
An Optimal Parallel Co-connectivity Algorithm

Ka Wong Chong1 Stavros D. Nikolopoulos2 Leonidas Palios2

1 Department of Computer Science, The University of Hong Kong,
Hong Kong, China
kwchong@cs.hku.hk

2 Department of Computer Science, University of Ioannina,
GR-45110 Ioannina, Greece
{stavros, palios}@cs.uoi.gr

Abstract

In this paper, we consider the problem of computing the connected
components of the complement of a given graph. We describe a simple
sequential algorithm for this problem, which works on the input graph
and not on its complement, and which for a graph on n vertices and m
edges runs in optimal O(n + m) time. Moreover, unlike previous linear
co-connectivity algorithms, this algorithm admits efficient parallelization,
leading to an optimal O(log n)-time and O((n + m)/ log n)-processor al-
gorithm on the EREW PRAM model of computation. It is worth noting
that, for the related problem of computing the connected components of a
graph, no optimal deterministic parallel algorithm is currently available.
The co-connectivity algorithms find applications in a number of problems.
In fact, we also include a parallel recognition algorithm for weakly trian-
gulated graphs, which takes advantage of the parallel co-connectivity algo-
rithm and achieves an O(log2 n) time complexity using O((n+m2)/ log n)
processors on the EREW PRAM model of computation.

Keywords: Connected and co-connected component, co-connectivity
algorithm, parallel algorithm, weakly triangulated graph, parallel recog-
nition.

1 Introduction

We consider finite undirected graphs with no loops or multiple edges. Let G be
such a graph, and let u and v be vertices in G. We say that u is connected to v if
G contains a path from u to v. The graph G is connected if u is connected to v for
every pair of vertices u, v of G. The connected components (or components) of G
are the equivalence classes of vertices under the “is connected to” relation. The

1

co-connected components (or co-components) of G are the connected components
of the complement of G.

The problem we study in this paper is that of computing the co-connected
components of a graph. The computation of the co-connected components oc-
cupies a central place in algorithmic graph theory, both in a sequential and
in a parallel process environment, and is a key step in algorithms for a num-
ber of combinatorial problems on graphs, such as, finding maximum cliques,
independent sets, and transitive orientations [12, 24], computing the modular
decomposition of an undirected graph [10, 12], recognizing weakly triangulated
graphs [4], detecting antiholes in graphs [23].

Sequentially, the problem of determining the connected components of a
graph is solved by a search and label approach. For a graph on n vertices and
m edges given in adjacency list representation, a simple sequential algorithm —
e.g., one based on depth-first search— runs optimally in O(n + m) time [9, 12].

By definition, the problem of determining the co-connected components of
a graph G can be easily solved by computing first the complement G of the
graph G and then applying a connectivity algorithm on G. It takes Ω(n2) time
to compute the complement explicitly, and thus, this approach produces a co-
connectivity algorithm which may be super-linear in the size of the input graph.
Ito and Yokoyama [19] showed that a depth-first-search tree and a breadth-
first-search tree on the complement of a given graph can be constructed in
linear time; this result, in turn, implies a linear-time algorithm for computing
the co-components of a graph. Dahlhaus, Gustedt, and McConnell [10], in their
paper on modular decomposition, described a procedure for finding a depth-first-
search forest on the complement of a directed graph in O(n+m) time. The key
element of their procedure is the use of a mixed representation of a graph; some
vertices carry a list of their non-neighbors rather than that of their neighbors.
As their algorithm computes a depth-first-search forest on the complement in
time proportional to the size of the mixed representation, it implies a linear-
time co-connectivity algorithm. It must be noted that the depth-first-search tree
algorithms in both [19] and [10] rely on linear-time solutions to special cases of
the disjoint set union problem.

Developing efficient parallel algorithms for finding the components and co-
components of a graph turns out to be a more challenging problem. Early paral-
lel connectivity algorithms appear in Hirschberg [16] and Hirschberg, Chandra,
and Sarwate [17]; the proposed algorithms compute the connected components
of a graph on n vertices, which is given by its adjacency matrix, in O(log2 n)
time using O(n2/ log n) processors on the CREW PRAM model of computa-
tion. Later, Chin, Lam, and Chen [6] presented an algorithm which runs in
O(log2 n) time and requires O(n2/ log2 n) processors on the CREW PRAM,
thus improving the cost to O(n2). An EREW PRAM version of the algorithm
exhibiting the same time and processor complexity was proposed by Nath and
Maheshwari [22]. An O(log n)-time O(n + m)-processor CRCW PRAM algo-
rithm for determining the connected components of a graph on n vertices and
m edges was described by Shiloach and Vishkin [26]; the algorithm was later

2

simplified by Awerbuch and Shiloach [2]. Other parallel connectivity algorithms
were proposed by Savage and JáJá [25], among which an algorithm which runs
in O(log2 n) time using O(n log n+m) processors on the CREW PRAM model.
Recently, Chong, Han, and Lam [8] described a parallel algorithm for comput-
ing the minimum spanning tree/forest of a graph which runs in O(log n) time
using O(n + m) processors on the EREW PRAM; the algorithm can be used
to compute the connected components of a graph within the same time and
processor complexity. Additionally, Chong, Han, Igarashi, and Lam [7] pre-
sented an algorithm for fast integer sorting which enabled them to achieve the
EREW PRAM computation of minimum spanning trees in O(log n) time using
O((n + m)/

√
log n) processors, and in O(log n) time using O(n2/ log n) proces-

sors; note that the latter algorithm is optimal for dense graphs. An extensive
coverage of parallel connectivity algorithms can be found in [1, 20].

The parallel computation of the co-connected components of a graph can be
easily done by computing the complement of the graph and then by applying
one of the parallel algorithms for the connected components on the complement.
However, as in the sequential case, this yields non-optimal algorithms. To the
best of our knowledge no parallel algorithm which “directly” computes the co-
connected components exists.

In this paper, we describe a simple sequential algorithm for computing the
co-components of a graph, which for a graph of n vertices and m edges runs in
O(n + m) time and is therefore optimal. The algorithm works on the graph,
and not on its complement, and, unlike the algorithms in [10, 19], it is not
data structure-based and it employs neither breadth-first-search nor depth-first-
search. Additionally, it admits efficient parallelization, leading to the first op-
timal O(log n)-time and O((n + m)/ log n)-processor parallel algorithm on the
EREW PRAM model of computation.

As an application of the parallel co-connectivity algorithm, we present a
parallel algorithm for recognizing weakly triangulated graphs. An undirected
graph G is called weakly triangulated (or weakly chordal) if both G and its com-
plement G have no chordless cycle of length greater than or equal to 5 (see
[13]); a chordless cycle of the graph G is a simple cycle such that there are no
edges of G connecting any two nonconsecutive vertices of the cycle. The class
of weakly triangulated graphs was introduced by Hayward [13] as a natural
extension of the well-known perfect class of triangulated graphs. The weakly
triangulated graphs have been shown to be perfect, although not all weakly tri-
angulated graphs are perfectly orderable [13]; indeed, the P5-free weakly trian-
gulated graphs are perfectly orderable, whereas the P5-free weakly triangulated
graphs are not necessarily perfectly orderable [14]. Moreover, Hoáng has shown
that recognizing perfectly orderable graphs remains NP-complete for weakly
triangulated inputs [18].

