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Abstract

Recently, the property of unambiguity in alternating Turing machines has received
considerable attention in the context of analyzing globally-unique games by Aida et
al. [ACRWO04] and in the design of efficient protocols involving globally-unique games
by Crasmaru et al. [CGRS04]. This paper investigates the power of unambiguity in
alternating Turing machines in the following settings:

1. We construct a relativized world in which unambiguity based hierarchies—AUPH,
UPH, and YPH—are infinite. We construct another relativized world where UAP
(unambiguous alternating polynomial-time) is not contained in the polynomial
hierarchy.

2. We define the bounded-level unambiguous alternating solution class UAS(k),
for every k > 1, as the class of sets for which strings in the set are accepted
unambiguously by some polynomial-time alternating Turing machine N with at
most k alternations, while strings not in the set either are rejected or are accepted
with ambiguity by N. We construct a relativized world where for all & > 1,
UP<j C UP<y1 and UAS(k) C UAS(k +1).

3. Finally, we show that robustly k-level unambiguous alternating Turing machines
accept languages that are computable in P¥®A for every oracle A. This
generalizes a result of Hartmanis and Hemachandra [HH90].

Keywords: structural complexity, unambiguous computation, alternation,
relativization.

1 Introduction

Chandra, Kozen, and Stockmeyer [CKS81] introduced the notion of alternation
as a generalization of nondeterminism: Alternation allows switching of existential
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and universal quantifiers, whereas nondeterminism allows only existential quantifiers
throughout the computation. Alternation has proved to be a central notion in
complexity theory. For instance, the polynomial hierarchy has a characterization in
terms of bounded-level alternation [Sto77,CKS81], the complexity class PSPACE can
be characterized in terms of polynomial length-bounded alternation [CKS81], and many
important classes have characterizations based on variants of alternation (see Chapter
19 of [Pap94]).

Unambiguity in nondeterministic computation is related to issues such as worst-
case cryptography and the closure properties of #P (the class of functions that count
the number of accepting paths of NP machines). The complexity class UP captures
the notion of unambiguity in nondeterministic polynomial-time Turing machines. It
is known that one-to-one one-way functions exist if and only if P # UP [Ko85,GS88]
and that UP equals probabilistic polynomial-time if and only if #P is closed under
every polynomial-time computable operation [OH93]. Factoring, a natural problem
with cryptographic applications, belongs to UP N coUP and is not known to belong to
a subclass of UP N coUP nontrivially.

This paper studies the power of unambiguity in alternating computations.
Niedermeier and Rossmanith [NR98] gave the following definition of unambiguity
in alternating Turing machines: An alternating Turing machine is unambiguous
if every accepting existential configuration has exactly one move to an accepting
configuration and every rejecting universal configuration has exactly one move to
a rejecting configuration. They introduced a natural analog UAP (unambiguous
alternating polynomial-time) of UP for alternating Turing machines. Lange and
Rossmanith [LR94] proposed three different approaches to define a hierarchy for
unambiguous computations: The alternating unambiguous polynomial hierarchy
AUPH, the unambiguous polynomial hierarchy UPH, and the promise unambiguous
hierarchy UPH. Though it is known that Few C UAP C SPP [NR98] and AUPH C
UPH C UPH C UAP [LR94,CGRS04], a number of questions—such as, whether UAP
is contained in the polynomial hierarchy, whether the unambiguity based hierarchies
intertwine, whether these hierarchies are infinite, or whether some hierarchy is contained
in a fixed level of the other hierarchy—related to these hierarchies have remained
open [LR94]. Relatedly, Hemaspaandra and Rothe [HR97] showed that the existence of
sparse Turing complete sets for UP has consequences on the structure of unambiguity
based hierarchies.

Recently, Aida et al. [ACRWO04] introduced “uniqueness” properties for two-player
games of perfect information such as Checker, Chess, and Go. A two-person perfect
information game has the global uniqueness property if every winning position of player
1 has a unique move to win and every mis-step by player 1 is punishable by a unique
winning reply by player 2 throughout the course of the game. Aida et al. [ACRW04]
showed that the class of languages that reduce to globally-unique games, i.e., games
with global uniqueness property, is the same as the class UAP. In another recent
paper, Crasmaru et al. [CGRS04] designed a protocol by which a series of globally-
unique games can be combined into a single globally-unique game, even under the
condition that the result of the new game is a non-monotone function of the results of
the individual games that are unknown to the players. In complexity theoretic terms,
they showed that the class UAP is self-low, i.e., UAPYAP — UAP. They also observed
that the graph isomorphism problem, whose membership in SPP was shown by Arvind
and Kurur [AK02], in fact belongs to the subclass UAP of SPP.



In this paper, we investigate the power of unambiguity based alternating
computation in three different settings. First, we construct a relativized world in
which the unambiguity based hierarchies—AUPH, UPH, and UYPH—are infinite. This
extends the separation of the relativized polynomial hierarchy [Yao85,Has87] to the
separations of the unambiguity based relativized hierarchies. We construct another
relativized world where UAP is not contained in the polynomial hierarchy. This latter
oracle result strengthens a result (relative to an oracle, UAP differs from the second
level of UP?H) of Crasmaru et al. [CGRS04]. Our results show that proving that any of
the unambiguity based hierarchies is finite or that UAP is contained in the polynomial
hierarchy is impossible by relativizable proof techniques. We mention that the structure
of relativized hierarchies of classes has been investigated extensively in complexity
theory (see, for instance [Yao85,Has87,CGH*89,K089,K091]) and our investigation is a
work in this direction.

Second, for every k > 1, we define a complexity class UAS(k) as the class of sets
for which every string in the set is accepted unambiguously by some polynomial-time
alternating Turing machine N with at most k£ alternations, while strings not in the
set either are rejected or are accepted with ambiguity by N. A variant of this class
(denoted by UAS in this paper), where the number of alternations is allowed to be
unbounded, was studied by Wagner [Wag92] as the class VP of all sets which can be
accepted by polynomial-time alternating Turing machines using partially defined AND
and OR functions.! Beigel [Bei89] defined the class UP<y(,) as the class of sets in
NP that are accepted by nondeterministic polynomial-time Turing machines with at
most k(n) accepting paths on each input of length n. Beigel [Bei89] constructed an
oracle A such that PA ¢ UPA C UPkA(n) C UPkA(n)+1 C FewPA C NP4, for every
polynomial k(n) > 2. We show that there is a relativized world B such that, for all
k> 1, UPE, c UPE, ,, UAS(k)® C UAS(k + 1)®, and relative to B, the second level
of UPH is not contained in any level of AUPH.

Finally, we investigate the power of polynomial-time alternating Turing machines
that preserve the bounded-level unambiguity property for every oracle. We show
that a polynomial-time alternating Turing machine that preserves k-level alternation
unambiguously in every relativized world requires only weak oracle access in every
relativized world, i.e., for every oracle A, the language of such a machine can
be computed in PZx®A.  This is a generalization of a result of Hartmanis and
Hemachandra [HH90], which states that if a nondeterministic polynomial-time Turing
machine is robustly categorical (i.e., for no oracle and for no input, the machine has

more than one accepting path), then for every oracle A4, the machine accepts a language
in PNP&A,

2 Preliminaries

Let N* denote the set of positive integers. We assume without loss of generality that
the root of a computation tree of every alternating Turing machine (or, ATM in short)
is an existential node. For any deterministic or nondeterministic, or alternating Turing
machine N, A C ¥*, and z € £*, we use the shorthand N4 (z) for “the computation of

!The partial counterparts AND* and OR* differ from boolean functions AND and OR, respectively,
as follows: AND* is undefined for input (0,0) and OR* is undefined for input (1,1). Thus, these partially
defined boolean functions are the unambiguous counterparts of boolean AND and OR functions, respectively.



