SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

A Simple Boosting Algorithm Using Multi-Way
Branching Decision Trees

Hatano, Kohei
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology

https://hdl.handle. net/2324,/1523960

HRI1EZR : Theory of Computing Systems. 37 (4), pp.503-518, 2004-07. Springer-Verlag
N— 30

HEFIBAMR

A Simple Boosting Algorithm Using
Multi-Way Branching Decision Trees

Kohei Hatano
Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology,
Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8552, Japan
E-mail: hatano@is.titech.ac.jp

April 3, 2003

Abstract

We improve the analysis of the decision tree boosting algorithm
proposed by Mansour and McAllester. For binary classification prob-
lems, the algorithm of Mansour and McAllester constructs a multi-way
branching decision tree using a set of multi-class hypotheses. Mansour
and McAllester proved that it works under certain conditions. We give
a rigorous analysis of the algorithm and simplify the conditions. From
this simplification, we can provide a simpler algorithm, for which no
prior knowledge on the quality of weak hypotheses is necessary.

1 Introduction

Boosting is a technique to construct a “strong” hypothesis combining many
“weak” hypotheses. This technique was first proposed by Schapire [11] to
prove the equivalence between strong and weak learnability in PAC-learning.
Many researchers have proposed various improved boosting techniques such
as AdaBoost [5] and so on. (See for example, [4, 3, 12, 13, 8, 10].) Among
them, Kearns and Mansour [7] showed that the learning process of well-
known decision tree learning algorithms such as CART [2] and C4.5 [9] can

be regarded as boosting, thereby giving some theoretical justification to those
popular decision tree learning tools.

More precisely, Kearns and Mansour formalized the process of construct-
ing a decision tree as the following boosting algorithm. For any binary clas-
sification problem, let Hs be a set of binary “branching functions” for this
classification problem. Starting from the trivial single-leaf decision tree, the
learning algorithm improves the tree by replacing some leaf of the tree (cho-
sen according to a certain rule) with an internal labeled a branching function
h € H, (again chosen according to a certain rule). It is shown that the
algorithm outputs a tree T with its training error below s~7, where s is
the number of leaves of T', provided that for any distribution, there always
exists some branching function in H, whose “advantage” is larger than v
(0 < v < 1) for the classification problem. This implies that (1/)1/7) steps
are sufficient for the desired training error . (See the next section for the
detail; in particular, the definition of “advantage”.)

There are two extensions of the result of Kearns and Mansour. Takimoto
and Maruoka generalized the algorithm for multi-class learning [14]. Their
algorithm uses, for any fixed K > 2, K-way branching functions. (For a
detailed analysis, see also [6].) On the other hand, Mansour and McAllester
gave a generalized algorithm that constructs a decision tree (for binary clas-
sification) by using multi-way branching functions. That is, their algorithm
may construct a decision tree having nodes with different number of branches.

In this paper, we improve the analysis of Mansour and McAllester’s al-
gorithm.

Consider the situation of constructing a decision tree of size s for a given
s by using multi-way branching functions. Mansour and McAllester showed
that their algorithm produces a size s decision tree with training error bound
s~ 7 under the following condition.

The condition of Mansour and McAllester

At each boosting step, there always exists a branching function h satis-

fying the following:

(1) h is either binary (in which case k = 2) or k-way branching function
with some &, k > 2, such that k < (s/s")(ve,(k)/2), where s is the
current decision tree size, and

(2) h has advantage larger than vg, (k).

Here g, and e, are defined by

1—e, (k) k=1 ~
g,(k) = # ~ Ink, and e, (k) = H(l_;)
i=1

This result intuitively means that if we can assume, at each boosting step,
some multi-way branching function that is better than a binary branching
function with advantage 7, then the algorithm produces a tree that is as good
as the one produced by the original boosting algorithm using only binary
branching functions with advantage . (Note that g,(2) = 1 by definition.)

We give a detailed analysis, thereby obtaining the following condition,
which also makes the algorithm simpler. (Here we consider the same situation
and the goal as above.)

Our condition
At each boosting step, there always exists a branching function h satis-
fying the following:
(1) his either binary (in which case k = 2) or k-way branching function
with some k, k£ > 2, such that k£ < s/s', and
(2) h has advantage larger than +[logk].

This condition is simpler, and the above explained intuition becomes clearer
under this condition. The item (2) of this new condition means that k-way
branching function A is better than an “equivalent” depth [logk] decision
tree consisting of binary branching functions with advantage . That is, if we
can always find such a multi-way branching function at each boosting step,
then the algorithm produces a tree that is as good as the one produced by
the original boosting algorithm using only binary branching functions with
advantage .