The problem of recognizing weakly triangulated graphs has been studied,
both on its own and in the context of finding chordless cycles of length k ≥ 5.
However, most of the effort has focused on sequential algorithms ([13, 27, 15, 4]),
ending with the O(m2)-time algorithms of Hayward, Spinrad, and Sritharan [15],

3

and of Berry, Bordat, and Heggernes [4]. The O(n3m)-time sequential algorithm
of Hayward [13] for detecting chordless cycles of length at least equal to 5 im-
plies a parallel recognition algorithm for weakly triangulated graphs running in
O(log n) time with O(n5) processors on the CRCW PRAM. On the other hand,
the weakly triangulated graph recognition algorithm proposed by Spinrad and
Sritharan [27] does not seem to be amenable to parallelization. Recently, Chan-
drasekharan, Lakshmanan, and Medidi [5] presented a parallel algorithm for
obtaining a chordless cycle of length at least equal to k ≥ 4 in a graph, when-
ever such a cycle exists, in O(log n) parallel time using O(nk−4m2) processors
on the CRCW PRAM. The application of this algorithm for k = 5 both on the
graph and on its complement gives a parallel algorithm for recognizing weakly
triangulated graphs running in O(log n) time using O(n5) processors on the
CRCW PRAM model.

Our parallel algorithm for recognizing weakly triangulated graphs takes ad-
vantage of the parallel co-connectivity algorithm and achieves an O(log2 n) time
complexity using O((n+ m2)/ log n) processors on the EREW PRAM model of
computation. Since the currently best sequential algorithm for the problem
requires O(m2) time [27, 4], our algorithm is EREW cost efficient.

The paper is organized as follows. In Section 2 we present the notation
and related terminology and we prove results on which the co-connectivity algo-
rithms rely. In Section 3 we describe the sequential co-connectivity algorithm,
establish its correctness and analyze its complexity. In Section 4 we give the
parallel co-connectivity algorithm and its analysis. In Section 5 we address
the problem of recognizing weakly triangulated graphs; we provide background,
present the parallel algorithm and analyze its time and processor complexity.
Finally, in Section 6 we conclude the paper and discuss possible extensions.

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. Let G
be such a graph; its vertex set and edge set are denoted by V (G) and E(G)
respectively. The subgraph of a graph G induced by a subset S of V (G) is
denoted by G[S]. For a vertex subset S of G, we define G− S := G[V (G)− S].

The neighborhood N(x) of a vertex x ∈ V (G) is the set of all the ver-
tices of G which are adjacent to x. The closed neighborhood of x is defined as
N [x] := {x} ∪ N(x). The neighborhood of a subset S of vertices is defined as
N(S) :=

(⋃
x∈S N(x)

)
− S and its closed neighborhood as N [S] := N(S) ∪ S.

For an edge e = xy, the neighborhood (closed neighborhood) of e is the vertex
set N({x, y}) (resp. N [{x, y}]) and is denoted by N(e) (resp. N [e]).

Both the sequential and the parallel co-connectivity algorithms rely on the
result stated in the following lemma.

4

Lemma 2.1. Let G be an undirected graph on n vertices and m edges. If v is
G’s vertex of minimum degree, then the subgraph of G induced by the neighbors
of v has fewer than

√
2m vertices.

Proof: Since v is G’s vertex of minimum degree, then
∑

x degree(x) ≥ n degree(v),
which implies that degree(v) ≤

(∑
x degree(x)

)
/n = 2m/n. Additionally, since

m ≤ n(n− 1)/2 < n2/2, we have that n >
√

2m. The combination of these two
inequalities yields that degree(v) < 2m/

√
2m =

√
2m, as desired.

This lemma implies that time linear in the size of a graph G suffices to
explicitly compute the complement of the subgraph G[N(v)] induced by the
neighbors of the minimum-degree vertex v of G, as well as its connected com-
ponents. Thus, we can compute the co-components of a graph G as follows:
we solve the problem for the subgraph of G induced by the neighbors of the
minimum-degree vertex of G, and we use this solution to construct a solution
for G. Both the sequential and the parallel co-components algorithm rely on
this strategy and in fact provide different ways of computing the general solution
from the partial solution.

Finally, we include a well-known fact and prove an additional lemma which
will be useful in establishing the correctness of the algorithms.

Lemma 2.2. Let G be an undirected graph which is disconnected. Then, G’s
complement is connected.

Lemma 2.3. Let G be an undirected graph and let A and B be two disjoint
subsets of V (G) such that the vertices in A all belong to the same connected
component of G and so do the vertices of B. If the number of edges of G with
one endpoint in A and the other in B is less than |A| · |B|, then the vertices in
A ∪B all belong to the same connected component of G.

Proof: If the number of edges of G with one endpoint in A and the other in B
is less than |A| · |B|, then there exists a pair of vertices u ∈ A and v ∈ B such
that u and v are not adjacent in G. These vertices are therefore adjacent in G.
The lemma follows.

Remark: During the process of inputing a graph, its vertices are read in
some order; we can thus assume without loss of generality that each vertex is
associated with a distinct integer from 1 to n. Therefore, in the algorithm, any
reference to a vertex is meant to correspond to the vertex’s unique identification
number. In light of that and with a slight abuse of notation, we will be using
vertices to index arrays.

3 The Sequential Co-connectivity Algorithm

Although an optimal parallel algorithm readily implies an optimal sequential
algorithm, we chose to devote this section to the description of the sequential

5

algorithm for the co-connectivity problem, thus introducing the way we take
advantage of Lemma 2.1 and at the same time giving an alternative implemen-
tation of the computation.

We assume that the input graph G has n vertices and m edges and is given
in adjacency-list representation. The algorithm uses three arrays of size n,
namely, co-comp[], size[], and num[]. For a vertex u of G, co-comp[u] is
equal to the vertex of G (possibly u as well) which is the representative of G’s
co-component to which u belongs, and size[u] is equal to 0, unless u is the
representative of the co-component of G, in which case size[u] is equal to the
size of the co-component. The array num[] helps count edges between smaller
co-components to determine whether they need to be merged (see Lemma 2.3).

Algorithm Co-components
for the computation of the connected components of the complement of a graph

Input: an undirected graph G on n vertices and m edges.

Output: arrays co-comp[] and size[] as described above.

1. Find v, a vertex of G of minimum degree; let v’s degree be d;

2. If d = 0
then {G is a single vertex or a disconnected graph; G is connected}

for each vertex w of G other than v do
co-comp[w] ← v; {use v as the representative}
size[w] ← 0;

co-comp[v] ← v; size[v] ← n;
Stop.