N with oracle A on input z,” the shorthand ctree(N, A, z) for “the computation tree of
N4(z),” and for every node u in ctree(N, A, z), the shorthand subtree(N, A, z,u) for
“the computation subtree of ctree(N, A, x) rooted at u.” We recursively assign levels
in a computation tree T' of an ATM as follows: (a) the root of T is at level 1, (b) if a
node v is assigned a level ¢ and if v is an existential node, then the first nonexistential
(i.e., universal or leaf) node w reachable along some path from v to a leaf node of T
is assigned level ¢ + 1, (c) if a node v is assigned a level ¢ and if v is a universal node,
then the first nonuniversal (i.e., existential or leaf) node w reachable along some path
from v to a leaf node of T is assigned level i + 1, and (d) for all other nodes in T', the
concept of levels is insignificant to this work and so the levels are undefined. We term
the nonleaf nodes for which levels are defined as the salient nodes in the computation
tree of an ATM. For any salient node or leaf node ¥, we use level(¥) to denote the level
of ¥ in the computation tree of an ATM. For any k € Nt a k-level ATM is one for
which, on any input, the maximum level assigned to a salient node in the computation
tree of the ATM is at most k. For every ATM N, A C ¥*, z € ¥*, the switch time
of ctree(V, A, z) is the maximum number of computation steps required to reach from
a salient node v at level ¢ to a node w at level ¢ + 1, where w is in subtree(N, A, z,v)
and the maximum is over all v, w, and i. A normalized ATM is one in which, for every
oracle A, input z, level ¢ in ctree(V, A, z), and salient node v at level 4, the number of
computation steps required to reach from v to a node w at level i + 1, where w is in
subtree(N, A, z,v), equals the switch time of the ATM.

We say that a computation tree or subtree T' of an ATM is unambiguous if every
accepting existential node has exactly one move to an accepting node and every rejecting
universal node has exactly one move to a rejecting node. If a computation tree or subtree
T is unambiguous and if T accepts (rejects), then we say that T accepts (respectively,
rejects) with unambiguity. For every ATM N, A C ¥* and z € ¥*, we say that
N4(z) accepts (rejects) with unambiguity if N4 (z) accepts (respectively, rejects) and
ctree(N, A, x) is unambiguous. If, for every x € I*, ctree(N, A, ) is unambiguous, then
we say that N with oracle A (or, simply N, if A = () is unambiguous.

For every polynomial p(.) and for every predicate R(z,y,z) of variables z,y,z,
we use (FPly)(VPI2)R(zx,y,2) to indicate that there exists a unique value y; for the
y variable with |y1| < p(Jz|) such that for all values z; for the z variable with
|z1| < p(|z]), R(x,y1,21) is true, and for all values ya # y; for the y variable with
ly2| < p(|z]), there exists a unique value z(y2) for the z variable with |z(y2)| < p(|z|),
such that R(z,ya,2(y2)) is false. In the same way, we interpret expressions, such as
(FPly1) (VPlya) (FPlys) . .. R(x, y1,Y2, Y3, - - .), with an arbitrary number of unambiguous
alternations.

Definition 2.1 (Unambiguity Based Hierarchies [LR94,NR98]) 1. The
alternating unambiguous polynomial hierarchy AUPH =4 (J,~,AUX,, where
AUSD =4 P and for every k > 1, AUS? is the class of all sets L C X* for which
there exist a polynomial p(.) and a polynomial-time computable predicate R such
that, for all x € X*,

zeLl = (Elp!yl)(vp!y2)"'(Qp!yk)R(xaybyZJ"'Jyk)a and
z ¢ L = (vp!yl)(zlp!yQ)"‘(Qp!yk)_'R(m,yhyQa“-7yk)7

where Q =3 and Q =V if k is odd, and Q =V and Q = 3 if k is even.



2. The unambiguous polynomial hierarchy is UPH =4 ;5o UX}, where US) =4 P
and for every k > 1, UL} =4 UPYZk-1 .

8. The promise unambiguous polynomial hierarchy is UPH =g Uy~ US}, where

USH =g P, USY =4 UP, and for every k > 2, UX} is the class of g(li )sets
LN

L € X% such that for some oracle NPTMs Ny, ..., Ny, L = L(NIL(N2 )),

and for every x € X* and for every 1 < i < k—1, if N; asks a query w to its

WLV LL(Ng) LL(Ng)
oracle L(N;,; ) during the computation of N; (z), then N;,;  (w) has
at most one accepting path.

Definition 2.2 [NR98] UAP is the class of sets accepted by unambiguous ATMs in
polynomial time.

Theorem 2.3 1. For all k >0, AUXY C UX? CUxh C X7 [LRY4].
2. For all k> 1, UP<;, C AUS? C US? C Us? C UAP ([LR94] + [CGRS04)).
3. Few C UAP C SPP ([LR94] + [NR9S)).

3 Relativized Separations of Unambiguity Based
Hierarchies

In this section, we apply random restrictions of circuits for separating the levels of
unambiguity based hierarchies. Sheu and Long [SL96] constructed an oracle A relative
to which UP contains a language that is not in any level of the low hierarchy in NP.
Formally, Sheu and Long [SLI6] showed that (3A)(VEk > 1)[2%‘“’" ¢ S24). In their
proof, they introduced special kinds of random restrictions that were motivated by, but
different from, the restrictions used by Hastad [H&s87]. Using the random restrictions
of Sheu and Long [SL96], we construct a relativized world A in which the unambiguity
based hierarchies—AUPH, UPH, and Y/PH—are infinite. This extends the separation
of relativized polynomial hierarchy [Yao85,H&s87] to the separations of unambiguity
based relativized hierarchies. We use the same restrictions to construct an oracle 4
relative to which UAP is not contained in the polynomial hierarchy. Our separation
results imply that proving that any of the unambiguity based hierarchies extend up to
a finite level or proving that UAP is contained in the polynomial hierarchy is beyond
the limits of relativizable proof techniques.

We now introduce certain notions that are prevalent in the theory of circuit lower
bounds. We represent the variables of a circuit by v,, for some z € ¥*. The dual of
a circuit C' is obtained from C by replacing OR gates with ANDs, AND gates with
ORs, variables z; with 73, and variables T with z;. A restriction p of a circuit C' is a
mapping from the variables of C' to {0,1,x}. We say that a restriction p of a circuit C
is a full restriction if p assigns 0 or 1 to all the variables in C. Given a circuit C' and
a restriction p, C'[, denotes the circuit obtained from C by substituting each variable
x with p(z) if p(x) # *. For every A C X*, the restriction p4 on the variables v, of
a circuit C is pa(v,) = 1if z € A, and pa(v,) = 0if 2z ¢ A. The composition of
two restrictions p; and p=2, denoted by p;1p2, is defined as follows: For every x € ¥*,
p1p2(z) = p2(p1(z)).



We define specialized circuits, Xj(m)-circuits and IIj(m)-circuits, used for
constructing relativized worlds involving ¥;, and II; classes.

Definition 3.1 For every m > 1 and k > 1, a Xy (m)-circuit is o depth k + 1 circuit
with alternating OR and AND gates such that

1. the top gate, i.e., the gate at level 1, is an OR gate,
2. the number of gates at level 1 to level k — 1 is bounded by 2™,
3. the fanin of gates at level k + 1 is < m.

A Tl (m)-circuit is the dual circuit of a X (m)-circuit.

For every k > 1, we say that o is a Ei’(')—predicate if there exist a predicate
R(A;z,uy1,...,yk) over a set variable A and string variables x,y1,¥ys2,-..,Yk, and a
polynomial ¢ such that the following hold: (i) R(A;z,y1,%2,--.,¥x) is computable in
polynomial time by a deterministic oracle Turing machine that uses A as the oracle
and (x,y1,---,yx) as the input and (ii) for every set A and string z, o(A4;x) is true if
and only if (3%1)(V7y2) ... (Qyr)R(A; z,y1,Y2, - .., yk) is true, where Q, = I if k is
odd and @ =V if k is even. We say that o is a Hz’(')—predicate, for k > 1,if -0 is a
E’,;’(')—predicate.

The following proposition states the relationship between Eﬁ’(')—predicates (ch”(')—
predicates) and X (m)-circuits (respectively, Iy (m)-circuits).

Proposition 3.2 (see [Ko89,SL94,SL96]) Let k > 1. For every EZ’(')—predicate

(Hi’(')—predicate) o, there is a polynomial ¢(.) such that, for all x € X*, there is a
Y (q(|z)))-circuit (respectively, 11 (q(|x]))-circuit) Cy » with the following properties:

1. For every A CX*, Coz[p,a=1 if and only if o(A;x) is true, and

2. if v, represents a variable in Cy , then |z| < g(|z|).

