
ar
X

iv
:c

s/
04

12
06

2v
2

 [
cs

.C
C

]
 2

1
A

pr
 2

00
5

Isomorphic Implication⋆

Michael Bauland1 and Edith Hemaspaandra2

1 Theoretische Informatik, Universität Hannover, Appelstr. 4, D-30167 Hannover,
Germany, email: bauland@thi.uni-hannover.de.

Work done in part while visiting the Laboratory for Applied Computing at Rochester
Institute of Technology.

2 Department of Computer Science, Rochester Institute of Technology, Rochester,
NY 14623, U.S.A., e-mail: eh@cs.rit.edu.

Work done in part while on sabbatical at the University of Rochester.

Abstract. We study the isomorphic implication problem for Boolean
constraints. We show that this is a natural analog of the subgraph iso-
morphism problem. We prove that, depending on the set of constraints,
this problem is in P, NP-complete, or NP-hard, coNP-hard, and in PNP

|| .

We show how to extend the NP-hardness and coNP-hardness to PNP
|| -

hardness for some cases, and conjecture that this can be done in all
cases.

1 Introduction

One of the most interesting and well-studied problems in complexity theory is the
graph isomorphism problem (GI). This is the problem of determining whether
two graphs are isomorphic, i.e., whether there exists a renaming of vertices such
that the graphs become equal. This is a fascinating problem, since it is the most
natural example of a problem that is in NP, not known to be in P, and unlikely
to be NP-complete (see [KST93]).

The obvious analog of graph isomorphism for Boolean formulas is the for-
mula isomorphism problem. This is the problem of determining whether two
formulas are isomorphic, i.e., whether we can rename the variables such that the
formulas become equivalent. This problem has the same behavior as the graph
isomorphism problem one level higher in the polynomial hierarchy: The formula
isomorphism problem is in Σp

2 , NP-hard, and unlikely to be Σp
2 -complete [AT00].

Note that graph isomorphism can be viewed as a special case of Boolean
isomorphism, since graph isomorphism corresponds to Boolean isomorphism for
2-positive-CNF formulas, in the following way: Every graph G (without iso-
lated vertices) corresponds to the (unique) formula

∧
{i,j}∈E(G) xi ∨ xj . Then

two graphs without isolated vertices are isomorphic if and only if their corre-
sponding formulas are isomorphic.

One might wonder what happens when we look at other restrictions on the
set of formulas. There are general frameworks for looking at all restrictions on

⋆ Supported in part by grants NSF-CCR-0311021 and DFG VO 630/5-1.

http://arxiv.org/abs/cs/0412062v2

Boolean formulas: The most often used is the Boolean constraint framework
introduced by Schaefer [Sch78]. Basically (formal definitions can be found in the
next section) we look at formulas as CNF formulas (or sets of clauses) where
each clause is an application of a constraint (a k-ary Boolean function) to a
list of variables. Each finite set of constraints gives rise to a new language, and
so there are an infinite number of languages to consider. Schaefer studied the
satisfiability problem for all finite sets of constraints. He showed that all of these
satisfiability problems are either in P or NP-complete, and he gave a simple
criterion to determine which of the cases holds.

The last decade has seen renewed interest in Schaefer’s result, and has seen
many dichotomy (and dichotomy-like) theorems for problems related to the sat-
isfiability of Boolean constraints. For example, such results were obtained for the
maximum satisfiability problem [Cre95], counting satisfying assignments [CH96],
the inverse satisfiability problem [KS98], the unique satisfiability problem [Jub99],
the minimal satisfying assignment problem [KK01], approximability problems [KSTW01],
and the equivalence problem [BHRV02]. For an excellent survey of dichotomy
theorems for Boolean constraint satisfaction problems, see [CKS01].

Most of the results listed above were proved using methods similar to the one
used by Schaefer [Sch78]. A more recent approach to proving results of this form
is with the help of the so-called algebraic approach [Jea98,JCG97,BKJ00]. This
approach uses the clone (closed classes) structure of Boolean functions called
Post’s lattice, after Emil Post, who first identified these classes [Pos44]. A good
introduction of how this can be used to obtain short proofs can be found in
[BCRV04]. However, this approach does not work for isomorphism problems,
because it uses existential quantification.

For the case of most interest for this paper, the Boolean isomorphism problem
for constraints, Böhler et al. [BHRV02,BHRV04,BHRV03] have shown that this
problem is in P, GI-complete, or GI-hard, coNP-hard, and in PNP

|| (the class of
problems solvable in polynomial time with one round of parallel queries to NP).
As in Schaefer’s theorem, simple properties of the set of constraints determine
the complexity.

A problem closely related to the graph isomorphism problem is the subgraph
isomorphism problem. This is the problem, given two graphs G and H , to deter-
mine whether G contains a subgraph isomorphic to H . In contrast to the graph
isomorphism problem, the subgraph isomorphism problem can easily be seen to
be NP-complete (it contains, for example, CLIQUE, HAMILTONIAN CYCLE,
and HAMILTONIAN PATH).

To further study the relationship between the isomorphism problems for
graphs and constraints, we would like to find a relation R on constraints that
is to isomorphism for constraints as the subgraph isomorphism problem is to
graph isomorphism.

Such a relation R should at least have the following properties:

1. A graph G is isomorphic to a graph H if and only if G contains a subgraph
isomorphic to H and H contains a subgraph isomorphic to G. We want the

2

same property in the constraint case, i.e., for S and U sets of constraint
applications, S is isomorphic to U if and only if SRU and URS.

2. The subgraph isomorphism problem should be a special case of the decision
problem induced by R, in the same way as the graph isomorphism problem
is a special case of the constraint isomorphism problem. In particular, for G
andH graphs, let S(G) and S(H) be their (standard) translations into sets of
constraint applications of λxy.(x∨y), i.e., S(G) = {xi∨xj | {xi, xj} ∈ E(G)}
and S(H) = {xi ∨ xj | {xi, xj} ∈ E(H)}. For G and H graphs without
isolated vertices, G is isomorphic to H if and only if S(G) is isomorphic
to S(H). We want G to have a subgraph isomorphic to H if and only if
S(G)RS(H).

Borchert et al. [BRS98, p. 692] suggest using the subfunction relations ≫v

and ≫cv as analogs of subgraph isomorphism. These relations are defined as
follows. For two formulas φ and ψ, φ≫v ψ if and only if there exists a function
π from variables to variables such that π(φ) is equivalent to ψ. φ ≫cv ψ if and
only if there exists a function π from variables to variables and constants such
that π(φ) is equivalent to ψ [BR93]. Borchert and Ranjan [BR93] show that these
relations satisfy our first desirable property, i.e., S is isomorphic to U if and only
if S ≫v U and U ≫v S, and that S is isomorphic to U if and only if S ≫cv U and
U ≫cv S. They also show that the problem of determining whether φ≫v ψ and
the problem of determining whether φ≫cv ψ, for unrestricted Boolean formulas,
are Σp

2 -complete.

But Borchert et al.’s subfunction relations will not give the second desirable
property. Consider, for example, the graphs G and H such that V (G) = V (H) =
{1, 2, 3}, E(G) = {{1, 2}, {1, 3}, {2, 3}}, and E(H) = {{1, 2}, {1, 3}}. Clearly, G
contains a subgraph isomorphic to H , but (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) 6≫cv

(x1 ∨ x2) ∧ (x1 ∨ x3).

