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Abstract

The venerable Chomsky hierarchy has long shown its value as a structural tool
in formal languages and automata theory, and gained followers in various areas. We
show here how very similar hierarchies can be obtained for families of sets of piece-
wise continuous functions. We use systems of ordinary differential equations as
automata are used in establishing the traditional Chomsky hierarchy. A functional
memory is provided by state-dependent delays which are used in a novel way, paired
with certain state components, giving memory structures similar to push-down stores
and Turing machine tapes. The resulting machine model may be viewed as a "func-
tional computing machine”, with functional input, functional memory, and, though
this is not emphasized here, functional output.

1 Introduction

Ever since its introduction by Noam Chomsky in the 1950s (see [6, 7]) the hierarchy
of families of languages named after him has played a prominent role in the theory of
formal languages and computation. This can be seen immediately e.g. in [26, 17], two
popular text-books in the area. The hierarchy can be formulated as a hierarchy of families
of languages, or as a hierarchy of generating devices (grammars), or as a hierarchy of
recognizing devices (automata), as summarized in the following table:

language family grammar automaton
regular languages Type 3 finite automaton
context-free languages Type 2 push-down automaton
context-sensitive languages Type 1 linear-bounded automaton
computably enumerable languages  Type O Turing machine

Whatever angle it is viewed from, the Chomsky hierarchy appears as a rather natural
structural backbone. It is therefore no wonder that similar natural structures have been
sought after in various areas. While these extensions have been more complicated and not
guite as natural as the original hierarchy, they have served a similar purpose. An example
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is the hierarchy of Lindenmayer systems (see e.g. [26]), and a more recent example can
be found in [16].

Dynamical systems, working in continuous time and with a finite number of contin-
uous states, have been intensively investigated lately from the point of view of computa-
tional power. Mathematically these systems are nonlinear systems of ordinary differential
equations, with inputs given, say, as integral initial values. The ability of such systems
to simulate universal Turing machines has been known for some time, see [23, 2, 5, 25].
Reviews of the earlier developments in this area can be found in [19] and [5], and [3]
contains a more recent review in a somewhat different vein. If certain assumptions are
made, essentially preventing embedding Turing-complete or more powerful oracles in the
structure of the system, then the computational power is seen to be exactly the same as
that of Turing machines (see e.g. [24, 25]). It would thus be possible to define the tradi-
tional Chomsky hierarchy using continuous dynamical systems. This, however, does not
appear to produce anything new.

Ordinary differential equations form a traditional device for defining sets of functions.
However, this is more in a generative sense than as recognizers. On the other hand, the
recognizing aspect is present in systems and control theory, indeed, the similarities be-
tween control systems and sequential machines have been known long (see e.g. [15]). We
use differential equations (provided with a special memory structure, see below) to recog-
nize sets of functions. We restrict ourselves to piecewise continuous funtiens R
with bounded support. To simplify matters we allow only supports which are subsets of
[0, 1]. As the reader may note when reading on, this is no real restriction, the theory
is easily extended to arbitrary bounded supports, contained in given function-dependent
finite intervals. To be quite specific, we defingi@cewise continuous function in R
as a functionf such that, for all real numbees the limits f (a—) = limyy4 f(X) and
f(a+) = limya f(x) both always exist as finite numbers, and are edual) except
possibly for a finite number of values af If in addition the equation

1
f(x) = E(f(x_) + f(x+))

is always satisfied we say thais atotal piecewise continuousfunction. These definitions
are extended to arbitrary intervals in an obvious fashion. The set of all total piecewise
continuous functions with support included in [J is denoted byFpc.

Systems of ordinary differential equations have only state memory. A way to add
memory is to allow delays. Delay-differential equations have a long history in applied
mathematical modelling, especially in mathematical biology, see e.g. [9, 10]. We use a
state-dependent delay but in a novel way: Certain dependent variables are used pairwise
to define a piecewise continuous function which is used as a memory element, much as
a Turing machine tape. There can be several such memory elements, or none. Posing
certain natural restrictions, a memory element can be made push-down-like. The input is
treated similarly, paired with a spesific dependent variable.

Since, from the point of view of automata, the Chomsky hierarchy is not so much
about time or space complexity, but rather about the kind of memory available, it is possi-
ble to define Chomskian hierarchies of subsetBgf. We define and prove several such
hierarchies. We also obtain several closure results for various levels of the hierarchies. A
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few open problems remain, especially concerning the (common) upper end of the hierar-
chies (the one corresponding to Turing machines and computably enumerable languages).
While we investigate here only recognizers, corresponding systems with functional out-
puts could be easily defined, so in a sense we deal with "functional computing machines”.

In the sequel we call our dynamical systems simply "machines”. These machines are
subject to certain restrictions pertaining to the type of "computations” allowed. First, the
machines are assumed to be "deterministic”, i.e., they have only forward-unique solutions.
Second, the machines are "Zenoan”, meaning e.g. that no part of the memory or input is
used infinitely often in any finite time interval. Third, as far as possible, solutions should
depend continuously on parameters in the input. These properties are discussed in Section
2 where the detailed definition of the machines is given. It should be mentioned that the
restrictions correspond roughly to what might be considered well-posedness for the kind
of machines we investigate. A different theory would be obtained if any of the restrictions
is lifted, e.g., it would be possible to obtain a similar and yet quite different theory for
non-forward-unique solutions (allowing a kind of nondeterminism).

Certain classifications of real functions according to recursion or computation based
criteria are known, notably those in [18] and [22]. It should also be mentioned that sets
of n-tuples of reals can be defined by the well-known BSS-machines (see [4]). There are
many excellent text-books in formal languages and automata theory. E.g. [26, 14, 11]
are old classics and [17, 13] are popular modern books. Concerning ordinary differential
equations we want to mention the comprehensive classical texts [8, 12], the nice concise
presentation in [21], and [1], a veritable treasure trove of uniqueness results.

2 Basc Definitions

To define amachine M, we start by fixing its basic dimensions:

mp = dimension of state
ny = dimension of functional memory

Both of these dimensions are assumed to be fimig,> 0 andny, > 0. The following
steps then lead us to the definitiondf

1. Input

Theinput is a total piecewise continuous functidn: (0, 1) — R such that the lim-
its f(0+) and f (1—) exist as finite numbers. Recall the definition of total piecewise
continuity in Section 1. To define the way input is read by the mackinge first define

f(s),if0<s<1
$f(0+),ifs=0
(1), ifs=1
0 elsewhere.

f*(s) =

Note that this simply means extendirigo a total piecewise continuous function defined
in R with support included in the interval [Q].
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The input is then given as X
f(t) = f*(so(t))

wheresy(t) is theposition function controlled byM (via a differential equation). Initially
$(0) = 0, i.e., reading of input starts at= 0. The value off (t) is immediately available
to M at timet. (In traditional automata-theoretic terms this could be called a "read-only
input tape”,sp(t) being the position of the "read-head”.)

In the sequel we more or less identifyand f*, and useFpc to denote the set of all
possible inputs.

2. State

The state of M at timet is a pointq(t) € R™. The initial value isq(0) = 0. The first
state componemny; is designated as thaeceptance indicator. Dynamical evolution of the
state is defined via a differential equation.