Let B = {B;}I_,, where B;’s are disjoint sets that cover the variables of C, and let
g be a real number between 0 and 1. Sheu and Long [SL96] defined two probability
spaces of restrictions, RI 5 and R, 5 and a function ¢’ that maps a random restriction

to a restriction. A random restriction p € RIB (p € R;B) is defined as follows: For
every 1 < 4 < r and for every variable z € B;, let p(x) = * with probability ¢ and
p(z) = 1 (respectively, p(z) = 0) with probability 1 — ¢. We now define the function
g' for p € RIB. For every 1 < i < r, let s; =« with probability g and let s; = 0 with
probability 1 —gq. Let V; C B; be the set of variables x such that p(x) = . ¢'(p) selects
the variable v with the highest index in V;, assigns value s; to v, and assigns value 1 to
all other variables in V;. The function ¢'(p) for p € R, p is defined in an analogous way
by replacing 0 with 1 and vice versa.

Lemma 3.3 (Switching Lemma [SL96]) Let C be a circuit consisting of an AND of
ORs with bottom fanin < t. Let B = {B;}!_, be disjoint sets that cover the variables of
C, and let q be a real number between 0 and 1. Then, for a random restriction p € RIB:
Prob[C[,g: () is not equivalent to an OR of ANDs with bottom fanin < s] < a®, where

a < 6gt. The above probability holds even when RIB is replaced by R;B, or when C' is
an OR of ANDs and is being converted to an AND of ORs.



Sheu and Long [SL96] defined a kind of restriction, called U condition, on the assignment
of variables in certain circuits. A restriction p is said to satisfy the U condition if the
following holds: At most one variable is assigned x or 0 in each set B; if p is a random
restriction from RIB, and at most one variable is assigned x or 1 in each set B; if p is
a random restriction from IA%;B [SL96]. Below, we define a global uniqueness condition
(also called GU condition) on full restrictions of any circuit C.

Definition 3.4 We say that o full restriction p satisfies the GU condition for a circuit
C, if the assignment of variables by p leads to the following characteristics in the
computation of C':

1. If an OR gate G; in C outputs 1, then there is exactly one input gate to G; that
outputs 1, and

2. if an AND gate G; in C outputs 0, then there is exactly one input gate to G; that
outputs 0.

Theorem 3.5 (3A4)(Vk > 1)[AUE§;’A ¢ Hz’A]-

Proof Our proof is inspired from that of Theorem 4.2 (relative to some oracle D, for

all k > 1, Zz’UPD ¢ Ei”D) by Sheu and Long [SL96]. For every k > 1, we define a test
language Ly (B) as follows: Li(B) C 0* such that, for every n € Nt

0" € Lp(B) = (3"My1)(V"ly2) .- (Q™x) [0*1y1y2 ... yx € B], and
0" ¢ Lp(B) = (V"ly1)(3"y2) ... (Q k) [0*1y1y2 ... yk € B,

where Q = 3 and Q = Vif k is odd, and Q = V and Q = 3 if k is even. Choose
O C ¥* such that, for every k > 1, L,(O) = 0*. For every k > 1, let 0y,1,0%,2,- .- be
an enumeration of Eﬁ’(')—predicates. In stage (k,i), we diagonalize against oy; and
change O at a certain length. Finally, let A4 := lim,_ o Upen+ O=". We now define
the stages involved in the construction of the oracle.

Stage (k,i): Choose a very large integer n so that the construction in this stage
does not spoil the constructions in previous stages. Also, n must be large enough to
meet the requirements in the proof of Claim 1. Set O := @ — Xk(+)+1 Choose a set
B C 0¥1%*” such that the following requirement is satisfied:

0" € Ly(B) <= 0},;(0OU B;0") is true. (3.a)

In Claim 1, we show that there is always a set B C 0F1%*" satisfying Eqn. (3.a). Let
O := O U B and move to the next stage.
End of Stage

Clearly, the existence of a set B satisfying Eqn. (3.a) suffices to successfully finish stage
(k,i). We now prove the statement in Claim 1.

Claim 1 In every stage (k,i), there is a set B C 0¥1%*" satisfying Eqn. (3.a).

Proof Assume to the contrary that in some stage (k,7), Eqn. (3.a) is not satisfied.
Then, the following holds: For every B C 0F1%%” (0" € L (B) if and only if =0y ;(O U



B;0™) is true. We define a C(n, k) circuit as follows: The depth of C(n,k) is k, the
top gate of C'(n, k) is an OR gate, the fanin of all the gates at level 1 to k is 2", and
every leaf of C(n,k) is a positive variable represented by v,, where z € 0¥1%%?. The
following proposition is evident.

Proposition 3.6 For every B C 0F1XF7,

0" € Ly(B) <= [pB satisfies the GU condition for C(n,k) and C(n,k)[,z=1],
and
0" € Li(B) <= [pp satisfies the GU condition for C(n,k) and C(n,k)[,,= 0].

For every h > 1, we define a family of circuits F}'. Ko [Ko89] defined a C! circuit to
be a depth k circuit in 7} with fanin of gates at level k exactly equal to vh and used
these circuits to separate the relativized polynomial hierarchy.

Family .7-',’: of circuits, where h > 1: A circuit C of depth ¢, where 1 < ¢ <k, is in
F} if and only if the following holds:

1. C has alternating OR and AND gates, and the top gate, i.e., the gate at level 1,
of C is an OR gate,

2. the fanin of gates at level 1 to £ — 1 is h,
3. the fanin of gates at level £ is > v/h,
4. every leaf of C is a unique positive variable.

Let Cy, ; be the TI; (p;(n))-circuit corresponding to —ay, ;((.);0"), for some polynomial
pi(.). From Proposition 3.6, we wish to find a set B C 0¥1%%" such that (i) if pp
satisfies the GU condition for C(n, k) and C(n,k)[,,=1, then Cy, ;[0 = 0, and (ii)
if pp satisfies the GU condition for C(n, k) and C(n,k)[,5= 0, then Cy, .[,0,5= 1.
Clearly, the existence of a set B satisfying (i) and (ii) suffices to prove the claim. Next,
we describe our approach to show the existence of such a set B.

We define a restriction po on Cy, ; as follows: For every variable v, in Cy, ;,if 2 € O
then let po(v,) = 1, if 2 & O U 0¥1X*" then let po(v,) = 0, and if z € 0F1X*" then
let po(v.) = . Let C,, ;(0) =daf Coy:[po- Thus, the only variables v, appearing in
Ci, :(0) are the ones for which z € 0¥1X*". Suppose that no set B C 0¥1Z*" satisfying
(i) and (ii) exists. Then, the following holds: For every B C 0k¥1%F"

pp satisfies the GU condition for C(n,k) and C(n,k)[,5= Cs, ;0)[ps=1,
or (3.b)
pp satisfies the GU condition for C(n, k) and C(n, k)[p5= Co, ;(0)[ps= 0.
Lemma 3.7 For every 1 < £ < k and for all sufficiently large h, for any circuit
Cr € F of depth £, and for any Ily(m)-circuit Cr, if it holds that
(for every full restriction p satisfying the GU condition for Cx)[Cx[,= Cx[,],
then m > § - h'/3, where § = 1/12.

Proof The proof is similar to that of Theorem 4.1 by Sheu and Long [SL96]. We
prove the lemma by induction on £. For the base case, i.e., £ = 1, let C'x be an arbitrary



OR gate with > v/h variables. Let C be an arbitrary IT; (t)-circuit, where t < & - h/3.
Note that C; is an AND of ORs with bottom fanin < ¢. We will show that there is a
full restriction p satisfying the GU condition for Cx such that Cr[,# Cr[,. This will
give a contradiction, and so it must be that A; (k) > & - h'/3. We consider the following
cases.

Case Cr[,,=0: Then, there is an OR gate G; in Cy such that all the variables in G;
are positive, i.e., G;[,,= 0. Since ¢t < §-h'/3 < v/h for sufficiently large h, there is
a variable v, in Cx but not occurring in G;. Then, py., satisfies the GU condition
for Cr, Crly,,= 1, and Cr [, ,,= 0.

Case C,[,,=1: This immediately yields a contradiction, since py satisfies the GU
condition for Cr, Cr[,,= 0, and Cx[,,= 1.

Induction Hypothesis: For every depth £ circuit Cx € FJ and for every II,(t)-
circuit Cy, where t < 6 - h'/3, there is a full restriction w satisfying the GU condition
for C'x such that Cx[,# Cr[,.