How could the concept of a subgraph be translated to sets of constraint ap-
plications? As a first attempt at translating subgraph isomorphism to constraint
isomorphism one might try the following: For sets of constraint applications S
and U , does there exist a subset Ŝ of S that is isomorphic to U . Certainly, such
a definition satisfies the second desired property. But this definition does not
satisfy the first desired property, since it is quite possible for sets of constraint
applications to be equivalent without being equal.

We claim that isomorphic implication satisfies both desired properties, and is
a natural analog of the subgraph isomorphism problem for Boolean constraints.

For S and U sets of constraint applications over variables X , we say that S
isomorphically implies U (notation: S⇒̃U) if and only if there exists a permu-
tation π on X such that π(S) ⇒ U . In Section 4, we show that, depending on
the set of constraints, the isomorphic implication problem is in P, NP-complete,
or NP-hard, coNP-hard, and in PNP

|| . Our belief is that the isomorphic impli-

cation problem is PNP
|| -complete for all the cases where it is both NP-hard and

coNP-hard. In Section 5, we prove this conjecture for some cases.

3

2 Preliminaries

We will mostly use the constraint terminology from [CKS01].

Definition 1. 1. A constraint C (of arity k) is a Boolean function from {0, 1}k

to {0, 1}.
2. If C is a constraint of arity k, and z1, z2, . . . , zk are (not necessarily distinct)

variables, then C(z1, z2, . . . , zk) is a constraint application of C.
3. If C is a constraint of arity k, and for 1 ≤ i ≤ k, zi is a variable or

a constant (0 or 1), then C(z1, z2, . . . , zk) is a constraint application of C
with constants.

4. If S is a set of constraint applications [with constants] and X is a set of
variables that includes all variables that occur in S, we say that S is a set
of constraint applications [with constants] over variables X.

Definition 2. Let C be a k-ary constraint.

– C is 0-valid if C(0, . . . , 0) = 1.
– C is 1-valid if C(1, . . . , 1) = 1.
– C is Horn (or weakly negative) if C(x1, . . . , xk) is equivalent to a CNF for-

mula where each clause has at most one positive literal.
– C is anti-Horn (or weakly positive) if C(x1, . . . , xk) is equivalent to a CNF

formula where each clause has at most one negative literal.
– C is bijunctive if C(x1, . . . , xk) is equivalent to a 2CNF formula.
– C is affine if C(x1, . . . , xk) is equivalent to an XOR-CNF formula.
– C is 2-affine (or affine of width 2) if C(x1, . . . , xk) is equivalent to an XOR-

CNF formula, such that every clause contains at most two literals.
– C is complementive (or C-closed) if for every s ∈ {0, 1}k, C(s) = C(s),

where s ∈ {0, 1}k =def (1, . . . , 1)− s, i.e., s is obtained by flipping every bit
of s.

Let C be a finite set of constraints. We say C is 0-valid, 1-valid, Horn, anti-
Horn, bijunctive, affine, 2-affine, or complementive, if every constraint C ∈ C
has this respective property. We say that C is Schaefer if C is Horn, anti-Horn,
affine, or bijunctive.

Definition 3 ([BHRV02]). Let C be a finite set of constraints.

1. ISO(C) is the problem, given two sets S and U of constraint applications of C
over variables X, to decide whether S is isomorphic to U (denoted by S ∼= U),
i.e., whether there exists a permutation π of X such that π(S) ≡ U ; Here
π(S) is the set of constraint applications that results when we simultaneously
replace every variable x in S by π(x).

2. ISOc(C) is the problem, given two sets S and U of constraint applications of
C with constants, to decide whether S is isomorphic to U .

Theorem 4 ([BHRV02,BHRV04,BHRV03]). Let C be a finite set of con-
straints.

4

1. If C is not Schaefer, then ISO(C) and ISOc(C) are coNP-hard, GI-hard, and
in PNP

|| .
2. If C is Schaefer and not 2-affine, then ISO(C) and ISOc(C) are polynomial-

time many-one equivalent to GI.
3. Otherwise, C is 2-affine and ISO(C) and ISOc(C) are in P.

The isomorphic implication problem combines isomorphism with implication
in the following way.

Definition 5. Let C be a finite set of constraints.

1. ISO-IMP(C) is the problem, given two sets S and U of constraint applica-
tions of C over variables X, to decide whether S isomorphically implies U
(denoted by S⇒̃U), i.e., whether there exists a permutation π of X such that
π(S) ⇒ U ; Here π(S) is the set of constraint applications that results when
we simultaneously replace every variable x in S by π(x).

2. ISO-IMPc(C) is the problem, given two sets S and U of constraint applica-
tions of C with constants, deciding whether S isomorphically implies U .

To show that this definition is well defined we need to show that if S and
U are sets of constraint applications over variables X , Y is a set of variables
disjoint from X , and there exists a permutation π of X∪Y such that π(S) ⇒ U ,
then there exists a permutation ρ of X such that ρ(S) ⇒ U .

Suppose that π is a permutation of X ∪ Y such that π(S) ⇒ U and ||{y ∈
Y | π(y) ∈ X}|| is minimal and at least one. Let x, x′ ∈ X and y, y′ ∈ Y be
such that π(x′) = y and π(y′) = x. Define a new permutation ρ as follows:
ρ(x′) = x, ρ(y′) = y, and ρ(z) = π(z) for all z ∈ (X ∪Y)−{x′, y′}. We will show
that ρ(S) ⇒ U . This is a contradiction, since ||{y ∈ Y | ρ(y) ∈ X}|| = ||{y ∈
Y | π(y) ∈ X}|| − 1.

Let Z be a list of the variables in (X∪Y)−{x, y}. Suppose that ρ(S)(Z, x, y) 6⇒
U(Z, x, y). Then there exists a string s ∈ {0, 1}||Z|| and a, b ∈ {0, 1} such that
ρ(S)(s, a, b) = 1 and U(s, a, b) = 0. Since y does not occur in U , U(s, a, b) = 0.
Since π(S)(Z, x, y) ⇒ U(Z, x, y), it follows that π(S)(s, a, b) = 0 and π(S)(s, a, b) =
0. Since y′ does not occur in S, x does not occur in π(S), and so π(S)(s, a, b) = 0
and π(S)(s, a, b) = 0. It follows that π(S)(s, x, y) ≡ 0. But note that π(S)(s, b, a) =
ρ(S)(s, a, b) = 1. This is a contradiction.

Definition 6. 1. The graph isomorphism problem is the problem, given two
graphs G and H, to decide whether G and H are isomorphic, i.e., whether
there exists a bijection π from V (G) to V (H) such that π(G) = H. π(G)
is the graph such that V (π(G)) = {π(v) | v ∈ V (G)} and E(π(G)) =
{{π(v), π(w)} | {v, w} ∈ E(G)}.

2. The subgraph isomorphism problem is the problem, given two graphs G and
H, to decide whether G contains a subgraph isomorphic to H, i.e., whether
there exists a graph G′ such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G) and G′

is isomorphic to H.

