
Chomskian Hierarchies of Families of Sets of
Piecewise Continuous Functions

Keijo Ruohonen
Department of Mathematics

Tampere University of Technology
33101 Tampere, Finland

keijo.ruohonen@tut.fi

Abstract

The venerable Chomsky hierarchy has long shown its value as a structural tool
in formal languages and automata theory, and gained followers in various areas. We
show here how very similar hierarchies can be obtained for families of sets of piece-
wise continuous functions. We use systems of ordinary differential equations as
automata are used in establishing the traditional Chomsky hierarchy. A functional
memory is provided by state-dependent delays which are used in a novel way, paired
with certain state components, giving memory structures similar to push-down stores
and Turing machine tapes. The resulting machine model may be viewed as a ”func-
tional computing machine”, with functional input, functional memory, and, though
this is not emphasized here, functional output.

1 Introduction

Ever since its introduction by Noam Chomsky in the 1950s (see [6, 7]) the hierarchy
of families of languages named after him has played a prominent role in the theory of
formal languages and computation. This can be seen immediately e.g. in [26, 17], two
popular text-books in the area. The hierarchy can be formulated as a hierarchy of families
of languages, or as a hierarchy of generating devices (grammars), or as a hierarchy of
recognizing devices (automata), as summarized in the following table:

language family grammar automaton
regular languages Type 3 finite automaton

context-free languages Type 2 push-down automaton
context-sensitive languages Type 1 linear-bounded automaton

computably enumerable languages Type 0 Turing machine

Whatever angle it is viewed from, the Chomsky hierarchy appears as a rather natural
structural backbone. It is therefore no wonder that similar natural structures have been
sought after in various areas. While these extensions have been more complicated and not
quite as natural as the original hierarchy, they have served a similar purpose. An example

1

is the hierarchy of Lindenmayer systems (see e.g. [26]), and a more recent example can
be found in [16].

Dynamical systems, working in continuous time and with a finite number of contin-
uous states, have been intensively investigated lately from the point of view of computa-
tional power. Mathematically these systems are nonlinear systems of ordinary differential
equations, with inputs given, say, as integral initial values. The ability of such systems
to simulate universal Turing machines has been known for some time, see [23, 2, 5, 25].
Reviews of the earlier developments in this area can be found in [19] and [5], and [3]
contains a more recent review in a somewhat different vein. If certain assumptions are
made, essentially preventing embedding Turing-complete or more powerful oracles in the
structure of the system, then the computational power is seen to be exactly the same as
that of Turing machines (see e.g. [24, 25]). It would thus be possible to define the tradi-
tional Chomsky hierarchy using continuous dynamical systems. This, however, does not
appear to produce anything new.

Ordinary differential equations form a traditional device for defining sets of functions.
However, this is more in a generative sense than as recognizers. On the other hand, the
recognizing aspect is present in systems and control theory, indeed, the similarities be-
tween control systems and sequential machines have been known long (see e.g. [15]). We
use differential equations (provided with a special memory structure, see below) to recog-
nize sets of functions. We restrict ourselves to piecewise continuous functionsR −→ R

with bounded support. To simplify matters we allow only supports which are subsets of
[0, 1]. As the reader may note when reading on, this is no real restriction, the theory
is easily extended to arbitrary bounded supports, contained in given function-dependent
finite intervals. To be quite specific, we define apiecewise continuous function in R

as a functionf such that, for all real numbersa, the limits f (a−) = limx↑a f (x) and
f (a+) = limx↓a f (x) both always exist as finite numbers, and are equalf (a) except
possibly for a finite number of values ofa. If in addition the equation

f (x) = 1

2
(f (x−) + f (x+))

is always satisfied we say thatf is atotal piecewise continuous function. These definitions
are extended to arbitrary intervals in an obvious fashion. The set of all total piecewise
continuous functions with support included in [0, 1] is denoted byFPC.

Systems of ordinary differential equations have only state memory. A way to add
memory is to allow delays. Delay-differential equations have a long history in applied
mathematical modelling, especially in mathematical biology, see e.g. [9, 10]. We use a
state-dependent delay but in a novel way: Certain dependent variables are used pairwise
to define a piecewise continuous function which is used as a memory element, much as
a Turing machine tape. There can be several such memory elements, or none. Posing
certain natural restrictions, a memory element can be made push-down-like. The input is
treated similarly, paired with a spesific dependent variable.

Since, from the point of view of automata, the Chomsky hierarchy is not so much
about time or space complexity, but rather about the kind of memory available, it is possi-
ble to define Chomskian hierarchies of subsets ofFPC. We define and prove several such
hierarchies. We also obtain several closure results for various levels of the hierarchies. A

2

few open problems remain, especially concerning the (common) upper end of the hierar-
chies (the one corresponding to Turing machines and computably enumerable languages).
While we investigate here only recognizers, corresponding systems with functional out-
puts could be easily defined, so in a sense we deal with ”functional computing machines”.

In the sequel we call our dynamical systems simply ”machines”. These machines are
subject to certain restrictions pertaining to the type of ”computations” allowed. First, the
machines are assumed to be ”deterministic”, i.e., they have only forward-unique solutions.
Second, the machines are ”Zenoan”, meaning e.g. that no part of the memory or input is
used infinitely often in any finite time interval. Third, as far as possible, solutions should
depend continuously on parameters in the input. These properties are discussed in Section
2 where the detailed definition of the machines is given. It should be mentioned that the
restrictions correspond roughly to what might be considered well-posedness for the kind
of machines we investigate. A different theory would be obtained if any of the restrictions
is lifted, e.g., it would be possible to obtain a similar and yet quite different theory for
non-forward-unique solutions (allowing a kind of nondeterminism).

Certain classifications of real functions according to recursion or computation based
criteria are known, notably those in [18] and [22]. It should also be mentioned that sets
of n-tuples of reals can be defined by the well-known BSS-machines (see [4]). There are
many excellent text-books in formal languages and automata theory. E.g. [26, 14, 11]
are old classics and [17, 13] are popular modern books. Concerning ordinary differential
equations we want to mention the comprehensive classical texts [8, 12], the nice concise
presentation in [21], and [1], a veritable treasure trove of uniqueness results.

2 Basic Definitions

To define amachine M , westart by fixing its basic dimensions:

mM = dimension of state

nM = dimension of functional memory

Both of these dimensions are assumed to be finite,mM > 0 andnM ≥ 0. The following
steps then lead us to the definition ofM .

1. Input

The input is a total piecewise continuous functionf : (0, 1) −→ R such that the lim-
its f (0+) and f (1−) exist as finite numbers. Recall the definition of total piecewise
continuity in Section 1. To define the way input is read by the machineM we first define

f ∗(s) =

f (s), if 0 < s < 1
1
2 f (0+), if s = 0
1
2 f (1−), if s = 1

0 elsewhere.

Note that this simply means extendingf to a total piecewise continuous function defined
in R with support included in the interval [0, 1].

3

The input is then given as
f̂ (t) = f ∗(s0(t))

wheres0(t) is theposition function controlled byM (via a differential equation). Initially
s0(0) = 0, i.e., reading of input starts ats = 0. The value off̂ (t) is immediately available
to M at timet . (In traditional automata-theoretic terms this could be called a ”read-only
input tape”,s0(t) being the position of the ”read-head”.)

In the sequel we more or less identifyf and f ∗, and useFPC to denote the set of all
possible inputs.

2. State

The state of M at timet is a pointq(t) ∈ R
mM . The initial value isq(0) = 0. The first

state componentq1 is designated as theacceptance indicator. Dynamical evolution of the
state is defined via a differential equation.

3. Functional memory

The machine may have afunctional memory. A machineM without a functional memory,
i.e., withnM = 0, is called atwo-way state machine, see Sections 3 and 4.

At any timet the contents of this memory is given via a functionx : R −→ R
nM , as

described below. This function is defined by a differential equation, initiallyx(0) = 0.
The correspondingposition function (positions of the ”read-write-heads”) is denoted by
s(t). Now, what we mean by the contents of the functional memory at timet = T , is the
collection of thenM functionsx∗

i,T : R −→ R (i = 1, . . . , nM), given by

x∗
i,T (s) =

{
0, if si (t) �= s for 0 ≤ t ≤ T

xi (t∗i,T (s)) otherwise

wheret∗i,T is the maximum inverse ofsi , i.e.,

t∗i,T (s) = max
si (t)=s
0≤t≤T

t.