3. Functional memory

The machine may havefanctional memory. A machineM without a functional memory,
i.e., withny = 0, is called awo-way state machine, see Sections 3 and 4.

At any timet the contents of this memory is given via a functionR — R"™ as
described below. This function is defined by a differential equation, initieiy = O.
The correspondingosition function (positions of the "read-write-heads”) is denoted by
s(t). Now, what we mean by the contents of the functional memory at timeT , is the
collection of theny functionsxi’fT "R— R (i =1,...,npm), given by

X (S) = 0,ifs(t) #sforO<t<T
LT ) g ("1 (s)) otherwise

wheret"; is the maximum inverse o, i.e.,

t*1 () = maxt.
’ 5 (H)=s
o<t<T
Heres will be continuous in [QT], sot;‘jT (s) is defined ifs (t) = sforsomet, 0 <t <
T. Thus, what needs to be stored of the functiois only what is needed to define the
functionsx{";, not the entire historx(t), 0 <t < T. In Fgure 1 an example of the curve
(s(t), x()),0<t <T,isgven, the graph oi(ifT(s) is in thick line.
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Figure 1.

A basic property of the functions’ is given by

Lemmal. If,intheinterval 0 <t < T, x; and 5 are continuous, and s’ and sgn(s) are
piecewi se continuous, then X1 is piecewise continuous. (Piecewise continuity of sg ns)
meansthat §' changes sign only finitely often.)

Proof. It suffices to show that*; is piecewise continuous. We take a partition of the
interval [0, T]

O=m<tnu<---<tn1<tn=T
such that, in each intervatj_1, j), dther s'(t) is identically zero o5/(t) is # 0 and
continuous. Now, a jump discontinuity af(s) can only take place at one of the
pointssi(tj) (j =0, 1,..., N). Between two consecutive poirggzj,) ands (tj,) then
tifT (S) = q_l(s) is continuous and has finite limits a{(zj,)+ ands (tj,)—. O

Attimet = T, in addition toq(T) (the state) and (T) ("input symbol under scan”),
the machineM has availabl&(T) ("symbols to be read on the tapes”) where

X1 (s(T)-),if§(T) <0
%i(T) = {x(T),ifs(T) =0 (i=1...,nu).
X*1(s(T)+),if §(T) >0

Using these the dynamics of the machine is defined by differential equations. Note that
x 1 (s(T)+) = x(T) for s'(t) < O, since, for & < T sufficiently close tol', we have
th’enti*T (s (t)) =t. Similarly x*; (s (T)—) = x(T) for §(T) > 0.

For push-down machines (to’be treated in Sections 5 andr§) = 1 and an alternative
"one-sided” definition ofk; is needed. We define then

X 1(s1(T)-), if s(T) < 0

MU):{maxﬁqa)za

(A similar situation exists of course in traditional automata theory.) For these machines it
is in addition assumed that alwaggt) > 0.
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4. Differential equations

State transition, position changes (moving the "read-head” and the "read-write-heads”)
and writing on the functional memory is controlled by a system of differential equations.
We write the system in the form

d A d N

d—? = Qq(t), ), x1M) d—io = S(Qq(), f 1), X)),

ds N dx NN

g S(q(), f(),x()) and pr X(q(), f(t), X))
where the functions

Q : Rmm—l—nM—}—l _ RmM ’ S) : Rmm+n|\/|+l SR ’

S:RMIMMEL _ R and X i RMMAMEL R

are given. It will be assumed that these functions are continuoB®i"™+1 With
zero initial valueg)(0) = 0, s5(0) = 0, s(0) = 0 andx(0) = 0 an initial value problem is
then defined. The system of differential equations above is autonomous in that there is no
explicit dependence on time Asusual, timet may be included as a component of the
stateq, if needed, as can bgt), sp(t) ands(t).

We do not want our differential equations to be too badly behaved. Therefore we make
the following assumptions which should hold for any inpuEist.

1. We assume thaD, &, S and X satisfy conditions guaranteeing existence and
uniqueness of solutions in the forward direction for= 0. We will not spec-
ify these conditions, however. Indeed, for the kind of controlled state-dependent-
delay-differential equations that these equations are, few conditions of any gener-
ality seem to be known at the time of writing, at least as far as global behaviour is
considered.

On the other hand, locally may be considered as being part of the external struc-
ture of the system, and "ordinary” conditions apply (e.g. Caratlory-type con-
ditions). Similarly,X may also be considered as part of the external structure, or
sometimes as part of the state structure. We refer to [1, 12, 21].

2. Whenever possible, we will assume continuous dependence on parameters appear-
ing in f. More specifically, we do not want the structure of the differential equa-
tions to be one allowing a discontinuous dependence, that is, whefé&@rand
X*1(s) are 'nice’, say Lipschitz-continuous, arfd'(s) depends continuously on
parameters irf, the solution of the differential equation depends continuously on
those parameters as well. Note that, in a compact subset of the parameter space,
this continuous dependence is unifornt iim any finite closed time interval.

3. The derivatives, s, .. ., s, and their signs sgs), sgns)), ..., sgns,,,) are
piecewise continuous in any finite time interval<0t < T. By Lemma 1, this
implies that the functiong;"; are piecewise continuous.



The reason for demanding existence of solution is obvious. On the other hand, in this
paper we do not want to consider nonuniqueness in the forward direction. Nor do we
allow any of the function®, S, SandX to be undefined. (Again in traditional terms, we
restrict ourselves to "deterministic” machines.)

Condition 2 may be interpreted loosely as forcing computations to take only finitely
many "steps” in finite time intervals, i.e., we consider only "Zenoan” computations. (A
"step” corresponds here to a maximal open time interval where gaishcontinuous
and either nonzero or identically zero.) Note that we do not state a similar condition for
components ofj(t) or x(t), howewer. (C.f. [25].)

Note. We do not assume backward uniqueness (" reversibility” in traditional terms). On
the other hand, we might want to restrict the way the functions Q, &, Sand X are given,
say, explicitly (asin [23, 25) or as computable functions in the sense of [20] (and [24]).
Aslong as the functions are kept reasonably general this does not affect our results.

We say that a machine isane-way machineif S(q, f,%) > 0, and atrictly one-way
machineif S(q, f,X) > 0. Areal-time machineis a strictly one-way machine for which
S, f,%) =1,ie,50t) =t.

5. Acceptance

We define two kinds of acceptance mechanisms, closed acceptance and open acceptance.
We say that the input iaccepted if,

1. atsometimé =T,

(@) g1(T) > 1 (closed acceptance)
(b) 1(T) > 0O (open acceptance)

(recall thatq is the acceptance indicator and that initiadhy(0) = 0), and,

2. for one-way machines, additionally(T) = 1, i.e., all of the input is "read”.

6. Recognition

The set of functionsecognized by M (within the setFpc) consists of all inputs accepted
by M, denoted byF (M).

3 State Machines

By a state machine (SM) we mean a strictly one-way machine which does not have a
functional memory. The corresponding differential equations are then

dg ~ dso -
a Q(q(t), f(t)) and FT S@®), ).

