number
of steps m of the GMRES method and on the initial approximate solution xδ0, but
also on the right-hand side bδ. Throughout this paper, we will choose the initial
approximate solution xδ0 = 0.

In general, the iterates xδm do not converge to the solution x of (1.1) as the itera-
tion number m increases; in fact, ‖x− xδm‖ typically grows with m, for m sufficiently
large. It is therefore important to terminate the iterations at a suitable step. The
following stopping rule terminates the iterations as soon as an iterate xδm that satisfies
the discrepancy principle has been found.

Stopping Rule 1.1. Let α and δ be the same as in the Discrepancy Princi-
ple. Denote the iterates determined by the GMRES method applied to the solution of
(1.3) by xδm, m = 1, 2, . . . . Terminate the iterations as soon as an iterate has been
determined, such that

‖bδ −Axδm‖ ≤ αδ.

We denote the termination index by mδ.

We say that an iterative method for (1.3) equipped with this stopping rule is a
regularization method if there is a constant α > 0, independent of δ, such that the
iterates xδmδ defined by (1.7), with m = mδ determined by the stopping rule, satisfy

lim
δ↘0

sup
‖b−bδ‖≤δ

‖x− xδmδ‖ = 0,(1.8)

where x solves (1.1).

This paper is organized as follows. Basic properties of the GMRES method are
reviewed in Section 2. Regularizing properties are studied in Section 3, and a few
computed examples that illustrate the behavior of the limit (1.8) are presented in
Section 4.

2. The GMRES method. Introduce the Krylov subspaces

Km(A, bδ) = span{bδ, Abδ , A2bδ, . . . , Am−1bδ}, m = 1, 2, . . . .(2.1)

The GMRES method by Saad and Schultz [16] applied to the solution of equation
(1.3) with initial approximate solution xδ0 = 0 determines iterates xδm that satisfy

‖Axδm − bδ‖ = min
x∈Km(A,bδ)

‖Ax− bδ‖, xδm ∈ Km(A, bδ), m = 1, 2, . . . .(2.2)
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Saad and Schultz [16] propose to compute the iterate xδm by first determining an
orthonormal basis {vδj}mj=1 of the Krylov subspace Km(A, bδ) by the Arnoldi process.
In the description of the algorithm below, we tacitly assume that

dimKm(A, bδ) = m.(2.3)

The condition (2.3) secures that the Arnoldi process does not break down before an
orthonormal basis {vδj}mj=1 of Km(A, bδ) with m elements has been determined. We
will return to this assumption below.

Algorithm 2.1. Arnoldi Process
Input: A, bδ, m ≥ 1;
Output: Nontrivial entries of upper Hessenberg matrix H δ

m = [hδi,j ] ∈
� m×m ,

orthonormal basis {vδj}mj=1 of Km(A, bδ), f δm+1 ∈ X ;

f δ1 := bδ;
for j = 1, 2, . . . ,m do

vδj := f δj /‖f δj ‖;
f δj+1 := Avδj ;
for i = 1, 2, . . . , j do

hδi,j :=< f δj+1, v
δ
i >; f δj+1 := f δj+1 − hδi,jvδi ;

endfor i;
if j < m then

hδj+1,j := ‖f δj+1‖;
endif

endfor j �

Let ej = [0, . . . , 0, 1, 0, . . . , 0]T denote the jth axis vector of
� m , and define the

operator V δm :
� m → Km(A, bδ) by

V δmy =
m∑

j=1

(eTj y)vδj , y ∈ � m .(2.4)

The relations of Algorithm 2.1 can be written as

AV δm = V δmH
δ
m + f δm+1e

T
m.(2.5)

We refer to (2.5) as an Arnoldi decomposition. It follows from the recursion formulas
of the algorithm that

< f δm+1, v
δ
j >= 0, j = 1, 2, . . . ,m.

Let H̄δ
m ∈

� (m+1)×m be the matrix obtained by appending the row ‖f δm+1‖eTm to Hδ
m.

When f δm+1 6= 0, the Arnoldi decomposition (2.5) can be expressed as

AV δm = V δm+1H̄
δ
m,(2.6)

where vδm+1 = f δm+1/‖f δm+1‖. Throughout this paper, we omit the superscript δ when
δ = 0.

We now return to the condition (2.3). Assume that the condition is violated.
Specifically, let

m− 1 = dimKm−1(A, bδ) = dimKm(A, bδ).(2.7)
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Then f δm = 0 and Algorithm 2.1 breaks down after the basis {vδj}m−1
j=1 of Km−1(A, bδ)

has been determined. Lemma 2.3 below shows that the iterate xδm−1 computed by
the GMRES method solves equation (1.3). This result has been shown by Saad and
Schultz [16] for the case X =

� n . We present a proof, because the lemma is important
for the development in Section 3. We need the following auxiliary result.