Heresi will be continuous in [0, T], so t∗i,T (s) is defined ifsi (t) = s for somet , 0 ≤ t ≤
T . Thus, what needs to be stored of the functionx is only what is needed to define the
functionsx∗

i,T , not the entire historyx(t), 0 ≤ t ≤ T . In Figure 1 an example of the curve
(si (t), xi (t)), 0 ≤ t ≤ T , is given, the graph ofx∗

i,T (si) is in thick line.

4

xi

si

(si(T) , xi(T))

Figure 1.

A basic property of the functionsx∗
i,T is given by

Lemma 1. If, in the interval 0 ≤ t ≤ T , xi and si are continuous, and s′
i and sgn(s′

i) are
piecewise continuous, then x∗

i,T is piecewise continuous. (Piecewise continuity of sgn(s′
i)

means that s′
i changes sign only finitely often.)

Proof. It suffices to show thatt∗i,T is piecewise continuous. We take a partition of the
interval [0, T]

0 = τ0 < τ1 < · · · < τN−1 < τN = T

such that, in each interval(τ j−1, τ j), either s′
i (t) is identically zero ors′

i (t) is �= 0 and
continuous. Now, a jump discontinuity oft∗i,T (s) can only take place at one of the
pointssi (τ j) (j = 0, 1, . . . , N). Between two consecutive pointssi (τ j1) andsi (τ j2) then
t∗i,T (s) = s−1

i (s) is continuous and has finite limits atsi (τ j1)+ andsi (τ j2)−.

At time t = T , in addition toq(T) (the state) and̂f (T) (”input symbol under scan”),
the machineM has availablêx(T) (”symbols to be read on the tapes”) where

x̂i (T) =

x∗
i,T (si (T)−), if s′

i (T) < 0

xi (T), if s′
i (T) = 0

x∗
i,T (si (T)+), if s′

i (T) > 0

(i = 1, . . . , nM).

Using these the dynamics of the machine is defined by differential equations. Note that
x∗

i,T (si (T)+) = xi (T) for s′
i (t) < 0, since, for at < T sufficiently close toT , we have

thent∗i,T (si (t)) = t . Similarly x∗
i,T (si (T)−) = xi (T) for s′

i (T) > 0.
Forpush-down machines (to be treated in Sections 5 and 6)nM = 1 and an alternative

”one-sided” definition of̂x1 is needed. We define then

x̂1(T) =
{

x∗
1,T (s1(T)−), if s′

1(T) < 0

x1(T), if s′
1(T) ≥ 0.

(A similar situation exists of course in traditional automata theory.) For these machines it
is in addition assumed that alwayss1(t) ≥ 0.

5

4. Differential equations

State transition, position changes (moving the ”read-head” and the ”read-write-heads”)
and writing on the functional memory is controlled by a system of differential equations.
Wewrite the system in the form

dq
dt

= Q(q(t), f̂ (t), x̂(t)) ,
ds0

dt
= S0(q(t), f̂ (t), x̂(t)) ,

ds
dt

= S(q(t), f̂ (t), x̂(t)) and
dx
dt

= X(q(t), f̂ (t), x̂(t))

where the functions

Q : R
mM+nM+1 −→ R

mM , S0 : R
mM+nM+1 −→ R ,

S : R
mM+nM+1 −→ R

nM and X : R
mM+nM+1 −→ R

nM

are given. It will be assumed that these functions are continuous inR
mM+nM+1. With

zero initial valuesq(0) = 0, s0(0) = 0, s(0) = 0 andx(0) = 0 an initial value problem is
then defined. The system of differential equations above is autonomous in that there is no
explicit dependence on timet . As usual, timet may be included as a component of the
stateq, if needed, as can bex(t), s0(t) ands(t).

Wedo not want our differential equations to be too badly behaved. Therefore we make
the following assumptions which should hold for any input inFPC.

1. We assume thatQ, S0, S and X satisfy conditions guaranteeing existence and
uniqueness of solutions in the forward direction fort ≥ 0. We will not spec-
ify these conditions, however. Indeed, for the kind of controlled state-dependent-
delay-differential equations that these equations are, few conditions of any gener-
ality seem to be known at the time of writing, at least as far as global behaviour is
considered.

On the other hand, locallŷf may be considered as being part of the external struc-
ture of the system, and ”ordinary” conditions apply (e.g. Carathèodory-type con-
ditions). Similarly,x̂ may also be considered as part of the external structure, or
sometimes as part of the state structure. We refer to [1, 12, 21].

2. Whenever possible, we will assume continuous dependence on parameters appear-
ing in f . More specifically, we do not want the structure of the differential equa-
tions to be one allowing a discontinuous dependence, that is, whereverf ∗(s) and
x∗

i,T (s) are ’nice’, say Lipschitz-continuous, andf ∗(s) depends continuously on
parameters inf , the solution of the differential equation depends continuously on
those parameters as well. Note that, in a compact subset of the parameter space,
this continuous dependence is uniform int in any finite closed time interval.

3. The derivativess′
0, s′

1, . . . , s′
nM

and their signs sgn(s′
0), sgn(s′

1), . . . , sgn(s′
nM

) are
piecewise continuous in any finite time interval 0≤ t ≤ T . By Lemma 1, this
implies that the functionsx∗

i,T are piecewise continuous.

6

The reason for demanding existence of solution is obvious. On the other hand, in this
paper we do not want to consider nonuniqueness in the forward direction. Nor do we
allow any of the functionsQ, S0, S andX to be undefined. (Again in traditional terms, we
restrict ourselves to ”deterministic” machines.)

Condition 2 may be interpreted loosely as forcing computations to take only finitely
many ”steps” in finite time intervals, i.e., we consider only ”Zenoan” computations. (A
”step” corresponds here to a maximal open time interval where eachs′

i is continuous
and either nonzero or identically zero.) Note that we do not state a similar condition for
components ofq(t) or x(t), however. (C.f. [25].)

Note. We do not assume backward uniqueness (”reversibility” in traditional terms). On
the other hand, we might want to restrict the way the functions Q, S0, S and X are given,
say, explicitly (as in [23, 25]) or as computable functions in the sense of [20] (and [24]).
As long as the functions are kept reasonably general this does not affect our results.

Wesay that a machine is aone-way machine if S0(q, f̂ , x̂) ≥ 0, and astrictly one-way
machine if S0(q, f̂ , x̂) > 0. A real-time machine is a strictly one-way machine for which
S0(q, f̂ , x̂) = 1, i.e.,s0(t) = t .

5. Acceptance

We define two kinds of acceptance mechanisms, closed acceptance and open acceptance.
Wesay that the input isaccepted if,

1. at some timet = T ,

(a) q1(T) ≥ 1 (closed acceptance)

(b) q1(T) > 0 (open acceptance)

(recall thatq1 is the acceptance indicator and that initiallyq1(0) = 0), and,

2. for one-way machines, additionallys0(T) = 1, i.e., all of the input is ”read”.

6. Recognition

The set of functionsrecognized by M (within the setFPC) consists of all inputs accepted
by M , denoted byF(M).

3 State Machines

By a state machine (SM) we mean a strictly one-way machine which does not have a
functional memory. The corresponding differential equations are then

dq
dt

= Q(q(t), f̂ (t)) and
ds0

dt
= S0(q(t), f̂ (t)).

Recall that for a strictly one-way state machineS0(q, f̂) > 0. (In traditional automata
theory this corresponds to the deterministic finite automaton.)

7

If open acceptance (resp. closed acceptance) is chosen, we use the acronymOSM
(resp.CSM). The corresponding family of sets of piecewise continuous functions rec-
ognized by the machine is denoted byF(OSM) (resp.F(CSM)). The family of comple-
ments of sets inF(OSM) (resp.F(CSM)) isdenoted by co–F(OSM) (resp. co–F(CSM)).
(Complements are naturally taken againstFPC.)

Theorem 2. Every SM can be replaced by an equivalent SM with S0 identically equal to
1, i.e., s0(t) = t . (In other words, every SM can be replaced by an equivalent real-time
SM.)

Proof. Take astate machineM recognizing the setF(M). We use the notation above for
the definition ofM . We define another SMM ′ of the same dimension and with stateq̃
and position functioñs0. The differential equations ofM ′ are

dq̃
dt

= Q(q̃(t), ˆ̃f (t))

S0(q̃(t), ˆ̃f (t))
and

ds̃0(t)

dt
= 1.

Here the ˆ̃f of M ′ is defined vias̃0 and is not the same as thêf of M . To see that
F(M) = F(M ′) we note first that ˆ̃f (t) = f (t) = f̂ (s−1

0 (t)). It is then a simple matter to
verify thatq̃(t) = q(s−1

0 (t)).
Thus the machineM is simulated byM ′, using the times−1

0 (t).