3. Allocate space for the arrays co-comp[], size[], and num[]; initialize
the entries of the arrays size[] and num[] to 0;

4. Construct the complement G[N(v)] of the subgraph G[N(v)] induced by
the neighbors of v in G, and compute its connected components;
for each vertex u adjacent to v in G do

co-comp[u]← the representative of the conn. component of G[N(v)]
to which u belongs;

increment size[co-comp[u]] by 1;

5. For each vertex w in V (G)−N [v] do
{add w to the same connected component of G as v}
co-comp[w] ← v; {v: representative of the component of G}
size[w] ← 0;
for each vertex x adjacent to w in G do

if x ∈ N(v)
then num[co-comp[x]] ← num[co-comp[x]] + 1;

k ← 0;
{k counts the vertices in N(v) belonging to v’s conn. component in G}

6

for each vertex u adjacent to v in G do
if co-comp[co-comp[u]] = v or

num[co-comp[u]] 6= (n− d− 1) · size[co-comp[u]]
then {u belongs to the same connected component of G as v}

co-comp[u] ← v;
size[u] ← 0;
increment k by 1;

co-comp[v] ← v;
size[v] ← n− d + k;

The nested loop at the top of Step 5 serves a two-fold purpose. Firstly, we
include the vertices in V (G)−N [v] to the co-component of G to which v belongs
by appropriately updating the corresponding entries of the array co-comp[]

(and size[]); this should be so, since, in G, v is adjacent to all the vertices in
V (G)−N [v]. Note that v is selected as the representative of the co-component
of G to which it belongs. Secondly, we count the edges connecting a vertex
in N(v) to a vertex in V (G) − N [v]; in particular, for every edge with one
endpoint, say, x, in N(v), and the other endpoint in V (G)−N [v], we increment
by 1 the entry of the array num[] corresponding to the representative of the
co-component of G[N(v)] to which x belongs. In this way, at the completion of
this nested loop, the entry num[z] of a representative z of a co-component of G
is equal to the total number of edges connecting vertices of the co-component to
vertices in V (G)−N [v]. If this number is equal to the product of the cardinality
of V (G)−N [v] (i.e., n− d− 1) and the number of vertices of the co-component
(i.e., size[z]), then the co-component is a co-component of G and remains as
it is; otherwise, in accordance with Lemma 3.1, the co-component needs to be
merged into the co-component of G to which v belongs.

This merging is done in the second loop of Step 5: until and when the
representative z of the co-component is met, the second condition of the if-
statement is true, and the entries of the arrays co-comp[] and size[] of the
vertices of the co-component are appropriately updated; after the representative
has been met, it is the first condition of the if-statement which is true, and the
corresponding entries are again appropriately updated. For every vertex in N(v)
whose co-comp[] entry is set equal to v, the variable k is incremented by 1.
Thus, at the completion of this loop, k is equal to the number of neighbors of
v which belong to the same co-component of G as v. Then, the assignment
of n − d + k to size[v] is correct taking into account that all the vertices in
V (G)−N [v] belong to the same co-component of G as v.

The algorithm does not compute the co-components of the input graph G
as collections of vertices; nevertheless, this can be easily obtained from the
array co-comp[] as follows: we allocate an array co-components[] of size n,
whose entries are heads of lists of vertex records, initialized to the null pointer;
next, for each vertex u of G, we attach a record for the vertex u in the list of
co-components[co-comp[u]]. Then, the co-components of G are the non-null
lists attached to the entries of the array co-components[].

7

Correctness. The correctness of Step 2 follows from Lemma 2.2, while the
correctness of Step 4 results from the correctness of the connected component
algorithm used. Then, the correctness of the algorithm ensues from the correct-
ness of Step 5 which is established by the preceding detailed description and by
means of Lemma 3.1.

Lemma 3.1. Let H be an undirected graph and let v be one of its vertices. More-
over, suppose that C1, C2, . . . , Ck are the co-components of the subgraph H[N(v)]
of H induced by the neighbors of v. Then, the following statements hold:

(i) The vertex v and the vertices in V (H) − N [v] belong to the same co-
component of H.

(ii) Let ri (1 ≤ i ≤ k) be the number of edges of H connecting vertices of Ci to
vertices in V (H)−N [v]. If ri < |V (Ci)| · |V (H)−N [v]|, then Ci belongs to
the co-component of H to which v belongs; If ri = |V (Ci)| · |V (H)−N [v]|,
then Ci is one of the co-components of H.

Proof: (i) Obvious, since v is non-adjacent to any of the vertices in V (H)−N [v].
(ii) If ri < |V (Ci)|·|V (H)−N [v]|, then there exists a vertex of Ci and a vertex in
V (H)−N [v] which are not adjacent; therefore, in accordance with Lemma 2.3,
Ci belongs to the co-component of H to which v belongs. Suppose now that
ri = |V (Ci)| · |V (H) −N [v]|; this implies that each vertex of Ci is adjacent to
all the vertices in V (H) − N [v]. Moreover, if we take into account that Ci is
one of the co-components of the subgraph H[N(v)], which implies that each of
its vertices is adjacent in G to all the vertices in N(v)−V (Ci), and that all the
vertices of Ci are adjacent to v, we conclude that Ci is one of the co-components
of H.

Time and Space Complexity. Clearly, Step 1 takes O(n + m) time, while
Steps 2 and 3 take O(n) time. In Step 4, the construction of the comple-
ment G[N(v)] of the subgraph of G induced by the neighborhood N(v) of
vertex v relies on a re-indexing array which allows us to map N(v) to the
set {1, 2, . . . , d}, thus enabling the construction of an adjacency-matrix rep-
resentation of G[N(v)] in O(d2) = O(m) time and space (see Lemma 2.1).
Moreover, the computation of the connected components of G[N(v)] takes an
additional O(n + m) time, while the for-loop in Step 4 takes O(n) time. Step 5
also takes O(n+ m) time; note that the tests whether a vertex x belongs to the
neighborhood N(v) of v or to the set V (G)−N [v] can be carried out in constant
time by means of an array of size n, in which we have marked the neighbors of
vertex v.

Summarizing, we have the following theorem.

Theorem 3.1. Let G be an undirected graph on n vertices and m edges. Then,
algorithm Co-components computes the connected components of the comple-
ment of G in O(n + m) time and space.

8

4 The Parallel Co-connectivity Algorithm

In this section, we present a parallel algorithm for computing the co-connected
components of a graph on n vertices and m edges. As in the description of the
sequential co-connectivity algorithm, we assume that the input graph is given
in adjacency-list representation. We also assume that, for each edge uv, the
two records in the adjacency lists of u and v are linked together; this helps us
re-index the vertices in any subgraph of the given graph fast.

Algorithm Par Co-components
for the parallel computation of the connected components of the complement of
a graph

Input: an undirected graph G on n vertices and m edges.

Output: the co-connected components of the graph G.

1. Compute the degrees of the vertices of G and store them in an array d
G
[]

of size n; locate a vertex, say, v, of G of minimum degree;

2. If m < n− 1 or d
G
[v] = 0

then {G is a single vertex or a disconnected graph; G is connected}
for each vertex u of G, do in parallel

co-comp[u] ← v; {use v as the representative}
Stop.

3. Compute the graph G[N(v)] which is the complement of the subgraph of
G induced by the neighbors of v in G;
compute the degrees of the vertices of G[N(v)] and store them in d

G[N(v)][];

compute the connected components of G[N(v)];

4. For each vertex u adjacent to v in G, do in parallel
co-comp[u]← the representative of the conn. component of G[N(v)]

to which u belongs;
if d

G
[u] + d

G[N(v)][u] < n− 1

then {there exists a vertex x in V (G)−N [v] such that ux /∈ E(G)}
mark co-comp[u];

5. For each vertex u of G, do in parallel
if u is not adjacent to v in G
then co-comp[u]← v;
else {u ∈ N(v)}

if co-comp[u] is marked then co-comp[u]← v;

Correctness. The correctness of Step 2 follows from Lemma 2.2. The objec-
tive of Step 4 is to locate those among the neighbors of v which are not adjacent
to at least one vertex in V (G) − N [v] and to mark the representatives of the
co-components of G[N(v)] to which these vertices belong; Lemma 4.1, given

9

below, establishes the correctness of the condition used in Step 4 to locate these
vertices.