Lemma 2.2. Assume that the operator A : X → X is invertible on R(A). Then

dimAKm(A, bδ) = dimKm(A, bδ), m = 1, 2, . . . ,

where AKm(A, bδ) = span{Abδ, A2bδ, . . . , Ambδ}.
Proof. We have dimAKm(A, bδ) ≤ dimKm(A, bδ). Assume that

dimAKm(A, bδ) < dimKm(A, bδ). Then there exists z ∈ Km(A, bδ), z 6= 0, such
that Az = 0. Since A is invertible on R(A), it follows that Az = 0 if and only if
z = 0, contradicting the assumption. Thus, dimAKm(A, bδ) = dimKm(A, bδ).

Lemma 2.3. Let the operator A : X → X be invertible on R(A). Assume
that equation (2.7) holds. Then the iterate xδm−1 determined by the GMRES method
applied to equation (1.3) with initial approximate solution xδ0 = 0 satisfies

Axδm−1 = bδ.(2.8)

Conversely, assume that equation (2.8) holds. Then Algorithm 2.1 breaks down after
the orthonormal basis {vδj }m−1

j=1 of Km−1(A, bδ) has been determined.
Proof. Assume that equation (2.7) holds. It then follows from Lemma 2.2 that

bδ ∈ AKm−1(A, bδ). Thus, there is an element xδm−1 ∈ Km−1(A, bδ), such that bδ =
Axδm−1.

Conversely, assume that equation (2.8) holds. Since xδm−1 ∈ Km−1(A, bδ), it
follows that bδ ∈ AKm−1(A, bδ). But Km(A, bδ) = span{bδ, AKm−1(A, bδ)} and
therefore dimKm(A, bδ) = dimAKm−1(A, bδ). It follows from Lemma 2.2 that
dimAKm−1(A, bδ) = dimKm−1(A, bδ). Thus, dimKm(A, bδ) = dimKm−1(A, bδ).

We point out the following property of Krylov subspaces.
Lemma 2.4. Assume that equation (2.7) holds. Then

K`(A, bδ) = Km−1(A, bδ), ` ≥ m.

Proof. Since Km−1(A, bδ) ⊂ K`(A, bδ) for all ` ≥ m, it remains to be shown that

Ajbδ ∈ Km−1(A, bδ), j ≥ m.(2.9)

Equation (2.9) can be shown by induction for increasing values of j using (2.7).
We remark that if dimKm(A, bδ) = m for all m ∈ � , then no breakdown of

Algorithm 2.1 will occur.
It follows from (2.6) and the fact that xδm = V δmym for some ym ∈

� m , that when
f δm+1 6= 0, the minimization problem (2.2) can be written in the form

‖Axδm − bδ‖ = min
x∈Km(A,bδ)

‖Ax− bδ‖ = min
y∈� m‖AV

δ
my − bδ‖

= min
y∈ � m‖V

δ
m+1(H̄δ

my − ‖bδ‖e1)‖

= min
y∈ � m‖|H̄

δ
my − ‖bδ‖e1‖|.(2.10)

Here and throughout the remainder of this paper ‖| ·‖| denotes the Euclidean norm on� m or the associated induced matrix norm. Denote the Moore-Penrose pseudo-inverse
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of H̄δ
m by (H̄δ

m)†. Then the solution of the minimization problem (2.10) is given by
ym = ‖bδ‖(H̄δ

m)†e1, and it follows that

xδm = V δm(H̄δ
m)†‖bδ‖e1(2.11)

= V δm(H̄δ
m)†(V δm+1)∗V δm+1‖bδ‖e1

= V δm(H̄δ
m)†(V δm+1)∗bδ,

where (V δm+1)∗ : X → � m+1 denotes the operator adjoint to Vm+1. It is given by

(V δm+1)∗x =
m+1∑

j=1

< vδj , x > ej .(2.12)

Equation (2.11) yields an explicit representation of the operator (Aδm)−1 introduced
in (1.7) for the GMRES method,

(Aδm)−1 = V δm(H̄δ
m)†(V δm+1)∗.(2.13)

When f δm+1 = 0, the right-hand side of (2.13) simplifies to

(Aδm)−1 = V δm(Hδ
m)−1(V δm)∗.(2.14)

Let Πm denote the set of polynomials of degree at most m, and let Π
(0)
m = {p ∈

Πm : p(0) = 1}. The iterate xδm ∈ Km(A, bδ) determined in step m of the GMRES
method applied to (1.3) with xδ0 = 0 can be expressed as

xδm = qδm−1(A)bδ ,

for some qδm−1 ∈ Πm−1, and the associated discrepancy

dδm = bδ −Axδm

can be written as

dδm = pδm(A)bδ ,(2.15)

where

pδm(t) = 1− tqδm−1(t) ∈ Π(0)
m

is referred to as the discrepancy polynomial. We remark that in the literature on
iterative methods, the quantity dδm is often referred to as the residual error and pδm
as the associated residual polynomial; see, e.g., Saad [15].