Theorem 7 ([GJ79,Coo71]). The subgraph isomorphism problem is NP-complete.

5

Corollary 8. The subgraph isomorphism problem for graphs without isolated
vertices is NP-complete.

3 Subgraph Isomorphism and Isomorphic Implication

We will now show that the isomorphic implication problem is a natural analog of
the subgraph isomorphism problem, in the sense explained in the introduction.

Lemma 9. 1. Let S and U be sets of constraint applications of C with con-
stants. Then S ∼= U if and only if S⇒̃U and U⇒̃S.

2. For graphs G and H without isolated vertices, G contains a subgraph isomor-
phic to H if and only if S(G)⇒̃S(H), where S is the “standard” translation

from graphs to sets of constraint applications of λxy.x∨y, i.e., for Ĝ a graph,
S(Ĝ) = {xi ∨ xj | {i, j} ∈ E(Ĝ)}.

Proof.

1. We claim that S ∼= U if and only if S⇒̃U and U⇒̃S. The left-to-right
direction is immediate. For the converse, let X be the set of variables that
occur in S ∪ U . Suppose that π is a permutation of the variables occurring
in S ∪ U such that π(S) ⇒ U and that ρ is a permutation of X such that
ρ(U) ⇒ S. Suppose for a contradiction that π(S) 6≡ U . Then there exists an
assignment that satisfies U , and that does not satisfy π(S). Since ρ(U) ⇒ S,
there are at least as many satisfying assignments for π(S) as for U . It follows
that there exists an assignment that satisfies π(S) and not U . But that
contradicts the assumption that π(S) ⇒ U .

2. Let G and H be graphs without isolated vertices. We will show that G
contains a subgraph isomorphic to H if and only if S(G)⇒̃S(H).

For the left-to-right direction, let G′ be a subgraph of G such that G′ ∼= H .
Let π be a bijection from the vertices of G′ to the vertices of H such that
π(G′) = H . Let ρ be a permutation of the variables occurring in S(G)∪S(H)
such that ρ(xi) = xπ(i) for all i ∈ V (G′). It is easy to see that ρ(S(G′)) =
S(π(G′)) = S(H). Since G′ is a subgraph of G, S(G′) ⊆ S(G). It follows
that S(H) ⊆ ρ(S(G)), and thus, ρ(S(G)) ⇒ S(H).

For the converse, suppose that S(G)⇒̃S(H). Let ρ be a permutation on
the variables occurring in S(G) ∪ S(H) such that ρ(S(G)) ⇒ S(H). It is
easy to see that if ρ(S(G)) ⇒ xi ∨xj , then xi∨xj ∈ ρ(S(G)). It follows that
S(H) ⊆ ρ(S(G)). Let G′ be such that S(H) = ρ(S(G′)) and G′ does not have
isolated vertices (take G′ = π−1(H)). Since ρ(S(G′)) ⊆ ρ(S(G)), it follows
that S(G′) ⊆ S(G), and thus, G′ is a subgraph of G. Since S(H) = ρ(S(G′))
andH andG′ do not contain isolated vertices, it follows that G′ is isomorphic
to H .

✷

6

4 Complexity of the Isomorphic Implication Problem

The following theorem gives a trichotomy-like theorem for the isomorphic impli-
cation problem.

Theorem 10. Let C be a finite set of constraints.

1. If every constraint in C is equivalent to a constant or a conjunction of literals,
then ISO-IMP(C) and ISO-IMPc(C) are in P.

2. Otherwise, if C is Schaefer, then ISO-IMP(C) and ISO-IMPc(C) are NP-
complete.

3. If C is not Schaefer, then ISO-IMP(C) and ISO-IMPc(C) are NP-hard, coNP-
hard, and in PNP

|| .

4.1 Upper bounds

The NP upper bound for sets of constraints that are Schaefer is easy to see.

Claim 11 If C is Schaefer, then ISO-IMPc(C) is in NP.

Proof. Let S and U be sets of constraint applications of C with constants over
variables X . Then S⇒̃U if and only if there exists a permutation π of X such
that π(S) ⇒ U . Clearly, π(S) ⇒ U if and only if π(S) ∪ U ≡ π(S). Since C is
Schaefer, it can be determined in polynomial time whether two sets of constraint
applications of C with constants are equivalent [BHRV02, Theorem 6]. ✷

Claim 12 For any finite set C of constraints, ISO-IMPc(C) is in PNP
|| .

Proof. (Similar to the argument before [BHRV02, Corollary 23].) Let S and
U be sets of constraint applications of C with constants. Let X be the set of
all variables that occur in S ∪ U . From [BHRV02, proof of Claim 22], we know
that we can in polynomial time with parallel access to NP compute the set of
all constraint applications of C with constants over X that are implied by S.
Call this set Ŝ. It is easy to see that π(S) ⇒ U if and only if U ⊆ Ŝ. It takes
one query to NP to find out whether there exists such a permutation. Since two
rounds of queries to NP are the same as one round of queries to NP [BH91] it
follows that we can determine whether S⇒̃U in PNP

|| . ✷

Claim 13 Let C be a finite set of constraints such that every constraint is equiv-
alent to a constant or to a conjunction of literals. Then ISO-IMPc(C) is in P.

Proof. Let S and U be sets of constraint applications of C with constants.
We will view S and U as sets of literals and constants. We first consider the case
where S or U is equivalent to a constant. Note that it is easy to check if a set X
of literals and constants is equivalent to 0 or 1, since X is equivalent to 1 if and
only if X = {1}, and X is equivalent to 0 if and only if 0 ∈ X or {p, p} ⊆ X for
some variable p. It is easy to see that if S or U is equivalent to a constant, then
determining whether S⇒̃U takes polynomial time, since

7

– If S ≡ 1, then S⇒̃U iff U ≡ 1.
– If S ≡ 0 or U ≡ 1, then S⇒̃U .
– If U ≡ 0, then S⇒̃U iff S ≡ 0.

It remains to consider the case that neither S nor U is equivalent to a constant.
We claim that in this case, S⇒̃U iff the number of positive literals in S is greater
or equal than the number of positive literals in U and the number of negative
literals in S is greater or equal than the number of negative literals in U . This
completes the proof of Claim 13. It remains to show the above claim.

First suppose that π is a permutation of the variables of S ∪ U such that
π(S) ⇒ U . Since π(S)− {1} is a satisfiable set of literals, it follows that, for all
literals ℓ, if π(S) ⇒ ℓ, then ℓ ∈ π(S). This implies that U − {1} ⊆ π(S), and
thus the number of positive literals in π(S) is greater or equal than the number
of positive literals in U and the number of negative literals in π(S) is greater or
equal than the number of negative literals in U .

For the converse, suppose that the number of positive literals in S is greater
or equal than the number of positive literals in U and the number of negative
literals in S is greater or equal than the number of negative literals in U . Since
no variable occurs both positively and negatively in S or U , it is easy to compute
a permutation π of the variables in S ∪ U such that every variable that occurs
positively in U is mapped to by a variable that occurs positively in S and such
that every variable that occurs negatively in U is mapped to by a variable that
occurs negatively in S. It is immediate that U −{1} ⊆ π(S), and thus S⇒̃U . ✷

4.2 Lower bounds

When proving dichotomy or dichotomy-like theorems for Boolean constraints,
the proofs of some of the lower bounds are generally most involved. In addition,
proving lower bounds for the case without constants is often a lot more involved
than the proofs for the case with constants. This is particularly true in the case
for isomorphism problems, since here, we cannot introduce auxiliary variables.