Recall that for a strictly one-way state machi@gq, f) > 0. (In traditional automata
theory this corresponds to the deterministic finite automaton.)
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If open acceptance (resp. closed acceptance) is chosen, we use the a@@8vym
(resp.CSM). The corresponding family of sets of piecewise continuous functions rec-
ognized by the machine is denoted BYyOSM) (resp.F(CSM)). The family of comple-
ments of sets iF (OSM) (resp.F(CSM)) isdenoted by coF (OSM) (resp. coF (CSM)).
(Complements are naturally taken agaiRst.)

Theorem 2. Every SM can be replaced by an equivalent SM with & identically equal to
1, i.e, so(t) = t. (In other words, every SM can be replaced by an equivalent real-time
M)

Proof. Take astate machin® recognizing the set (M). We use the notation above for
the definition ofM. We define another SMM’ of the same dimension and with stdte
and position functiofy. The differential equations d¥1” are

dg _ Q@m. fen o ds

dt @), f) dt

Here the f of M’ is defined viag and is not the same as thie of M. To see that
F(M) = F(M’) we note first thatf (t) = (t) = f(s;'(t)). Itis then a simple matter to
verify thatg(t) = q(s; - (t)).

Thus the machin®/ is simulated byM’, using the timeso_l(t). O

In the sequel, we will assume that our state machines are real-time state machines. Note
that then, forO< t < 1, R
f(t) = f().

There is a close connection between the famikg€®©SM) and F(CSM).

Theorem 3. F(OSM) = co=F(CSM), i.e., thefamilies F(OSM) and F(CSM) are com-
plementary. Moreover, it may be assumed that 0 < g1(t) < 1.

Proof. We fix a continuously differentiable functiom: R — R such thau(x) = O for
X<0,0<ux) <1lfor0O< x < 1,andu(x) = 1foru > 1. We may assume that tinhe
is a state component of our machines, denoted simpty by

Take a(real-time) SMM. Wethen specify another SM’ by adding toM a rew state
componentp (the acceptance indicator), changing the mode of acceptance from open to
closed or vice versa, and setting

d N
d—f — Ut — () (L — Qu(@(), f(1))).
Thenp(t) = u(t — qu(t)), andF(M’) = Fpc — F(M). ]

For the purpose of comparison between machines of various kinds, in this section and
later, several sets of functions are defined. First, we say that a funic{jan input) is

e apalindromeif f(1—x) = f(x)for0 < x < 1.

e asquareif f(x+1/2) = f(x)for0 < x < 1/2.
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These concepts have familiar connotations for words. We then define the sets

Fpa = {f | f isapalindromg ,
Fsqe={f | f isasquareg,
Fpoly = { f | f is a polynomial} and
Fooly—d = {f | f is a polynomial of degree at madgt}.

The complements of these sets (agafst) are denoted byF pal: €tC.
We need the following classical result which gives us a kind of "weak pumping”.

Dimension Theorem. Let A be an open subset of R and| > k. Iff : A — RKisa
continuous mapping then it is not injective. O

Theorem 4. None of the sets Fpa), Fsqr and Fpoly isin F(OSM) nor in F(CSM). The
sameis true for the complements Fpa), Fsqrand Fpoly.

Proof. We show thatFpa ¢ F(OSM), F(CSM). The other nonmemberships are proved
analogously. The result then follows for the complements by Theorem 3.

Assume first, contrary to what is claimed, tligt, is recognized by the OSWI. But
then, since G Fpg, for a sufficiently small value of > 0 the function

g:g(x) =s€*

is accepted by, a contradiction. (Recall that we assumed continuous dependence of
solutions on parameters in inputs.)

Assume second, contrary to what is claimed, faf is recognized by the (real-time)
CSM M. Take then an open bal in R™*2 Forb in R™*2 we denote

Pb(X) = b1 + bpX + - - - 4 by ox™

By our assumptions, the mappiig: B — R™+1 mapping the poinb € B to the
point (q(1/2), f,(1/2)) whereq(t) is obtained fromM on the palindrome input

Po(x)for0 < x <1/2

fp: fo(X) = {Pb(l— x)forl/2 <x <1,

is continuous. By the Dimension Theorem, there are pdinks € B such thato # b’
andh(b) = h(b’). This means, however, that the function

fp(x) for0 < x <1/2
g:g00 = { 2% =Y
fo(x)forl/2<x<1
is accepted by. This is a contradiction sinogis not in Fpg. O



Proof. Nonmembership ofpoy_qg in F(OSM) is shown as in the previous proof. We
then show only thaFpoy_2 is in F(CSM), the general case is treated quite analogously.
A real-time CSMM recognizingFpoly—2 is constructed as follows. We sety = 6 and

doz dos

doy .
dos dgs - dgs
rT gs(t) el Qs(q(t), f(t)) e 1

whereQs will be given later. On input
f:fx)=ax?+bx+c

we have themg(t) =t and

~ b
f(ty =at®> +bt +c qz(t)=§t3+—t2+ct,

3 2
a, b, c, ag b, cC3
)= —t"+ t°+ -t° t) = 7+ 1"+ <t~
G =S50+t +5 Qu(t) = oo+ U+ &
We denote
2t 1 5t ot
sty=| 3> 3t* t | and Rty=|Z4t* i 1t

1:4 1.3 1:2
At s It

14+5 1:4 143
12 gol” zal" &t

Then we can write

a f(t) a qa(t)
St)[b|=aqt| and Re)[b|=]a® |.
C ga(t) c Qa(t)

We note the following facts:

e First, S(t) andR(t), as Wronskians of linearly independent monomials, are invert-
ible fort # 0.

e Second, fot # 0,
(gt> Ht* 2t3) = (cat® cot? cat) S(t)
for some constants;, ¢, andca.

Finally we choose

~ 2
A f(t)

Qs(q(t), f(t) = ((clq6<t>3 Co06(t)%  Ca0s(t)) (Q2(t)) q4(t)) :
gs(t)
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For aninput f in Fpoy—2 We havegs(t) = 0for0 <t < 1, andqi (1) = 1, leading to
acceptance of .

On the other hand, if an input is accepted byM, then Qs(q(t), f(t)) = 0 for
0 <t < 1landgs(t) satisfies the Euler final value problem

ds d4 d? da dag
3 2 ula _
Cit dt3 + ot Gt —da = 0,
D =A ., q@ub=B , gq@=C

in the interval O< t < 1, for some constant8, B andC. The same final value problem
is satisfied by

b c a C
Qat) = —t54+ —t4 4+ 543 where [b|=r@)1|B].
60 24 6 c A

Thusf is a polynomial of degree at most 2. (Note that,it# 0, thenQs(q(t), f(t)) =0
implies thatf (t) = q,’(t) is continuous in the interval & t < 1.) |

Note. Smilar results can be proved for other sets of functions continuously depending on
a fixed number of parameters.

Theorems 3 and 5 tell us that the familigsOSM) and 7 (CSM) are incomparable,
and neither of them is closed under complement. This incomparability and lack of closure
is largely compensated by the complementarity of the families. On the other hand, they
are closed under other Boolean operations.