In view of (2.2), the discrepancy polynomial pδm satisfies

‖pδm(A)bδ‖ ≤ ‖p(A)bδ‖, ∀p ∈ Π(0)
m .(2.16)

We will use this inequality in Section 3.
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3. Regularizing property of the GMRES method. For notational simplic-
ity, we will throughout this section assume that the operator A and right-hand side b
in (1.1) are scaled so that

‖A‖ ≤ 1, ‖b‖ ≤ 1.(3.1)

In this and the following sections, the initial approximate solutions for all iterative
methods considered for the solution of equations (1.1) and (1.3) are chosen to be
x0 = 0 and xδ0 = 0, respectively.

The following example illustrates that iterative methods that determine approx-
imate solutions of the equation (1.3) in a sequence of Krylov subspaces (2.1) might
not define regularization methods unless additional conditions on the equation are
imposed.

Example 3.1. Let X = `2 and let A : X → X be the down-shift operator, i.e.,
A(ξ1, ξ2, . . . )T = (0, ξ1, ξ2, . . . )T for (ξ1, ξ2, . . . )T ∈ X . Then A is bounded with
null space N (A) = {0}. Define the right-hand side b of (1.1) by

x = (1, 0, 0, . . . )T , b = Ax = (0, 1, 0, . . . )T .

Let δ > 0 and define bδ = b+ (0, δ, 0, 0, . . . )T . Then bδ satisfies (1.2) and

dimKm(A, bδ) = m, min
x∈Km(A,bδ)

‖bδ −Ax‖ = 1 + δ, m = 1, 2, . . . .

Thus, the GMRES method with initial approximate solution xδ0 = 0 is not a regular-
ization method for this example. Indeed, the GMRES method cannot even determine
a solution to the equation (1.1) with the unperturbed right-hand side b. �

In order to circumvent the difficulties of Example 3.1, we assume that Algorithm
2.1 applied to {A, b} breaks down after ` steps have been carried out, with 1 ≤ ` <∞.
Thus, the algorithm determines the orthonormal basis {vj}`j=1 of K`(A, b) as well as
elements fj ∈ X , 1 ≤ j ≤ `+ 1, such that

{
fj 6= 0, 1 ≤ j ≤ `,
f`+1 = 0.

(3.2)

Lemma 2.3 shows that the iterate x` determined by the GMRES method when applied
to equation (1.1) with initial approximate solution x0 = 0 solves (1.1). Therefore, the
discrepancy polynomial p` associated with x` satisfies

p`(A)b = 0,(3.3)

where p` = pδ` for δ = 0, cf. (2.15). It follows from (1.7) and (2.14) that the solution
x` can be written in the form

x` = V`H
−1
` V ∗` b.(3.4)

In the remainder of this section, we assume that the positive constant α in Stop-
ping Rule 1.1 satisfies

α ≥ ‖p`(A)‖.(3.5)

Lemma 3.1. Let mδ be the termination index determined by Stopping Rule 1.1,
with the positive constant α satisfying (3.5), when the GMRES method is applied to
equation (1.3) with initial approximate solution xδ0 = 0. Then mδ ≤ `.
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Proof. Assume that mδ > ` and let pδ` and p` be discrepancy polynomials de-
termined by ` steps of the GMRES method applied to the equations (1.3) and (1.1),
respectively. It then follows from (3.5), (2.16) and (1.2) that

αδ < ‖pδ`(A)bδ‖ ≤ ‖p`(A)bδ‖ = ‖p`(A)(bδ − b)‖ ≤ ‖p`(A)‖‖bδ − b‖ ≤ αδ,

a contradiction. Hence, mδ ≤ `.
Assume that δ < ‖b‖ and let bδ ∈ X satisfy (1.2). Then bδ 6= 0 and therefore

dimK`(A, bδ) ≥ 1. Let

n = min{`, dimK`(A, bδ)}.(3.6)

Clearly, the set {vδj}nj=1 can be determined by Algorithm 2.1 applied to {A, bδ} with
m = n. We proceed to show that n = ` for all δ > 0 sufficiently small.

Lemma 3.2. Let n be defined by (3.6), and let {vj}nj=1 and {vδj}nj=1 be orthonor-

mal bases of Kn(A, b) and Kn(A, bδ), respectively, determined by Algorithm 2.1 applied
to {A, b} and {A, bδ}. Then, for 1 ≤ j, k ≤ n,

‖ < Avδj , v
δ
k > vδk− < Avj , vk > vk‖ ≤ 2‖vk − vδk‖+ ‖vj − vδj‖.(3.7)

Proof. The inequalities (3.7) follow from application of the Cauchy-Schwarz and
triangle inequalities using the bound (3.1) of A.