The approach taken in [BHRV02,BHRV04,BHRV03], which examine the com-
plexity of the isomorphism problem for Boolean constraints, is to first prove
lower bounds for the case with constants, and then to show that all the hardness
reductions can be modified to obtain reductions for the cases without constants.

In contrast, in this paper we will prove the lower bounds directly for the
case without constants. We have chosen this approach since careful analysis of
the cases shows that proving the NP lower bounds boils down to proving NP-
hardness for ten different cases (far fewer than in the isomorphism paper).

It should be noted that our NP lower bound results do not at all follow from
the lower bound results for the isomorphism problem. This is also made clear by
comparing Theorems 4 and 10: In some cases, the complexity jumps from P to
NP-complete, in other cases we jump from GI-hard to NP-complete.

Lemma 14. Let C be a k-ary constraint such that C(x1, . . . , xk) is not equiva-
lent to a conjunction of literals. Then there exists a set of constraint applications
of C that is equivalent to one of the following ten constraint applications:

8

– t ∧ (x ∨ y), f ∧ t ∧ (x ∨ y), f ∧ (x ∨ y), f ∧ t ∧ (x ∨ y),
– x↔ y, t ∧ (x↔ y), f ∧ (x↔ y), f ∧ t ∧ (x↔ y),
– x⊕ y, or f ∧ t ∧ (x⊕ y).

Proof. Let C be a k-ary constraint such that C(x1, . . . , xk) is not equiva-
lent to a conjunction of literals. First suppose that C is not 2-affine. It follows
from [BHRV03, Lemma 24] that there exists a set S of constraint applications of
C such that S is equivalent to x∧ y, x∨ y, x⊕ y, x↔ y, t∧ (x∨ y), t∧ (x↔ y),
t ∧ (x ∨ y), f ∧ (x ∨ y), f ∧ (x↔ y), or f ∧ (x ∨ y).

If S(x, y) is equivalent to x∨ y, then S(x, y)∪S(y, x) is equivalent to x↔ y.
If S(t, x, y) is equivalent to t∧ (x∨ y), then S(t, x, y)∪S(t, y, x) is equivalent to
t ∧ (x ↔ y). If S(f, x, y) is equivalent to f ∧ (x ∨ y), then S(f, x, y) ∪ S(f, y, x)
is equivalent to f ∧ (x↔ y).

The only case that needs more work is the case that S(x, y) is equivalent
to x ∧ y. From the proofs of Theorems 15 and 17 of [BHRV03], it follows that
there exists a constraint application A of C such that A(0, 1, x, y) is equivalent
to x∨ y, x∨ y, x∨ y, or x⊕ y. It follows that S(f, t)∪ {A(f, t, x, y), A(f, t, y, x)}
is equivalent to f ∧ t∧ (x∨ y), f ∧ t∧ (x∨ y), f ∧ t∧ (x↔ y), or f ∧ t∧ (x⊕ y).
This completes the proof for the case that C is not 2-affine.

To finish the proof of Lemma 14, suppose that C is 2-affine. Since C(x1, . . . , xk)
is not equivalent to a conjunction of literals, it is also not equivalent to 0, and it
follows from [BHRV04, Lemma 9] that C(x1, . . . , xk) is equivalent to a formula
of the form

∧

x∈Z

x ∧
∧

x∈O

x ∧
ℓ∧

i=1




 ∧

x∈Xi

x ∧
∧

y∈Yi

y


 ∨


 ∧

x∈Xi

x ∧
∧

y∈Yi

y




 ,

where Z,O,X1, Y1, . . . , Xℓ, Yℓ are pairwise disjoint subsets of {x1, . . . , xk} such
that Xi ∪ Yi 6= ∅ for all 1 ≤ i ≤ ℓ. Since C(x1, . . . , xk) is not equivalent to a
conjunction of literals, there exists an i such that ||Xi ∪ Yi|| ≥ 2.

In C(x1, . . . , xk), replace all variables in Z by f , and all variables in O by t.
If for some i, Xi 6= ∅ and Yi 6= ∅, then replace all variables in

⋃
j Xj by

x, and replace all variables in
⋃

j Yj by y. In this case, the resulting constraint

application is equivalent to x ⊕ y, t ∧ (x ⊕ y), f ∧ (x ⊕ y), or f ∧ t ∧ (x ⊕ y).
In the second case, note that {t ∧ (x ⊕ y), t ∧ (t ⊕ f)} is a set of constraint
applications of C that is equivalent to f ∧ t∧ (x⊕y). In the third case, note that
{f ∧ (x⊕y), f ∧ (t⊕f)} is a set of constraint applications of C that is equivalent
to f ∧ t ∧ (x⊕ y).

If for all i, Xi = ∅ or Yi = ∅, let i be such that ||Xi|| ≥ 2 or ||Yi|| ≥ 2.
Replace one of the variables in Xi ∪ Yi by x and replace all other variables in⋃

j Xj ∪ Yj by y. In this case, the resulting constraint application is equivalent

to x↔ y, t ∧ (x↔ y), f ∧ (x↔ y), or f ∧ t ∧ (x↔ y). ✷

4.3 The 10 reductions

We will now show that in each of the 10 cases of Lemma 14, the isomorphic
implication problem is NP-hard. Some work can be avoided by observing that

9

the isomorphic implication problem is computationally equivalent to the same
problem where every constraint is replaced by a type of “complement.”

In [Hem04], it is shown that the complexity of (quantified) satisfiability prob-
lems for a set of constraints C is the same as the complexity of the same problem
for the set of constraints Cc, where Cc is defined as follows.

Definition 15 ([Hem04]).

1. For C a k-ary constraint, Cc is the k-ary constraint such that for all s ∈
{0, 1}k, Cc(s) = C(s), where, as in the definition of complementive, s =
(1− s1)(1− s2) · · · (1− sk) for s = s1s2 · · · sk.

2. For C a finite set of constraints, Cc = {Cc | C ∈ C}.
3. For S a set of constraint applications of C, Sc = {Cc(z1, . . . , zk) | C(z1, . . . , zk) ∈

S}.

It is easy to see that any isomorphism from S to U is also an isomorphism
from Sc ∼= U c (and vice versa). This implies the following.

Lemma 16. ISO-IMP(C) is computationally equivalent to ISO-IMP(Cc).

As mentioned in the introduction and proven in Section 3, the NP-complete
subgraph isomorphism problem is closely related to the isomorphic implication
problem for sets of constraint applications of λxy.x ∨ y, in the following way:
For a graph Ĝ, let S(Ĝ) be defined as {xi ∨ xj | {i, j} ∈ E(Ĝ)}. It is easy
to see that for two graphs G and H without isolated vertices, G contains a
subgraph isomorphic to H if and only if S(G) isomorphically implies S(H).
This correspondence is also the reason for the GI-hardness for the isomorphism
problem for sets of constraint applications of λxy.x ∨ y [BRS98,BHRV02].