In fact, based on this new interpretation, we propose to compare the qual-
ity of weak k-way branching functions for different k& based on the quantity
computed as the information gain over [logk]|. This simplifies the original
algorithm of Mansour and McAllester, and moreover, by this modification,
we no longer need to know a lower bound +y for the advantage of binary weak
hypotheses (i.e., branching functions).

Technically, the item (2) of our condition is stronger (i.e., worse) than
the original one; this is because [logk| > g,(k) . But the item (1) of our
condition is weaker (i.e., better) than the original one.

In our argument, we introduce Weight Distribution Game for analyzing
the worst-case error bound.

2 Preliminaries

2.1 Learning Model

We introduce our learning model briefly. Our model is based on PAC learning
model proposed by Valiant[15]. Let X denote an instance space. We assume
the unknown target function f : X — {0,1}. The learner is given a sample
S of m labeled examples, S = ({z1, f(z1)),...,{(z1, f(zm))), where each z;
is drawn independently randomly with respect to an unknown distribution
P over X. The goal of the learner is, for any given constants € and § (0 <
g,0 < 1), to output a hypothesis ~y : X — {0, 1} such that its generalization

error €(hy) o Prp[f(z) # hs(x)] is below &, with probability at least 1 — .
In order to accomplish the goal, it is sufficient to design learning algo-
rithms based on “Occam Razor.”[1]. Namely, it is sufficient to construct

a learning algorithm that outputs a hypothesis h; satisfying the following

conditions: For sufficiently large sample, (1) hs’s training error é(hy) o

Prp(f(z) # hf(x)] is small, where D is the uniform distribution over S, and
(2) size(hy) = o(m), where size(-) represents the length of the bit string for
hy under some fixed encoding scheme.

In this paper we consider decision tree learning, i.e., the problem of con-
structing a decision tree satisfying the above PAC learning criteria. More
precisely, for a given target f, we would like to obtain some decision tree
T representing a hypothesis hr whose generalization error is bounded by a
given ¢ (with high probability). Note that if a hypothesis is represented as
a decision tree, the second condition of Occam learning criterion can be in-
terpreted as the number of leaves of the tree being sufficiently small with
respect to the size of the sample. By the Occam Razor approach mentioned
above, we can construct a decision tree learning algorithm that meets the
criteria.

2.2 Decision Trees

First we define some formal notations on decision trees.

We assume a set H of branching functions where each h € H is a function
from X to a finite set Ry, and we also assume |Ry,| > 2. We allow each h € H
to have different range.

A H-tree T is a rooted tree in which each internal node is labeled with a
branching function h € H, and each leaf is labeled with 0 or 1. Each internal
node in T has |R}| child nodes corresponding to the values of h, where child
nodes are either internal nodes or leaves. We denote the set of H-trees as
T(H).

A H-tree can be interpreted as a binary classifier in the following way:
When an instance r € X is given, it visits the root node and tested by the
labeled branching function at first. Next it goes to the child node corre-
sponding the value of the function. Finally, by repeating this procedure,
reaches some leaf. The answer of the tree for x is the label of the leaf.

For any H-tree T, let In(T) and L(T) be the set of internal nodes of T,
and the set of leaves of T" respectively. We define N(T') = In(T)UL(T), i.e.,
the set of all nodes in 7. For any node n € N(T'), depth of n is the length
of path between the root node and n. Especially, the root node has depth
0. Depth of a H-tree is the depth of its node that has the maximum depth
among all nodes.

Let S be a given sample, a set of examples of f, of size m. For any S and
any node n € N(T'), we denote S, be the set of examples (x, f(x)) in S such

that z reaches n. We define 7, % |Sn|/|S| and gy, o {{(z, f(z)) € S,|f(x) =
1}|/|Sy| for any node n € N(T).

We assume how to label leaves of 7" when given a sample S: The label of
each leaf £ € L(T) is 0 if ¢, < 1/2, otherwise, 1. Then the training error of
T, which we denote é(7T'), is calculated as follows:

«T)=) Pemin{g@,1 - @)

LinL(T)

2.3 Weak Hypothesis and Boosting

Now we introduce the notion of boosting. In the classical definition, boosting
is to construct a hypothesis A such that Prp[f(z) # hf(x)] < € for any given
e combining hypotheses hy, ..., hy, where each h; satisfies that Prp. [f(z) #
hi(z)] < 1/2 — v for some distribution D; over X (i = 1,...,t, for some
t > 1). However, in this paper, we measure the goodness of hypotheses (i.e.,

branching function) from an information-theoretic point of view. For this we
use the indez function defined by Kearns and Mansour|7].