Induction Step: Let Cx be an arbitrary depth £ + 1 circuit in F and let C; be an
arbitrary IT,, (t)-circuit, where t < §-h'/3. Let G1,Go, . - ., Gy be the bottom OR gates
of Cr if £ +1 is odd, or the bottom AND gates of Cr if £+ 1 is even. Let ¢ = h~1/3
and let B = {B;}i_;, where B; is the set of variables in G;. We first show that, for a
randomly chosen restriction p, where p € RIB if /+1iseven and p € R;B iff+11is
odd, the following is true.

(a) With probability > 3/4, Cx[ g () is a depth £ circuit in F}!, and
(b) with probability > 3/4, Cx [, () is equivalent to a IT,(t)-circuit.

Lemma 3.8 shows that (a) is true and Lemma 3.9 shows that (b) is true. It follows
that there is a restriction p such that Cx[,4/(,) is a depth £ circuit in FP and C, [pg' (p)
is equivalent to a II;(¢)-circuit. By induction hypothesis, there is a full restriction w
satisfying the GU condition for Cr[ , = such that Crlog(pyw? Crlpg(p)w- Now it
only remains to show that pg'(p)w satisfies the GU condition for Cx.

The probability spaces, RIB and }AZ;B, of restrictions, and function ¢’ are defined
in such a way that if the bottom level gates G;’s in C'x are ANDs, then the restriction
pg'(p) assigns at most one variable to 0 or x in each G;, and if the bottom level gates
G,’s in Cx are ORs, then the restriction pg'(p) assigns at most one variable to 1 or %
in each G;. Thus, the restriction pg’(p) enforces unambiguity at bottom level gates of
Cr. Since w is a full restriction satisfying the GU condition for Cx[, g, pg'(p)@
enforces unambiguity in Cx. It follows that pg'(p)w satisfies the GU condition for
Cr. B (Lemma 3.7)

Since C(n,k) € F2", Cy, ,(0) is a IMg(ps(n)) circuit, and p;(n) = o(2™/3), we get a
contradiction with Eqn. (3.b) and Lemma 3.7. B (Claim 1 and Theorem 3.5)

Lemma 3.8 Let k > 2, let 1 < £ < k and let h be any sufficiently large integer. Let
Cr be a depth £ + 1 circuit in }",’;. Let G1,Gs, . ..,G, be the bottom level gates of Cr,
let g=h~"/3, and let B = {B;}!_,, where B; is the set of variables in G;. Then, for a



random restriction p, where p € RIB if £+ 1 is even, and p € R;B if £+ 1 is odd, the
following holds:

rbnlw

Prob [C]—‘ [pg'(p) 5 @ depth £ circuit in }'k] >

Proof The proof is similar to that of Lemma 6.8 by Hastad [Has87]. Let the bottom
level gates G1,Ga, . ..,G; of Cx be AND gates. (The case when the bottom level gates
of Cx are ORs is similar.) Then, for a random restriction p € R;',B, Crlpg (@ Fr if
and only if there is an OR gate at level £ in Cr[,g(,) with bottom fanin < Vh. Let
Di =daf (’:) ¢"*(1 — ¢')"~* denote the probability that an OR gate at level £ in Cx[,4(,)
has bottom fanin exactly equal to i, where ¢’ is the probability that the restriction

pg'(p) assigns an input of an OR gate at level £ to x. (Note that ¢’ > ¢(1 — e’q‘/E).)
Then,

PrObpeR;B [Crlpg(n# Fi] < hT1 x Z Di - (3.¢)

We now obtain an upper bound on the r.h.s. of Eqn. (3 c) It can be easily verified
that, for all sufficiently large h and for every 1 <1i < +/2h

\/Efl o) )
Z Pi SPyp_1 X (Z 2’) <2-pp_q-
=0 i=0
Also, p j5_; < 2~ (V2h—Vh) “Pysrg < 2-Vh/3 gince pyar_1 < 1. Thus, it follows that
2. pt-t 1
h
Probyc pr, [Crlow (0¥ il < 7 < 3
for sufficiently large h. B (Lemma 3.8)

Lemma 3.9 is a restatement of Lemma 3.6 by Sheu and Long [SL96] with different
parameter values. So, we omit the proof of Lemma 3.9.

Lemma 3.9 Let k> 2, let 1 <{ <k, let § =1/12, and let t be an integer. Let C be
an arbitrary Yoy 1 (t)-circuit (Wgeyq(t)-circuit). Let V' be the set of variables in Cy, let
q=4/t, and let B= {B;}!_, be an arbztmry partition of the variables in V. Then, for
a random restriction p, where p € Rq B OTpE Rq 5> the following holds:

Prob [Cr [, (p) s equivalent to a Sy(t)-circuit (respectively, TIy(t)-circuit)] >

NI

Proof Omitted (see Lemma 3.6 of [SL96]).

The following corollary is an easy consequence of Theorem 3.5.

Corollary 3.10 There is an oracle A relative to which the alternating unambiguous
polynomial hierarchy AUPH, the unambiguous polynomial hierarchy UPH, the promise
unambiguous polynomial hierarchy UPH, and the polynomial hierarchy PH are infinite.
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Note that Theorem 3.5 does not imply relativized separation of UAP from PH in
any obvious way. Theorem 3.11 achieves this separation using the proof techniques
of Theorem 3.5.

Theorem 3.11 (3A)[UAPA ¢ PHA).

Proof The proof is almost the same as that of Theorem 3.5. We construct an oracle
A and a test language L(A) € UAP* such that, for every k > 1, L(A) ¢ H],z’A. Clearly,
this suffices to prove the theorem. For every B C X*, our test language L(B) is defined
as follows: L(B) C 0* such that, for every n € Nt

0" e L(B) = (3"y)(¥lys)... (QUya)yiys - -yn € B], and
0" EL(B) = ()3 My)... (@Qulya)lyiy---ya & B],

where Q, = 3 and Q,, = V if n is odd, and Q,, = V and @,, = 3 if n is even. Choose
O C ¥* such that L(O) = 0*. For every k > 1, let 0y,1,0%,2, . .. denote an enumeration

of Zz’(')—predicates. In stage (k,), we diagonalize against oy ; and change O at a
certain length. Finally, let A :=lim,_, o Upen+ O~

Stage (k,i): Choose a very large integer n so that the construction in this stage
does not affect the constructions in pgevious stages and the rZequirements in the proof
of Claim 2 are met. Set O := O — X" . Choose a set B C ™ such that the following
requirement is satisfied:

0" € L(B) <= 04,:(0O U B;0") is true. (3.d)

Claim 2 shows that there is always a set B C " satisfying Eqn. (3.d). Let O:=0OUB
and move to the next stage.
End of Stage

Claim 2 In every stage (k,i), there is a set B C ¥’ satisfying Eqn. (3.d).

Proof Assume to the contrary that in some stage (k,4), Eqn. (3.d) is not satisfied.
Let C(n) denote the following circuit: The depth of C(n) is n, the top gate of C(n)
is an OR gate, the fanin of all the gates at level 1 to n is 2", and every leaf of C(n)

is a positive variable represented by v,, where z € . We define, for every h > 1, a
family F" of circuits in a similar way as F} is defined in the proof of Claim 1, except
that the variable k is replaced by n throughout the definition of F}'. Let Cy, ; be the
I (p; (n))-circuit corresponding to —oy,;((.); 0™).

Next, we define a restriction po as follows: For every variable v, in Cy, ,, if 2 € O
then po(v,) =1,if z € OU L™ then po(v,) =0, and if z € " then po(v,) = . Let
Co..(0) =df Coy ; [50- The following equation follows from our assumptions: For every
BCyY™,

pp satisfies the GU condition for C(n) and C(n)|[,,= Co, ;0)[ps=1,
or (3.e)
pp satisfies the GU condition for C(n) and C(n)[,,= Cs, ,(0)[ps= 0.

The following lemma is a simple extension of Lemma 3.7.
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Lemma 3.12 For every 1 < ¢' <n and 1 < £ < min{l', k}, for all sufficiently large h,
for any circuit Cx € F! of depth €', and for any T, (m)-circuit Cy, if it holds that,

(for every full restriction p satisfying the GU condition for Cr)[Cr[,= Cx[,],
then m = Q(h'/3).

Proof Omitted, since the proof is similar to that of Lemma 3.7.