We will use the observation above to prove NP-hardness for constraints that
are similar to λxy.x∨y, namely, we will reduce the subgraph isomorphism prob-
lem to the isomorphic implication problems for λtxy.t∧(x∨y), λftxy.f∧t∧(x∨y),
λfxy.f ∧ (x ∨ y), and λftxy.f ∧ t ∧ (x ∨ y).

Claim 17 1. ISO-IMP({λtxy.t ∧ (x ∨ y)}) is NP-hard.
2. ISO-IMP({λftxy.f ∧ t ∧ (x ∨ y)}) is NP-hard.
3. ISO-IMP({λfxy.f ∧ (x ∨ y)}) is NP-hard.
4. ISO-IMP({λftxy.f ∧ t ∧ (x ∨ y)}) is NP-hard.

Proof.

1. Let G and H be two graphs without isolated vertices. For Ĝ a graph, define

S(Ĝ) = {t ∧ (xi ∨ xj) | {i, j} ∈ E(Ĝ)}.

We claim thatG contains a subgraph isomorphic toH if and only if S(G)⇒̃S(H).
First suppose that G′ is a subgraph of G and that G′ is isomorphic to H .
Then S(G′) ⊆ S(G) and there exists a bijection π from V (G′) to V (H)
such that π(G′) = H , which implies that S(π(G′)) = S(H). Let ρ be a
permutation on the set {t} ∪ {xi | i ∈ V (G)∪ V (H)} such that ρ(t) = t and

10

ρ(xi) = xπ(i) for all i ∈ V (G′). It is immediate that ρ(S(G′)) = S(π(G′)) =
S(H) and that ρ(S(G′)) ⊆ ρ(S(G)). It follows that S(H) ⊆ ρ(S(G)), and
thus S(G)⇒̃S(H).
For the converse, suppose that there exists a permutation ρ on the variables
occurring in S(G) ∪ S(H) such that ρ(S(G)) ⇒ S(H). First note that such

a ρ must map t to t, since, for any graph Ĝ without isolated vertices, t is
the unique variable z such that S(Ĝ) ⇒ z. Also note that for all graphs Ĝ,

if S(Ĝ) ⇒ t ∧ (xi ∨ xj), then t ∧ (xi ∨ xj) ∈ S(Ĝ).

It is easy to see that if ρ(S(Ĝ)) ⇒ t∧ (xi ∨xj), then t∧ (xi ∨xj) ∈ ρ(S(Ĝ)).
(For if it were not, setting t to true, xi and xj to false, and all other x-

variables to true would satisfy ρ(S(Ĝ)).) It follows that S(H) ⊆ ρ(S(G)).
Let G′ be the graph isomorphic to H such that S(H) = ρ(S(G′)). Then
ρ(S(G′)) ⊆ ρ(S(G)), and thus G′ is a subgraph of G.

2. For Ĝ a graph, define

S′(Ĝ) = {f ∧ t ∧ (xi ∨ xj) | {i, j} ∈ E(Ĝ)}.

We claim that for any graphsG andH without isolated vertices, S(G)⇒̃S(H)
if and only if S′(G)⇒̃S′(H).
First suppose that ρ is a permutation of the variables occurring in S(G) ∪
S(H) such that ρ(S(G)) ⇒ S(H). If we extend ρ by letting ρ(f) = f , then
ρ(S′(G)) ⇒ S′(H). For the converse, suppose that ρ is a permutation of
the variables occurring in S′(G)∪S′(H) such that ρ(S′(G)) ⇒ S′(H). Then

ρ(f) = f , since, for any graph Ĝ without isolated vertices, f is the unique

variable z such that S(Ĝ) ⇒ z. Since, for any graph Ĝ, S′(Ĝ) is equivalent

to f ∧ S(Ĝ) and f does not occur in S(Ĝ), it follows immediately that
ρ(S(G)) ⇒ S(H).

3. Note that (λfxy.f ∧ (x ∨ y))c = λfxy.f ∧ (x ∨ y). The result follows imme-
diately from part 1 of this claim and Lemma 16.

4. Note that (λftxy.f ∧ t∧ (x∨ y))c = λftxy.f ∧ t∧ (x∨ y). The result follows
immediately from part 2 of this claim and Lemma 16.

✷

The remaining 6 constraints behave differently. In these cases, the isomor-
phism problem is in P. Thus, GI does not reduce to these isomorphism problems
(unless GI is in P), and there does not seem to be a simple reduction from
the subgraph isomorphism problem to the isomorphic implication problem. In
these cases, we will prove NP-hardness by reduction from a suitable partitioning
problem, namely, the unary version of the problem 3-Partition [GJ79, Problem
SP15].

Definition 18. [GJ79] Unary-3-Partition is the problem, given a set A of 3m
elements, B ∈ Z

+ a bound (in unary), and for each a ∈ A, a size s(a) ∈ Z
+

(in unary) such that B/4 < s(a) < B/2 and such that
∑

a∈A s(a) = mB, to
decide whether A can be partitioned into m disjoint sets A1, . . . , Am such that∑

a∈Ai
s(a) = B for 1 ≤ i ≤ m.

11

Theorem 19 ([GJ79]). Unary-3-Partition is NP-complete.

Claim 20 1. ISO-IMP({λxy.x↔ y}) is NP-hard.
2. ISO-IMP({λtxy.t ∧ (x↔ y)}) is NP-hard.
3. ISO-IMP({λfxy.f ∧ (x↔ y)}) is NP-hard.
4. ISO-IMP({λftxy.f ∧ t ∧ (x↔ y)}) is NP-hard.

Proof.

1. Let A be a set with 3m elements, B ∈ Z
+ a bound (in unary), and for each

a ∈ A, let s(a) ∈ Z
+ be a size (in unary) such that

∑
a∈A s(a) = mB.

Let X1, . . . , Xm be m pairwise disjoint sets of variables, each of size B. Let

S = {x↔ x′ | x, x′ ∈ Xi for some i}.

Let {X̂a | a ∈ A} be a collection of 3m pairwise disjoint sets of variables

such that ||X̂a|| = s(a) for all a ∈ A, and such that

⋃

a∈A

X̂a =

m⋃

i=1

Xi.

Let
U = {x↔ x′ | x, x′ ∈ X̂a for some a ∈ A}.

Note that since B and the s(a)’s are given in unary, S and U can be computed
in polynomial time.
We claim that A can be partitioned into m disjoint sets A1, . . . , Am such
that

∑
a∈Ai

s(a) = B for 1 ≤ i ≤ m if and only if S⇒̃U .
First suppose that A1, . . . , Am is a partition of A such that

∑
a∈Ai

s(a) = B

for 1 ≤ i ≤ m. Define a permutation π on
⋃m

i=1Xi such that for all i,

π(Xi) =
⋃

a∈Ai
X̂a. Let (x ↔ x′) ∈ U . Then, for some a ∈ A, x, x′ ∈ X̂a.

Then there exists an i such that π−1(x) and π−1(x′) are elements of Xi,
which implies that (π−1(x) ↔ π−1(x′)) ∈ S, and thus (x ↔ x′) ∈ π(S). It
follows that U ⊆ π(S), and thus π(S) ⇒ U .
For the converse, suppose π is a permutation of

⋃m
i=1Xi such that π(S) ⇒ U .