Lemma 4.1. Let G be an undirected graph on n vertices and let v be a vertex of
G. Then, a vertex u ∈ N(v) is non-adjacent to at least one vertex in V (G)−N [v]
if and only if d

G
[u]+d

G[N(v)][u] < n−1, where d
G
[u] and d

G[N(v)][u] denote

the degree of u in G and in G[N(v)] respectively.

Proof: Let k and ` be the numbers of neighbors of u which belong to N(v)
and V (G)−N [v] respectively. Then, clearly, d

G[N(v)][u] = |N(v)| − k− 1, and

d
G
[u] = k+`+1. Then, the condition d

G
[u]+d

G[N(v)][u] < n−1 is equivalent

to |N(v)|+ ` < n− 1 and thus to ` < n− 1− |N(v)|. The lemma follows, since
the quantity in the right-hand side of the last inequality is precisely the number
of vertices in V (G)−N [v].

Next, we show that at the completion of Step 5, all the entries of the ar-
ray co-comp[] have been correctly updated; note that at the end of Step 4,
only the entries corresponding to the neighbors of v have been updated and
in such a way as to reflect the co-components of G[N(v)]. First, clearly, the
vertex v and the vertices in V (G) − N [v] belong to the same co-component of
G; Step 5 correctly sets the entries of the array co-comp[] for these vertices
using v as the representative of the co-component. Additionally, if S is the set
of neighbors of v which are not adjacent to at least one vertex in V (G)−N [v],
then the co-component of G to which v belongs also contains all the vertices
in S (note that in G any such vertex is adjacent to a vertex in V (G) − N [v])
as well as all the vertices belonging to the same co-component of G[N(v)] as
any vertex in S. Step 4 locates all the vertices in S and marks the representa-
tives of their co-components in G[N(v)] while Step 5 sets to v the entries of the
array co-comp[] corresponding to the vertices of the marked co-components
of G[N(v)]. For any remaining co-component of G[N(v)], the contents of the
co-comp[] entries corresponding to its vertices do not change in Step 5 and
it correctly becomes a co-component of G; note that each vertex of any such
co-component of G[N(v)] is adjacent to v, to all the vertices in V (G) − N [v],
and to all the vertices in all other co-components of G[N(v)].

Time and Processor Complexity. Next, we analyze the time and proces-
sor complexity of the algorithm. For details on the PRAM techniques mentioned
below, see [1, 20]. We note that augmenting the adjacency list representation of
the input graph so that, for each edge uv, it contains pointers linking the record
of u in the adjacency list of v and the record of v in the list of u, can be easily
established in optimal O(1) time using O(m) processors on the EREW PRAM
model using an auxiliary array.

Step 1: The computation of the degree of a vertex u of the graph G can be
done by applying list ranking on the adjacency list of u and by taking the
maximum rank; this can be done in O(log n) time using O(degree(u)/ log n)
processors on the EREW PRAM. The computation for all the vertices takes
O(log n) time and O(m/ log n) processors on the same model of computation.

10

Locating the vertex v of minimum degree in G can be executed in O(log n) time
using O(n/ log n) processors on the EREW PRAM.

Step 2: The verification of the condition in the if-statement takes constant
time, while generating the single co-component, whenever the condition is true,
takes O(1) time using O(n) processors, or O(log n) time using O(n/ log n) pro-
cessors, on the EREW PRAM model.

It is important to note that if the algorithm does not stop at Step 2, then
n− 1 ≤ m < n2, which implies that log m = Θ(log n).

Step 3: An adjacency list representation of the subgraph G[N(v)] can be ob-
tained by appropriate processing of copies of the adjacency lists of G. Then,
re-indexing (based on the ranks of the vertices in the adjacency list of v) is
applied to map the vertices in N(v) to the integers {1, 2, . . . ,d

G
[v]}. To do

that, each vertex in N(v) broadcasts its new index number to its adjacency
list; next, for each edge, the two adjacency list records associated with it, ex-
change the new index information. Then, the adjacency list representation of
G[N(v)] can be readily converted into the new indexing scheme. An adjacency
list representation of the graph G[N(v)] can be obtained by first constructing
an adjacency matrix for G[N(v)], and then by building the appropriate adja-
cency lists. The above computations can all be completed in O(log n) time
using O((n + m)/ log n) processors on the EREW PRAM, thanks to the fact
that |N(v)| = O(

√
m) (Lemma 2.1).

The computation of the degrees of the vertices in G[N(v)] is done in a fashion
similar to that described in Step 1, and it thus can be done in O(log m) time us-
ing O(m/ log m) processors on the EREW PRAM; G[N(v)] has O(

√
m) vertices

and O(m) edges. The computation of the connected components of G[N(v)]
is done by applying the minimum spanning tree/forest parallel algorithm of
Chong et al. for dense graphs [7]. For a graph on N vertices, their algorithm
takes O(log N) time and uses O(N 2/ log N) processors on the EREW PRAM;
since the graph G[N(v)] has O(

√
m) vertices (Lemma 2.1), the execution of the

algorithm on G[N(v)] takes O(log m) time and O(m/ log m) processors on the
EREW PRAM. The minimum spanning tree algorithm works by constructing
supervertices to represent the current minimum spanning subtrees, from which
a representative-based representation of the connected components is obtained.
It is important to note that the component information needs to be re-indexed
back to the original indexing scheme. This can be easily done, while avoiding
concurrent reads, by using one copy of the re-indexing array for each vertex in
N(v); since |N(v)| = O(

√
m), the copying can be done in O(log m) time using

O(m/ log m) processors on the EREW PRAM, and the re-indexing in O(log n)
time using O(

√
m/ log n) processors on the same model of computation.

Step 4: The updating of the entries of the array co-comp[] can be exe-
cuted in O(1) time using O(n) processors, or in O(log n) time using O(n/ log n)
processors, on the EREW PRAM. The marking of the representatives of the
co-components results in concurrent writing if executed as described in the
algorithm, since there may be several vertices with the same value in their

11

co-comp[] entries. In order to ensure exclusive writing, we use an auxil-
iary array P [] of size n, which we update as follows: for each vertex u for
which d

G
[u] + d

G[N(v)][u] < n − 1, we set P [u] ← co-comp[u], while the

remaining entries are considered invalid. Next, we pack the valid entries of
the array P [], we sort them, and we mark duplicate entries: the packing takes
O(log n) time using O(n/ log n) processors on the EREW PRAM; the sorting
takes O(log m) time using O(

√
m) processors on the same model of computation,

since G[N(v)] has fewer than
√

2m vertices (Lemma 2.1), and thus fewer than√
2m co-components; marking the duplicate entries takes O(log m) time using

O(
√

m/ log m) processors on the EREW PRAM. Then, by means of the valid
non-duplicate entries of the array P [], we can mark the representatives of the
co-components of G[N(v)] that need to be marked in O(1) time using O(

√
m)

processors in an EREW fashion. Thus, Step 4 can be executed in O(log n) time
using O(n/ log n +

√
m) = O((n + m)/ log n) processors on the EREW PRAM

model.