Theorem 6. The families #(OSM) and F(CSM) are closed under union and intersec-
tion.

Proof. It suffices to prove the closures fof(OSM). For F(CSM) the closures then
follow by Theorem 3 and De Morgan’s laws.

Takethen two (real-time) OSMM andN, with statesy andp, and position functions
S andrg, respectively. Let the state differential equationdvoindN, oninput f, be

dg A dp _ A
a Q(q(), f(t)) and at P(p(), f ().

By Theorem 3 we may assume thatQq (t), pi(t) < 1.

We then take a new state componenthe new acceptance indicator). The real-time
machine with statéq, p, v) and state differential equations
dp

at = P(p(), f(t)) and

d N A
7 = Qua. f®) + Pup). f)

recognized-(M) U F(N). Note that here(t) = q1(t) + p1(t). Changing the differential
equation ofv to

dg A
at Q@®), ft)

dv
i Q(q(®), f®)pr(t) + w®PL(p(®), f(1))

we get a machine recogniziri(M) N F(N), andv(t) = q1(t) p1(t). O
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We close this section by an observation on the "discrete computation power” CSMs.

Theorem 7. Let L be the complement of a computably enumerable set in N and denote
F={f] fisconstantand f(x) e LforO<x <1}.

Then F € F(CSM).

Proof. We use "pure state machines” or machines with an integer input, see [25]. There
exists such a machin® recognizingN — L in the time interval [01]. Note that accep-
tance of an input ilN means here that the acceptance indicgiogrows from zero to a
positive value; if the input is rejected thgp(t) = Ofor 0 <t < 1. M receives its inpua

as an initial value of certain state components. It is, however, easy to see that it might as
well receive it as a parameter value (simply let the computation start by a copying of the
parameter valua to the necessary state components). The differential equatibhisf

then of the form

dgq

with zero initial values. (Actually, in [25], it is assumed thatis defined in a finite
interval ofg-values. It is easily seen that this interval can be replaced by the \&tle)
We first take the real-time OSN{’ with stateq and state differential equation
dq .
T Qq(), f ().
When restricted to constant inputsif) M’ accepts exactly all numbers M — L. By
Theorem 3, there is a CSM; recognizing the complement ¢f(M’). Restricted to
constant inputs ifN, M1 accepts exactly all numbers in
Let M2 be a CSM recognizingrpoy—o (i-€., constants), cf. Theorem 5. Finally we fix
acontinuous functiom : R — R such thati(x) < 0for x < Oandu(x) = O0forx > 0,
and take the real-time CSM3 with stateq and state differential equation

d ~ -

d—? = cog(xf (1)) + u(f(t)).
Restricted to constant inputh]s accepts exactly all numbers ThenF = F(M1) N
F(M2) N F(M3) is in F(CSM) by Theorem 6. O

4 Two-Way State Machines

A two-way state machine (2-SM) is amachine with no functional memory. As indicated
in Section 1, the state structure of such a machine has a very strong controlling capability,
indeed, it has all the power of a Turing machine operating on integers. Very little of this
capability can be used in computations of SMs. In order to utilize results computed by
the state structure the machine needs to stop or indefinitely slow down reading its input.
A two-way state machine can do this, and it can also re-read its input or read it in reverse.
Another property of 2-SMs, not possessed by SMs, is the ability to integrate over time
intervals of arbitrary (finite) length. There is indeed no bound on the time accepting an
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input may take. This makes it possible for 2-SMs to amplify minute effects, either by a
back-and-forth movement of the read-head, or by letting the read-head move forward or
backward, or by letting it stand still for an unspecified time. It should be remembered,
however, that the read-head cannot change direction infinitely many times in a finite time
interval.

Note. Apparently the” intermediate” possibility of allowing a state machineto bea (non-
strict) one-way machine is of interest, too. (In traditional automata-theoretic terms, this
would allow ” empty moves’.) The behaviour of such state machines is rather different
fromthat of the SMsin Section 3—then e.g. #(OSM) ¢ F(CSM)—and is not dealt with
in this paper.

We use the notations 2-OSM, 2-CS¥(2-OSM) andF(2-CSM) in an obvious fash-
ion. We first prove some inclusions.

Theorem 8. (i) F(2-OSM) c F(2-CSM)
(i) F(OSM) C F(2-OSM)
(iii) F(CSM) C F(2-CSM)

Proof. Strictness of these inclusions is a consequence of Theorem 9. To prove the inclu-
sions, we fix continuous functionsg, u, : R — R such thatu;(x) = 0for x < 0 and
ui(x) > 0forx > 0,ux(X) > 0for0 < X < 1,us(xX) = Ofor x < 0andx > 1,
and fol uz(x) dx = 1. With the machineM (2-OSM, OSM or CSM) we associate the
differential equations

dq dsy

T Q(a®), f(t)) and rr So(a), f ).

If M is strictly one-way, then we assume tigt= 1 and 0< qi(t) < 1.
(i) Take a 2-OSMM. We then take a new state compongn{the new acceptance
indicator). The differential equations for our 2-CSM are thos&odnd

dp— t t
T = @) + p).

If, at some timet, gqi1(t) > O (indicating acceptance), them starts growing and will
ewventually reach the acceptance treshold 1. This does not happen in any other situation.

(i) Consider then an OSNM. We gyain take a new state compongnand the differ-
ential equations

do B 2 ds
$=mmmmmm,-§:m0md
d

a$=mmma—u

(We may assume that tinteis a state component.) Hepegrows above 0 if and only if
g1(1) > 0. Note that the initial value problem

dg
ot uzt) , 90 =0,
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defines a bijective time transformatidh= g(t) in the interval 0< t < 1, andq(t) =
qt), ) =t and f(t) = f(&t)) = ft). Thus the 2-OSM defined by the above
differential equations simulatéd in timet’, stopping the simulation at timte=t" = 1.
(iii) Take finally a CSMM. An equivalent 2-CSM is then defined as in part (ii) except
that q
= GOuzt — 1.
O

Thus, while in traditional automata theory all kinds of finite automata (whether determin-
istic, nondeterministic, two-way, or with or without empty moves) are equivalent, this is
not the case for our state machines.

The state structure may be given time to compute, while other parts do not evolve, by
the following construct. The time axis is divided imtdd intervals [2i, 2i + 1) andeven
intervals[2i+1,2i+2) (i =0, 1,...). Multiplying the right hand side of the differential
equation of a state component by

Oodd(t) = max(O, %sinnt) (resp.oever(t) = max(O, —% sinnt))

forces it to evolve only during odd (resp. even) time intervals. Of course, if needed,
the time axis may be divided into intervals modulo &y(K = 2,3, ...) by asimilar
construct, resulting in the time-division functioag(t) (k = 1, 2, ..., K). Each part of

the machine may then be given a time slot corresponding to positive values obg@me
This is callediime-division modulo K.

End of a computation and other signalling information can be communicated between
parts of the machine using certain state compongras 0-1-flags and multiplying right
hand sides of differential equations of the pertinent other state componepi$)oyr 1—

g (t). Thus one part of the machine may compute keeping the flag vatyé jn= 0 while

other parts wait deactivated, and then signal end of its computation by raising the flag
value tog; (t) = 1, activating then certain other parts to continue their particular actions.
Results of the computation may be communicated to the other parts of the machine via
certain deactivated state components.