Let Ai = {a | π(Xi) ∩ X̂a 6= ∅}. We claim that A1, . . . , Am is a desired
partition.
By definition, it is immediate that

⋃m

i=1 Ai = A. Next suppose that Ai∩Aj 6=
∅, for some i 6= j. Then for some z ∈ Xi, z

′ ∈ Xj , there exists an a ∈ A

such that π(z), π(z′) ∈ X̂a. Then (π(z) ↔ π(z′)) ∈ U . But it easy to see
that there exists a satisfying assignment of S such that z is true and z′ is
false. Thus, S 6⇒ (z ↔ z′). This implies that π(S) 6⇒ (π(z) ↔ π(z′)). But
this contradicts the fact that π(S) ⇒ U .
It follows that Ai ∩ Aj = ∅ for all i 6= j and it follows that π(Xi) =⋃

a∈Ai
X̂a. Since π is an injection, ||Xi|| = ||

⋃
a∈Ai

X̂a||, and since the

X̂a’s are pairwise disjoint, ||
⋃

a∈Ai
X̂a|| = Σa∈Ai

s(a). Since ||Xi|| = B,
it follows that Σa∈Ai

s(a) = B. This completes the NP-hardness proof for
ISO-IMP({λxy.x↔ y}).

12

2. Now consider the case where the constraint is λtxy.t ∧ (x↔ y). Let

S′ = {t ∧ (x↔ x′) | x, x′ ∈ Xi for some i}

and

U ′ = {t ∧ (x↔ x′) | x, x′ ∈ X̂a for some a ∈ A}.

We claim that S′⇒̃U ′ if and only if S⇒̃U . The left-to-right direction is
immediate: Simply extend the permutation π on the variables occurring in
S ∪ U such that π(S) ⇒ U by letting π(t) = t. Then π(S′) ⇒ π(U ′).
For the converse, note that S′ ≡ t ∧ S and U ′ ≡ t ∧ U . Let π be such
that π(S′) ⇒ U ′. Note that t is the unique variable z such that S′ ⇒ z. It
follows that π maps t to t. Since t does not occur in S and U , it follows that
π(S) ⇒ U .

3. (λfxy.f ∧ (x ↔ y))c is equivalent to λtxy.t ∧ (x ↔ y). The result follows
immediately from part 2 of this claim and Lemma 16.

4. Now consider the case where the constraint is λftxy.f ∧ t ∧ (x↔ y). Let

S′′ = {f ∧ t ∧ (x↔ x′) | x, x′ ∈ Xi for some i}

and

U ′′ = {f ∧ t ∧ (x↔ x′) | x, x′ ∈ X̂a for some a ∈ A}.

We claim that S′′⇒̃U ′′ if and only if S⇒̃U . The left-to-right direction is
immediate: Simply extend the permutation π on the variables occurring
in S ∪ U such that π(S) ⇒ U by letting π(f) = f and π(t) = t. Then
π(S′′) ⇒ π(U ′′).
For the converse, note that S′′ ≡ f ∧ t∧S and U ′′ ≡ f ∧ t∧U . Let π be such
that π(S′′) ⇒ U ′′. Note that f is the unique variable z such that S′′ ⇒ z
and and that t is the unique variable z such that S′′ ⇒ z. It follows that π
maps t to t and f to f . Since t and f do not occur in S and U , it follows
that π(S) ⇒ U .

✷

For the final two cases, we adapt the proof from the previous claim.

Claim 21 1. ISO-IMP({λxy.x⊕ y}) is NP-hard.

2. ISO-IMP({λftxy.f ∧ t ∧ (x⊕ y)}) is NP-hard.

Proof.

1. Let A be a set with 3m elements, B ∈ Z
+ a bound (in unary), and for each

a ∈ A, let s(a) ∈ Z
+ be a size (in unary) such that

∑
a∈A s(a) = mB.

Let X1, . . . , Xm, Y1, . . . , Ym be 2m pairwise disjoint sets of variables, each of
size B. Let

S = {x⊕ y | x ∈ Xi and y ∈ Yi for some i}.

13

Let {X̂a, Ŷa | a ∈ A} be a collection of 6m pairwise disjoint sets of variables

such that ||X̂a|| = ||Ŷa|| = s(a) for all a ∈ A, and such that

⋃

a∈A

(X̂a ∪ Ŷa) =
m⋃

i=1

(Xi ∪ Yi).

Let
U = {x⊕ y | x ∈ X̂a and y ∈ Ŷa for some a ∈ A}.

Note that since B and the s(a)’s are given in unary, S and U can be computed
in polynomial time.
We claim that A can be partitioned into m disjoint sets A1, . . . , Am such
that

∑
a∈Ai

s(a) = B for 1 ≤ i ≤ m if and only if S⇒̃U .
First suppose that A1, . . . , Am is a partition of A such that

∑
a∈Ai

s(a) =

B for 1 ≤ i ≤ m. Define a permutation π on
⋃m

i=1(Xi ∪ Yi) such that

for all i, π(Xi) =
⋃

a∈Ai
X̂a and π(Yi) =

⋃
a∈Ai

Ŷa. Consider an arbitrary

element of U , say x ⊕ y for x ∈ X̂a and y ∈ Ŷa. Then there exists an i
such that π−1(x) ∈ Xi and π

−1(y) ∈ Yi (or vice versa), which implies that
(π−1(x) ⊕ π−1(y)) ∈ S, and thus (x ⊕ y) ∈ π(S). It follows that U ⊆ π(S),
and thus π(S) ⇒ U .
For the converse, suppose π is a permutation of

⋃m

i=1(Xi ∪ Yi) such that
π(S) ⇒ U .
Let

Ai = {a | π(Xi ∪ Yi) ∩ (X̂a ∪ Ŷa) 6= ∅}.

We claim that A1, . . . , Am is the desired partition.
By definition, it is immediate that

⋃m
i=1 Ai = A. Next suppose that Ai∩Aj 6=

∅, for some i 6= j. Then for some z ∈ Xi ∪ Yi, z′ ∈ Xj ∪ Yj , there exists an

a ∈ A such that π(z), π(z′) ∈ X̂a ∩ Ŷa.
Then U ⇒ (π(z)⊕π(z′)) or U ⇒ (π(z) ↔ π(z′)). But it easy to see that there
exists a satisfying assignment of S such that z is true and z′ is false, and that
there exists a satisfying assignment of S such that z is true and z′ is true.
Thus, S 6⇒ (z⊕z′) and S 6⇒ (z ↔ z′). This implies that π(S) 6⇒ (π(z)⊕π(z′))
and π(S) 6⇒ (π(z) ↔ π(z′)). But this contradicts the fact that π(S) ⇒ U .
It follows that Ai ∩ Aj = ∅ for all i 6= j and it follows that π(Xi ∪ Yi) =⋃

a∈Ai
(X̂a ∪ Ŷa). Since π is an injection, ||Xi ∪ Yi|| = ||

⋃
a∈Ai

(X̂a ∪ Ŷa)|| =
Σa∈Ai

2s(a). Since ||Xi ∪ Yi|| = 2B it follows that Σa∈Ai
2s(a) = 2B, which,

of course, implies that Σa∈Ai
s(a) = B, as required.