Definition 1. A function I : [0,1] — [0,1] is a index function if, for any
q € [0,1],

1. min{q,1 — ¢} < I(q),
2. I(0)=1(1) =0, and I(1/2) = 1.

For example, Shannon’s entropy function ¢log(1/q)+(1—q)log(1/(1—q)),
which is used in C4.5[9], is an example of an index function. Now we define
I(T) as follows:

I(T)E Y pl(@):

LeL(T)

We note that, by the definition of the index function,

e = " pmin{G,1 -Gt < > pl@) =I(T).
tinL(T) tinL(T)

For any sample W, let gy = |{(z, f(z)) € W|f(z) = 1}|/|W|. For any
function h € H, T, be the H-tree that consists of a single internal node
labeled with h and |Ry| leaves. Let Iy (7)) be the value of I(7}) measured
with respect to the sample W.

Following relationship between “error-based” and “information-based”
hypotheses was first proved by Kearns and Mansour [7].

Lemma 1 (Kearns and Mansour [7]). Suppose I(q) = 1/q(1 —q). For
any sample W, if there exists a branching function A : X — {0,1} such
that Prp[f(z) # h(z)] < 1/2 — 0, then there exists a branching function
h': X — {0,1} such that

2

I(gw) — Iw(Ty) > f—GI(QW)-

Motivated from the above lemma, we state our assumption. We assume a
set of “information-based weak hypotheses”of the target function f.

Definition 2. Let f be any boolean function over X . Let I : [0,1] — [0, 1]
be any index function. Let H be any set of branching functions. H and I
satisfy the y-weak hypothesis assumption for f if for any sample W, there
exists a branching function h € H satistying

I(qw) — Iw(Th) > vI(qw),

where 0 < v < 1. We call the fraction (I(qw) — Iw(T1))/I(gw) advantage of
the branching function h with respect to W and 1. We refer to the reduction
I(gw) — Iw(T}) as gain .

3 Learning Binary Decision Trees

Before studying the multi-way branching decision tree learning algorithm,
we explain a binary decision tree learning algorithm proposed by Kearns and
Mansour [7].

For the binary target function f, this algorithm constructs binary decision
trees. We assume that the algorithm is given some index function I and a
set Hy of binary branching functions h : X — Ry, |Rp| = 2 in advance. We
call the algorithm TOPDOWNjy,. The description of TOPDOW Ny 1,
is given in Figure 1.

The algorithm makes a local change to the tree 7" in order to reduce (7).
At each local change, the algorithm chooses a leaf £ € L(T") and a branching
function h € H, and replaces ¢ with a new internal node labeled h (and its
two new child leaves). The tree obtained in this way is denoted 7y ,. This
Ty, has one more leaf than 7.

We explain the way to choose £ and h at each local change. The algorithm
chooses ¢ that maximizes pyI(q;); it calculates a sample S, that is a subset
of S reaching /. Finally the algorithm chooses h € H, that maximizes the
gain I1(q;) — Is,(Th). Note that I(T) — I(Ty,n) = pe(L(qr) — Is,(1)). Thus, if
the gain is positive, then we can reduce the value of the index function.

For the efficiency of this boosting algorithm, Kearns and Mansour showed
the following result.

Theorem 2 (Kearns and Mansour [7]). Assume that Hy and I satisfy
the y-weak hypothesis assumption. Then, TOPDOWNg n, (S, s) outputs
T with

TOPD ()VVIV-I,H2 (S, 8)
begin
T <+ the single leaf tree;
While |T|< s times do
¢ < argmaxye () Ped (Q2);
h < argmaxpem, 1(qr) — Is,(Th);
T < Typ;
end-while
Output T ;
end.

Figure 1: Algorithm TOPDOWN; q,

4 Learning Multi-Way Branching Decision
Trees

We propose a simpler version of Mansour and McAllester’s algorithm, which
constructs multi-way branching decision trees. We weaken and simplify some
technical conditions of their algorithm.

Let H be a set of branching functions where each h € H is a function
from X to Ry, (2 < |Ry|) . We assume that H contains a set of binary
branching function Hs. The algorithm is given H and some index function
I :[0,1] — [0,1] beforehand. We call the algorithm TOPDOWN-My.
TOPDOWN-M]j g, given a sample S and an integer s > 2 as input, outputs
a multi-way branching decision tree 7" with |T| = s.

The algorithm is a generalization of TOPDOWN]| y,. One of the main
modification is the criterion to choose branching functions. The algorithm
TOPDOWN-M;j i chooses the branching i : X — R) that maximizes the
gain over [log |Ry||, not merely comparing the gain. Because the given size of
the tree is limited, in order to reduce I(T) as much as possible, it is natural to
choose a branching function with smaller range among branching functions
that have the same amount of gain. On the other hand, the criterion that
Mansour and McAllester’s algorithm uses is the gain over g,(|Rs|). Note
that it is necessary to know 7 to compute g,.