Step 5: Testing whether a particular vertex of G is adjacent to v can be done
in O(1) time using 1 processor on the EREW PRAM by means of an array of
size n storing the neighbors of v in G. On the other hand, testing for a vertex u
whether the representative co-comp[u] is marked results in concurrent reading,
if executed as described. To avoid it, we use another auxiliary array R[] of
size n, which stores pairs of vertices of G; for each vertex u ∈ N(v), we set
R[u] ← (co-comp[u], u), whereas the entries corresponding to all vertices in
V (G)−N(v) are invalid. Next, we pack the valid entries and sort them. Then,
the pairs with the same first element appear in consecutive positions in R[]; we
identify the leftmost entry of each such run of pairs and we assign to a processor
associated with this entry the task of verifying whether the representative is
marked or not; if (r, u) is such an entry, it suffices to check whether r is marked
or not. If the representative is marked, then the value v is sent to all the entries
in the same run (by using interval broadcasting on R[]; see [1]); otherwise, the
value sent is r. Then, for each valid pair (r, u) in R[], the entry co-comp[u]
is set equal to the value sent to it. Since |N(v)| = O(

√
m), it is not difficult

to see that all the above operations can be completed in O(log n) time using
O(n/ log n+

√
m) = O((n+m)/ log n) processors on the EREW PRAM model.

Taking into consideration the time and processor complexity of each step of
the algorithm, we obtain the following result.

Theorem 4.1. Algorithm Par Co-components computes the co-connected com-
ponents of a graph on n vertices and m edges in O(log n) time using O((n +
m)/ log n) processors on the EREW PRAM model.

12

PSfrag replacements

G−N [e]

eee xxx yyy

aaa b c

d

ff ggg pp qq

Q1 Q2

S1(e) S2(e)

Figure 1: The edge e ∈ E(G) contributes the edge-separators S1(e) and S2(e).

5 Recognizing Weakly Triangulated Graphs in

Parallel

In this section we present a parallel algorithm for recognizing weakly triangu-
lated graphs, which takes advantage of the parallel co-connectivity algorithm
described in the previous section. Before presenting the algorithm, we give a
brief review of the notions on which the algorithm relies.

5.1 Theoretical Background

Let G be an undirected graph with no loops or multiple edges. A vertex
set S ⊂ V (G) is called a separator if the graph G − S has at least two con-
nected components, an ab-separator (a, b ∈ V (G)) if a and b belong to different
connected components of G−S, a minimal ab-separator if S is an ab-separator
and no proper subset of S is an ab-separator, and a minimal separator if S is a
minimal ab-separator for a pair {a, b} of vertices of G [3, 4].

In general, generating minimal separators of a graph G can be done by com-
puting the neighborhoods (in G) of the connected components of subgraphs
resulting after the removal of certain vertex sets [3]. In [21], the minimal sepa-
rators in the neighborhood of a vertex x are computed in the following way: for
each connected component Qi of the subgraph G−N [x], compute the set N(Qi)
in G; this set is a minimal separator of G. This approach can be extended to
edges of G [4]. In particular, we define the notion of an edge-separator as follows:

Definition 1. Let e be an edge of a graph G, and let Qi be a connected
component of the graph G − N [e]. Then, the vertex set N(Qi) is called an
edge-separator1 of G (contributed by e) and is denoted by Si(e).

Figure 1 shows an edge e contributing two edge-separators S1(e) = {a, g, q}
and S2(e) = {a, f, g, p}. For an edge e of a graph G, let S1(e), S2(e), . . . , Sk(e)
be the edge-separators of G corresponding to the connected components of the

1 The notion of the edge-separator has been used in [4] as well, but it has been referred
to as “a minimal separator (included in the neighborhood of e);” as this expression is more
general, for the sake of clarity, we chose to define and use the term “edge-separator.”

13

graph G−N [e]. It is interesting to note that Si(e) ⊆ N(e). Moreover, it is not
difficult to see that:

Lemma 5.1. Let e be an edge of a graph G on n vertices and m edges. Then,

(i) the edge e contributes fewer than n edge-separators;

(ii) the total sum of the sizes of the edge-separators contributed by the
edge e is less than m;

(iii) each edge-separator contributed by the edge e is a minimal separator of
the graph G.

Proof: (i) Clearly true, since the graph G−N [e] has fewer than n vertices and
hence fewer than n connected components. (ii) It follows from the fact that
for a connected component Qi of G−N [e], the size of the edge-separator Si(e)
does not exceed the number of edges of G connecting vertices in Qi to vertices
in N(e); note that any such edge contributes to no connected component of
G−N [e] other than Qi. (iii) Consider a connected component Qi of G−N [e],
and let u be a vertex of Qi. Then, the edge-separator Si(e) is a minimal ux-
separator, where x is an endpoint of e.

By extending the notion of a simplicial vertex [11, 21], which helps character-
ize triangulated graphs, Berry, Bordat, and Heggernes [4] introduced the notion
of an LB-simplicial edge, and gave a new characterization of weakly triangulated
graphs.

Definition 2 ([4]). An edge e of a graph G is LB-simplicial if one of the
following holds:

(i) N [e] = V (G);

(ii) For each edge-separator Si(e), the edge e is Si(e)-saturating.

The definition is based on the concept of S-saturation introduced by Hayward in
[13]: Given a set S of vertices, an edge e of the graph G−S is S-saturating if, for
each connected component Q of the complement of G[S], at least one endpoint
of e is adjacent to all the vertices of Q. If e = xy, we define the following three
sets of vertices

A(e; x) = N(x)−N(y),

A(e; y) = N(y)−N(x),

A(e) = N(x) ∩N(y),

which clearly partition the neighborhood N(e) of the edge e (for example, in
Figure 1, A(e; x) = {a, b, c}, A(e; y) = {p, q}, and A(e) = {f, g}). Then, we can
give an alternate definition of an LB-simplicial edge.

Definition 3. Let e = xy be an edge of a graph G and let S1(e), S2(e), . . . , Sk(e)
be the edge-separators of G which correspond to the edge e. Then, the edge e is
LB-simplicial if either N [e] = V (G) or none of the co-connected components of
the subgraph G[Si(e)] contains vertices from both A(e; x) and A(e; y), 1 ≤ i ≤ k.

14

It is not difficult to see that Definition 3 is equivalent to Definition 2. The
edge e is Si(e)-saturating for an edge-separator Si(e) if and only if for each
connected component Q of the complement of G[Si(e)] at least one endpoint of
e is adjacent to all the vertices of Q; the latter is equivalent to Q ⊆ A(e; x)∪A(e)
or Q ⊆ A(e; y) ∪ A(e), that is, Q does not contain vertices from both A(e; x)
and A(e; y).

Based on the notion of an LB-simplicial edge, Berry et al. [4] proved the
following theorem.

Theorem 5.1 ([4]). A graph G is weakly triangulated if and only if every edge
of G is LB-simplicial.

Moreover, they derived an O(m2)-time algorithm for recognizing weakly tri-
angulated graphs [4], which is a direct application of Theorem 5.1 and thus it
works by checking whether all the edges of the given graph are LB-simplicial.
The algorithm also takes advantage of the following result.