2. Now consider the case where the constraint is λftxy.f ∧ t ∧ (x⊕ y). Let

S′ = {f ∧ t ∧ x⊕ y | x ∈ Xi and y ∈ Yi for some i}

and
U ′ = {f ∧ t ∧ x⊕ y | x ∈ X̂a and y ∈ Ŷa for some a ∈ A}.

We claim that S′⇒̃U ′ if and only if S⇒̃U . The left-to-right direction is
immediate: Simply extend the permutation π on the variables occurring

14

in S ∪ U such that π(S) ⇒ U by letting π(f) = f and π(t) = t. Then
π(S′) ⇒ π(U ′).

For the converse, note that S′ ≡ f ∧ t∧S and U ′ ≡ f ∧ t∧U . Let π be such
that π(S′) ⇒ U ′. Note that f is the unique variable z such that S′ ⇒ z and
and that t is the unique variable z such that S′ ⇒ z. It follows that π maps
t to t and f to f . Since t and f do not occur in S and U , it follows that
π(S) ⇒ U .

✷

To complete the proof of Theorem 10, it remains to show the following claim.

Claim 22 Let C be a finite set of constraints. If C is not Schaefer, then ISO-IMP(C)
is coNP-hard.

Proof. The exact same reductions that show the coNP-hardness for ISO(C)
from [BHRV02, Claim 19] also show coNP-hardness for ISO-IMP(C). This is
because for all pairs of sets of constraint applications (S,U) of C that these
reductions map to, it holds that U⇒̃S. Under this condition, S ∼= U if and only
if S⇒̃U . ✷

5 Toward a Trichotomy Theorem

The current main theorem (Theorem 10) is not a trichotomy theorem, since for
C not Schaefer, it states that ISO-IMP(C) is NP-hard, coNP-hard, and in PNP

|| .
The large gap between the lower and upper bounds is not very satisfying. We
conjecture that the current lower bounds for ISO-IMP(C) for C not Schaefer
can be raised to PNP

|| lower bounds, which would give the following trichotomy
theorem.

Conjecture 23 Let C be a finite set of constraints.

1. If every constraint in C is equivalent to a constant or a conjunction of literals,
then ISO-IMP(C) and ISO-IMPc(C) are in P.

2. Otherwise, if C is Schaefer, then ISO-IMP(C) and ISO-IMPc(C) are NP-
complete.

3. If C is not Schaefer, then ISO-IMP(C) and ISO-IMPc(C) are PNP
|| -complete.

We believe this conjecture for two reasons. First of all, it is quite common
for problems that are NP-hard, coNP-hard, and in PNP

|| to end up being PNP
|| -

complete. (For an overview of this phenomenon, see [HHR97].) Secondly, we will
prove PNP

|| lower bounds for some cases in Theorem 28.

To raise NP and coNP lower bounds to PNP
|| lower bounds, the following

theorem by Wagner often plays a crucial role, which it will also do in our case.

15

Theorem 24 ([Wag87]). Let L be a language. If there exists a polynomial-time
computable function h such that

||{i | φi ∈ SAT}|| is odd iff h(φ1, . . . , φ2k) ∈ L

for all k ≥ 1 and all Boolean formulas φ1, . . . , φ2k such that φi ∈ SAT ⇒ φi+1 ∈
SAT, then L is PNP

|| -hard.

The basic idea behind applying Wagner’s theorem to turn an NP lower bound
and a coNP lower bound into a PNP

|| lower bound is the following.

Lemma 25. Let L be a language. If L is NP-hard and coNP-hard, and (L has
polynomial-time computable and- and ω-or functions or L has polynomial-time
computable or- and ω-and functions), then L is PNP

|| -hard.1

Proof. First suppose that L has a polynomial-time computable and-function
and, and a polynomial-time computable ω-or function or. Let f be a reduction
from SAT to L and let g be a reduction from SAT to L.

Let k ≥ 1 and let φ1, . . . , φ2k be formulas such that φi ∈ SAT ⇒ φi+1 ∈ SAT.
Note that ||{i | φi ∈ SAT}|| is odd if and only if there exists an i such that
1 ≤ i ≤ k, φ2i−1 6∈ SAT, and φ2i ∈ SAT.

Define h(φ1, . . . , φ2k) as

or (and(f(φ1), g(φ2)), and(f(φ3), g(φ4)), . . . , and(f(φ2k−1), g(φ2k))) .

It is immediate that h is computable in polynomial-time and there exists an i
such that 1 ≤ i ≤ k, φ2i−1 6∈ SAT, and φ2i ∈ SAT if and only if h(φ1, . . . , φ2k) ∈
L. It follows that L is PNP

|| -hard by Theorem 24.
Now consider the case that L has a polynomial-time computable or-function,

and a polynomial-time computable ω-and function. Then L has a polynomial-
time computable and-function, and a polynomial-time computable ω-or function.
By the argument above, L is PNP

|| -hard. Since PNP
|| is closed under complement,

it follows that L is PNP
|| -hard. ✷

Agrawal and Thierauf [AT00] proved that the Boolean isomorphism problem
has ω-and and ω-or functions. Since the Boolean isomorphism problem is trivially
coNP-hard, we obtain the following corollary.

Corollary 26. If the Boolean isomorphism problem is NP-hard, then it is PNP
|| -

hard.

Unfortunately, Agrawal and Thierauf’s ω-or function does not work for Boolean
isomorphic implication. Their ω-and function seems to work for Boolean isomor-
phic implication, but since this function or’s two formulas together, it will not
work for sets of constraint applications.

To prove our PNP
|| lower bounds, we need to come up with completely new

constructions. In the proof, we will use the following lemma.
1 An or-function for a language L is a function f such that for all x, y ∈ Σ∗, f(x, y) ∈ L

iff x ∈ L or y ∈ L. An ω-or-function for a language L is a function f such that for all
x1, . . . , xn ∈ Σ∗, f(x1, . . . , xn) ∈ L iff xi ∈ L for some i; and-functions are defined
similarly [KST93].

16

Lemma 27. Let S and U be two sets of constraint applications, let X be the set
of variables occurring in S, and let Y be the set of variables occurring in U . If
S⇒̃U , ||X || ≥ ||Y ||, and X ∩Y = ∅, then there exists a permutation π of X ∪Y
such that π(S) ⇒ U and π(Y) ∩ Y = ∅.

Proof. Let π′ be a permutation such that π′(S) ⇒ U . If there exist y, y′ ∈ Y
with π′(y′) = y, then, since ||X || ≥ ||Y ||, there exist x, x′ ∈ X such that π′(x′) =
x. Construct a new permutation ρ as follows: ρ(y′) = x, ρ(x′) = y, ρ(z) = π′(z)
for all z ∈ (X ∪ Y) − {x′, y′}. We will show that ρ(S) ⇒ U . By repeatedly
applying this construction, we get a permutation π such that π(S) ⇒ U and
π(Y) ⊆ X . Since X ∩ Y = ∅, it follows that π(Y) ∩ Y = ∅.