Define recursively, for j = 1, 2, . . . , `+ 1, the constants

µj =

{
1, j = 1,

2j
‖fj−1‖µj−1 + 2

∑j−1
k=1

2
‖fk‖µk, 2 ≤ j ≤ `+ 1.

(3.8)

Note that in view of the properties (3.2) of the fj , the constants µj are well-defined
and positive.

Theorem 3.3. Let the sets {fj}n+1
j=1 and {vj}nj=1 be determined by Algorithm 2.1

applied to {A, b}, and let the sets {f δj }n+1
j=1 and {vδj}nj=1 be determined by Algorithm

2.1 applied to {A, bδ}, with m = n. Introduce

δj =

{
δ, j = 1,

j‖vj−1 − vδj−1‖+ 2
∑j−1
k=1 ‖vk − vδk‖, 2 ≤ j ≤ n+ 1.

(3.9)

Then

‖fj − f δj ‖ ≤ δj , 1 ≤ j ≤ n+ 1,(3.10)

‖vj − vδj ‖ ≤
2

‖fj‖
δj , 1 ≤ j ≤ n.(3.11)

Moreover,

δj ≤ µjδ, 1 ≤ j ≤ n+ 1,(3.12)

where the constants µj are defined by (3.8).
Proof. We first show the inequalities (3.10). It follows from (1.2) that ‖f1−f δ1‖ =

‖b − bδ‖ ≤ δ = δ1. When 2 ≤ j ≤ n + 1, it follows from the scaling (3.1) of A, the

8



formulas for fj and f δj in Algorithm 2.1 and the inequalities (3.7) that

‖fj − f δj ‖ =

∥∥∥∥∥Avj−1 −
j−1∑

k=1

< Avj−1, vk > vk −Avδj−1 +

j−1∑

k=1

< Avδj−1, v
δ
k > vδk

∥∥∥∥∥

≤ ‖Avj−1 −Avδj−1‖+

∥∥∥∥∥

j−1∑

k=1

(
< Avδj−1, v

δ
k > vδk− < Avj−1, vk > vk

)
∥∥∥∥∥

≤ ‖vj−1 − vδj−1‖+

j−1∑

k=1

(2‖vk − vδk‖+ ‖vj−1 − vδj−1‖)

= j‖vj−1 − vδj−1‖+ 2

j−1∑

k=1

‖vk − vδk‖ = δj .

We turn to the inequalities (3.11). The relations vj = fj/‖fj‖ and vδj = f δj /‖f δj ‖ yield

‖vj − vδj ‖ =

∥∥∥∥∥
fj
‖fj‖

−
f δj
‖f δj ‖

∥∥∥∥∥ =

∥∥∥∥∥
(‖f δj ‖ − ‖fj‖)f δj + ‖f δj ‖(fj − f δj )

‖fj‖‖f δj ‖

∥∥∥∥∥

≤
∣∣‖f δj ‖ − ‖fj‖

∣∣
‖fj‖

+
‖fj − f δj ‖
‖fj‖

≤ 2

‖fj‖
‖fj − f δj ‖, 1 ≤ j ≤ n.

Combining these inequalities with (3.10) establishes (3.11).
We are now in a position to show (3.12). It follows from the inequalities (3.11)

and the definitions (3.9) of the δj and (3.8) of the µj that δ1 ≤ µ1δ and

δj ≤
2j

‖fj−1‖
µj−1δ + 2

j−1∑

k=1

2

‖fk‖
µkδ = µjδ, 2 ≤ j ≤ n+ 1.

Corollary 3.4. Let µj , 1 ≤ j ≤ `, be given by (3.8) and define the positive
constant

δ̂ = min
1≤j≤`

{‖fj‖
2µj

}
.(3.13)

Then dimK`(A, bδ) = ` for all bδ ∈ X such that ‖b− bδ‖ ≤ δ̂.
Proof. Assume that there is a bδ ∈ X , such that ‖b − bδ‖ ≤ δ̂ and n =

dimK`(A, bδ) < `. In view of (3.2), the element fn+1 ∈ X determined by Algo-
rithm 2.1 when applied to {A, b} is nonvanishing. Moreover, Algorithm 2.1 applied
to {A, bδ} with m = n yields f δj 6= 0 for 1 ≤ j ≤ n and f δn+1 = 0. But application of
(3.13), (3.12) and (3.10), in order, yields

‖fn+1‖
2

=
µn+1‖fn+1‖

2µn+1
≥ µn+1δ̂ ≥ δn+1 ≥ ‖fn+1 − f δn+1‖ = ‖fn+1‖,

a contradiction, because ‖fn+1‖ 6= 0. We conclude that dimK`(A, bδ) = ` for all bδ

such that ‖b− bδ‖ ≤ δ̂.
Lemma 3.5. Let δ satisfy 0 < δ ≤ δ̂, where δ̂ is defined by (3.13), and let bδ ∈ X

satisfy (1.2). Let the operators Vk and V δk be determined by applying k ≤ ` steps of
Algorithm 2.1 to {A, b} and {A, bδ}, respectively; cf. (2.4). Then