The other modification is a constraint of branching functions with respect
to the size of the tree. We say that a branching function A is acceptable for

TOPDOWN-M; (S, s)
begin
T < the single-leaf tree;
While (|T| < s) do
¢+ arg maxeerr) Pl (q2);

h < arg max heH,
acceptable for T" and s
T + Tg’h;

end-while
Output T ;
end.

1(Ge)—1Is,(Th)
[log | Rp|]

Figure 2: Algorithm TOPDOWN-M;

tree T and target size s if either |Ry| = 2 or 2 < |Ry| < s/|T|.

Note that if |T'| > s/2, then only binary branching functions are accept-
able. As H contains H,, the algorithm can always select a branching function
that is acceptable for any 7" and s. We show the details of the algorithm in
Figure 2. One can observe that if H, satisfies the y-weak hypothesis assump-
tion, then there always exists a binary branching function hy € Hs satisfying
I(qr) — Is,(Th) > vI(qz). Therefore, if a branching function h : X — R}, is
selected for £, then we have

1(qe) = Is,(Th) _ max 1(qe) = Is,(Tw)
[log |RhH acceptabflleefg,T and s ﬂog ‘RhH

> 1(qe) — Is,(Th,)
> I ()
We give an analysis for the algorithm TOPDOWN-Mj .

First we define some notations. For any node n € N(T'), we define weight
Wy, as

def ~ ~
wy, = prl ().

The weight of a tree is just the total weight of all its leaves. Then by defini-
tion, we immediately have the following relations.

2. If Hy and I satisfy y-weak hypothesis assumption, then for any node n
and weights of n’s child nodes wy,...,wg (k > 2), we have w; + --- +

wg < (1 —y[logk])wy,.

From Fact 1 (1), in order to bound the training error of the tree, it suffices
for us to consider the weight of the tree. On the other hand, it follows from
Fact 1 (2) that at each boosting step, the weight of the tree gets decreased
by at least y[log k|w,, provided that a leaf £ is “expanded” by this boosting
step and a k-way branching function is chosen for ¢. Thus, we need to
analyze how the weight of the tree gets decreased under the situation that,
at each boosting step, (i) the leaf £ of the largest weight is selected and
expanded, and (ii) the weight gets decreased ezactly by v[logk|w,, when a
k-way branching function is chosen for /. That is, we consider the worst-
case under the situation and discuss how the tree’s weight gets decreased
in the worst-case. Notice that the only freedom left here is (i) the number
of child nodes k under the constraint £k = 2 or 2 < k < s/|T|, and (ii) the
distribution of the weights wy, . .., wy of child leaves of £ under the constraint
wy + -+ wg = (1 — y[logk|)we. Therefore, for analyzing the worst-case,
we would like to know the way to determine the number of child nodes and
the way to distribute the weight w, to its child nodes that minimize the
decrease of the total tree weight. This observation motivates us to define the
following combinatorial game between a player and an adversary, where a
player corresponds to a strategy of a decision tree learning algorithm.

Weight Distribution Game

1. Both players are informed of a given initial weight w, 0 < w < 1, and
a given target size s. A game starts from a single-leaf tree 7" consisting
of one leaf node of weight w.

2. While |T| < s, both players repeat the following procedures:

(a) The player chooses a leaf ¢ € L(T).

(b) The adversary chooses any integer k£ (> 2) satisfying either £ = 2
or 2 < k < s/|T|, and expand the leaf £ by replacing the leaf with
an internal node with £ child leaves. Then the adversary assigns
weights wy, ..., w, to these new child nodes so that the following
equation holds:

wy + -+ wp = (1 — y[log k])w,.

10

Player’s (resp., Adversary’s) goal: Minimize (resp., maximize) the weight of
the final tree 7" with s leaves.

Our decision tree learning algorithm corresponds to the player who always
chooses a leaf with the maximum weight. Then the worst-case situation for
the algorithm corresponds to the case when the adversary chooses the best
strategy to this player. As our main technical result, we analyze the final
weight of the tree of this game as follows. (The proof is given in the next
section.)

Theorem 3. In the Weight Distribution Game, consider the player who
always chooses a leaf with the maximum weight. Then the tree weight is
maximized if the adversary always chooses the number of child leaves k equals
to 2 and distributes the weight of the expanded leaf equally to all its child
nodes.