In the sequel, we will assume that our state machines are real-time state machines. Note
that then, for 0< t < 1,

f̂ (t) = f (t).

There is a close connection between the familiesF(OSM) andF(CSM).

Theorem 3. F(OSM) = co–F(CSM), i.e., the families F(OSM) and F(CSM) are com-
plementary. Moreover, it may be assumed that 0 ≤ q1(t) ≤ 1.

Proof. We fix a continuously differentiable functionu : R −→ R such thatu(x) = 0 for
x ≤ 0, 0< u(x) < 1 for 0 < x < 1, andu(x) = 1 for u ≥ 1. We may assume that timet
is a state component of our machines, denoted simply byt .

Take a(real-time) SMM . Wethen specify another SMM ′ by adding toM a newstate
componentp (the acceptance indicator), changing the mode of acceptance from open to
closed or vice versa, and setting

dp

dt
= u′(t − q1(t))(1 − Q1(q(t), f̂ (t))).

Then p(t) = u(t − q1(t)), andF(M ′) = FPC − F(M).

For the purpose of comparison between machines of various kinds, in this section and
later, several sets of functions are defined. First, we say that a functionf (an input) is

• a palindrome if f (1 − x) = f (x) for 0 < x < 1.

• a square if f (x + 1/2) = f (x) for 0 < x < 1/2.

8

These concepts have familiar connotations for words. We then define the sets

Fpal = { f | f is a palindrome} ,

Fsqr = { f | f is a square} ,

Fpoly = { f | f is a polynomial} and

Fpoly−d = { f | f is a polynomial of degree at mostd }.

The complements of these sets (againstFPC) are denoted byFpal, etc.
Weneed the following classical result which gives us a kind of ”weak pumping”.

Dimension Theorem. Let A be an open subset of R
l and l > k. If f : A −→ R

k is a
continuous mapping then it is not injective.

Theorem 4. None of the sets Fpal, Fsqr and Fpoly is in F(OSM) nor in F(CSM). The
same is true for the complements Fpal, Fsqr and Fpoly.

Proof. We show thatFpal /∈ F(OSM),F(CSM). The other nonmemberships are proved
analogously. The result then follows for the complements by Theorem 3.

Assume first, contrary to what is claimed, thatFpal is recognized by the OSMM . But
then, since 0∈ Fpal, for a sufficiently small value ofε > 0 the function

g : g(x) = εex

is accepted byM , a contradiction. (Recall that we assumed continuous dependence of
solutions on parameters in inputs.)

Assume second, contrary to what is claimed, thatFpal is recognized by the (real-time)
CSM M . Take then an open ballB in R

mM+2. Forb in R
mM+2 we denote

Pb(x) = b1 + b2x + · · · + bmM+2xmM+1.

By our assumptions, the mappingh : B −→ R
mM+1, mapping the pointb ∈ B to the

point (q(1/2), fb(1/2)) whereq(t) is obtained fromM on the palindrome input

fb : fb(x) =
{

Pb(x) for 0 < x ≤ 1/2

Pb(1 − x) for 1/2 ≤ x < 1,

is continuous. By the Dimension Theorem, there are pointsb, b′ ∈ B such thatb �= b′
andh(b) = h(b′). This means, however, that the function

g : g(x) =
{

fb(x) for 0 < x ≤ 1/2

fb′(x) for 1/2 ≤ x < 1

is accepted byM . This is a contradiction sinceg is not in Fpal.

Theorem 5. Fpoly−d ∈ F(CSM) and Fpoly−d /∈ F(OSM).

9

Proof. Nonmembership ofFpoly−d in F(OSM) is shown as in the previous proof. We
then show only thatFpoly−2 is in F(CSM), the general case is treated quite analogously.
A real-time CSMM recognizingFpoly−2 is constructed as follows. We setmM = 6 and

dq1

dt
= 1 − q5(t) ,

dq2

dt
= f̂ (t) ,

dq3

dt
= q2(t) ,

dq4

dt
= q3(t) ,

dq5

dt
= Q5(q(t), f̂ (t)) ,

dq6

dt
= 1

whereQ5 will be given later. On input

f : f (x) = ax2 + bx + c

we have thenq6(t) = t and

f̂ (t) = at2 + bt + c , q2(t) = a

3
t3 + b

2
t2 + ct ,

q3(t) = a

12
t4 + b

6
t3 + c

2
t2 , q4(t) = a

60
t5 + b

24
t4 + c

6
t3.

Wedenote

S(t) =

t2 t 1
1
3t3 1

2t2 t
1
12t4 1

6t3 1
2t2

 and R(t) =

1
3t3 1

2t2 t
1
12t4 1

6t3 1
2t2

1
60t5 1

24t4 1
6t3

 .

Then we can write

S(t)

a

b
c

 =

 f̂ (t)

q2(t)
q3(t)

 and R(t)

a

b
c

 =

q2(t)

q3(t)
q4(t)

 .

Wenote the following facts:

• First,S(t) andR(t), as Wronskians of linearly independent monomials, are invert-
ible for t �= 0.

• Second, fort �= 0, (
1
60t5 1

24t4 1
6t3

) = (
c1t3 c2t2 c3t

)
S(t)

for some constantsc1, c2 andc3.

Finally we choose

Q5(q(t), f̂ (t)) =

(

c1q6(t)3 c2q6(t)2 c3q6(t)
)
 f̂ (t)

q2(t)
q3(t)

 − q4(t)

2

.

10

For an input f in Fpoly−2 we haveq5(t) = 0 for 0 ≤ t ≤ 1, andq1(1) = 1, leading to
acceptance off .

On the other hand, if an inputf is accepted byM , then Q5(q(t), f̂ (t)) = 0 for
0 ≤ t ≤ 1 andq4(t) satisfies the Euler final value problem

c1t3d3q4

dt3
+ c2t2d2q4

dt2
+ c3t

dq4

dt
− q4 = 0 ,

q4(1) = A , q ′
4(1) = B , q ′′

4(1) = C

in the interval 0< t ≤ 1, for some constantsA, B andC . The same final value problem
is satisfied by

q4(t) = a

60
t5 + b

24
t4 + c

6
t3 where

a

b
c

 = R(1)−1

C

B
A

 .

Thus f is a polynomial of degree at most 2. (Note that, ifc1 �= 0, thenQ5(q(t), f̂ (t)) = 0
implies that f̂ (t) = q ′′′

4 (t) is continuous in the interval 0< t ≤ 1.)

Note. Similar results can be proved for other sets of functions continuously depending on
a fixed number of parameters.

Theorems 3 and 5 tell us that the familiesF(OSM) andF(CSM) are incomparable,
and neither of them is closed under complement. This incomparability and lack of closure
is largely compensated by the complementarity of the families. On the other hand, they
are closed under other Boolean operations.

Theorem 6. The families F(OSM) and F(CSM) are closed under union and intersec-
tion.

Proof. It suffices to prove the closures forF(OSM). For F(CSM) the closures then
follow by Theorem 3 and De Morgan’s laws.

Takethen two (real-time) OSMsM andN , with statesq andp, and position functions
s0 andr0, respectively. Let the state differential equations ofM andN , on input f , be

dq
dt

= Q(q(t), f̂ (t)) and
dp
dt

= P(p(t), f̂ (t)).

By Theorem 3 we may assume that 0≤ q1(t), p1(t) ≤ 1.
We then take a new state componentv (the new acceptance indicator). The real-time

machine with state(q, p, v) and state differential equations

dq
dt

= Q(q(t), f̂ (t)) ,
dp
dt

= P(p(t), f̂ (t)) and

dv

dt
= Q1(q(t), f̂ (t)) + P1(p(t), f̂ (t))

recognizesF(M)∪ F(N). Note that herev(t) = q1(t)+ p1(t). Changing the differential
equation ofv to

dv

dt
= Q1(q(t), f̂ (t))p1(t) + q1(t)P1(p(t), f̂ (t))

we get a machine recognizingF(M) ∩ F(N), andv(t) = q1(t)p1(t).

11

Weclose this section by an observation on the ”discrete computation power” CSMs.

Theorem 7. Let L be the complement of a computably enumerable set in N and denote

F = { f | f is constant and f (x) ∈ L for 0 < x < 1 }.
Then F ∈ F(CSM).