Since C(n) € F2", Cyy, (o) is a Ii(pi(n))-circuit, and p;(n) = o(2"/3), we get a
contradiction with Eqn. (3.e) and Lemma 3.12. B (Claim 2 and Theorem 3.11)

Crasmaru et al. [CGRS04] showed that there is an oracle relative to which UAP #
UYE. Corollary 3.13 shows that in some relativized world, UAP is much more powerful
than the promise unambiguous polynomial hierarchy UYPH. Thus, Corollary 3.13 is a
strengthening of their result.

Corollary 3.13 There is an oracle relative to which UPH C UAP.

4 Complexity of Unambiguous Alternating Solution

Wagner studied the class VP, denoted by UAS in this paper, of all sets that are accepted
by polynomial-time alternating Turing machines with partially defined AND and OR
functions. UAS is a natural class with complete sets and is related with UAP in the
same way as US [BG82] is related with UP. We define a variant of UAS, denoted by
UAS(k), where the number of alternations allowed is bounded by some constant & > 1,
instead of the unbounded number of alternations in the definition of UAS. (Thus,
UAS(1) is the same as the unique solution class US.)

Definition 4.1 [Wag92] The class UAS, denoted by VP in [Wag92], is the class of
all sets L C ¥* for which there exist polynomials p(.) and q(.), and a polynomial-time
computable predicate R such that

L=A{zeX" | (Fly1)(V'!y2) ... (Q"yg) R(z, 1,42, - -, ¥g)}
where @ = 3 if q(|z|) is odd and Q =V if ¢(|z|) is even.

The class UAS(k), for every k > 1, consists of all sets for which strings in the set are
accepted unambiguously by some polynomial-time alternating Turing machine N with
at most k alternations, while strings not in the set either are rejected or are accepted
with ambiguity by N. A formal definition is as follows.

Definition 4.2 The class UAS(k), for k > 1, is the class of all sets L C ¥* for which
there exist a polynomial p(.) and a polynomial-time computable predicate R such that

L= {ZL’ ex” | (3P|y1)(vp|y2) v (Qp'yk)R(%yl; Y2,... ayk)}a
where Q = 3 if k is odd and Q =V if k is even.

Theorem 4.3 1. UAS C C_P and UAS C V&P [Wag92].
2. For every k > 1, UP C US C UAS(k) C UAS(k + 1) C UAS.
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3. For every k > 1, AUXY C UAS(k).

Theorem 4.4 shows that relative to an oracle A, for all k > 1, UPé‘k 41 is not contained
in UAS(k). Thus relative to the same oracle, bounded ambiguity classes UP <, and
bounded-level unambiguous alternating solution classes UAS(k), for k£ > 1, form infinite
hierarchies. Theorem 4.4 also implies that there is a relativized world where for all £ > 1,
UP<j41 is not contained in AUXY. In contrast, Lange and Rossmanith [LR94] proved
that FewP C YUY} in every relativized world. It follows that relative to the oracle of
Theorem 4.4, for all k > 1, USH™ ¢ AUSPA,

The proof of Theorem 4.4 uses Lemmas 4.6, 4.7, 4.9, and 4.10. We first give a proof
of Theorem 4.4 assuming that Lemmas 4.6, 4.7, 4.9, and 4.10 hold. Later at the end of
the proof of Theorem 4.4, we present the proofs of these lemmas.

Theorem 4.4 (3A)(Vk > 1)[UPZ,,, ¢ UAS(k)"].
Proof For every k € NT, we define our test language Ly (B) as follows:
Ly(B) = {0F10™ | BN OF1Z™ # p}.

We will construct an oracle A such that A C 0{0}*1{0,1}* and for every k,n € Nt
AN0*1%"|| < k+ 1. This will guarantee that, for every k € Nt, Ly (A) is in UPZ,;.
For every k € N, let Nj1,Nks2,Nk3s,... be an enumeration of polynomial-time
bounded normalized oracle ATMs such that, for every oracle B and for every i € Nt
N2; is a k-level ATM and p;(n) =g n' + 1 is the switch time of N2;. Let O := . In
stage (k,i), we diagonalize against Ny ; and change O at a certain length. At the end
of every stage, let A :=J,cn+ O~

Stage (k,i): Choose n large enough such that (a) no string of length n or more

is queried by machines considered in previous stages and (b) 2% > 64p2(n). If
N, ,g?i (0™) accepts with unambiguity, then move to the next stage. Otherwise, choose a
set S C 0¥1%" such that 1 < ||S|| < k+ 1 and N,SiUS(O") rejects with unambiguity or
loses unambiguity somewhere in its computation tree. In that case, let O := QU S and

move to the next stage.
End of Stage

Henceforward, we fix a k € Nt. If, for every ¢ € N, the construction in stage (k,4) is
feasible, then clearly Ly(A) € UP“<41,chl and Ly(A) € UAS(k)A. The rest of the proof
is devoted to showing that the construction in stage (k,4) is feasible, for every i € Nt.
Suppose that for some i > 1, the construction in stage (k,) is not feasible. Then, the
following hold:

1. N, ,g?z (0™) rejects with unambiguity or loses unambiguity somewhere in its
computation tree, and
2. For every S C 0¥1Z" such that 1 < ||S|| < k+ 1, NOPS(0™) accepts with
unambiguity.
If N,Si(O”) loses unambiguity, then ctree(Ng;, @,0™) lacks the nice structure which
every unambiguous computation tree possesses. However, Lemma 4.7 states that there
is a salient node ¥ in ctree(Ny,;, 0,0™) and a set Sy C 0*1%" satisfying the properties
1, 2, and 3 of the lemma. Instead of working with the root ¢ of ctree(Ny ;, O,0™) and
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the set 0¥1%", we will now work with the node 9 and the set Sy C 0¥1X™ as promised
in Lemma 4.7. We will see that the size of Sy and the properties of ¥ mentioned in
Lemma 4.7 are enough to obtain a contradiction with our initial assumption. W.l.o.g.,
we assume that 9 is an existential node; in case ¥ is a universal node, then a similar
argument will apply.

Note that Lemma 4.7 implies that ||Sy|| > 2771 — k'pz(") > 2772 If ¥ is a salient
node at level k in ctree(Ny,;, O,0"), then Lemma 4.9 implies that there exist o, § € Sy
such that subtree(Ny ;, O U {a, 8},0",4) is ambiguous. This gives a contradiction with
the assumption that, for every S C 0F15™ such that 1 < [|S]| < k + 1, NOZS(0") is
unambiguous. So, we now assume that 1 < level(d4) = r < k. From Lemma 4.10 with
parameter £ = 0, it follows that there is a set T;, C Sy with 0 < ||T|| < 1, a node 7
in subtree(Ny ;, 0,0™,9), and a set S, C Sy satisfying the properties 1, 2, 3 and 4 of
the lemma. In particular, ||S,|| > ||Ss||*/* > 2"7 and r + 1 < level(n) < k. Note that
our initial assumption about the existence of a salient node ¥ at level r is reduced to
an assumption about the existence of another salient node 7 at a higher level, where
r+1 <level(n) <k, in ctree(Ny ;, 0, 0™). (This suggests the inductive approach of the
proof.) If level(n) = k, then, as explained earlier, Lemma 4.9 implies a contradiction.
Otherwise, we iteratively apply Lemma 4.10 with parameter £ varying from 1 to at most
k—(14+7r). (We need at most k— (1+7) iterations, since in each iteration we move down
at least one level in ctree(Ny ;, O,0™).) After all the iterations, we will end up with a
node ¢ at level k, a set S¢ with [|S¢|| > 24— > 2% > 64p?(n) and a set O’ C 0F1%"
of size < k — r such that (a) if { is an existential node, then subtree(N ;, O U 0’,0",()
rejects and for every a € S¢, subtree(Ny ;, OUO'U{a}, 0", ¢) accepts with unambiguity,
and (b) if { is a universal node, then subtree(N, ;, O U O',0™, () accepts, and for every
a € S¢, subtree(Ny;, O U O' U {a},0™, () rejects with unambiguity. From Lemma 4.9,
it follows that there exist a, 8 € S¢ such that subtree(Ny;,O U O' U {a, §},0™,() is
ambiguous. Since ||O' U{a,f}|| <k —r+2 < k+ 1, we get a contradiction with our
initial assumption. B (Theorem 4.4)

Corollary 4.5 There is an oracle A such that, for every k > 1, UPék C UPé,H_l,
AUSPA € AUSYYY, UAS(K)A C UAS(k + 1), and USh* ¢ AUSDA,

Lemma 4.6, called Party Lemma in [CGH'89], states the following combinatorial fact.
Suppose that S; denotes the set of names of people that person i knows in a party of
£ people. If 37 ||S;|| is small, then there exists a set T' of perfect strangers in the sense
that any person e in T does not know the name of any other person, other than itself,
inT.