‖Vk − V δk ‖ ≤ βkδ, 1 ≤ k ≤ `,(3.14)
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where

βk =
k∑

j=1

2

‖fj‖
µj ,(3.15)

and the µj are given by (3.8). Furthermore, the adjoint operators (V δ
k )∗ satisfy

‖V ∗k − (V δk )∗‖ ≤ βkδ, 1 ≤ k ≤ `.(3.16)

The norms ‖ · ‖ in (3.14) and (3.16) are the operator norms induced by the norms
‖| · ‖| on

� k and ‖ · ‖ on X .
Proof. Let 1 ≤ k ≤ `. By Corollary 3.4, dimKk(A, bδ) = k for any bδ ∈ X with

‖b−bδ‖ ≤ δ̂. Therefore k steps of Algorithm 2.1 can be carried out without breakdown
and the orthonormal basis {vδj}kj=1 of Kk(A, bδ) determined by the algorithm is well-

defined. Thus, the operators Vk and V δk , defined by (2.4) with m = k, exist. The
bounds (3.11) and (3.12) yield

‖Vk − V δk ‖ = sup
y∈ � k
‖|y‖|=1

‖(Vk − V δk )y‖ ≤ sup
y∈� k
‖|y‖|=1

k∑

j=1

|eTj y|‖vj − vδj ‖

≤
k∑

j=1

‖vj − vδj‖ ≤
k∑

j=1

2

‖fj‖
µjδ

and (3.14) follows. The operator V ∗k − (V δk )∗ is the adjoint of Vk − (V δk ). Therefore
‖V ∗k − (V δk )∗‖ = ‖Vk − (V δk )‖ and the inequality (3.16) follows from (3.14).

Lemma 3.6. Let δ satisfy 0 < δ ≤ δ̂, where δ̂ is defined by (3.13), and let bδ ∈ X
satisfy (1.2). Let the matrices H̄δ

k ∈
� (k+1)×k and H̄k ∈

� (k+1)×k be determined by
k ≤ ` steps of Algorithm 2.1 applied to {A, bδ} and {A, b}, respectively, cf. (2.6). Let
βk be defined by (3.15) and µk+1 by (3.8). Then the matrices H̄k and H̄δ

k satisfy

‖|H̄k − H̄δ
k‖| ≤ (2βk + µk+1)δ, 1 ≤ k ≤ `.(3.17)

Proof. It follows from Corollary 3.4 that the matrices H̄k and H̄δ
k exist. The

inequalities (3.10) and (3.12) with j = k + 1 can be used to establish the inequality

‖|H̄k − H̄δ
k‖| ≤ ‖|Hk −Hδ

k‖|+ ‖fk+1 − f δk+1‖ ≤ ‖|Hk −Hδ
k‖|+ µk+1δ.(3.18)

It follows from (2.5) with m = k that H δ
k = (V δk )∗AV δk , and similarly Hk = V ∗k AVk .

These identities, the scaling (3.1) of A, the fact that ‖Vk‖ = ‖V δk ‖ = 1, and the
inequalities (3.14) and (3.16) yield

‖|Hk −Hδ
k‖| = ‖|V ∗k AVk − (V δk )∗AV δk ‖|(3.19)

≤ ‖|(V ∗k − (V δk )∗)AVk + (V δk )∗A(Vk − V δk )‖|
≤ ‖V ∗k − (V δk )∗‖+ ‖Vk − V δk ‖ ≤ 2βkδ.

Combining the inequalities (3.18) and (3.19) completes the proof.
The following results discuss the sensitivity of the pseudo-inverse of a matrix to

perturbations.
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Lemma 3.7. (Björck [2, Theorem 1.4.2]) Let B,E ∈ � k×j satisfy rank(B+E) =
rank(B) and η = ‖|B†‖|‖|E‖| < 1. Then

‖|(B +E)†‖| ≤ 1

1− η ‖|B
†‖|.

Lemma 3.8. Let the matrices H̄k and H̄δ
k as well as the constants βk, µk+1 and

δ̂ be defined as in Lemma 3.6, and introduce the positive constants

γ = max
1≤k≤`

{‖|H̄†k‖|(2βk + µk+1)}(3.20)

and

δ̃ = min{ 1

2γ
, δ̂}.(3.21)

Let δ satisfy 0 < δ ≤ δ̃ and assume that bδ ∈ X satisfies (1.2). Then

‖|(H̄δ
k)†‖| ≤ 2‖|H̄†k‖|, 1 ≤ k ≤ `.(3.22)

Moreover, when f δk+1 6= 0, we have that

‖|(H̄δ
k)† − H̄†k‖| ≤ 23/2‖|H̄†k‖|2(2βk + µk+1)δ.(3.23)