Now the worst-case situation for our boosting algorithm is clear from
this result. That is, the value of index function I(T) gets decreased slowest
when (1) every chosen branching function is binary and (2) divides the leaf’s
entropy equally to its all child nodes. Thus, by analyzing this case, we would
be able to derive an upper bound of the training error.

Theorem 4. Assume that Hy C H satisfies the y-weak hypothesis assump-
tion for f. Then, TOPDOWN-Myg(S, s) outputs T with

&T) < I(T) < s7.

Proof. Assume that in the Weight Distribution Game, the player always
chooses the leaf whose weight is the maximum. On the other hand, suppose
that the adversary chooses the number of child nodes £ = 2 and distributes
the weight of each leaf equally among its new child leaves in the game. Then
each node of the same depth has the same weight and any node with smaller
depth has larger weight. Thus the player is forced to choose a leaf of the
minimum depth.

As the output tree is a binary tree, the number of leaves of the tree
becomes s after s — 1 expansion. Let t = s — 1.

Suppose that after ¢ expansions, all nodes of depth j < i are expanded,
and there are t' leaves of depth i+1 expanded(0 < ¢ < 2¢). Then the number
of all expansions ¢ is given by ¢ = Y% (27 +#' = 2+ — 1 4+¢'.

11

Note that just after all nodes of each depth are expanded, the weight of
the tree is multiplied by (1 —). Thus after all expansions of leaves of depth
i, the weight of the tree is w(1 —)™, Since there are 2°*! nodes whose
depth is i+ 1, the weight of each node of depth i+ 1 is w(1 —)1 /2¢+1 after
2i+1 1 expansion. Now the weight of the tree after the ¢ th expansion is

i+1 ' w(l - ’Y)Hl /w(l - ’Y)HZ . i+1 t'y

Note that 1 —z < e for any 0 <z <1 and w < 1. Then we have

!

w(l —7)’ (1 - ;1) < exp[—y(i + /2],

Using In(1 + z) < z, we obtain In(2"™ +¢') < i+ 1+ #/2°". Finally,

exp[—v(i 4+ t'/27"1)] < exp[—yIn(27F! 4 ¢')]

=35

4.1 Weight Distribution Game

In this section we prove Theorem 3.

First we prepare some notations. Let D denote the set of all possible
distributions over {1,...,k} (k > 2). In particular, let dj be the uniform
one, i.e., dy = (1/k,...,1/k). We also define D = |J, -, Di. Here, for any
distribution d;, € D, the subscript k is the size of the domain of dj,. Note that
a sequence of distributions defines a sequence of the adversary’s choices in the
Weight Distribution Game. Therefore we refer to a sequence of distributions
as an adversary’s strategy.

For any adversary’s strategy dgl), e d,(ctt) € D (t > 1), we denote

SUMmax (w, di, .. ., d)

as the weight of the tree obtained by the following way:
1. the initial weight is w;

2. at the ¢ th expansion, the number of child nodes is k; and the way to
distribute weights is specified by d,(c? (1<i<t);and

12

3. the player chooses the leaf whose weight is the maximum among all
leaves.

For convenience, in this definition, we neglect some rules of the Weight Dis-
tribution Game, i.e., given size and the constraint of distributions.

Then we consider a sequence of distributions corresponding to a sequence
of branching functions that are acceptable for s. We say that such a sequence
is acceptable. More precisely, an adversary’s strategy dkll), ey dg? with length
t is acceptable for s if

1. s=(k1—1)+---+(kt—1)+1,and

2. for any integer 7 (1 <1 <),

s
2< k; < .
- T k- + o+ (ki —1)+1

By using this notation, Theorem 3 can be re-written as follows.

Theorem 5. For any weight w, any integer s > 2 and any adversary’s strat-
(1) (t) t :
egy di’,...,d;’ € D" that is acceptable for s,
SUM a5 (W, d,(cll), el dg?) < suMpay(w, ds, ..., d3).
—_—

s—1

The main idea of the proof is the following: Given a multi-way branch-
ing tree produced in the game, we choose a multi-way branching node (e.g.,
having k-branches) from the bottom and replace it with an ’almost equiv-
alent’ binary tree (having £ — 1 internal nodes). Then we show that the
tree obtained by the operation has larger weight. But this naive idea is not
sufficient; The changed tree possibly cannot be constructed when the player
always chooses the leaf with the maximum weight. In other words, to pro-
duce the modified tree, the player might be forced to choose some leaf whose
weight is not the maximum at some expansion. From later on, we consider
other strategies for the player to solve this technical problem.

Let us consider a player different from that in the Weight Distribution
Game. We say that the player is a u-max player if it chooses the leaf with
the maximum weight at each expansion until the u th erpansion. Note that
a u-max player may not choose the leaf with the maximum weight after u+1
expansions. Then we have the following proposition.