Proof. We use ”pure state machines” or machines with an integer input, see [25]. There
exists such a machineM recognizingN − L in the time interval [0, 1]. Note that accep-
tance of an input inN means here that the acceptance indicatorq1 grows from zero to a
positive value; if the input is rejected thenq1(t) = 0 for 0 ≤ t ≤ 1. M receives its inputa
as an initial value of certain state components. It is, however, easy to see that it might as
well receive it as a parameter value (simply let the computation start by a copying of the
parameter valuea to the necessary state components). The differential equation ofM is
then of the form

dq
dt

= Q(q(t), a),

with zero initial values. (Actually, in [25], it is assumed thatQ is defined in a finite
interval ofq-values. It is easily seen that this interval can be replaced by the wholeR

mM .)
Wefirst take the real-time OSMM ′ with stateq and state differential equation

dq
dt

= Q(q(t), f̂ (t)).

When restricted to constant inputs inN, M ′ accepts exactly all numbers inN − L. By
Theorem 3, there is a CSMM1 recognizing the complement ofF(M ′). Restricted to
constant inputs inN, M1 accepts exactly all numbers inL.

Let M2 be a CSM recognizingFpoly−0 (i.e., constants), cf. Theorem 5. Finally we fix
acontinuous functionu : R −→ R such thatu(x) < 0 for x < 0 andu(x) = 0 for x ≥ 0,
and take the real-time CSMM3 with stateq and state differential equation

dq

dt
= cos2(π f̂ (t)) + u(f̂ (t)).

Restricted to constant inputs,M3 accepts exactly all numbers inN. ThenF = F(M1) ∩
F(M2) ∩ F(M3) is in F(CSM) by Theorem 6.

4 Two-Way State Machines

A two-way state machine (2-SM) is amachine with no functional memory. As indicated
in Section 1, the state structure of such a machine has a very strong controlling capability,
indeed, it has all the power of a Turing machine operating on integers. Very little of this
capability can be used in computations of SMs. In order to utilize results computed by
the state structure the machine needs to stop or indefinitely slow down reading its input.
A two-way state machine can do this, and it can also re-read its input or read it in reverse.

Another property of 2-SMs, not possessed by SMs, is the ability to integrate over time
intervals of arbitrary (finite) length. There is indeed no bound on the time accepting an

12

input may take. This makes it possible for 2-SMs to amplify minute effects, either by a
back-and-forth movement of the read-head, or by letting the read-head move forward or
backward, or by letting it stand still for an unspecified time. It should be remembered,
however, that the read-head cannot change direction infinitely many times in a finite time
interval.

Note. Apparently the ”intermediate” possibility of allowing a state machine to be a (non-
strict) one-way machine is of interest, too. (In traditional automata-theoretic terms, this
would allow ”empty moves”.) The behaviour of such state machines is rather different
from that of the SMs in Section 3—then e.g. F(OSM) ⊂ F(CSM)—and is not dealt with
in this paper.

Weuse the notations 2-OSM, 2-CSM,F(2-OSM) andF(2-CSM) in an obvious fash-
ion. We first prove some inclusions.

Theorem 8. (i) F(2-OSM) ⊂ F(2-CSM)

(ii) F(OSM) ⊂ F(2-OSM)

(iii) F(CSM) ⊂ F(2-CSM)

Proof. Strictness of these inclusions is a consequence of Theorem 9. To prove the inclu-
sions, we fix continuous functionsu1, u2 : R −→ R such thatu1(x) = 0 for x ≤ 0 and
u1(x) > 0 for x > 0, u2(x) > 0 for 0 < x < 1, u2(x) = 0 for x ≤ 0 and x ≥ 1,
and

∫ 1
0 u2(x) dx = 1. With the machineM (2-OSM, OSM or CSM) we associate the

differential equations

dq
dt

= Q(q(t), f̂ (t)) and
ds0

dt
= S0(q(t), f̂ (t)).

If M is strictly one-way, then we assume thatS0 = 1 and 0≤ q1(t) ≤ 1.
(i) Take a 2-OSMM . We then take a new state componentp (the new acceptance

indicator). The differential equations for our 2-CSM are those ofM and

dp

dt
= u1(q1(t)) + p(t).

If, at some timet , q1(t) > 0 (indicating acceptance), thenp starts growing and will
eventually reach the acceptance treshold 1. This does not happen in any other situation.

(ii) Consider then an OSMM . We again take a new state componentp and the differ-
ential equations

dq̃
dt

= Q(q̃(t), ˆ̃f (t))u2(t) ,
ds̃0

dt
= u2(t) and

dp

dt
= q̃1(t)u1(t − 1).

(We may assume that timet is a state component.) Herep grows above 0 if and only if
q1(1) > 0. Note that the initial value problem

dg

dt
= u2(t) , g(0) = 0,

13

defines a bijective time transformationt ′ = g(t) in the interval 0≤ t ≤ 1, andq̃(t) =
q(t ′), s̃0(t) = t ′ and ˆ̃f (t) = f (s̃0(t)) = f (t ′). Thus the 2-OSM defined by the above
differential equations simulatesM in time t ′, stopping the simulation at timet = t ′ = 1.

(iii) Take finally a CSMM . An equivalent 2-CSM is then defined as in part (ii) except
that

dp

dt
= q̃1(t)u2(t − 1).

Thus, while in traditional automata theory all kinds of finite automata (whether determin-
istic, nondeterministic, two-way, or with or without empty moves) are equivalent, this is
not the case for our state machines.

The state structure may be given time to compute, while other parts do not evolve, by
the following construct. The time axis is divided intoodd intervals [2i, 2i + 1) andeven
intervals [2i +1, 2i +2) (i = 0, 1, . . .). Multiplying the right hand side of the differential
equation of a state component by

σodd(t) = max
(
0,

π

2
sinπ t

)
(resp.σeven(t) = max

(
0, −π

2
sinπ t

)
)

forces it to evolve only during odd (resp. even) time intervals. Of course, if needed,
the time axis may be divided into intervals modulo anyK (K = 2, 3, . . .) by a similar
construct, resulting in the time-division functionsσk(t) (k = 1, 2, . . . , K). Each part of
the machine may then be given a time slot corresponding to positive values of someσk(t).
This is calledtime-division modulo K .

End of a computation and other signalling information can be communicated between
parts of the machine using certain state componentsqi as 0-1-flags and multiplying right
hand sides of differential equations of the pertinent other state components byqi (t) or 1−
qi (t). Thus one part of the machine may compute keeping the flag value inqi (t) = 0while
other parts wait deactivated, and then signal end of its computation by raising the flag
value toqi (t) = 1, activating then certain other parts to continue their particular actions.
Results of the computation may be communicated to the other parts of the machine via
certain deactivated state components.

Obviously, exact description of such synchronization and control—not to mention
simulation of universal Turing machines—via complete sets of differential equations leads
to very complicated expressions. Therefore, only the basic ideas of such constructs are
given in proofs here and in subsequent sections. For more details on such constructs see
[23, 25].

Theorem 9. (i) The set Fpoly−d is not in F(2-OSM).

(ii) None of the sets Fpal, Fsqr and Fpoly is in F(2-CSM).

(iii) The sets Fpal, Fsqr and Fpoly−d are in F(2-OSM).

Proof. (i) See the proofs of Theorems 4 and 5. Note, however, that to use here the
assumed continuous dependence of solutions on parameters in the input we must as-
sume thatf ∗ is, say, Lipschitz-continuous inR. So, since 0∈ Fpoly−d , the assumption

14

Fpoly−d ∈ F(2-OSM) implies that, for a sufficiently small value ofε > 0, the function
g : g(x) = ε sinπx is also inF(2-OSM), acontradiction. (g∗ is Lipschitz-continuous in
R.)

(ii) We show thatFpal /∈ F(2-CSM) and refer to the proof of Theorem 4. The other
nonmemberships are proved analogously. Assume, contrary to the claim, thatFpal is
recognized by the 2-CSMM .

The constant function 0 is inFpal. We consider first the computation ofM accepting
0. Take aξ , 0 < ξ < 1, such that whenevers0(t) = ξ thenS0(q(t), f̂ (t)) �= 0, i.e., the
read-head never stops atξ . (It is easy to see that suchξ must exist.) Lett1, . . . , tp be
exactly all times whens0 has the valueξ . (Note that, by our assumptions, these must be
finite in number.)

Take then fb ∈ Fpal whereb is in a small ballB ⊂ R
pmM+p+2 centered in the

origin, see the proof of Theorem 4, andgb : gb(x) = fb(x)x(1 − x). (Note that then
gb ∈ Fpal andg∗

b is Lipschitz-continuous inR.) We consider now the computation ofM
acceptinggb. AssumingB is small enough, the times when the read-head ofM visits
ξ are close tot1, . . . , tp and their number is the same, and the read-head never stops
at ξ . (Continuous dependence oft1, . . . , tp on parameters in the input follows because
s−1
0 (ξ) has this property by the Implicit Function Theorem.) Let us denote these times by

t ′1, . . . , t ′p. Let h : B −→ R
pmM+p+1 be the continuous mapping defined by

h(b) = (q(t ′1), . . . , q(t ′p), t ′1, . . . , t ′p, gb(ξ)).