Lemma 4.6 (Party Lemma [CGH™'89]) For every £,k > 2 and for all nonempty

sets St,...,S¢ C N such that Zle [1S:]] < %, there exists a set T C {1,2,...,£}

with ||T'|| = k such that, for alle € T, S.N (T — {e}) = 0.

Informally, Lemma 4.7 states that if IV is a polynomial-time bounded normalized ATM
such that, for every oracle B C ¥*, NB is a k-level ATM with a fixed switch time, and
if O is an arbitrary partial oracle such that @ N 0¥1X™ = (), then the following is true:
If, for every o € 0F1%", NOY{e}(0") accepts with unambiguity and N(0") does not
accept with unambiguity, then there is a salient node ¥ in ctree(IN,0,0") and a large
subset Sy C 0¥1X™ such that subtree(N, @, 0",9) is unambiguous and for every a € Sy,
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subtree(IN, O U {a},0",9) accepts with unambiguity if and only if subtree(N, O,0",9)
rejects with unambiguity. Because of this nice relationship that preserves unambiguity,
we can focus on the subtree rooted at 9, instead of the computation tree of N©(0"), at
the cost of limiting to Sy for extending the partial oracle @ with strings in 0¥1%".

Lemma 4.7 Let k,n € NT. Let p be a polynomial and let N be a polynomial-time
bounded normalized ATM such that, for every oracle B C ¥*, N is a k-level ATM and
p(.) is the switch time of NB. Let O be an arbitrary partial oracle such that ON0*1L™ =
0. Assume that for every a € 0F1%", NOUa(0n) accepts with unambiguity, whereas
NO(0™) rejects with unambiguity or loses unambiguity somewhere in its computation
tree. Then, there is a salient node ¥ in ctree(N,0,0") and a set Sy C 0F¥1X™ with

[|Ssl] > 21 — I”’T(") such that the following hold:

1. For every S' C Sy, ¥ is a salient node at a fized (independent of S') level < k in
ctree(N,0O U S',0™).

2. If 9 is an existential node, then (a) subtree(N,O,0",9) rejects with unambiguity,
and (b) for each a € Sy, subtree(N,O U {a},0™,9) accepts with unambiguity.
(Here, we rely on (1) that for any S’ C Sy, ¥ is a salient node in ctree(N,O U
S',0™).)

3. If ¥ is a universal node, then (a) subtree(N,O,0™,9) accepts with unambiguity,
and (b) for each a € Sy, subtree(N, OU{a},0™, ) rejects with unambiguity. (Here
again, we rely on (1) that for any S' C Sy, ¥ is a salient node in ctree(N,O U
Ss',0m).)

Proof Let ¢ denote the root of ctree(N,0,0m). If N©(0") rejects with unambiguity,
then clearly ¥ := ¢ and Sy := 0¥1%" suffice for the proof (since, by the assumption
made in Section 2, the root of any oracle ATM is an existential node). Henceforward,
assume that N©(0") loses unambiguity somewhere in its computation tree. Let
T =4 maxi<¢<p{l | there is a salient node (; at level £ in ctree(IN,0,0") such that
subtree(IN, 0,0™,(;) loses unambiguity}. W.l.o.g., we assume that (. is an existential
node; an almost similar argument can be given when (,. is a universal node. Let v; and
~2 be the nodes at level r 4+ 1 such that the paths from (, to v; and from (. to v2 in
ctree(N, O, 0™) are accepting. Let py—s,, and p,—.4, be the paths from ¢ to v; and from
¢ to 2, respectively, in ctree(N, O, 0"). Define a set U consisting of all strings in 0¥1%"
not queried along py_~, and py_s,. (It is easy to see that ||U|| > 2" — (r + 1) - p(n).)
By our choice of U, for any U’ C U, (., 71, and - are nodes in ctree(N,O U U’,0™).
If » = k, then for any a € U, N9“{2}(0") loses unambiguity, since the paths from
¢r to v1 and from (. to 72 are accepting in ctree(N,O U {a},0™). This contradicts
the assumption that, for any o € 0¥1%", NOY{e}(0") accepts with unambiguity.
So, we now assume that r < k. This assumption implies that any computation
subtree rooted at y; or at 2 is well-defined (i.e., has depth at least 1). If for some
a € U, subtree(N,O U {a},0",v1) and subtree(N,O U {a},0",v2) are both accepting,
then NOUY{e}(0") loses unambiguity; this contradicts the assumption that, for every
a € 0F1xn, NOU{et(0m) accepts with unambiguity. Thus, for every a € U, at least one
of subtree(N, O U{a},0",v1) and subtree(N, O U{a},0™, v2) is rejecting. By averaging
principle, there is some v € {v1,72} such that, for at least ||U||/2 strings a € U,
subtree(N, O U {a},0",v) is rejecting and let U' C U be the set of @ € U such that
subtree(N, O U {a},0",v) rejects. Clearly, ||U’|| > 2771 — er%w >on-l ’“'I’T(").
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Note that v is a universal node. The lemma follows by setting ¥ := v and Sy := U’. |

For any sentinel node ¥ in a computation tree and string «, we introduce notations
5(9,a) and Qy_,5(9,q) that will be used in the proof of Lemma 4.9 and 4.10.

Notation 4.8 Let k,n € Nt. Let N be a polynomial-time bounded normalized ATM
such that, for every oracle B C ¥*, N is a k-level ATM with a fized (independent of
B) switch time. Let O1 and Oy be arbitrary partial oracles such that O1 N 0k1x" = ¢
and Oy C 0F1%". Let 9 be an existential (universal) sentinel node in ctree(N, Oy,0m)
and let Sy C 0F1Z™ — O, be such that (a) for every S' C Sy, ¥ is a sentinel
node at a fized (independent of S') level < k in ctree(N,0; U O2 U S',0™), (b)
subtree(IN, 01 U O3, 0™,19) rejects (respectively, accepts) with unambiguity, and (c) for
every a € Sy, subtree(N,01 U Oz U {a},0™,9) accepts (respectively, rejects) with
unambiguity. Then, for every a € Sy, s(¥,a) denotes the unique universal (respectively,
existential) sentinel node such that the path from ¥ to s(¥, @) is accepting (respectively,
rejecting) and level(s(¥, o)) = level(¥) + 1 in ctree(N, O; U O3 U {a},0m). In the same
context, we use Qy_s(9,a) to denote the set of queries along the path from 9 to s(9, )
in ctree(N, 01 U Ox U {a},0™).

The proof of Theorem 4.4 uses inductive argument on the level of a salient node ¥ in a
computation tree. Lemma 4.9 states the base step of the inductive argument.

Lemma 4.9 (Base Step) Let k,n € Nt. Let p be a polynomial and let N be a
polynomial-time bounded normalized ATM such that, for every oracle B C ¥©*, NB
is a k-level ATM and p(.) is the switch time of NB. Let O and O be arbitrary
partial oracles such that Oy N OF1Z™ = (), Oy C 0F1Z", and 1 < ||O:|| < k — 1.
Let ¥ be an existential (universal) sentinel node in ctree(N,0; U O2,0") and let
Sy C OF1X™ — Oy be a set such that, for every S' C Sy, ¥ is a salient node at the k’th
level, i.e., level(¥) = k, in ctree(N, 01 U O2 U S',0™) and ||Ss|| > 2p(n) + 1. Assume
that subtree(N, O1 U O3,0™,9) rejects (respectively, accepts), while for every a € Sy,
subtree(IN, 01 U Q2 U {a},0™,9) accepts (respectively, rejects) with unambiguity. Then,
there ezxist a, B € Sy such that subtree(N, O; U Oz U {a, £},07,9) is ambiguous.