13

Proposition 6. For any weight w € [0,1], any integer ¢, u, , any u-max

player p,, and any adversary’s strategy dgl), e dg:), by, ds € DUt

SUM 0 (W, dﬁ), .. .d,(c:t), dyy -y dy) < sumy_ax(w, dgl), ... dg:), dyy ... dy),

t t
where sumy_max(- - .) is the weight of the tree obtained by the player p,.

Proof. Let pq. be the player that always choose a leaf with the maximum
weight among leaves at each expansion. We denote ny,...,n; as the nodes
that are leaves just after u expansions (Here J = (ky —1)+---+(k, —1)+1).
W.lo.g., we assume that w,, > w,, > ...w,,. Note that p,,,; chooses n; at
the u 4+ 1 th expansion.

We prove this proposition by induction on t. Suppose that p, chooses the
leaf n; at the u + 1 th expansion. First of all, for ¢ =1 and any w, it is easily
verified that

J
*
SUM oy (W, dgy s - . . dg, , d5) = E W, — YWn,
i=1

J
S E Wp,; — ’Ywnj
i=1

%
= SUMy_max (W, dg,, - . . dg, , d5).

Next, assume that for ¢ = ¢’ (¢ > 2) and for any u the proposition holds.
Let t = t'4+1. Suppose that p, chooses n; during the remaining ¢ expansions.
Note that each output tree can be made by sequences of distributions having
different orders. Thus, w.l.o.g., we assume that p, chooses n; at the u + 1
th expansion. Since p, behaves as in the same way as pmq, until u + 1
expansions, the proposition is true by the assumption of the induction.

Otherwise, assume that p, never chooses n; during the rest of ¢ expan-
sions. Note that n, is still leaf at the u + ¢ th expansion. Let n’ be the leaf
chosen by p, at the u + ¢ th expansion. Then it holds that w,, > w, since
n' is a descendant of some node n; (2 < i < J). Therefore, if p, chooses n;
instead of n' at the u+t th expansion, the weight of the output tree becomes
smaller. We denote the sum obtained by choosing n’ as sumg41)—max(- - -)-

14

Now we have, by the assumption of the induction,

SUMy—max (W, digyy - - - iy, d, - .. d3)
——
t
> SUM(y41)-max (W, Dy s - - - iy, A5, 3, - ., d)
e —
tl
> SUMpax (W, diyy - - - di, , d5y, .., d3).
——

t

Then we prove the following two propositions.

Proposition 7. For any weight w € [0, 1], any integer ¢, & (k > 2) and any
distribution dy € Dy,

SUMmax (W, dg, d3, . . ., d5) < summay(w, di, d3, . .., d5).
N — N —

t t

Proof. First of all we consider a Weight Distribution Game in which (1) the
player chooses a leaf £ of the minimum depth among all leaves of the current
tree at each expansion, and (2) £ has the maximum weight among all leaves of
the same depth. Note that in this game, the player behaves like the “breadth-
fast search” regardless of the adversary’s choices. We denote the weight of
the tree in the game as sump(...). (Here “bf” stands for “breadth-fast”.)
Applying Proposition 6 for u = 1, we have

Summax(wa dka d; R d;) S Sumbf(wa dka d;a s ’d;) (1)
S——— S———
t t
Next we prove the following inequality:
Sumbf(wa dka d;a EE d;) S Summax(wa d;;a d;a R ,d;) (2)
— —

Let T and T™ be the trees corresponding to left and right side of the above in-
equality respectively. Similarly, let pys and py,q, be the corresponding players
respectively. Since the adversary for p,,., always assign weights uniformly,
w.l.o.g., we assume that pp., behaves as in the same way as pyy. Thus T
and 7" have the same shape.

15

If T and T* are completely balanced, i.e., in both trees each leaf has
the same depth ¢ for some ¢ > 1. Then the weights of both 7" and 7™ are
w(1l — y[logk])(1 —)@V, Thus the inequality (2) holds.