By the Dimension Theorem, there are pointsb, b′ ∈ B such thatb �= b′ andh(b) = h(b′).
This is a contradiction since thenM also accepts the non-palindrome

h : h(x) =
{

gb(x) for 0 < x ≤ ξ

gb′(x) for ξ ≤ x < 1.

(iii) We only sketch the proof ofFpal ∈ F(2-OSM). (The membershipFsqr ∈
F(2-OSM) is proved analogously, andFpoly−d ∈ F(2-OSM) follows from Theorems
3, 5 and 8.)

Using the control offered by the state structure of a 2-OSM the following procedure
is carried out. For the successive valuesl = 2, 3, . . . the 2-OSMM compares the input
values

f

(
i

2l

)
and f

(
2l − i

2l

)
(i = 1, 2, . . . , l − 1).

For this purpose these values are copied to state components, say toq2 andq3, which are
then deactivated. (The copying requires temporarily stopping movement of the position
function.) M then continues by activating the differential equation

dq1

dt
= (q2(t) − q3(t))

2 + q1(t)

for a while before raising the value ofl. Note that, before moving to the next value ofl,
the componentsq2 andq3 must be reset to zero, again reading the input. If, for somel
andi ,

f

(
i

2l

)
�= f

(
2l − i

2l

)

15

then the acceptance indicatorq1 starts growing from its initial value 0, leading to accep-
tance of input.

Note that, by Theorems 4 and 5, this implies strictness of all inclusions in Theorem 8.
The following corollary is also immediate.

Corollary 10. The families F(CSM) and F(2-OSM) are incomparable.

Note. We assumed that the structure of our differential equations implies continuous de-
pendence of solution on parameters in the input. For state machines this guarantees the
continuity for all inputs sufficiently well-behaved in the interval (0, 1). Such is not the
case any more for two-way state machines. The input may have jump discontinuities at
x = 0 or x = 1 or elsewhere, and these can be utilized as jump discontinuities of the right
hand side of our differential equations. Thus the solutions need not depend continuously
on parameters in the input, even if the input is, say, Lipschitz-continuous in (0, 1).

On the other hand, if the input f has the property that f ∗ is, say, Lipschitz-continuous
in R then continuous dependence on parameters in f is valid (as a consequence of our
assumptions). This fact is utilized in the proof of Theorem 9.

Theorem 9 shows that the familiesF(2-OSM) andF(2-CSM) are not closed un-
der complement, indeed, complements of certain families inF(2-OSM) are not even
in F(2-CSM). (The situation is thus quite different from that for state machines.) For
Boolean operations we have

Theorem 11. (i) The family F(2-OSM) is closed under union and intersection.

(ii) The intersection of a set in F(2-OSM) and a set in F(2-CSM) is in F(2-CSM).

(iii) The family F(2-CSM) is closed under union.

Proof. First, it should be noted that the construct of the proof of Theorem 6 is not appli-
cable here.

Take then two 2-SMsM andN , with statesq andp, and position functionss0 andr0,
respectively. For our new machineM ′, we use time-division modulo 4. The following
sequence of four operations is then carried out cyclically byM ′:

1. SimulateM for time 1 and then deactivate this simulation.

2. Usings0 andr0 (initially zero) move the position function to the value ofr0 and
then deactivate it.

3. SimulateN for time 1 and then deactivate this simulation.

4. Usingr0 ands0 move the position function to the value ofs0 and then deactivate it.

We denote the state components ofM ′, corresponding toq, p andr0, by q̃, p̃ andr̃0,
respectively. We also fix a continuous functionu : R −→ R such thatu(x) = 0 for x ≤ 0
andu(x) > 0 for x > 0.

16

(i) AssumingM andN are both 2-OSMs, it remains to define the acceptance mecha-
nism of M ′. We take new state componentsv1, v2 andv3 (the new acceptance indicator),
and define

dv1

dt
= u(q̃1(t)) and

dv2

dt
= u(p̃1(t)).

To get F(M ′) = F(M) ∪ F(N) (resp.F(M ′) = F(M) ∩ F(N)) wedefine simply

dv3

dt
= v1(t) + v2(t) (resp.

dv3

dt
= v1(t)v2(t)).

(ii) Assume then thatM is a 2-OSM andN a2-CSM. We take a new state component
v with the differential equation

dv

dt
= u(q̃1(t)) + v(t).

and then modify the differential equations ofp̃ andr̃0 as follows:

dp̃
dt

= P̃(p̃(t), f̂ (t))v(t) and
dr̃0

dt
= R̃0(p̃(t), f̂ (t))v(t).

If M does not accept the input, thenv(t) = 0 for all t ≥ 0 and the simulation ofN by M ′
never starts. If, on the other hand, the input is accepted byM then, for somet , v(t) > 0
and the simulation ofN by M ′ starts. Since then limt→∞ v(t) = ∞, the simulation is
carried out to the end. Using the acceptance indicatorp̃1, the input is thus accepted by
M ′ if only if it is accepted by bothM andN .

(iii) AssumeM andN are both 2-CSMs. Only slight modifications of the above basic
construct ofM ′ are needed here. First, a new acceptance indicatorv is chosen forM ′.
WheneverM (resp. N) is simulated byM ′, then v(t) is equal toq̃1(t) (resp. p̃1(t)).
The value ofv is updated during steps 2. and 4., exactly as is the value of the position
function.

Closure of the familyF(2-CSM) under intersection remains an open problem.

5 Push-Down Machines

Werecall that for apush-down machine (PDM) M we havenM = 1 andx̂1 is defined by

x̂1(T) =
{

x∗
1,T (s1(T)−), if s′

1(T) < 0

x1(T), if s′
1(T) ≥ 0.

The corresponding differential equations are then

dq
dt

= Q(q(t), f̂ (t), x̂1(t)) ,
ds0

dt
= S0(q(t), f̂ (t), x̂1(t)) ,

ds1

dt
= S1(q(t), f̂ (t), x̂1(t)) and

dx1

dt
= X1(q(t), f̂ (t), x̂1(t)).

17

By definition, PDM is a strictly one-way machine, i.e.S0(q, f̂ , x̂1) > 0. It is also
assumed that alwayss1(t) ≥ 0. We use the notations OPDM, CPDM,F(OPDM),
F(CPDM), etc. in an obvious fashion.

A PDM can only read its functional memory when the ”read-write-head” is moving
left. (Indeed, when the ”read-write-head” is moving right or is stopped, i.e.,S1(q(t)) ≥ 0,
we havex̂1(t) = x1(t), andx1 could be included among the state components.) In this re-
spect it is quite like its namesake in traditional automata theory, the push-down automaton.
Our machines have, however, forward-unique solutions, and thus the corresponding type
of automaton is actually the deterministic push-down automaton. Deterministic context-
free languages have rather poor closure properties, and so appear to do the setsF(OPDM)

andF(CPDM).

Note. The traditional DPDA has empty moves, corresponding to zero-values of our S0(q).
Our definition above thus corresponds to DPDAs without empty moves. It may be noted,
however, that deterministic context-free languages can be recognized by DPDAs in linear
time. One-way PDMs certainly appear to be an interesting subclass of machines, but they
are not investigated any further here.

It is immediate thatF(OSM) ⊆ F(OPDM) andF(CSM) ⊆ F(CPDM). Both inclu-
sions are strict as a consequence of Theorems 4 and 14.

Theorem 12. Every PDM can be replaced by an equivalent PDM with S0 identically
equal to 1, i.e., s0(t) = t . (In other words, every PDM can be replaced by an equivalent
real-time PDM.)

Proof. Werefer to the proof of Theorem 2. The differential equations above are replaced
by

dq̃
dt

= Q(q̃(t), ˆ̃f (t), ˜̂x1(t))

S0(q̃(t), ˆ̃f (t), ˜̂x1(t))
,

ds̃0

dt
= 1 ,

ds̃1

dt
= S1(q̃(t), ˆ̃f (t), ˜̂x1(t))

S0(q̃(t), ˆ̃f (t), ˜̂x1(t))
and

dx̃1

dt
= X1(q̃(t), ˆ̃f (t), ˜̂x1(t))

S0(q̃(t), ˆ̃f (t), ˜̂x1(t))
.