Obviously, exact description of such synchronization and control—not to mention
simulation of universal Turing machines—via complete sets of differential equations leads
to very complicated expressions. Therefore, only the basic ideas of such constructs are
given in proofs here and in subsequent sections. For more details on such constructs see
[23, 25].

Theorem 9. (i) The set Fpoly—g iSnot in F(2-OSM).
(i) None of the sets Fpal, Fsgrand Fpoly isin F(2-CSM).
(iii) Thesets Fpal, Fsqrand Fpoly—g arein F(2-OSM).

Proof. (i) See the proofs of Theorems 4 and 5. Note, however, that to use here the
assumed continuous dependence of solutions on parameters in the input we must as-
sume thatf * is, say, Lipschitz-continuous IR. So, since Oc Fpoy—d, the assumption

14



Fpoly—d € F(2-OSM) implies that, for a sufficiently small value ef> 0, the function
g: g(x) = e sinnx is also inF(2-OSM), acontradiction. ¢* is Lipschitz-continuous in
R.)

(if) We show thatFpg ¢ F(2-CSM) and refer to the proof of Theorem 4. The other
nonmemberships are proved analogously. Assume, contrary to the clainfptina
recognized by the 2-CSN.

The constant function 0 is iRpa. We consider first the computation & accepting
0. Take &, 0 < &€ < 1, such that whenevey(t) = & thenS(q(t), f(t)) # 0, i.e., the
read-head never stops &t (It is easy to see that suéhmust exist.) Let,, ..., t, be
exactly all times whersy has the valué. (Note that, by our assumptions, these must be
finite in number.)

Take then fy, € Fpa Whereb is in a small ballB C RPMM+P+2 centered in the
origin, see the proof of Theorem 4, agd : gph(X) = fr(X)X(1 — x). (Note that then
Ob € Fparandgy is Lipschitz-continuous ifR.) We consider now the computation bf
acceptinggp. AssumingB is small enough, the times when the read-headlo¥isits
¢ are close tdy, ..., tp and their number is the same, and the read-head never stops
at&¢. (Continuous dependence tf . .., t, on parameters in the input follows because
sgl(f;) has this property by the Implicit Function Theorem.) Let us denote these times by
ty,...,tp. Leth: B — RPM+P+1 he the continuous mapping defined by

By the Dimension Theorem, there are poini®’ € B such thab # b’ andh(b) = h(b’).
This is a contradiction since theévl also accepts the non-palindrome

Oo(X)for0 < x <&

h:hXx) = {
Oy (X) foré < x < 1.

(iii) We only sketch the proof ofFpa € F(2-OSM). (The membershifFsqr €
F(2-OSM) is proved analogously, anﬁpc,.y_d e F(2-OSM) follows from Theorems
3,5and8.)

Using the control offered by the state structure of a 2-OSM the following procedure
is carried out. For the successive vallies 2, 3, ... the 2-OSMM compares the input

values ) o _i
i — .
f(ﬁ) and f(T) i=212...,1-1).

For this purpose these values are copied to state components, gagrtdgs, which are
then deactivated. (The copying requires temporarily stopping movement of the position
function.) M then continues by activating the differential equation

d
% — (G2(t) — a(t) + u(t)

for a while before raising the value bf Note that, before moving to the next valuel pf
the componentg, andgs must be reset to zero, again reading the input. If, for sbme

() (%)
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then the acceptance indicatpr starts growing from its initial value 0, leading to accep-
tance of input. ]

Note that, by Theorems 4 and 5, this implies strictness of all inclusions in Theorem 8.
The following corollary is also immediate.

Corollary 10. The families #(CSM) and F(2-OSM) are incomparable. O

Note. We assumed that the structure of our differential equations implies continuous de-
pendence of solution on parameters in the input. For state machines this guarantees the
continuity for all inputs sufficiently well-behaved in the interval (0, 1). Such is not the
case any more for two-way state machines. The input may have jump discontinuities at
x = 0or x = 1 or elsewhere, and these can be utilized as jump discontinuities of theright
hand side of our differential equations. Thus the solutions need not depend continuously
on parametersin the input, even if the input is, say, Lipschitz-continuousin (0, 1).

Ontheother hand, if theinput f hasthe property that f* is, say, Lipschitz-continuous
in R then continuous dependence on parametersin f isvalid (as a consequence of our
assumptions). Thisfact is utilized in the proof of Theorem 9.

Theorem 9 shows that the familigs(2-OSM) and F(2-CSM) are not closed un-
der complement, indeed, complements of certain familieg {@-OSM) are not even
in F(2-CSM). (The situation is thus quite different from that for state machines.) For
Boolean operations we have

Theorem 11. (i) The family F(2-OSM) is closed under union and intersection.
(if) Theintersection of a setin F(2-OSM) and a set in 7(2-CSM) isin F(2-CSM).
(iif) Thefamily F(2-CSM) isclosed under union.

Proof. First, it should be noted that the construct of the proof of Theorem 6 is not appli-
cable here.

Take then two 2-SMaM andN, with statesg andp, and position functionsg andry,
respectively. For our new machir’, we use time-division modulo 4. The following
sequence of four operations is then carried out cyclicallyvBy

1. SimulateM for time 1 and then deactivate this simulation.

2. Usingsy andrg (initially zero) move the position function to the value refand
then deactivate it.

3. SimulateN for time 1 and then deactivate this simulation.
4. Usingrg andsyp move the position function to the value fand then deactivate it.

We denote the state componentsMf, corresponding taj, p andrg, by g, p andfy,
respectively. We also fix a continuous function R — R such thau(x) = O0forx <0
andu(x) > Ofor x > 0.

16



(i) AssumingM andN are both 2-OSMs, it remains to define the acceptance mecha-
nism of M’. We take new state componentg v, andvz (the new acceptance indicator),
and define

dvp dvp
rak udu(t)) and ot = u(pe(t)).

TogetF (M) = F(M) U F(N) (resp.F(M’) = F(M) N F(N)) we define simply

d d
ﬁ = v1(t) + vo(t) (resp.f = v1(Hva(t)).
(i) Assume then thaM is a 2-OSM and\ a2-CSM. We take a new state component

v with the differential equation

v _

ot u(Ga(t)) + v ().

and then modify the differential equationsfpéndry as follows:

% =P@(p®), ft)v(t) and % = Ro(P(), f(t)v ().

If M does not accept the input, the(t) = 0 for allt > 0 and the simulation oN by M’
never starts. If, on the other hand, the input is acceptelll ligen, for some, v(t) > O
and the simulation oN by M’ starts. Since then lim. o, v(t) = oo, the simulation is
carried out to the end. Using the acceptance indicpipthe input is thus accepted by
M’ if only if it is accepted by bothiv andN.

(iif) AssumeM andN are both 2-CSMs. Only slight modifications of the above basic
construct ofM’” are needed here. First, a new acceptance indicai®ichosen forM’.
WheneverM (resp.N) is smulated byM’, thenw(t) is equal toGi(t) (resp. pi(t)).
The value ofv is updated during steps 2. and 4., exactly as is the value of the position
function. O

Closure of the familyF(2-CSM) under intersection remains an open problem.