Observation 5.1 ([4]). Let G be a weakly triangulated graph on n vertices
and m edges. Then, the number of distinct edge-separators of G does not exceed
n + m.

5.2 The parallel recognition algorithm

Our parallel algorithm for recognizing weakly triangulated graphs is based on the
result provided by Theorem 5.1. We assume that the input graph is connected;
for disconnected graphs, we apply the algorithm on each of their connected
components.

Algorithm WT REC for the recognition of weakly triangulated graphs

Input: a connected graph G on n vertices and m edges.

Output: yes, if G is a weakly triangulated graph; otherwise, no.

1. For each edge e = xy of the graph G, do in parallel
1.1 compute the sets A(e; x), A(e; y) and N [e];
1.2 compute the conn. components Q1(e), Q2(e), . . . , Qk(e) of G−N [e];
1.3 compute the corresponding edge-separators S1(e), . . . , Sk(e) of G;

2. Collect all the edge-separators of the graph G in a list S; if the list is
empty, then G is a weakly triangulated graph; Stop;

3. Select all the distinct entries Ŝ1, Ŝ2, . . . , Ŝ` of the list S; if their number `
is greater than n + m, then G is not a weakly triangulated graph; Stop;

4. For each edge-separator Ŝi (1 ≤ i ≤ `), do in parallel

4.1 compute the induced subgraph G[Ŝi] of G;

4.2 compute the co-connected components of G[Ŝi];

15

5. For each edge-separator Si in the list S, do in parallel
let Ŝj be the edge-separator among Ŝ1, . . . , Ŝ` which is identical to Si;
if there exist vertices u, v ∈ Si such that

u, v belong to the same co-component of G[Ŝj] and
u ∈ A(e; x) and v ∈ A(e; y), where the edge e = xy contributed Si

then the graph G is not weakly triangulated; Stop;

6. The graph G is a weakly triangulated graph.

Correctness The correctness of the parallel algorithm WT REC is estab-
lished through Theorem 5.1 and Observation 5.1.

Time and Processor Complexity. Below, we compute the complexity
of the algorithm using a step-by-step analysis; all complexities mentioned are
analyzed under the EREW PRAM model of computation. Recall that the input
graph G is connected so that n = O(m) and log m = Θ(log n); we also assume
that it is given in adjacency list representation, where, as in the case of the
parallel co-connectivity algorithm, for each edge uv, the record of u in the
adjacency list of v and the record of v in the list of u are linked together.

Step 1: This step is executed for each of the m edges of the input graph G.
In order to achieve an EREW execution of it, we copy m times the adjacency
list representation of G. This computation can be done in O(log n) time with
O(m2/ log n) processors.

Substep 1.1: We first compute the vertex set N [e], where e = xy. For this
computation we use an array Ne[] of size n. Then, for each vertex adjacent
to x, we mark the corresponding entry of Ne[] with x. Next, for each vertex
adjacent to y, we check the corresponding entry of Ne[]; if it is marked with x,
then we mark it with xy instead, otherwise, we mark it with y. Finally, we mark
the entries of Ne[] which correspond to x and y with X and Y respectively. In
this way, we have recorded in Ne[] the entire closed neighborhood of the edge e.
The above computations can be done in O(1) time using O(n) processors.
The vertex sets A(e; x) and A(e; y) are needed in the execution of Step 5. Storing
each of them in an array of size n results into concurrent reading during Step 5;
to avoid that, we represent each vertex w as a pair (w, t(e, w)), where t(e, w) is
equal to 1 or 2, if w belongs to A(e; x) or to A(e; y) respectively, and is equal
to 0 otherwise. Computing these pairs during the processing of an edge e in
Substep 1.1 can be done in O(1) time using O(n) processors. Note that the
second field t(e, w) is only used in Step 5; in Steps 2, 3, and 4, it is ignored
in the computations, but it is copied or moved whenever the associated vertex
is copied or moved, which simply results in a constant factor overhead in the
computation.
In total, for each edge e, Substep 1.1 takes O(1) time using O(n) processors on
the EWER PRAM model.

16

Substep 1.2: We use Chong, Han, and Lam’s algorithm [8] for computing the
connected components of the graph G−N [e]. The algorithm receives the input
graph as a collection of edges given in lexicographic order. An array storing the
edges of G−N [e] can be easily obtained from an array storing all the edges of
G; the latter array can be constructed as follows: We compute the ranks of the
elements in each of the adjacency lists of G. The largest rank in each adjacency
list is its size; we collect those in an auxiliary array of size n and we compute
parallel prefix sums on it. Then, if the i-th adjacency list is the adjacency list of
vertex u, and the j-th record of this adjacency list corresponds to the vertex v,
we set the (ps[i−1]+j)-th entry of the edge array equal to the pair (u, v), where
ps[i − 1] denotes the (i− 1)-st prefix sum. Thus, the construction of the array
of edges of G takes O(log n) time using O((n+m)/ logn) processors. After this
array has been constructed, we remove from it the entries corresponding to edges
incident upon at least a vertex in N [e] and we use array packing to pack the
array; this takes O(log m) = O(log n) time using O(m/ log m) = O(m/ log n)
processors. Since Chong, Han, and Lam’s connectivity algorithm takes O(log n)
time and needs O(n + m) processors on the EREW PRAM model, this substep
computes the connected components of the graph G − N [e] in O(log n) time
using O(m) processors on the same model of computation.

Substep 1.3: Let Q1(e), Q2(e), . . . , Qk(e) be the connected components of the
graph G − N [e] computed in the previous substep. In order to collect the
vertices of each edge-separator contributed by e, we form one pair (i, v) for
each edge uv where u belongs to the component Qi and v ∈ N(e). To do
that, we work as follows on a copy of the adjacency list representation of the
graph G: using list ranking and prefix sums, the adjacency list information
can be copied on an array Pe[] of size 2m; using interval broadcasting on Pe[],
each vertex broadcasts to its neighbors an integer which is equal to i if the
vertex belongs to the component Qi, or 0 otherwise, and this information is
exchanged between each pair of records corresponding to the same edge (recall
that, for each edge ab, the two records in the adjacency lists of a and b are linked
together); then, each neighbor, say, v, of each vertex u, (which has received an
integer iu from u and an integer iv from v) writes in the corresponding entry of
Pe[] the pair (iu, v) if iu 6= iv, and (0, v) otherwise. Observe that this implies
that Pe[] contains exactly one pair (i, v) for each edge uv such that u belongs to
the component Qi and v ∈ N(e), whereas the remaining entries are of the form
(0, w). Since copying, list ranking, and interval broadcasting can be executed
optimally on an EREW PRAM model, the array Pe[] is updated in O(log n)
time and O((n + m)/ log n) processors on this model of computation.
Next, the array Pe[] is sorted lexicographically, duplicate entries and entries
whose first field is equal to 0 are removed, and the array is packed. In this
way, we have the vertices of each edge-separator of the edge e collected together
and in increasing index order. We can use this array to create pointers for the
vertices of each separator (the pointer points to the entry of the array storing
the first vertex of the separator) and compute the sizes of the separators; these
computations take O(log n) time and O((n+m)/ logn) processors. Since sorting

17

takes O(log m) = O(log n) time and O(m) processors on the EREW PRAM
model, the entire substep can be completed in O(log n) time using O(n + m)
processors on the same model.