As before, we haveˆ̃f (t) = f̂ (s−1
0 (t)). Now, assuming˜̂x1(t) = x̂1(s

−1
0 (t)), a simple

calculation shows that

q̃(t) = q(s−1
0 (t)) , s̃1(t) = s1(s

−1
0 (t)) and x̃1(t) = x1(s

−1
0 (t)).

We have taken here simplŷ̃x1(t) = x̂1(s
−1
0 (t)), so it remains to show that̃̂x1(t) = ˜̂x1(t).

Sinces0 is strictly increasing,

t̃∗1,T (s) = max
s̃1(t)=s

t = s0

(
max

s1(s
−1
0 (t))=s

s−1
0 (t)

)
= s0(t

∗
1,s−1

0 (T)
(s)).

It is then easily verified that̃x∗
1,T (s) = x∗

1,s−1
0 (T)

(s) and finally ˆ̃x1(t) = x̂1(s
−1
0 (t)).

18

As was the case for state machines, the familiesF(OPDM) andF(CPDM) are com-
plementary. (In many ways this result corresponds to the closure under complementation
of traditional deterministic context-free languages.)

Theorem 13. F(OPDM) = co–F(CPDM), i.e., the families F(OPDM) and F(CPDM)

are complementary. Moreover, it may be assumed that 0 ≤ q1(t) ≤ 1.

Proof. See the proof of Theorem 3.

Theorem 14. (i) The set Fpal is in F(CPDM) but not in F(OPDM).

(ii) The sets Fsqr, Fpoly−d and Fpoly are not in F(OPDM).

(Corresponding statements for the complements of the sets are obtained in an obvious
way by Theorem 13.)

Proof. The nonmembership ofFpal, Fsqr, Fpoly andFpoly−d in F(OPDM) is proved simi-
larly in all cases . We prove here the claimFpal /∈ F(OPDM). Assume the contrary. There
is then a (real-time) OPDMM which recognizesFpal. Let M accept zero input (which
is in Fpal), and, considering this accepting computation, denote the maximum value of
|x1(t)| by U , and

K = {(q(t), 0, x) | 0 ≤ t ≤ 1 and|x | ≤ U } ⊂ R
mM+2.

Furthermore, for someα > 0 andδ > 0, we have thenq1(t) > α for 1 − δ ≤ t ≤ 1.
Choose next anR such that inR

mM+2 the distance of any pointr with ‖r‖ = R
from K is at least 1. Then, because of continuity,‖(Q, 1, X1)(r)‖ is bounded in the ball
‖r‖ ≤ R, say byC .

Define then

gε : gε(x) =
{

0 for 0 ≤ x ≤ 1 − ε

x + ε − 1 for 1 − ε ≤ x ≤ 1.

Obviouslygε is not in Fpal for smallε > 0, but on inputgε the solution curve

Cε : r = (q(t), gε(t), x1(t)) (0 ≤ t ≤ 1 − ε)

is then inK . Sincegε is rejected byM , for all sufficiently smallε, 0 < ε < δ, the solution
curveCε must escape the ball‖r‖ ≤ R within the time interval 1− δ ≤ t ≤ 1, in order
for |Q1| to achieve arbitrarily large values. This is impossible ifδ < 1/C since escaping
the ball starting fromK takes at least time 1/C .

Weshow next thatFpal ∈ F(CPDM) by a direct construction, which of course resem-
bles very much that for the traditional PDA. For this purpose we fix a continuous function
u : R −→ R such thatu(x) = 0 for x ≤ 0 andx ≥ 1/2, andu(x) > 0 for 0 < x < 1/2.
We then setmM = 4 and

dq1

dt
= 1 − (x̂1(t) − q2(t) + q3(t))

2 ,
dq2

dt
= u(q4(t)) f̂ (t) ,

dq3

dt
= u(1 − q4(t)) f̂ (t) ,

dq4

dt
= 1 ,

ds0

dt
= 1 ,

ds1

dt
= π

2
sin 2πq4(t) and

dx1

dt
= u(q4(t)) f̂ (t).

19

(For q4 < 0 andq4 > 1 wedefineS1(q, f̂ , x̂1) = 0.) For 0≤ t ≤ 1/2 we have then

q1(t) = q4(t) = s0(t) = t , q2(t) = x1(t) = x̂1(t) =
t∫

0

u(x) f (x) dx ,

q3(t) = 0 and s1(t) = 1

2
sin2 π t.

For 1/2 ≤ t ≤ 1 we havet = 1/2 + τ for someτ ≥ 0,

q2(t) =
1/2∫
0

u(x) f (x) dx , q3(t) =
1/2+τ∫
1/2

u(1 − x) f (x) dx =
1/2∫

1/2−τ

u(x) f (1 − x) dx ,

q4(t) = s0(t) = t , s1(t) = 1

2
sin2 π(1/2 + τ) = 1

2
sin2 π(1/2 − τ) and

x̂1(t) =
1/2−τ∫
0

u(x) f (x) dx .

If f ∈ Fpal then f (1−x) = f (x), and fort ≥ 1/2 we haveq2(t)−q3(t) = x̂1(t). Thus f
is accepted. Iff /∈ Fpal, then for somet1, 1/2 < t1 < 1, we haveq3(t1) �= q2(t1)− x̂1(t1).
It follows thatq1(1) < 1 and f is rejected.

The proof of Theorem 6 is readily applicable here and so we have

Theorem 15. The family F(CPDM) (resp. F(OPDM)) is closed under intersection and
union with sets in F(CSM) (resp. F(OSM)).

6 Two-Way Push-Down Machines

As for a PDM, for atwo-way push-down machine (2-PDM) M we havenM = 1 andx̂1 is
defined by

x̂1(T) =
{

x∗
1,T (s1(T)−), if s′

1(T) < 0

x1(T), if s′
1(T) ≥ 0.

The difference is that a 2-PDM is not a one-way machine, i.e.S0(q, f̂ , x̂1) may have both
positive and negative values, and zero values. It is still assumed that alwayss1(t) ≥ 0.
We use the notations 2-OPDM, 2-CPDM,F(2-OPDM), F(2-CPDM), etc. in an obvious
fashion.

ObviouslyF(2-OSM) ⊆ F(2-OPDM) andF(2-CSM) ⊆ F(2-CPDM). The latter
inclusion is strict sinceFpal ∈ F(2-CPDM) − F(2-CSM) (see Theorems 9 and 14 and
Theorem 16 below). The former inclusion is strict becauseFpoly−d ∈ F(2-OPDM) −
F(2-OSM) (see Theorem 9 and Theorem 19 below). In fact, as will be noted in Section
8,F(2-CSM) ⊂ F(2-OPDM).

Theorem 16. (i) F(2-OPDM) ⊆ F(2-CPDM)

20

(ii) F(OPDM) ⊂ F(2-OPDM)

(iii) F(CPDM) ⊂ F(2-CPDM)

Proof. See the proof of Theorem 8. Strictness of the inclusion (iii) follows becauseFpal ∈
F(2-OPDM) − F(CPDM) (see Theorems 9 and 14). Strictness of the inclusion (ii) in
turn follows becauseFpal ∈ F(2-OPDM) − F(OPDM) (see Theorem 14 and Corollary
20 below).

Strictness of the inclusion (i) in the above theorem remains open. Indeed, 2-PDMs are
already quite powerful machines and we lack techniques for proving nonmembership.

Theorem 17. The set Fsqr is in F(2-CPDM).

Proof. The construct is almost the same as that of Theorem 14(i). The only difference is
that the input segmentf (x), 1/2 < x < 1, is read from right to left.

2-PDMs have the ability to perform operations of numerical analysis. More spefically,
we define anumerical analysis machine as follows:

(A) The input is a piecewise continuous functionf in the interval [0, 1]. The machine
has a black box which, given a finite floating point representationx , 0 ≤ x ≤ 1,
returns the corresponding finite floating point representation off (x), using a given
scheme of rounding numbers.

(B) The floating point presentation is given, as usual, by the sign, the mantissa and the
exponent, in the integer interval 1, 2, . . . , N . HereN is a precision parameter which
can be increased by the machine. Any number of integers, and thus any number of
floating point numbers, can be stored by the machine.

(C) The machine has universal computing power on integers.

For 2-PDMs, f (x) is readily available at any time and the state control structure has a
universal computing power on integers. It is the rounding of reals to integers that needs
to be explained. Such a rounding is not possible without losing stability, and thus must
be performed using the push-down memory. One way of doing it is the following. First,
aunit-step is created in the push-down memory:

1. Stop the read-write-head at some positiony0 (i.e., take the value ofs′
1 to 0 and hold

it there).