5 Push-Down Machines

We recall that for goush-down machine (PDM) M we haveny, = 1 andX; is defined by

* ) if &
%u(T) = xl’T(si_(T) ), ifs(T) <0
x1(T), if 5;(T) = 0.
The corresponding differential equations are then

dq dso

4 = U@, f(t), &1(t) | = = D@, f(t), 21(1))
d A d A
% — si(q(t), f®), %(t)) and % — Xa(qet), F), f(0)).
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By definition, PDM is a strictly one-way machine, i.65(q, fA, X1) > 0. ltis also
assumed that alwaysi(t) > 0. We use the notations OPDM, CPDNM,(OPDM),
F(CPDM), etc. in an obvious fashion.

A PDM can only read its functional memory when the "read-write-head” is moving
left. (Indeed, when the "read-write-head” is moving right or is stopped,S;éq(t)) > O,
we havexi(t) = x1(t), andxz could be included among the state components.) In this re-
spectitis quite like its namesake in traditional automata theory, the push-down automaton.
Our machines have, however, forward-unique solutions, and thus the corresponding type
of automaton is actually the deterministic push-down automaton. Deterministic context-
free languages have rather poor closure properties, and so appear to do f@$diav)
and 7 (CPDM).

Note. Thetraditional DPDA hasempty moves, corresponding to zero-values of our $(q).
Our definition above thus corresponds to DPDAs without empty moves. It may be noted,
however, that deterministic context-free languages can be recognized by DPDAsin linear
time. One-way PDMs certainly appear to be an interesting subclass of machines, but they
are not investigated any further here.

It is immediate thatF (OSM) € F(OPDM) and 7 (CSM) € F(CPDM). Both inclu-
sions are strict as a consequence of Theorems 4 and 14.

Theorem 12. Every PDM can be replaced by an equivalent PDM with & identically
equal to 1, i.e, sp(t) = t. (In other words, every PDM can be replaced by an equivalent
real-time PDM.)

Proof. Werefer to the proof of Theorem 2. The differential equations above are replaced
by

dg _ Qa@w. f(t), %) d%

= A , —~ =1,

dt @), f(t), Xu(t) dt

d _s@n. fofwy o dh xa@o. fo. 5
dt @), f), K1) dt @), f), %)

As before, we havef (t) = f(s5t()). Now, assumingki(t) = %1(s;(t)), asimple
calculation shows that

A =ag'®) ., O =su('®) and Ki(t) = xa(s5 (D).
We have taken here simpBa (t) = %1(s; (1)), s0 it remains to show thay (t) = X1(t).

Sinces is strictly increasing,

o (s)=maxt =s9| max i) ) = st 5 (9).
ol STUES sl(so_l(t))zsso L%'M

It is then easily verified tha’q‘,T(s) = xI so_l(T)(S) and finallyf(l(t) = kl(s()‘l(t)). O
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As was the case for state machines, the famifig®PDM) and 7 (CPDM) are com-
plementary. (In many ways this result corresponds to the closure under complementation
of traditional deterministic context-free languages.)

Theorem 13. 7(OPDM) = co=F(CPDM), i.e., the families #(OPDM) and F(CPDM)
are complementary. Moreover, it may be assumed that 0 < gy (t) < 1.

Proof. See the proof of Theorem 3. O
Theorem 14. (i) The set Fpy isin 7(CPDM) but not in 7(OPDM).

(Corresponding statements for the complements of the sets are obtained in an obvious
way by Theorem 13.)

Proof. The nonmembership dfpal, Fsqrn Fpoly and Fpoly—g in 7(OPDM) is proved simi-

larly in all cases . We prove here the clakgy ¢ F(OPDM). Assume the contrary. There

is then a (real-time) OPDMA which recognized=pa. Let M accept zero input (which

is in Fpay), and, considering this accepting computation, denote the maximum value of
IX1(t)| by U, and

K = {(q(t),0,x) |0<t <land|x| <U} c R™+2

Furthermore, for some > 0 ands > 0, we have then(t) > aforl—46 <t < 1.

Choose next arR such that inR™+2 the distance of any point with |r|| = R
from K is at least 1. Then, because of continujt§Q, 1, X1)(r)| is bounded in the ball
Irll < R, say byC.

Define then

_ Ofor0<x<1-¢
Oe G (X) = X+e—1forl—e <x<1.

Obviouslyg; is not in Fyg for smalle > 0, but on inputg, the solution curve

Ce i1 =(q(t), ge(t), X1(1)) (O<t<1l-—¢)

is then inK. Sinceg; is rejected byM, for all sufficiently small, 0 < ¢ < §, the solution
curveC, must escape the bdlt|| < R within the time interval 1- § <t < 1, in order
for |Q1| to achieve arbitrarily large values. This is impossiblé ¥ 1/C since escaping
the ball starting fronK takes at least time/L.

We show next thafp, € F(CPDM) by a direct construction, which of course resem-
bles very much that for the traditional PDA. For this purpose we fix a continuous function
u:R — Rsuchthau(x) =0forx <0andx > 1/2, andu(x) > 0for0 < x < 1/2.
Wethen semy = 4 and

doa dap

5t =1~ a® — a0 + g(1)? g = U@®) f(t),
doz . . das _ dso _

ds; T dx, 3
5 =5 S 27ga(t) and Pl u(da(t)) f ().
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(Forgs < 0 andgs > 1 wedefineS(q, f, %) = 0.) For 0<t < 1/2 we have then

t
gi(t) = ga(t) =so() =t ,  qa(t) = x1(t) = X (t) = / ux) f(x)dx,
0
gt) =0 and si(t) = %sinznt.

For1/2 <t <1 we hava = 1/2 4 t for somer > 0,

1/2 1/2+t 1/2

qg(t):/u(x)f(x)dx , q3(t):/u(1—x)f(x)dx: /u(x)f(l—x)dx,
0 L 1/2 L 1/2—1

Bt =st) =t , si(t) = és,in2n(1/2+f) = ésin27r(1/2—z) and
1/2—1

X1(t) =/u(x)f(x)dx.

0

If f € Fpaithenf(1—-x) = f(x),andfort > 1/2 we havegy(t) —gz(t) = X1(t). Thus f
is accepted. Iff ¢ Fpq, then for somey, 1/2 < t; < 1, we havegs(ty) # ga(ty) — X1 (ta).
It follows thatgi(1) < 1 and f is rejected. O

The proof of Theorem 6 is readily applicable here and so we have

Theorem 15. The family 7(CPDM) (resp. F(OPDM)) is closed under intersection and
union with setsin 7(CSM) (resp. F(OSM)). O

6 Two-Way Push-Down Machines

As for a PDM, for atwo-way push-down machine (2-PDM) M we haveny = 1 andX; is
defined by

Xi 1 (s1(T)—), if $1(T) <0

xu(T) = {xl(T), if s(T) > 0.

The difference is that a 2-PDM is not a one-way machine %63, f, X1) may have both
positive and negative values, and zero values. It is still assumed that adygays- O.
We use the notations 2-OPDM, 2-CPD¥(2-OPDM), F(2-CPDM), etc. in an obvious
fashion.