Proof. Let k satisfy 1 ≤ k ≤ `. It follows from Corollary 3.4 that the matrices
used in this lemma exist. We first show (3.22). Inequality (3.17) yields

‖|H̄†k‖|‖|H̄k − H̄δ
k‖| ≤ ‖|H̄†k‖|(2βk + µk+1)δ ≤ γδ̃ ≤ 1

2
,

and by Corollary 3.4, we have

rank(H̄k) = rank(H̄δ
k) = k.(3.24)

Lemma 3.7 can now be applied to show that

‖|(H̄δ
k)†‖| ≤ 1

1− ‖|H̄†k‖|‖|H̄k − H̄δ
k‖|
‖|H̄†k‖| ≤

1

1− γδ̃
‖|H̄†k‖| ≤ 2‖|H̄†k‖|.

We turn to (3.23). This inequality can be shown by using (3.22), (3.24) and

‖|H̄†k − (H̄δ
k)†‖| ≤ 21/2‖|H̄†k‖|‖|H̄δ

k − H̄k‖|‖|(H̄δ
k)†‖|.

The latter inequality is due to Wedin [17].
Theorem 3.9. Let δ satisfy 0 < δ ≤ δ̃, where δ̃ is given by (3.21), and let

bδ ∈ X satisfy (1.2). Let k ≤ ` and let xδk denote the kth iterate determined by the
GMRES method applied to equation (1.3) with initial approximate solution xδ0 = 0.
Similarly, let xk denote the kth iterate determined by the GMRES method applied to
equation (1.1) with initial approximate solution x0 = 0. Then, there are constants σk
independent of δ, such that

‖xk − xδk‖ ≤ σkδ, 1 ≤ k ≤ `.(3.25)
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Proof. It follows from Corollary 3.4 that dimK`(A, bδ) = ` and therefore it can
be seen from Lemma 2.3 that, for k ≤ `, the approximate solution xδk determined by
the GMRES method applied to (1.3) is well-defined. Introduce

v̂δ`+1 =

{
f δ`+1/‖f δ`+1‖, if ‖f δ`+1‖ > 0,
0, if ‖f δ`+1‖ = 0,

and let the operators (V̂ δ`+1)∗ : X → � `+1 and (V̂`+1)∗ : X → � `+1 be defined by

{
(V̂ δ`+1)∗x =

∑`
j=1 < vδj , x > ej+ < v̂δ`+1, x > e`+1,

V̂ ∗`+1x =
∑`
j=1 < vj , x > ej+ < v̂δ`+1, x > e`+1.

(3.26)

The expression (2.11) yields

xk − xδk =

{
VkH̄

†
kV
∗
k+1b− V δk (H̄δ

k)†(V δk+1)∗bδ, if k < `,

VkH̄
†
kV̂
∗
k+1b− V δk (H̄δ

k)†(V̂ δk+1)∗bδ, if k = `.

When k < `, it follows from the bounds (3.14), (3.16), (3.22) and (3.23), the scaling
(3.1) of b, and the fact that ‖V δ

j ‖ = ‖(V δj )∗‖ = 1 for 1 ≤ j ≤ ` and all δ ≥ 0, that

‖xk − xδk‖ = ‖VkH̄†kV ∗k+1b− V δk (H̄δ
k)†(V δk+1)∗bδ‖

= ‖(Vk − V δk )H̄†kV
∗
k+1b+ V δk (H̄†k − (H̄δ

k)†)(V δk+1)∗bδ

+V δk H̄
†
k(V ∗k+1 − (V δk+1)∗)b+ V δk H̄

†
k(V δk+1)∗(b− bδ)‖

≤ ‖Vk − V δk ‖‖|H̄†k‖|+ ‖|H̄
†
k − (H̄δ

k)†‖|(1 + δ)

+‖|H̄†k‖|‖V ∗k+1 − (V δk+1)∗‖+ ‖|H̄†k‖|δ
≤ βkδ‖|H̄†k‖|+ 2‖|H̄†k‖|2(2βk + µk+1)δ(1 + δ) + ‖|H̄†k‖|βk+1δ + ‖|H̄†k‖|δ
= 2(2βk + µk+1)‖|H̄†k‖|2(1 + δ)δ + (βk + βk+1 + 1)‖|H̄†k‖|δ.

Thus, we can choose

σk = 2(2βk + µk+1)‖|H̄†‖|2(1 + δ̃) + (βk + βk+1 + 1)‖|H̄†k‖|.

A similar bound can be shown for k = ` by using the operators (3.26) and the fact
that ‖V̂ ∗`+1 − (V̂ δ`+1)∗‖ ≤ β`; cf. (3.16).