Proof The proof is similar to that of Theorem 3.1.1(b) in [CGH*89]. W.l.0.g., assume
that ¥ is an existential node in ctree(N, 01 U O3,0™). Note that the assumptions in
Lemma 4.9 imply that, for every a € Sy, Qy_s(9,0) 7# (). Using the Party Lemma
(i.e., Lemma 4.6) with parameters kK = 2 and ¢ = ||Sy||, there exists T C Sy with
|IT|| = 2 such that, for all @ € T, Qy_s9,0) N (T — {a}) = 0. It follows that
subtree(N, 01 U 02 UT,0™,9) has two accepting paths. |

Lemma 4.10 is the inductive step in the proof of Theorem 4.4. Informally, Lemma 4.10
states that if NV is a polynomial-time bounded normalized ATM such that, for every
oracle B C ¥*, NB is a k-level ATM with a fixed switch time, if ©; and O, are
arbitrary partial oracles such that @ N0¥1X" = () and Q5 C 0¥1X", if 9 is an existential
(universal) sentinel node in the computation tree of N©1992(0"), and if Sy C 0¥15"—0,
is a large set, then the following is true: If subtree(IN, O;UO2, 0™, 9) rejects (respectively,
accepts) with unambiguity, if for every a € Sy, subtree(N, 01 U Oz U{a}, 0", ) accepts
(respectively, rejects) with unambiguity, and if for every aq,as € Sy, subtree(IN,O; U
Oy U{a1,az},0™,9) is unambiguous, then there is a sentinel node 7 in subtree(N, O; U
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0,,0",9), a set T, C Sy containing at most one element, and a large subset S, C
Sy — T, such that, for every o € Sy, subtree(N, 01 U 02 UT, U {a},0™,n) accepts with
unambiguity if and only if subtree(IN,O; U O2 U Ty;,0™, ) rejects with unambiguity.
Because of this nice relationship that preserves unambiguity, we can focus on the subtree
rooted at 7, instead of the subtree rooted at ¢, at the cost of extending the partial oracle
0O1U0O0; to O1UO»UT,, and limiting to S, for extension of the partial oracle O; UO,UT,
with strings in 0¥1%" at later steps.

Lemma 4.10 (Inductive Step) Let k,n € Nt and let £ = max{0,k — 2}. Let p be
a polynomial and let N be a polynomial-time bounded normalized ATM such that, for
every oracle B C X*, NB is a k-level ATM and p(.) is the switch time of NB. Let
Oy and Oy be arbitrary partial oracles such that Oy N 0F1X™ = (), Oy C 0F1%", and
[|Oz2|| = £. Let ¥ be an existential (universal) node in ctree(N, 01 U O3,0™) and let
Sy C 0F1%™ — O, be a set such that, for every S' C Sy, ¥ is a salient node at a fized
(independent of S') level < k in ctree(N, O1UO2US’,0™) and ||Sy|| >> 64p*(n). Assume
that (i) subtree(N, Oy U O9,0™,9) rejects (respectively, accepts) with unambiguity, (ii)
for every a € Sy, subtree(N, O; U O3 U {a},0™,39) accepts (respectively, rejects) with
unambiguity, and (iii) for every ai,as € Sy, subtree(N, 01 U Oy U {ai,as},0™,9) is
unambiguous. Then, there is a sentinel node 1 in subtree(N,O1 U O2,0™,9), a set
T, C Sy with 0 < ||T,|| £1, and a set S, C Sy — T, such that the following hold:

1. For every S' C Sy, n is a salient node at o fized (independent of S') level < k,
where level(9) + 1 < level(n) < level(d) + 2, in ctree(N, 01 U O5 U S’ 0™).

2. Iflevel(n) = level(9)+2, then (a) T, = 0, (b) subtree(N, 01 UO,UT,, 0", n) rejects
(respectively, accepts) with unambiguity, and (c) for each o € S;), subtree(N, O; U
0, UT, U {a},0™,n) accepts (respectively, rejects) with unambiguity.

3. If level(n) = level(¥) + 1, then (a) ||Ty|| = 1, (b) subtree(N,O1 U Oy UT,, 0", n)
accepts (respectively, rejects) with unambiguity, and (c) for each a € S,
subtree(N, 01 UO,UT, U{a}, 0™, n) rejects (respectively, accepts) with unambiguity.

4 118yl > 118slIM*.

Proof W.l.o.g., assume that 9 is an existential node in ctree(N,O; U Oy,0") with
level(¥) < k. Let U =4 {a; € Sy | Qo—s(9,a;) = 0}. We consider two cases.

Case 1: ||U|| > ||Ss]||/2. Define an equivalence relation ¢ on U as follows: Va;, a; €
U,

a0 <= s(9, ;) = s(9, o).

Case 1.a) There is an equivalence class of g of size > ||Sy||*/2. Let this
equivalence class be denote by U’ and let «; be an arbitrary element of U’.
Note that a; € U' C U implies that s(d, ;) is a node in ctree(N, O; U0, 0™).
Since subtree(N, O; U O3, 0", s(¢,a;)) rejects with unambiguity and since
s5(19, ;) is a universal node, there is a unique rejecting path py(yg,q,)—y from
s(¥, a;) to a sentinel node or a leaf node n' in subtree(IV, 01 UO2, 07, s(¥, a;)).
Let Q,y denote the set of queries along py(g,a;)—y i N91Y92(0") and let
T =4 U'— Q. If iy is a leaf node, then for any a € T, subtree(N, O; UO, U
{a},0", s(¥, a;)) is rejecting. This gives a contradiction with the assumption
that, for any a € U’', subtree(N,O; U Oz U {a}, 0", s(d, ;) is accepting.
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Henceforward, we assume that 7' is a sentinel node with level(n') < k. Then,
the following hold: (a) for every S' C T, n' is an existential sentinel node at
level(¥) + 2 < k in ctree(N,O; U O2 U S',0™), (b) subtree(N, O U O2,0™,7')
rejects with unambiguity, (c) for every a € T, subtree(N, O1UO,U{a},0",7')
accepts with unambiguity, and (d) ||T|| > ||Ssl|'/? — p(n) > [|Ssl|'/*. The
lemma follows by setting n := 7', T, := 0, and S, :=T.

Case 1.b) The size of any equivalence class of g is < ||Ss||*/2. Define
a set T consisting of exactly one element from each of the equivalence
classes of ¢ on U. Then, for any aj,as € T, s(d,a1) # s(9,a0).
Also, ||T]| > ||U|I/I1Ss]|*? > ||Ssl|*/?/2. If, for distinct ay,a0 € T, it
holds that subtree(NV, 01 U O3 U {1, a2}, 0", 5(%, a1)) and subtree(N, O U
Oz U {aq,a2},0", 5(13,a2)) are both accepting, then subtree(N,O; U Oy U
{a1,02},0m,99) loses unambiguity; this contradicts our assumption that, for
every ap,as € Sy, subtree(N, 01 U O2 U {aq,az2},0m,9) is unambiguous. So,
we now assume that, for every aj,as € T, at least one of subtree(N,O; U
Oy U{a1,as},0™, 589, a1)) and subtree(N, 01 U Oy U{ag,as}, 0™, s(d, ay)) is
rejecting. By averaging principle, there must be some 8 € T such that, for at
least ||T'||/2 ai’s € T', subtree(N, 01 U O2 U {f,a4},0™, (¥, B)) is rejecting.
Let this majority set consisting of at least ||T'||/2 elements of T be denoted by
T'. Note that ||T"|| > ||Ss||'/2/4 > ||Ss||'/*. The lemma follows by setting
n:=s(,p), T := {f}, and S, :=T".

Case 2: ||U|| < ||Ss]||/2. Let U" =4 Sy — U. Then, ||U’'|| > ||Ss||/2 and for any
i € U', Qoys(v,0;) # 0. Apply the Party Lemma [CGH89] with parameters
¢ =||U"|| and k = 2-[|Sy||'/%. Since, for every a € U’, 1 < ||Qys(9,0)|| < P(n)
and ||Sy|| > 64 - p?(n), therefore there exists T C U’ such that ||T|| = k and
for all @ € T, Qy_s9,0) N (T — {a}) = 0. If for some distinct a1,a2 € T, it
holds that subtree(N, 01 U Oz U {a1, a2},0™, s(¥, a1)) and subtree(IN, 01 U Oy U
{a1,a2},0m, s(¥, az)) are both accepting, then subtree(N, O;UOU{a1, as}, 0", 1)
loses unambiguity; thus, contradicting our assumption. So, assume now that for
every ai,as € T, at least one of subtree(N, 01 U Oz U {a1,a2},0™,5(d, a;1)) and
subtree(N, 01 U O U {ay, az},0™, 5(9, az2)) is rejecting. By averaging principle,
there must be some 8 € T such that, for at least ||T||/2 a;’s € T, subtree(N, 01 U
02 U {B,a;},0", s(89,8)) is rejecting. Let this majority set consisting of at least
[|T|/2 elements of T be denoted by T”. The lemma follows by setting 7 := s(¥, ),
T, :={B}, and S, :=1T".