Otherwise, T and T™ are not completely balanced. Suppose that 7" and
T* are trees of depth ¢ +1 (¢ > 1) in which all nodes of depth 7 — 1 and #
nodes of depth 7 are expanded (1 < ¢ < k2%). Here the number of leaves
in T (resp. T*)is k+t = k2" +t'. We denote the number of nodes of
depth i in both trees as J (J = k2'). Let wi,...,w; be the weights of
node of depth 7 in 7. W.l.o.g., we assume that w; > --- > wy. Then it
holds that ijl w; = w(l — y[logk])(1 — v)"~!. On the other hand, the
weight of each node of depth ¢ + 1 in 7™ are the same, which we denote as

w. Note that Z‘j]:l wj =), 0=w(l—7[logk])(1 - 7)¥* Thus we have

@ =w(1—~v[logk])(1—=)"!/J. Now we claim that for any t' (1 < ¢’ < .J),
tl
D w; >t (3)
j=1

Suppose not, namely, Z;I:1 w; < t'w for some t'. Then we have wy < @.
Because the sequence {w;} is monotone decreasing, it holds that ijl w; <
J@ But this contradicts the fact that Z]‘.Izl w; = J =w(l —vy[logk])(1 —
v)*~t. This completes the proof of the claim (3). Then, we have

tl
sumpg(w, dy, d, . . ., d3) =w(1 — y[log k])(1 —)" — ’VZ“]J'
—
<w(l—7[logk])(1 =)'~ —t'd
:Summax(wa d]t;a d;a ey d;)
~———

t

Finally, conbining inequalities (1) and (2), we complete the proof.
]

Proposition 8. For any weight w € [0, 1], any integer ¢, k(k > 2) and any
distribution d;, € Dy, it holds that

SUMmax (W, df, d5, . .., d5) < suMpmay(w, ds, . .., d5).
—_—— ——

t t+k—1

16

Proof. Let s = k 4 t, i.e., the number of leaves in the trees corresponding
to the both side of the inequalities above. Suppose s is given as follows:
s=2"4+¢ (20 < s <21l ¢ > 0). Then, we have

: * ' (1—7)’
Summax(w, d2, ey d2) :(1 _ ,y)lw o SI’YT’U)
t+k—1
. Slf>/
=(1-9) (1 - ?>
def
:e¢7(3)w-

On the other hand, suppose s is given as follows: s = k2" 4+ " (k2" < s <
k2¢+1 " > 0). Then, we have

SUMpax (w, d, dy, - . ., d3) =(1 — y[log k])(1 —)" w
t

1 —[logk])(1 —~)*
S ([Oigj’)() w
"

~(1 - flogkT)(1 = 2)" (1= 27) w
=1~ 5 log K1)y (/)

We note that ¢,(2s) = (1 — 7)¢,(s) and ¢, is monotone non-increasing
function. That implies,

¢(s) s ¢(s)
(1=)logh] = Oy (E) S =) oshT”

Now the following inequality holds:

* * * ¢7(8)
Summax(w, dk’ d2, P ,d2) S(l — ’Y[lOg k})m
t
<¢,(s)
=SUMyax (W, d5, . . ., d3).
—_—
t+k—1
This completes the proof. O

Combinining Proposition 7 and 8, we obtain the following lemma.

17

Lemma 9. For any weight w € [0, 1], any integer ¢ > 1, and any distribution
di € Dk,

SUM oy (W, di, d, . .., dy) < sumpax(w, d5, ..., d3).
SN———— N——
t t+k—1

Intuitively, this lemma states that if we replace the root node having k
branches with the binary decision tree having k branches in the bottom
(without leaves), we can construct the tree that has larger weight than the
original one.

Then we generalize Lemma 9 as follows:

Lemma 10. For any weight w € [0, 1], any integer s > 2, and any adver-
sary’s stragegy dgl), cen dgi), ds,...,d5 € D't | that is acceptable for s,

Sulmax (0, dy), ., d d, .,) <suMpax(w,dY, ... d""0 d5, ... d3)
t t+ky—1

Proof. We prove this inequality starting from the right side. Note that if the
adversary’s strategy déll), ceny dg:), ds,...,d5 of length u + ¢ is acceptable for
s, then the adversary’s strategy d&), ey d,(;:j), 5y« ., dy with length u+1+
k., — 2 is also acceptable for s.

Let T be the tree corresponding to the sum

(1) (u—=1) % *
SUMmax (W, dy /- dy 7 ds, . d5),
———
t+ky—1

and let L,_1 be the set of nodes in T that are leaves just after the v — 1 th
expansion. Then, we have

ku—l ’