Introduce the constant

ε = min
1≤j<`

‖b−Axj‖
2(α+ σj + 1)

,(3.27)

where α satisfies (3.5) and the σj , 1 ≤ j < `, are as in Theorem 3.9. Note that by
Lemma 2.3, ‖b−Axk‖ > 0 for 1 ≤ k < `, and therefore ε > 0.

Theorem 3.10. Let δ satisfy 0 < δ ≤ ε, with ε defined by (3.27), and let bδ ∈ X
satisfy (1.2). Apply the GMRES method, using Stopping Rule 1.1 with the positive
constant α satisfying (3.5), to the solution of equation (1.3) with initial approximate
solution xδ0 = 0. Then the termination index mδ satisfies mδ = `, where ` is the
number of GMRES steps required to solve (1.1) with initial approximate solution x0 =
0.
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Proof. Assume that mδ 6= `. It follows from Lemma 3.1 that mδ < `, i.e,
‖bδ −Axδk‖ ≤ αδ for some k < `. Theorem 3.9 and the scaling (3.1) of A yield

αδ ≥ ‖bδ −Axδk‖ ≥ ‖b−Axk‖ − ‖Axk −Axδk‖ − ‖b− bδ‖ ≥ ‖b−Axk‖ − σkδ − δ

and, therefore,

‖b−Axk‖ ≤ (α + σk + 1)δ.

It follows from δ ≤ ε and (3.27) that

‖b−Axk‖ ≤ (α+ σk + 1)ε ≤ 1

2
‖b−Axk‖,

a contradiction since ‖b−Axk‖ > 0. We conclude that mδ = `.
Theorem 3.11. Assume that Algorithm 2.1 applied to {A, b} breaks down after

` steps, and let the right-hand side bδ of equation (1.3) satisfy the same conditions as
in Theorem 3.10. Let the GMRES method applied to (1.3), using Stopping Rule 1.1
with the positive constant α satisfying (3.5), determine the approximate solution xδmδ ,

where, as usual, the initial approximate solution is chosen to be xδ0 = 0. Then

lim
δ↘0

sup
‖b−bδ‖≤δ

‖x− xδmδ‖ = 0,(3.28)

where x denotes the solution of (1.1).
Proof. It follows from Lemma 2.3 that the `th iterate x` determined by the

GMRES method applied to equation (1.1) with initial approximate solution x0 = 0
solves the equation, i.e., x` = x. Theorem 3.10 and the bound (3.25) show that
‖x− xδmδ‖ = ‖x− xδ`‖ ≤ σ`δ, and we obtain

sup
‖b−bδ‖≤δ

‖x− xδmδ‖ ≤ σ`δ.

Letting δ decrease to zero establishes (3.28).
It follows from Theorem 3.11 that if the GMRES method solves equation (1.1)

in finitely many steps, then the GMRES method equipped with Stopping Rule 1.1
defines a regularization method.

We remark that the results of this section also hold when A is singular, provided
that equation (1.1) has at least one solution and the GMRES method can compute
a specific solution x̆ in finitely many steps. Discussions on the behavior of the GM-
RES method when applied to linear systems of equations with a singular matrix are
presented in [3, 4]. Here we only note that a difficulty that arises is that the Arnoldi
process may break down before a sufficiently large Krylov subspace has been generated
to contain the solution x̆, i.e., the conclusion of Lemma 2.3 may be violated.

4. Computed examples. This section illustrates the behavior of the limit (1.8)
when the GMRES method is applied to two problems from the package Regularization
Tools by Hansen [10]. We compare the results of the GMRES method to those of the
conjugate gradient method applied to the normal equations (1.6). We use the imple-
mentation CGLS of Björck [2]. This implementation does not require the operator
A∗A to be formed explicitly. All computations were performed on an Intel Pentium
workstation with about 16 significant decimal digits using GNU Octave.
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Example 4.1 Example 4.2
δ mδ (GMRES) mδ (CGLS) mδ (GMRES) mδ (CGLS)

1 · 10−1 11 2 1 2
1 · 10−2 32 7 3 3
1 · 10−3 58 13 3 3
1 · 10−4 90 20 3 4
1 · 10−5 98 26 5 6
1 · 10−6 99 41 5 6
1 · 10−7 100 55 5 7
1 · 10−8 100 79 5 8
1 · 10−9 100 94 6 8
1 · 10−10 100 98 7 8
1 · 10−11 100 98 7 9
1 · 10−12 100 98 7 9

Table 4.1
Termination index mδ for different values of δ for Examples 4.1 and 4.2 for the GMRES and

CGLS methods equipped with Stopping Rule 1.1 with α = 1.

Example 4.1. Consider the Volterra integral equation of the first kind,

∫ τ

0

κ(τ − σ)x(σ)dσ = b(τ), 0 ≤ τ ≤ 1,(4.1)

where the kernel is defined by

κ(τ) =
τ−3/2

2
√
π

exp(−1/(4τ2)).