B (Lemma 4.10)

5 Power of Robustly Unambiguous Alternating
Machines

Hartmanis and Hemachandra [HH90] showed that robustly categorical nondeterministic
polynomial-time Turing machines (i.e., NPTMs that for no oracle and no input have
more than one accepting path) accept simple languages in the sense that, for every
oracle A, the languages accepted by such machines are computable in PNP®4_ Thuys,
if P = NP, then nondeterministic polynomial-time Turing machines satisfying robustly
categorical property cannot separate P4 from NPA, for any oracle A. Theorem 5.1
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generalizes this result of Hartmanis and Hemachandra [HH90] and shows that, for every
oracle A, robustly k-level unambiguous polynomial-time alternating Turing machines
accept languages that are computable in P¥x®4_ Thus, similar to the case of robustly
categorical NPTMs, if P = NP, then robustly k-level unambiguous polynomial-time
alternating Turing machines cannot separate P from Ei’A, and consequently cannot
separate P4 from NP4,

Theorem 5.1 For all k € N*| the following holds:
(VA)[N* is a k-level unambiguous polynomial-time ATM] = (V.A)[L(N4) € P¥e®4),

Proof The proof is by induction on k. The base case, k = 1, follows from Theorem
2.1 (i.e., (VA)[NA is a categorical NPTM] = (VA)[L(N{) € PNP®A]) by Hartmanis
and Hemachandra [HH90]. Our induction hypothesis is the following: For all j < k—1,
it holds that

(VA)[N* is a j-level unambiguous polynomial-time ATM] => (V.A)[L(N*) € P¥i®4],

Let A be an oracle and let NV be a robustly k-level unambiguous polynomial-time ATM.
We define an oracle NPTM N with access to oracle ¥, @® A as follows. On any input
T, NZi194 guesses an existential computation path from the root (i.e., the level one
node) to a universal node ¥ at level two in the computation tree of N“4(z). Upon
reaching the node ¥ on this guessed path, NZE-194 gimulates the computation subtree
of N4(z) rooted at the node 9. Since the computation subtree of N“(z) rooted at the
node ¢ is robustly (k — 1)-level unambiguous, by induction hypothesis this simulation
can be done in PZ¢-1%4_ Since A is arbitrary and N is robustly k-level unambiguous
polynomial-time ATM, (VA)[L(NZk-194) = L(N4) and N™%-194 ig categorical]. We
now show that L(N"k-194) ¢ PZio4,

The proof of this part is the same as that of Theorem 2.1 by Hartmanis and
Hemachandra [HH90]. Here, we give a sketch of the proof for the sake of completeness.
Let p(.) be the running-time of N with any oracle. We now define a polynomial-time
computable procedure MZi®A accepting L(N Ei—leM). On input =, M>®A(z) does
the following;:

1. Initialize database S :=0.
2. Repeat the following for p(|z|) iteratioms:

Find an accepting path p in the computation tree of
N¥i-19% (1) consistent with §. (This step can be done
in P¥.) If no such p exists, then halt and reject.
Otherwise, i.e., if p exists, then query .4 about the
membership of strings queried along p and update S with
this information. If the answers of queries along p are
consistent with 4, then halt and accept.

3. Accept if there is an accepting path in the computation tree of
S P
Nzk—lea*(m) consistent with S and consisting of queries none other
than those in S, and reject if no such path exists.

Clearly, M @4 i computable in polynomial time. We now show that M Zi@f‘ accepts
L(N®x-1%4) By the definition of M, we only need to show that if z € L(NZk-194),
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then M= ®A(z) accepts. Suppose that for some input z, N¥¢-1%4(z) accepts. Let T
be the set of strings queried of A along the unique accepting computation path pr of
N Ez—1@“4(91:). If M>®A(z) accepts in some iteration of step 2, then we are done. So
assume that M>x®A(z) does not accept in any of the p(|z|) iterations of step 2. This
also implies that M>k®A(z) does not reject in any iteration of step 2, since the accepting
path pr has not been considered so far. Let S; be the set of strings queried of A in
the i’th iteration of step 2 and let pg, be the path found in this iteration. Then, there
must be a query g; in S; NT answered in a conflicting way in ps, and pr; for if there is
no such string, then there will be an oracle O consistent with the way strings in S; UT
are answered; then relative to X§_, @ O, N(z) will have more than one accepting path;

this will give a contradiction with our assumption that (VA)[N=k-1%4 is categorical].
This query g; must be different from g;, for any 1 < j < 4, because the database S in
the 4’th iteration of step 2 is consistent with A in the membership of any string queried
in previous iterations. Thus, in each iteration of step 2, the membership in A of a
new query from T is found. So, after p(|z|) iterations of step 2, the membership of all
the strings queried along pr are known. It follows that M>x®4(z) will accept on the
execution of step 3.

Corollary 5.2 For all k € N*, if P = NP and
(VA)[N4 is a k-level unambiguous polynomial-time ATM] then (VA)[L(N4) € PA].

Crescenzi and Silvestri [CS98] showed that languages accepted by robustly
complementary and categorical oracle NPTMs are computable in P(UPUcoUP)®A — 1p
fact, their proof actually shows that the languages of such machines are computable in
PUP®A_ Theorem 5.3 is a generalization of this result of Crescenzi and Silvestri [CS98]
for robustly bounded-level unambiguous polynomial-time alternating Turing machines.

Theorem 5.3 For all k;i,k; € Nt the following holds: If, for all oracles A, NiA
and NjA are, respectively, k;-level and k;-level unambiguous polynomial-time ATMs and

L(NA) = L(NJA), then for all oracles A, L(N) € PUPZ’“_I@A, where k = max{k;, k;}.

Proof Let A be an oracle and let N;, N; be ATMs as in the statement of the
theorem. Define oracle NPTMs N; and N; corresponding to N; and Nj, respectively,
in the manner N is defined from an ATM N in Theorem 5.1. Let k =4 max{k;, k;}.

Thus, the following hold: (a) (V€ € {i,})(VAL(N, **®*) = L(NA) and N, *-1®4

3P 5P oA
is categorical], and (b) (V.A) [L(NZk_l@A) = L(NEk_l@A)]. It remains to show that

i J
L(]\AfzE k‘l@A) € PUP™*~' The proof of this part is omitted as it is identical to that
of Theorem 8 (i.e., if Ny and N; are two robustly complementary and categorical
oracle NPTMs, then for all oracles A, L(Ng') € P(UPUcoUP)®A) Ly Crescenzi and

Silvestri [CS98] and Theorem 2.1 by Hartmanis and Hemachandra [HH90). |

6 Open Questions
We now mention some open questions and directions for further research. Theorem 3.5

implies that there is a relativized world where the unambiguity based hierarchies
are infinite. However, a number of questions related to the relativized structure of
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unambiguity based hierarchies remain open. For instance, is there a relativized world
where AUPH is finite, but UPH and UPH are infinite? Is there a relativized world
where the polynomial hierarchy is infinite, but AUPH and UPH collapse?

Hemaspaandra and Rothe [HR97] showed that if UP has a sparse Turing-complete
set, then for every k > 3, ULy C UX%_,. Are there other complexity-theoretic
assumptions that can help in concluding about the structure of unambiguity based
hierarchies?

Fortnow [For99] showed that PH C SPP relative to a random oracle. Theorem 3.11
shows that there is a relativized world where UAP ¢ PH. Can we extend the oracle
separation of UAP from PH to a random oracle separation?

Aida et al. [ACRWO04] and Crasmaru et al. [CGRS04] discussed whether UAP equals
SPP. In fact, Crasmaru et al. [CGRS04] pointed out their difficulty in building an oracle
A such that UAPA # SPPA. Can the ideas involved in oracle constructions in this paper
be used to attack this problem?

Finally, is it the case that similar to robustly bounded-level unambiguous
polynomial-time ATMs, robustly unbounded-level unambiguous polynomial-time ATMs
require weak oracle access in every relativized world?
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