Obviously 7(2-OSM) € F(2-OPDM) and F(2-CSM) C F(2-CPDM). The latter
inclusion is strict sincdpa € F(2-CPDM) — F(2-CSM) (see Theorems 9 and 14 and
Theorem 16 below). The former inclusion is strict becakiggy_q € F(2-OPDM) —
F(2-OSM) (see Theorem 9 and Theorem 19 below). In fact, as will be noted in Section
8, F(2-CSM) C F(2-OPDM).

Theorem 16. (i) F(2-OPDM) C F(2-CPDM)
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(i) F(OPDM) C F(2-OPDM)
(iii) F(CPDM) C F(2-CPDM)

Proof. See the proof of Theorem 8. Strictness of the inclusion (iii) follows becyges
F(2-OPDM) — F(CPDM) (see Theorems 9 and 14). Strictness of the inclusion (ii) in
turn follows becausép, € F(2-OPDM) — F(OPDM) (see Theorem 14 and Corollary
20 below). O

Strictness of the inclusion (i) in the above theorem remains open. Indeed, 2-PDMs are
already quite powerful machines and we lack techniques for proving nonmembership.

Theorem 17. The set Fsgrisin 7 (2-CPDM.

Proof. The construct is almost the same as that of Theorem 14(i). The only difference is
that the input segment(x), 1/2 < x < 1, is read from right to left. O

2-PDMs have the ability to perform operations of numerical analysis. More spefically,
we define anumerical analysis machine as follows:

(A) The input is a piecewise continuous functiénn the interval [Q 1]. The machine
has a black box which, given a finite floating point representatiod < x < 1,
returns the corresponding finite floating point representation(gj, using a given
scheme of rounding numbers.

(B) The floating point presentation is given, as usual, by the sign, the mantissa and the
exponent, in the integer interval 2, ..., N. HereN is a precision parameter which
can be increased by the machine. Any number of integers, and thus any number of
floating point numbers, can be stored by the machine.

(C) The machine has universal computing power on integers.

For 2-PDMs, f (x) is readily available at any time and the state control structure has a
universal computing power on integers. It is the rounding of reals to integers that needs
to be explained. Such a rounding is not possible without losing stability, and thus must
be performed using the push-down memory. One way of doing it is the following. First,
aunit-step is created in the push-down memory:

1. Stop the read-write-head at some positjgfi.e., take the value of; to 0 and hold
it there).

Reset the values af andx; to 0.
Move the read-write-head frogg to yp + 1, stopping it there and keepinxg = 0.

Raise the value of; from 0 to 1, resetting; to 0 and keeping, = yo + 1.

a & W DN

Move the read-write-head frompy + 1 to yp + 2, stopping it there and keeping
X1 = 1.

6. Lower the value ok; from 1 to O, resetting; to 0 and keeping: = yo + 2.
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Rounding a real number, sayto integer may be accomplished by comparaig i for

i =0,+1 +£2,...,until anintegerj is found such thaf < z < j + 1. The comparison
is done using the created unit-stepygt- 1. We denotev = % arctariz—i), and continue
the process as follows:

7. Move the read-write-head frogpy + 2 to yo + 1 + w and immediately switch on
the controlling differential equation

dS]_
— = —5(t 1
ot si(t) + Yo +

(s1 may be assumed to be among the state components), all the time kegpir®
andx/1 = 0. While this differential equation controts we have

si(t) = Yo+ 1+ we o,

wherety is the time of switching on the differential equation, and hence ezther
andxy(t) =0orz > i andXy(t) = 1.

We have thus
Theorem 18. Any numerical analysis machine can be simulated by a 2-PDM. O

It may be noted that the theorem holds true already for 2-SMs, if their inputs are confined
to ones containing the needed step structure. We also have

Theorem 19. Lettheset F € F(2-CPDM) be recognized by a 2-CPDM M such that for
some constant T > O all inputsin F are accepted in time T, i.e., for any input in F,
01(T) > 1. Then F € F(2-OPDM.

Proof. The 2-OPDM recognizindg- simulatesM for time T, deactivates the differential
equation ofg; and then roundg:(T) to [q1(T)]. O

All of F(CPDM) and many sets known to be jA(2-CPDM) are seen to be already in
F(2-OPDM) by this theorem (but remember that equality of the latter two families is
open):

Corollary 20. 7(CPDM) C F(2-OPDM) and Fsqr € F(2-OPDM). O
(Strictness of the inclusion follows becaLEg',u € F(2-OPDM) — F(CPDM).)

Note. Actually, a stronger form of Theorem 19 holds true: If for an input of M the time
T of possible acceptance, which may vary among inputs, can be numerically computed,
then the conclusion of the theorem holds true. This indicates that even if 7(2-OPDM) is
a proper subfamily of F(2-CPDM), it may be quite difficult to prove it.
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7 Linear-Bounded M achines?

The family of context-sensitive languages played initially a prominent role in the tradi-
tional Chomsky hierarchy. Nowadays it is mainly thought of as a subset of the space
complexity classPSPACE. (Indeed, some modern text-books on formal languages pass
over CS-languages, see e.g. [13].) The corresponding automata type is the linear-bounded
automaton (LBA). Finding a counterpart for LBAs—or other space/time-bounded Turing
machines—among our machines is problematic. The simple reason for this is discussed
below.

Maximum length of the interval where the position functions take their values is not a
proper space measure for our machines. Indeed, replgdnygs = arctans and writing

d§ S, f(t). k@)

dt ~  1+tarP§(b)
restricts the position to the interval-/2, 7/2). (We may assume th& appears as a
state component.) Similarly we may replageby X; = arctanx; (i = 1,...,ny) and
write q
=@, f(O, tanfa(®). ... tankn, 1),

etc., which restricts the range ®to the interval(—mr /2, 7/2)"™. Size of range ok thus

does not appear to be a meaningful measure of space either. Note that our assumption on
continuity of right hand sides of the differential equations is then violated, but, less drastic
compression of andx is of course possible while retaining the continuity.

Time is equally malleable. Multiplying the right hand sides of the differential equa-
tions by 1+ tar? t replaces the semi-infinite time interval [8) by [0, 7/2). (Again, we
considett as a state component.) This, however, might violate our assumption of Zenoan
computations, e.g. not allowing the derivatigd) to change sign infinitely many times
in any finite time interval, and continuity of right-hand sides as well. Of course, finite ac-
celerations of computations are possible, too, which do not lead to violation of our initial
assumptions.

Note. The above time transformation creates a singularity at t = /2. This probably is
not as serious as it looks: The main result of [25] shows that for ” pure state machines’
this singularity can be removed.

Restriction of machine type to (strictly) one-way machines or/and fixing or bounding
the dimension of the functional memory certainly are ways to limit use of resources, but
these do not seem to lead machines resembling LBAs in any particular way.