SUM . (W, d(l), e, dey dy, ..., dy) = SUMpax(We, dsy, ..., d5), (4
k1 2 2 2 2
—— —

tky—1 t€Ly—1 t

where %, is the number of expansions for leaf £ and its descendant leaves. Note
that t+k,—1 = ZeeLu_l te. Let £* be the leaf in L, ; that has the maximum
weight. (So £* is the u th leaf to be expanded.) Let Tp« be the subtree of T
rooted at ¢*. Here |Tp| = tp« + 1. Let @* be a tree that has the following

properties: (1) [Tp| = |Tp=| = g + 1, and (2) Tp is generated according to
the adversary’s strategy di,,ds,...,d;, whereas Tj is generated according
—_——

te* —ky+1

18

to the adversary’s strategy ds,...,d;. Now we consider replacing Tj» with
N———

tl*

j\}*. Before doing this, we need to guarantee that k, < |Tj|, otherwise
tp« — k, +1 < 0. This is clear when k, = 2. Then we consider the other
case. Because the adversary’s strategy d,(cll), een, dgi), ds,...,d5 is acceptable
for s, by definition, we have k, < s/|L,_1|. On the other hand, T} is the

largest subtree among all subtrees rooted at leaves in L,_;. This implies

8/|Ly—1| < |Tp|. Now we guarantee that k, < |Tp<|. From Lemma 9, we
have
SUMpax (Wes, d5y, - .., d5) > summax(we*,d,(;:) oy s y).
—— S——

ty tg—kyt+1

Thus we conclude that by replacing subtree Ty« with @*, the weight of T'
becomes small. We denote the replaced tree as 7', and denote its weight as
sum(...) . Then, we have

> supac(we, d3, ..., d3) > sum(w,dy, ... dfY, d5, ... dy). (5)
%t,_/ —

LELy—1 ’ t

Note that 7 can be produced by a player who chooses leaves of the maximum
weight at the initial v expansions. By Proposition 6, we have

sum(w, dy), ..., d", dy, ..., d5) > sumpac(w,dY, ... d" d5, ... d}). (6)
Y Y
Combining inequalities (4), (5), and (6), we complete the proof. O

Now the proof of our theorem is easy.

Proof for Theorem 5 From Lemma 10, for any adversary’s strategy

dg,, - - -,dg, € D' that is acceptable for s, we have
1 t 1 t—1
SUM 0 (W, dil), e d,(%)) <SUMpax (W, d,(ﬂ), e dit_l), -5 dy)
——
ki—1
1 t-2) «
<SuMpax (W, d;l), A dit_;, dy, ..., d3)
——
ki—1+kt—2
<.
<suMpax(w, ds, . .., d5).
1
P

19

5

Acknowledgements

I am grateful to Prof. Osamu Watanabe for his constant support during this
research, and to Tadashi Yamazaki for important hints and comments. I also
thank members of Watanabe research group for helpful discussions. Finally
I thank anonymous referees for many suggestions to improve my draft.

References

1]

2]

3]

[4]

[5]

[6]

[7]

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s
razor. Information Processing Letters, 24:377-380, April 1987.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth International Group, 1984.

Carlos Domingo and Osamu Watanabe. MadaBoost: A modification
of AdaBoost. In Proceedings of 13th Annual Conference on Computa-
tional Learning Theory, pages 180-189. Morgan Kaufmann, San Fran-
cisco, 2000.

Y. Freund. Boosting a weak learning algorithm by majority. Information
and Computation, 121(2):256-285, September 1995.

Yoav Freund and Robert E. Schapire:. A decision-theoretic general-
ization of on-line learning and an application to boosting. Journal of
Computer and System Sciences, 55(1):119-139, 1997.

Kohei Hatano. Analyses of multi-way branching decision tree boosting
algorithms. Technical Report C-152, Dept. of Math. and Computing
Sciences, Tokyo Institute of Technology, 2001.

M. Kearns and Y. Mansour. On the boosting ability of top-down decision
tree learning algorithms. Journal of Computer and System Sciences,
58(1):109-128, 1999.

20

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Yishay Mansour and David McAllester. Boosting using branching pro-
grams. In Proc. 13th Annual Conference on Computational Learning
Theory, pages 220-224. Morgan Kaufmann, San Francisco, 2000.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann, 1993.

Yoshifumi Sakai. A Naive Boosting Algorithm Using DNF Formulas.
Trans. IEICE-D, J84-D-I(1), 2000. in Japanese.

Robert E. Schapire. The strength of weak learnability. Machine Learn-
ing, 5(2):197-227, 1990.

Robert E. Schapire. Using output codes to boost multiclass learning
problems. In Proc. 1/th International Conference on Machine Learning,
pages 313-321. Morgan Kaufmann, 1997.

Robert E. Schapire and Yoram Singer. Improved boosting algorithms
using confidence-rated predictions. Machine Learning, 37(3):297-336,
1999.

Eiji Takimoto and Akira Maruoka. On the boosting algorithm for mul-
ticlass functions based on information-theoretic criterion for approxima-
tion. In Proceedings of the 1st International Conference on Discovery
Science, volume 1532 of Lecture Notes in Artificial Intelligence, pages
256—267. Springer-Verlag, 1998.

L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, November 1984.

21