2. Reset the values ofx1 andx ′
1 to 0.

3. Move the read-write-head fromy0 to y0 + 1, stopping it there and keepingx1 = 0.

4. Raise the value ofx1 from 0 to 1, resettingx ′
1 to 0 and keepings1 = y0 + 1.

5. Move the read-write-head fromy0 + 1 to y0 + 2, stopping it there and keeping
x1 = 1.

6. Lower the value ofx1 from 1 to 0, resettingx ′
1 to 0 and keepings1 = y0 + 2.

21

Rounding a real number, sayz, to integer may be accomplished by comparingz to i for
i = 0, ±1, ±2, . . . , until an integerj is found such thatj ≤ z < j + 1. The comparison
is done using the created unit-step aty0+1. We denotew = 2

π
arctan(z − i), and continue

the process as follows:

7. Move the read-write-head fromy0 + 2 to y0 + 1 + w and immediately switch on
the controlling differential equation

ds1

dt
= −s1(t) + y0 + 1

(s1 may be assumed to be among the state components), all the time keepingx1 = 0
andx ′

1 = 0. While this differential equation controlss1 we have

s1(t) = y0 + 1 + we−t+t0,

wheret0 is the time of switching on the differential equation, and hence eitherz ≤ i
andx̂1(t) = 0 or z > i andx̂1(t) = 1.

Wehave thus

Theorem 18. Any numerical analysis machine can be simulated by a 2-PDM.

It may be noted that the theorem holds true already for 2-SMs, if their inputs are confined
to ones containing the needed step structure. We also have

Theorem 19. Let the set F ∈ F(2-CPDM) be recognized by a 2-CPDM M such that for
some constant T > 0 all inputs in F are accepted in time T , i.e., for any input in F,
q1(T) ≥ 1. Then F ∈ F(2-OPDM).

Proof. The 2-OPDM recognizingF simulatesM for time T , deactivates the differential
equation ofq1 and then roundsq1(T) to �q1(T)�.

All of F(CPDM) and many sets known to be inF(2-CPDM) are seen to be already in
F(2-OPDM) by this theorem (but remember that equality of the latter two families is
open):

Corollary 20. F(CPDM) ⊂ F(2-OPDM) and Fsqr ∈ F(2-OPDM).

(Strictness of the inclusion follows becauseFpal ∈ F(2-OPDM) − F(CPDM).)

Note. Actually, a stronger form of Theorem 19 holds true: If for an input of M the time
T of possible acceptance, which may vary among inputs, can be numerically computed,
then the conclusion of the theorem holds true. This indicates that even if F(2-OPDM) is
a proper subfamily of F(2-CPDM), it may be quite difficult to prove it.

22

7 Linear-Bounded Machines?

The family of context-sensitive languages played initially a prominent role in the tradi-
tional Chomsky hierarchy. Nowadays it is mainly thought of as a subset of the space
complexity classPSPACE . (Indeed, some modern text-books on formal languages pass
over CS-languages, see e.g. [13].) The corresponding automata type is the linear-bounded
automaton (LBA). Finding a counterpart for LBAs—or other space/time-bounded Turing
machines—among our machines is problematic. The simple reason for this is discussed
below.

Maximum length of the interval where the position functions take their values is not a
proper space measure for our machines. Indeed, replacingsi by s̃i = arctansi and writing

ds̃i

dt
= Si (q(t), f̂ (t), x̂(t))

1 + tan2 s̃i (t)

restricts the position to the interval(−π/2, π/2). (We may assume that̃si appears as a
state component.) Similarly we may replacexi by x̃i = arctanxi (i = 1, . . . , nM) and
write

dq
dt

= Q(q(t), f̂ (t), tan ˆ̃x1(t), . . . , tan ˆ̃xnM (t)),

etc., which restricts the range ofx̃ to the interval(−π/2, π/2)nM . Size of range ofx thus
does not appear to be a meaningful measure of space either. Note that our assumption on
continuity of right hand sides of the differential equations is then violated, but, less drastic
compression ofs andx is of course possible while retaining the continuity.

Time is equally malleable. Multiplying the right hand sides of the differential equa-
tions by 1+ tan2 t replaces the semi-infinite time interval [0, ∞) by [0, π/2). (Again, we
considert as a state component.) This, however, might violate our assumption of Zenoan
computations, e.g. not allowing the derivativess′

i (t) to change sign infinitely many times
in any finite time interval, and continuity of right-hand sides as well. Of course, finite ac-
celerations of computations are possible, too, which do not lead to violation of our initial
assumptions.

Note. The above time transformation creates a singularity at t = π/2. This probably is
not as serious as it looks: The main result of [25] shows that for ”pure state machines”
this singularity can be removed.

Restriction of machine type to (strictly) one-way machines or/and fixing or bounding
the dimension of the functional memory certainly are ways to limit use of resources, but
these do not seem to lead machines resembling LBAs in any particular way.

8 General Machines

The largest family in the Chomsky hierarchy is the family of computably enumerable
languages (aka recursively enumerable languages), and the corresponding automata type
is the (deterministic) Turing machine. The most general machine in our case is obtained
when no restrictions are placed on the dimension or type of the functional memory or

23

the moves of the read-head. We call it simply thegeneral machine (GM), and use the
corresponding notations OGM, CGM,F(OGM), F(CGM), etc., as before.

It is immediate thatF(2-OPDM) ⊆ F(OGM) andF(2-CPDM) ⊆ F(CGM), the
strictness of these inclusions, however, remains open. Obviously, GMs have all the power
of 2-PDMs (e.g. the ability to do all numerical analysis computations, see Theorem 18).
There is no difference between open and closed acceptance for GMs:

Theorem 21. F(OGM) = F(CGM).

Proof. Proof of the inclusionF(OGM) ⊆ F(CGM) is similar to the proof of Theorem
8. To show the reverse inclusion take a CGMM . We construct an OGMM ′ recognizing
F(M). Weadd a new state componentp and a new functional memory componenty, and
the corresponding position functionr . The computation ofM ′ begins by initializingy∗

T
to

y∗
T (s) =

{
1 for 0 < s < 2

0 for s < 0 ands > 2

within a certain time interval, and then setting bothy(t) andr(t) to 0. Simulation of the
computation ofM then begins (for this purposeM is embedded inM ′) and the evolution
of the new components is given by

dy

dt
= 0 ,

dr

dt
= Q1(q(t), f̂ (t), x̂(t)) and

dp

dt
= ŷ(t)Q1(q(t), f̂ (t), x̂(t)).

During this stage at timet = T we have thus

y(T) = 0 , y∗
T (s) =

{
1 for p(T) < s < 2

0 for s ≤ p(T) ands > 2
,

r(T) = q1(T) and p(T) = min

(
2, max

0≤t≤T
q1(t)

)
.

Note how p retains information about whether or notq1 has reached the value 1. This
might happen for one single moment of time only, and thus could not be used to directly
trigger open acceptance.

The construction ofM ′ is finished using time-division modulo 2 (see Section 4) where
during odd time intervals the above process is carried out, and in each even time interval
a unit-step construct (see Section 6) is used to compute�p(t)�. If �p(t)� ≥ 1 then the
value of the (new) acceptance indicator state is raised from 0 to a positive value.

Wenow drop the letters indicating type of acceptance, and use the notations GM,F(GM),
etc.

Note. A construct similar to the one in the previous proof may be used to show that a 2-
CSM can be simulated by a 2-OPDM. Since only one memory component is available for
a 2-OPDM, the contents of the two memories (or positions of unit-steps) must be stored
and retrieved in an alternating fashion as in the proof of Theorem 11.

24

Since there is no restriction on dimension of the functional memory, a GM can simu-
late two (or more) GMs, much as a 2-SM can simulate two 2-SMs (see Theorem 11 and
its proof). We have thus

Theorem 22. The family F(GM) is closed under union and intersection.

Wedo not know whether or notFpoly is inF(CPDM) or even inF(2-CPDM), butwe
have

Theorem 23. The family Fpoly is in F(GM).

Proof. Wegive a somewhat sketchy proof here, and refer to the proof of Theorem 5. The
general idea is to check through degreesd = 0, 1, . . . whether or not the inputf is a
polynomial of degreed.