Thus, as the above substeps are executed for each edge of G, the whole step
is executed in O(log n) time using a total of O(m2) processors on the EREW
PRAM model.

Step 2: In the previous step, for each edge of the graph we have computed
a collection of pointers to its edge-separators. Then, by using list ranking or
parallel prefix sums, we can rank each edge-separator in the list or array of the
edge-separators of each edge. If we use parallel prefix sums on an array which
stores the number of edge-separators per edge and use the ranking we mentioned
earlier, we can produce an array of all the edge-separators without concurrent
writes. Thus, this step takes O(log n) time using O(m2/ log n) processors on
the EREW PRAM model.

Step 3: In this step, we need to identify and select the distinct entries Ŝ1, Ŝ2,
. . ., Ŝ` of the list S or, equivalently, to remove the duplicates from a copy of
the list S; this can be done by sorting the array of all the edge-separators, and
then by comparing adjacent entries of the sorted array. Two edge-separators of
lengths, say, ni and nj , are compared based on their vertices which have been
stored in increasing index order: we need to check the first ni,j = min{ni, nj}
vertices; if they don’t match, we readily obtain an ordering of the two edge-
separators, whereas if they match, then the edge-separator with the fewest
vertices is considered smaller. Such a comparison takes O(log ni,j) time using
O(ni,j/ log ni,j) processors or O(log n) time using O(ni/ log n) processors. Since
sorting an array of size h can be done in O(log h) time using O(h) processors
on the EREW PRAM, sorting the array of edge-separators takes O(log2 n) time
using O(m2/ log n) processors; recall that

∑
i ni = O(m2) in accordance with

Lemma 5.1. Finally, we remove the duplicates; two edge-separators are identical
if they contain the same number of vertices and these vertices are identical. The
removal is done by comparing pairs of consecutive edge-separators in the sorted
array, in order to determine whether they are identical; if they are, the one
corresponding to a higher index of the array is considered useless. Comparing
consecutive entries and marking the duplicate ones takes O(log n) time using
O(m2/ log n) processors (note that in order to guarantee Exclusive-Read execu-
tion, the processing is performed in two phases: in the first, we process all pairs
of consecutive entries located in positions 2i+1 and 2i+2, i ≥ 0; in the second,
we process all the remaining pairs). Finally, array packing brings the distinct
edge-separators in consecutive positions in the array; array packing on an array
of size O(nm) takes O(log n) time using O(nm/ log nm) = O(m2/ log n) proces-

sors. Then, the number of distinct edge-separators Ŝ1, Ŝ2, . . . , Ŝ` can be easily
extracted from the packed array.

In total, Step 3 is executed in O(log2 n) time using O(m2/ log n) processors on
the EREW PRAM model of computation.

18

Step 4: This step is executed for each of the edge-separators Ŝ1, . . . , Ŝ`; from
Observation 5.1, their number ` does not exceed n + m. As in Step 1, we make
` copies of the adjacency list representation of the graph G in order to achieve
an EREW execution of this step of the algorithm.

Substep 4.1: The subgraph G[Ŝi] can be constructed from a copy of the adja-

cency list representation of G, where records of vertices not in Ŝi are marked
useless and are removed by means of array packing. The graph can be con-
structed in O(log n) time using O(m) processors. Note that arrays need to be
built to hold the transformations from the old indices to the new indices of the
graph G[Ŝi] and back. This too can be executed in the above stated time and
processor complexity.

Substep 4.2: Here, we compute the co-connected components of the graph G[Ŝi];

let ni and mi be the numbers of vertices and edges of G[Ŝi]. This computation
can be done in O(log ni) time with O((ni+mi)/ log n) processors on the EREW
PRAM using Algorithm Par Co-components of the previous section; the array
co-comp[] returned by the algorithm Par Co-components is copied in an array
co-Ci[] of size n such that co-Ci[u] = j if u belongs to the j-th co-component

of G[Ŝi], and co-Ci[u] = 0 if u is not a vertex of G[Ŝi]. Since we have at most
n + m distinct edge-separators, each having fewer than n vertices and fewer
than m edges, we have that for all the distinct edge-separators this substep
takes O(log n) time with O(m2/ log n) processors.

Thus, the entire Step 4 is executed in O(log n) time with O(m2/ log n) processors
on the EREW PRAM model of computation.

Step 5: This step is executed for each edge-separator Si in the list S. We
use three auxiliary arrays, namely, Ai[] of length |Si|, and B[] and M [] of
length m2 each. For each Ai[], the goal is to set its entries as follows: if Si

has been contributed by the edge e of G, is a copy of some Ŝj , and its vertices
are u1, u2, . . . , upi

, then, for 1 ≤ q ≤ pi, Ai[q] =
(
i, co-Cj [uq], 1

)
if uq ∈ A(e; x),

Ai[q] =
(
i, co-Cj [uq], 2

)
if uq ∈ A(e; y), and Ai[q] =

(
i, co-Cj [uq], 0

)
otherwise;

in light of the definition of the field t(e, uq) associated with each occurrence of
the vertex uq (see Substep 1.1), we have that Ai[q] =

(
i, co-Cj [uq], t(e, uq)

)
. To

avoid concurrent reading while updating the arrays Ai[], we first construct these

arrays for each of the edge-separators Ŝ1, Ŝ2, . . . , Ŝ`; thanks to the arrays co-Cj []

and the field t(,), this takes O(1) time and requires
∑

j |Ŝj | = O(n`) processors.

Next, for each edge-separator Si, which is a copy of some Ŝj = Sh, the array Ai[]
is initialized as a copy of Ah[], while the final values of Ai[] can be obtained by
setting the first field of each of its entries to i, and the third field to the correct
t(,) (note that although Si and Sh are duplicates, they have been contributed
by different edges, say, e and e′, and thus the values of t(e, w) and t(e′, w) for
any of their vertices w may differ). Thus, the computation of the arrays Ai[]
can be completed in O(1) time using |Si| processors.
Next, we copy the elements of all the arrays Ai[] into the array B[], and the
array B[] is sorted lexicographically; copying and sorting take O(log n) time
with O(m2) processors. The array M [] is filled by processing the elements of

19

the array B[] as follows: we set M [1] ← 0; for every i = 2, 3, . . . , m2, we set
M [i] ← 1 if the elements B[i − 1] = (a, b, c) and B[i] = (a′, b′, c′) have the
property: a = a′, b = b′, c = 1, and c′ = 2, otherwise, we set M [i] ← 0.
The computation of the array M [] can be completed in O(1) time with O(m2)
processors. Then, the input graph G is a weakly triangulated graph if and
only if there exists an entry of the array M [] equal to 1; this test can be done
by computing the maximum entry of M [] in O(log n) time using O(m2/ log n)
processors.

The above description implies that the entire Step 5 is executed in O(log n) time
using O(m2) processors on the EREW PRAM model of computation.

Step 6: This step takes O(1) time using one processor.

Taking into consideration the time and processor complexity of each step of
the algorithm, we obtain that the parallel algorithm WT REC on a connected
graph on n vertices and m edges takes O(log2 n) time and O(m2/ log n) proces-
sors to be executed on the EREW PRAM model. Thus, we have the following
result.