8 General Machines
The largest family in the Chomsky hierarchy is the family of computably enumerable
languages (aka recursively enumerable languages), and the corresponding automata type

is the (deterministic) Turing machine. The most general machine in our case is obtained
when no restrictions are placed on the dimension or type of the functional memory or
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the moves of the read-head. We call it simply temeral machine (GM), and use the
corresponding notations OGM, CGM,(OGM), F(CGM), etc., as before.

It is immediate thatF(2-OPDM) € F(OGM) and 7(2-CPDM) C F(CGM), the
strictness of these inclusions, however, remains open. Obviously, GMs have all the power
of 2-PDMs (e.qg. the ability to do all numerical analysis computations, see Theorem 18).
There is no difference between open and closed acceptance for GMs:

Theorem 21. F(OGM) = F(CGM).

Proof. Proof of the inclusionF(OGM) C F(CGM) is similar to the proof of Theorem
8. To show the reverse inclusion take a C@M We construct an OGMV’ recognizing
F(M). We add a new state compongmtind a new functional memory compongnand
the corresponding position function The computation oM’ begins by initializingy;
to

lforO<s<?2

* S) =
¥ {Ofors<0ands>2

within a certain time interval, and then setting begith) andr (t) to 0. Simulation of the
computation ofM then begins (for this purpodd is embedded itM’) and the evolution
of the new components is given by
dy dr A
T 0, pr Q1(q(), f(t), %)) and
dp

4 = YOQ1@), F(©), %(V)).

During this stage at time= T we have thus

lfor p(T) <s<?2

Ty=0 |, X(s) = ,
y(m yr® {Ofor55 p(T) ands > 2

r(Ty=qu(T) and p(T)=min <2,Omta>§q1(t)) .

Note how p retains information about whether or npt has reached the value 1. This
might happen for one single moment of time only, and thus could not be used to directly
trigger open acceptance.

The construction oM’ is finished using time-division modulo 2 (see Section 4) where
during odd time intervals the above process is carried out, and in each even time interval
a unit-step construct (see Section 6) is used to comppte)|. If [ p(t)] > 1 then the
value of the (new) acceptance indicator state is raised from O to a positive value[]

Wenow drop the letters indicating type of acceptance, and use the notations @&@W)),
etc.

Note. A construct similar to the one in the previous proof may be used to show that a 2-
CSM can be simulated by a 2-OPDM. Since only one memory component is available for
a 2-OPDM, the contents of the two memories (or positions of unit-steps) must be stored
and retrieved in an alternating fashion asin the proof of Theorem 11.
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Since there is no restriction on dimension of the functional memory, a GM can simu-
late two (or more) GMs, much as a 2-SM can simulate two 2-SMs (see Theorem 11 and
its proof). We have thus

Theorem 22. The family 7(GM) is closed under union and intersection. O

We do not know whether or nd¥poyy is in 7(CPDM) or even inF(2-CPDM), butwe
have

Theorem 23. The family Fpoly isin F(GM).

Proof. We give a somewhat sketchy proof here, and refer to the proof of Theorem 5. The
general idea is to check through degrées- 0, 1, ... whether or not the inpuf is a
polynomial of degreel.

First, using two functional memory components repeatedly in an alternating fashion,
the cumulative integrals

14 o tg
Ci =/f---//f(X)dthldtz---dti (i=01,...,d)
00 00

are computed and their values are stored. A piecewise constant functional memory com-
ponent is used for the storing sindecan be arbitrarily high. (Writing into and reading
from such a memory is similar to the use of unit-steps in the previous sections.) From
these numberng the coefficientsy, as, . . ., aq of the candidate polynomial are computed
as in the proof of Theorem 5, and stored in another piecewise constant memory compo-
nent. Note that these coefficients are linear combinations of the nurchess . . ., g
with rational coeffients which can be computed by the state control.

The candidate polynomidy(x) is then constructed by repeated integration using the
recursion

Po(x) =dlaq , "
H(x>=(d—i)!ad_i+fﬂ_1(y>dy (i=12...4d),
0

and stored. Finally the integral
1

| =/(f(x)— Py (x))? dx
0

is computed. A unit-step construct (see Section 6) is used to check whetherloerat
In the positive case the input is accepted. In the negativeccaseeplaced byl + 1, and
the search for the polynomial continues. O

The cardinality of the set of all GMs is the cardinality of the continuum and hence
lower than that o2™c. There are thus subsets Bpc not recognized by any GM. An
explicit example of such a set can be obtained by diagonalization and the celebrated Kol-
mogorov Superposition Theorem. The theorem has recently found use in neural network
theory, we quote in full a refinement obtained by David Sprecher:
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Kolmogorov Superposition Theorem. ([27], Theorem 1) et {Ax} be a sequence of pos-
itive integrally independent numbers. There exists a continuous monotonically increasing
function ¢ : [0, 1/5!] — [0, 1/5!] having the following property: For every real-valued
continuous function f : [0, 1]" — R with n > 2 there are continuous functions ®q such

that
2n n
fXa,.... %) =Y @q (Z ¥ (Xp + qan)) ,
gq=0 p=1
for a suitable constant ay,. O

It is not difficult to see that this theorem can be used to give a coding of any GM as a
function in Fpc. We fix one such coding scheme, and denote the code of aMaW y .
We define then

D={ym|MisaGMandyy ¢ F(M)}.

It is immediate thaD cannot be recognized by any GM.

Note. Despite the Godel-number-like properties of y\ it appears that it cannot be used
to construct a universal GM. It may be noted, though, that v\ is effectively obtainable, if
not explicitly then at least numerically, see [28, 29]and the references therein.

The family of computable languages (aka recursive languages) may be defined as the
family of language4. such that both. andL are computably enumerable. Using GMs,
the corresponding family is

C = F(GM) N co=F(GM).

Sets of functions i€ are in a sense "decidable” by our machines. It is immediatehat
contains(OPDM) and F(CPDM). On the other handD is an example of an "undecid-
able” set.

An interesting open problem is wheth@is proper subset of (GM). (In traditional
formal language theory a central result states that not all computably enumerable lan-
guages are computable.) By Theorem Bgy is in 7(GM), but it is not known whether
Epo|y € F(GM). ThusFpoly might resolve the problem.

9 TheHierarchies

We collect here in Figure 2 in a graphical form the Chomsky-like hierarchies obtained in
the previous sections. We have basically four hierarchies, depending on whether or not
two-way machines are used and which of the two types of acceptance is adopted. Each of
these four hierarchies resembles the traditional Chomsky hierarchy, except that the third
family (corresponding to context-sensitive languages) is missing. It may be noted that we
could use the family of sets recognized by somehow restricted machines (say, machines
M with nyy = 1) as the third family, but we feel that this is somewhat arbitrary.

In the diagram of Figure 2 an arrow means strict inclusion, an arrow with a question
mark means inclusion (only strictness is open), and absence of a directed path means
incomparability. An open but conjectured incomparability is marked with a dashed line.
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Complementary families are connected with a dotted line. Actually, as the reader may
verify by our previous theorems, the s&igy_d, Fpal Epmy_d andfpm suffice to show

all known noninclusions in the diagram. (And it is known in addition tRg§ly—q €
F(2-CSM) — F(OPDM).)

F(GM)
A
?
F(2-CPDM
( t )

?

F(2-OPDM)

Figure 2.
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