First, using two functional memory components repeatedly in an alternating fashion,
the cumulative integrals

ci =
1∫

0

ti∫
0

· · ·
t2∫

0

t1∫
0

f (x) dx dt1 dt2 · · · dti (i = 0, 1, . . . , d)

are computed and their values are stored. A piecewise constant functional memory com-
ponent is used for the storing sinced can be arbitrarily high. (Writing into and reading
from such a memory is similar to the use of unit-steps in the previous sections.) From
these numbersci the coefficientsa0, a1, . . . , ad of the candidate polynomial are computed
as in the proof of Theorem 5, and stored in another piecewise constant memory compo-
nent. Note that these coefficients are linear combinations of the numbersc0, c1, . . . , cd

with rational coeffients which can be computed by the state control.
The candidate polynomialPd(x) is then constructed by repeated integration using the

recursion

P0(x) = d!ad ,

Pi (x) = (d − i)!ad−i +
x∫

0

Pi−1(y) dy (i = 1, 2, . . . , d),

and stored. Finally the integral

I =
1∫

0

(f (x) − Pd(x))2 dx

is computed. A unit-step construct (see Section 6) is used to check whether or notI = 0.
In the positive case the input is accepted. In the negative cased is replaced byd + 1, and
the search for the polynomial continues.

The cardinality of the set of all GMs is the cardinality of the continuum and hence
lower than that of2FPC. There are thus subsets ofFPC not recognized by any GM. An
explicit example of such a set can be obtained by diagonalization and the celebrated Kol-
mogorov Superposition Theorem. The theorem has recently found use in neural network
theory, we quote in full a refinement obtained by David Sprecher:

25

Kolmogorov Superposition Theorem. ([27], Theorem 1)Let {λk} be a sequence of pos-
itive integrally independent numbers. There exists a continuous monotonically increasing
function ψ : [0, 1/5!] −→ [0, 1/5!] having the following property: For every real-valued
continuous function f : [0, 1]n −→ R with n ≥ 2 there are continuous functions
q such
that

f (x1, . . . , xn) =
2n∑

q=0

q

(
n∑

p=1

λqψ(x p + qan)

)
,

for a suitable constant an.

It is not difficult to see that this theorem can be used to give a coding of any GM as a
function in FPC. We fix one such coding scheme, and denote the code of a GMM by γM .
Wedefine then

D = {γM | M is a GM andγM /∈ F(M)}.
It is immediate thatD cannot be recognized by any GM.

Note. Despite the Gödel-number-like properties of γM it appears that it cannot be used
to construct a universal GM. It may be noted, though, that γM is effectively obtainable, if
not explicitly then at least numerically, see [28, 29]and the references therein.

The family of computable languages (aka recursive languages) may be defined as the
family of languagesL such that bothL andL are computably enumerable. Using GMs,
the corresponding family is

C = F(GM) ∩ co–F(GM).

Sets of functions inC are in a sense ”decidable” by our machines. It is immediate thatC
containsF(OPDM) andF(CPDM). On the other hand,D is an example of an ”undecid-
able” set.

An interesting open problem is whetherC is proper subset ofF(GM). (In traditional
formal language theory a central result states that not all computably enumerable lan-
guages are computable.) By Theorem 23,Fpoly is inF(GM), but it is not known whether
Fpoly ∈ F(GM). ThusFpoly might resolve the problem.

9 The Hierarchies

We collect here in Figure 2 in a graphical form the Chomsky-like hierarchies obtained in
the previous sections. We have basically four hierarchies, depending on whether or not
two-way machines are used and which of the two types of acceptance is adopted. Each of
these four hierarchies resembles the traditional Chomsky hierarchy, except that the third
family (corresponding to context-sensitive languages) is missing. It may be noted that we
could use the family of sets recognized by somehow restricted machines (say, machines
M with nM = 1) as the third family, but we feel that this is somewhat arbitrary.

In the diagram of Figure 2 an arrow means strict inclusion, an arrow with a question
mark means inclusion (only strictness is open), and absence of a directed path means
incomparability. An open but conjectured incomparability is marked with a dashed line.

26

Complementary families are connected with a dotted line. Actually, as the reader may
verify by our previous theorems, the setsFpoly−d , Fpal, Fpoly−d andFpal suffice to show
all known noninclusions in the diagram. (And it is known in addition thatFpoly−d ∈
F(2-CSM) − F(OPDM).)

F(OSM) F(CSM)

F(OPDM) F(CPDM)

F(2-OSM)

F(2-CSM)

F(2-OPDM)

F(2-CPDM)

F(GM)

?

?

...............

..................

Figure 2.

References

[1] AGARWAL, R.P. & LAKSHMIKANTHAM , V.: Uniqueness and Nonuniqueness Criteria
for Ordinary Differential Equations. World Scientific (1993)

[2] A SARIN, E. & MALER, O.: On Some Relations Between Dynamical Systems and Tran-
sition Systems. InProceedings of ICALP ’94 (S. Abiteboul & E. Shamir, Eds.).Lecture
Notes in Computer Science 820. Springer–Verlag (1994), 59–72

[3] BLONDELL, V.D. & TSITSIKLIS, J.N.: A Survey of Computational Complexity Results
in Systems and Control.Automatica 36 (2000), 1249–1274

[4] BLUM , L. & CUCKER, F. & SHUB, M. & SMALE , S.: Complexity and Real Computa-
tion. Springer–Verlag (1998)

[5] BRANICKY, M.: Universal Computation and Other Capabilities of Hybrid and Continuous
Dynamical Systems.Theoretical Computer Science 138 (1995), 67–100

[6] CHOMSKY, N.: Three Models for the Description of Language.IRE Transactions on
Information Theory 2 (1956), 113–124

27

[7] CHOMSKY, N.: On Certain Properties of Grammars.Information and Control 2 (1959),
137–167

[8] CODDINGTON, E. & LEVINSON, N.: Theory of Ordinary Differential Equations.
McGraw–Hill (1984)

[9] EL’ SGOL’ TS, L.E. & NORKIN, S.B.: Introduction to the Theory and Application of Dif-
ferential Equations with Deviating Arguments. Academic Press (1973)

[10] HALE, J.K.: Theory of Functional Differential Equations. Springer–Verlag (1977)

[11] HARRISON, M.A.: Introduction to Formal Language Theory. Addison–Wesley (1978)

[12] HARTMAN , P.: Ordinary Differential Equations. Birkhäuser (1982)

[13] HOPCROFT, J.E. & MOTWANI, R. & ULLMAN , J.D.: Introduction to Automata Theory,
Languages and Computation. Addison–Wesley (2001)

[14] HOPCROFT, J.E. & ULLMAN , J.D.: Introduction to Automata Theory, Languages and
Computation. Addison–Wesley (1979)

[15] KALMAN , R.E. & FALB , P.L. & ARBIB, M.A.: Topics in Mathematical System Theory.
Tata McGraw–Hill (1974)

[16] LINDGREN, K. & M OORE, C. & NORDAHL, M.: Complexity of Two-Dimensional Pat-
terns.Journal of Statistical Physics 91 (1998), 909–951

[17] MARTIN, J.C.: Introduction to Languages and the Theory of Computation. McGraw–Hill
(1996)

[18] MOORE, C.: Recursion Theory on the Reals and Continuous-Time Computation.Theo-
retical Computer Science 162 (1996), 23–44

[19] ORPONEN, P.: A Survey of Continuous-Time Computation Theory. InAdvances in Algo-
rithms, Languages, and Complexity (D.-Z. Du & K.-I. Ko, Eds.). Kluwer (1997), 209–224

[20] POUR-EL, M.B. & RICHARDS, I.: Computability in Analysis and Physics. Springer–
Verlag (1989)

[21] ROXIN, E.O.: Ordinary Differential Equations. Wadsworth (1972)

[22] RUBEL, L.A.: The Extended Analog Computer.Advances in Applied Mathematics 9
(1993), 39–50

[23] RUOHONEN, K.: Undecidability of Event Detection for ODEs.Journal of Information
Processing and Cybernetics 29 (1993), 101–113

[24] RUOHONEN, K.: An Effective Cauchy–Peano Existence Theorem for Unique Solutions.
International Journal on Foundations of Computer Science 7 (1996), 151–160

[25] RUOHONEN, K.: Decidability and Complexity of Event Detection Problems for ODEs.
Complexity 2 (1997) No. 6, 41–53

28

[26] SALOMAA , A.: Formal Languages. Academic Press (1973)

[27] SPRECHER, D.A.: A Universal Mapping for Kolmogorov’s Superposition Theorem.Neu-
ral Networks 6 (1993), 1089–1094

[28] SPRECHER, D.A.: A Numerical Implementation of Kolmogorov’s Superpositions.Neural
Networks 9 (1996), 765–772

[29] SPRECHER, D.A.: A Numerical Implementation of Kolmogorov’s Superpositions II.
Neural Networks 10 (1997), 447–457

29