This equation is discussed by Carasso [6]. Let the right-hand side function b(τ) be
chosen so that

x(τ) =





75τ2, 0 ≤ τ ≤ 1/10,
3
4 + (20τ − 2)(3− 20τ), 1/10 < τ ≤ 3/20,
3
4 exp(2(3− 20τ)), 3/20 < τ ≤ 1/2,
0, 1/2 < τ ≤ 1

(4.2)

solves (4.1). We discretize (4.1) by the composite midpoint rule with 100 equidistant
nodes in [0, 1] using the Matlab code provided by Hansen [10] and obtain a linear
system of equations Ax = b, where A ∈ � 100×100 and x, b ∈ � 100 . The matrix A is of
ill-determined rank, because its singular values “cluster” at the origin. The vector x
is a tabulation of the solution (4.2) at equidistant points.

Let the vector d ∈ � 100 consist of random entries that are uniformly distributed
in the interval [0, 1]. We refer to the vector d as noise. Introduce the perturbed
right-hand side vector bδ = b+ δd, where δ > 0.

We apply the GMRES method with initial approximate solution xδ0 = 0 to the
solution of the linear system of equations Ax = bδ for right-hand sides associated with
several values of δ. The iterations are terminated when Stopping Rule 1.1 with α = 1
is satisfied. The Arnoldi process has been implemented with reorthogonalization to
secure orthogonality of the computed Krylov subspace basis. We denote the computed
approximate solutions by xδmδ . Figure 4.1 displays the points {log10(δ), log10(‖x −

14



xδmδ‖/‖x‖)}, marked by “+”, for δ ∈ {1 · 10−j}12
j=1. Adjacent points are connected by

dashed straight lines for clarity. The figure shows the convergence of the computed
iterates xδmδ to the solution x of equation (1.1) as a function of δ. The termination
indices mδ for the GMRES method determined by Stopping Rule 1.1 for different
values of δ are shown in Table 4.1.

Figure 4.1 also shows the corresponding graph for iterates xδmδ determined by
the CGLS method. In order to reduce the effect of round-off errors on the computed
iterates, we implemented the CGLS method with reorthogonalization of the residual
vectors rδj = A∗bδ−A∗Axδj associated with the normal equations (1.6) by the modified

Gram-Schmidt method. The points {log10(δ), log10(‖x − xδmδ‖/‖x‖)} determined by
the CGLS method are marked by “o” and adjacent points are connected by continuous
straight lines. The termination indices mδ for the CGLS method determined by
Stopping Rule 1.1 for different values of δ are shown in Table 4.1. �

Example 4.2. We consider the Fredholm integral equation of the first kind,

∫ π/2

0

κ(σ, τ)x(σ)dσ = b(τ), 0 ≤ τ ≤ π,(4.3)

where κ(σ, τ) = exp(σ cos(τ)) and b(τ) = 2 sinh(τ)/τ , discussed by Baart [1]. The
solution is given by x(τ) = sin(τ). We use Matlab code from [10] to discretize (4.3) by
the Galerkin method with 100 orthonormal box functions as test and trial functions.
This gives a linear system of equations Ax = b, where A ∈ � 100×100 and x, b ∈� 100 . The singular values of A “cluster” at the origin; the matrix therefore is of
ill-determined rank. We determine a “noise-vector” d and a “noisy” right-hand side
bδ similarly as in Example 4.1. We solve the linear system of equations Axδ = bδ by
the GMRES and CGLS methods equipped with Stopping Rule 1.1 for several values
of δ and α = 1. Figure 4.2 is analogous to Figure 4.1 and displays the 10-logarithm
of the relative error ‖x− xδmδ‖/‖x‖ as a function of δ for iterates xδmδ determined by
the GMRES and CGLS methods with δ ∈ {1 · 10−j}12

j=1. The termination indices mδ

determined by Stopping Rule 1.1 are shown in Table 4.1. �
The above examples show the iterates xδmδ determined by the GMRES method

converge to the solution x of (1.1) as δ approaches zero for two ill-posed problems
from [10]. Note that the relative error ‖x− xδmδ‖/‖x‖ in Example 4.2 is considerably

smaller for small values of δ for iterates xδmδ determined by the GMRES method than
for iterates computed by the CGLS method.

Further comparisons of the GMRES and CGLS methods are reported in [5], where
we consider ill-posed problems (1.3) that arise in image restoration. The computed
examples there show the GMRES method applied to equation (1.3) require fewer
evaluations of matrix-vector products with the matrices A or AT and determine more
pleasing restored images than the CGLS method applied to the associated normal
equations (1.6).
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Fig. 4.1. Example 4.1: Relative error norms of the iterates xδmδ computed by the GMRES and
CGLS methods.
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Fig. 4.2. Example 4.2: Relative error norms of the iterates xδmδ computed by the GMRES and
CGLS methods.
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