Lemma 5.2. It can be determined whether a connected graph on n vertices
and m edges is a weakly triangulated graph in O(log2 n) time using a total of
O(m2/ log n) processors on the EREW PRAM model.

It is worth noting that all steps of the algorithm WT REC except for Step 3
can be executed in O(log n) parallel time; Step 3 necessitates O(log2 n) time.

If the input graph is not connected then we compute its connected compo-
nents by using Chong, Han, and Lam’s algorithm [8], and then apply the above
algorithm on each of the components; we note that working on each compo-
nent necessitates re-indexing. Since, for a graph on n vertices and m edges,
both Chong, Han, and Lam’s algorithm as well as the re-indexing take O(log n)
time using O(n + m) processors on the EREW PRAM, the following result is
established.

Theorem 5.2. It can be determined whether a graph on n vertices and m
edges is a weakly triangulated graph in O(log2 n) time using a total of O((n +
m2)/ log n) processors on the EREW PRAM model.

Given that the currently fastest sequential algorithms for recognizing weakly
triangulated graphs run in O(m2) time [4, 15], our parallel algorithm is cost-
efficient.

6 Concluding Remarks

In this paper we describe a sequential co-connectivity algorithm which, for a
graph on n vertices and m edges, runs in O(n + m) time and is therefore opti-
mal. The algorithm is simple, works on the graph, and not on its complement,

20

avoiding a potential Θ(n2) time complexity, and admits efficient parallelization,
leading to an optimal O(log n)-time and O((n + m)/ log n)-processor EREW
PRAM parallel algorithm. The same approach can be used to yield efficient
sequential and parallel algorithms for biconnected components and strongly
connected components of the complement of undirected and directed graphs
respectively. We also describe a parallel recognition algorithm for weakly trian-
gulated graphs, which takes advantage of the parallel co-connectivity algorithm
and achieves an O(log2 n) time complexity using O((n + m2)/ log n) processors
on the EREW PRAM model of computation.

Due to the work of Chong, Han, and Lam [8], the connected components
of a graph can be efficiently computed in O(log n) parallel time, for a cost of
O((n + m) log n) on the EREW PRAM model. Thus, since our co-connectivity
EREW PRAM algorithm computes the co-connected components of a graph for
an optimal cost O(n + m), it is reasonable to ask whether the time-processor
complexity of the parallel connectivity algorithm of [8] can be improved to
achieve an optimal cost O(n + m), with preservation of the EREW PRAM
model. We pose this as an open problem.

Our parallel algorithm for recognizing weakly triangulated graphs runs in
O(log2 n) time on the EREW PRAM model, for a cost of O((n + m2) log n)
and, thus, it is cost-efficient due to the work of Hayward, Spinrad, and Sritha-
ran [15] and Berry, Bordat, and Heggernes [4]. It is interesting to investigate
whether there exist O(log n)-time or O(log2 n)-time cost-optimal EREW PRAM
algorithms for recognizing weakly triangulated graphs.

References

[1] S.G. Akl, Parallel Computation: Models and Methods, Prentice Hall, 1997.

[2] B. Awerbuch and Y. Shiloach, New connectivity and MSF algorithms for
ultra-computer and PRAM, IEEE Trans. Computers 36, 1258–1263, 1987.

[3] A. Berry, J.-P. Bordat, and O. Cogis, Generating all the minimal separators
of a graph, Proc. 25th Inter. Workshop on Graph-Theoretic Concepts in
Computer Science (WG’99), 167–172, 1999.

[4] A. Berry, J.-P. Bordat, and P. Heggernes, Recognizing weakly triangulated
graphs by edge separability, Nordic J. Computing 7, 164–177, 2000.

[5] N. Chandrasekharan, V.S. Lakshmanan, and M. Medidi, Efficient parallel
algorithms for finding chordless cycles in graphs, Parallel Process. Letters
3, 165–170, 1993.

[6] F.Y. Chin, J. Lam, and I. Chen, Efficient parallel algorithms for some graph
problems, Communications of the ACM 25(9), 659–665, 1982.

21

[7] K.W. Chong, Y. Han, Y. Igarashi, and T.W. Lam, Improving the efficiency
of parallel minimum spanning tree algorithms, Discrete Applied Math. 126,
33–54, 2003.

[8] K.W. Chong, Y. Han, and T.W. Lam, Concurrent threads and optimal
parallel minimum spanning trees algorithm, J. ACM 48(2), 297–323, 2001.

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to
Algorithms (2nd edition), MIT Press, Inc., 2001.

[10] E. Dahlhaus, J. Gustedt, and R.M. McConnell, Efficient and practical algo-
rithms for sequential modular decomposition, J. Algorithms 41, 360–387,
2001.

[11] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25,
71–76, 1961.

[12] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York, 1980.

[13] R.B. Hayward, Weakly triangulated graphs, J. Comb. Theory B 39, 200–
208, 1985.

[14] R.B. Hayward, Meyniel weakly triangulated graphs - I: co-perfect order-
ability, Discrete Applied Math. 73, 199–210, 1997.

[15] R.B. Hayward, J. Spinrad, and R. Sritharan, Weakly chordal graph algo-
rithms via handles, Proc. 11th ACM-SIAM Symp. on Discrete Algorithms
(SODA’00), 42–49, 2000.

[16] D.S. Hirschberg, Parallel algorithms for the transitive closure and the con-
nected components problems, Proc. 8th ACM Symp. on Theory of Com-
puting (STOC’76), 55–57, 1976.

[17] D.S. Hirschberg, A.K. Chandra and D.V. Sarwate, Computing connected
components on parallel computers, Communications of the ACM 22, 461–
464, 1979.

[18] C.T. Hoàng, On the complexity of recognizing a class of perfectly orderable
graphs, Discrete Applied Math. 66, 219–226, 1996.

[19] H. Ito and M. Yokoyama, Linear time algorithms for graph search and
connectivity determination on complement graphs, Inform. Process. Letters
66, 209–213, 1998.

[20] J. JáJá, An Introduction to Parallel Algorithms, Addison-Wesley, 1992.

[21] C.G. Lekkerkerker and J.C. Boland, Representations of a finite graph by a
set of intervals on the real line, Fund. Math. 51, 45–64, 1962.

22

[22] D. Nath and S.N. Maheshwari, Parallel algorithms for the connected com-
ponents and minimal spanning trees, Inform. Process. Letters 14(1), 7–11,
1982.

[23] S.D. Nikolopoulos and L. Palios, Hole and antihole detection in graphs,
Technical Report 15-2002, Department of Computer Science, University of
Ioannina, 2002.

[24] J. Reif (ed.), Synthesis of Parallel Algorithms, Morgan Kaufmann Publish-
ers, San Mateo, California, 1993.

[25] C. Savage and J. JáJá, Fast, efficient parallel algorithms for some graph
problems, SIAM J. Computing 10, 682–691, 1981.

[26] Y. Shiloach and U. Vishkin, An O(log n) parallel connectivity algorithm,
J. Algorithms 3, 57–67, 1982.

[27] J.P. Spinrad and R. Sritharan, Algorithms for weakly triangulated graphs,
Discrete Applied Math. 59, 181–191, 1995.

23