It remains to show that ρ(S) ⇒ U . For this, suppose that ρ(S) 6⇒ U . Let Z
be a list of the variables in (S ∪U)−{x′, y′}. Then ρ(S)(Z, x′, y′) 6⇒ U(Z, x′, y′)
and thus there exist a, b ∈ {0, 1} and s ∈ {0, 1}||Z||, such that ρ(S)(s, a, b) = 1
and U(s, a, b) = 0. Since x′ does not occur in U and y′ does not occur in S,
we also have ρ(S)(s, a, b) = 1 and U(s, a, b) = 0. Since π′(S)(Z, x, y) ⇒ U it
follows that π′(S)(s, a, b) = π′(S)(s, a, b) = 0. Because y′ does not occur in S,
also π′(S)(s, a, b) = π′(S)(s, a, b) = 0. So, π′(S)(s, x, y) ≡ 0, but π′(S)(s, b, a) =
ρ(S)(s, a, b) = 1. ✷

Theorem 28. Let D be a set of constraints that is 0-valid, 1-valid, not com-
plementive, and not Schaefer. Let C = D ∪ {λxy.x ∨ y}. Then ISO-IMP(C) is
PNP
|| -complete.

Proof. By Theorem 10, ISO-IMP(C) is in PNP
|| . Thus it suffices to show that

ISO-IMP(C) is PNP
|| -hard. Let k ≥ 1 and let φ1, . . . , φ2k be formulas such that

φi ∈ SAT ⇒ φi+1 ∈ SAT. We will construct a polynomial-time computable
function h such that

||{i | φi ∈ SAT}|| is odd iff h(φ1, . . . , φ2k) ∈ ISO-IMP(C).

By Theorem 24, this proves that ISO-IMP(C) is PNP
|| -hard.

Note that ||{i | φi ∈ SAT}|| is odd if and only if there exists an i such that
1 ≤ i ≤ k, φ2i−1 6∈ SAT, and φ2i ∈ SAT. This is a useful way of looking at it,
and we will prove that there exists an i such that 1 ≤ i ≤ k, φ2i−1 6∈ SAT and
φ2i ∈ SAT if and only if h(φ1, . . . , φ2k) ∈ ISO-IMP(C).

From Theorem 10 we know that ISO-IMP(C) is NP-hard and coNP-hard, and
thus there exist (polynomial-time many-one) reductions from SAT to ISO-IMP(C)
and from SAT to ISO-IMP(C). We will follow the idea of the proof of Lemma 25,
but we will look in more detail at the reductions, so that we can restrict the sets
of constraint applications that we have to handle.

Let f be a polynomial-time computable function such that for all φ, f(φ) is
a set of constraint applications of D and

φ ∈ SAT iff f(φ)⇒̃
⋃

1≤j,ℓ≤n

{xj → xℓ}.

17

Here x1, . . . , xn are exactly all variables in f(φ). Such a function exists, since
SAT is reducible to CSP6=0,1(D) (CSP 6=0,1(D) is the problem of deciding whether
a set of constraint applications of D has a satisfying assignment other than 0 and
1), which is reducible to ISO-IMP(D) via a reduction that satisfies the properties
above. (See the proofs of Claim 22 and [BHRV02, Claims 19 and 14].)

Let g be a polynomial-time computable function such that for all φ, g(φ) is a
set of constraint applications of λxy.x∨y without duplicates (i.e., if z∨z′ ∈ g(φ),
then z 6= z′) and

φ ∈ SAT iff g(φ)⇒̃{yj ∨ yj+1 | 1 ≤ j < n}.

Here y1, . . . , yn are exactly all variables occurring in g(φ). Such a function
exists, since SAT is reducible to HAMILTONIAN PATH, which is reducible
to ISO-IMP({λxy.x ∨ y}) via a reduction that satisfies the properties above.
(Basically, use the standard translation from graphs to sets of constraint ap-
plications of λxy.x ∨ y: For G a connected graph on vertices {1, . . . , n}, let
g(G) = {yi ∨ yj | {i, j} ∈ E(G)}.)

Recall that we need to construct a polynomial-time computable function h
with the property that there exists an i such that 1 ≤ i ≤ k, φ2i−1 6∈ SAT, and
φ2i ∈ SAT if and only if h(φ1, . . . , φ2k) ∈ ISO-IMP(C).

In order to construct h, we will apply the coNP-hardness reduction f on φi
for odd i, and the NP-hardness reduction g on φi for even i. It will be important
to make sure that all obtained sets of constraint applications are over disjoint
sets of variables.

For every i, 1 ≤ i ≤ k, we define Oi to be the set of constraint applications
f(φ2i−1) with each variable xj replaced by xi,j . Clearly,

φ2i−1 6∈ SAT iff Oi⇒̃
⋃

1≤j,ℓ≤ni

{xi,j → xi,ℓ},

where ni is the n from f(φ2i−1).
For every i, 1 ≤ i ≤ k, we define Ei to be the set of constraint applications

g(φ2i) with each variable yj replaced by yi,j . Clearly,

φ2i ∈ SAT iff Ei⇒̃{yi,j ∨ yi,j+1 | 1 ≤ j < n′
i},

where n′
i is the n from g(φ2i).

Note that the sets that occur to the right of Oi⇒̃ are almost isomorphic
(apart from the number of variables). The same holds for the sets that occur
to the right of Ei⇒̃. It is important to make sure that these sets are exactly
isomorphic. In order to do so, we simply pad the sets Oi and Ei.

Let n = max{ni, n
′
i + 2 | 1 ≤ i ≤ k}. For 1 ≤ i ≤ k, let

Ôi = Oi ∪ {xi,1 → xi,j , xi,j → xi,1 | ni < j ≤ n}.

Ôi is a set of constraint applications of D, since there exists a constraint
application A(x, y) of D that is equivalent to x→ y (see [BHRV02, Claim 14]).

18

It is immediate that

Ôi⇒̃
⋃

1≤j,ℓ≤n

{xi,j → xi,ℓ} iff Oi⇒̃
⋃

1≤j,ℓ≤ni

{xi,j → xi,ℓ}.

For 1 ≤ i ≤ k, let

Êi = Ei ∪ {yi,j ∨ yi,n′

i
+1 | 1 ≤ j ≤ n′

i} ∪ {yi,j ∨ yi,j+1 | n′
i + 1 ≤ j < n}.

Then

Êi⇒̃{yi,j ∨ yi,j+1 | 1 ≤ j < n} iff Ei⇒̃{yi,j ∨ yi,j+1 | 1 ≤ j < n′
i}.

The right-to-left direction is immediate. The left-to-right to direction can easily
be seen if we think about this as graphs. Since n ≥ n′

i + 2, any Hamiltonian

path in Êi contains the subpath n′
i+1, n

′
i+2, . . . , n, where n is an endpoint. This

implies that there is a Hamiltonian path in the graph restricted to {1, . . . , n′
i},

i.e., in Ei.
So, our current situation is as follows. For all i, 1 ≤ i ≤ k, Ôi is a set of

constraint applications of D such that

φ2i−1 6∈ SAT iff Ôi⇒̃
⋃

1≤j,ℓ≤n

{xi,j → xi,ℓ}.

and Êi is a set of constraint applications of λxy.x ∨ y without duplicates such
that

φ2i ∈ SAT iff Êi⇒̃{yi,j ∨ yi,j+1 | 1 ≤ j < n}.

Our reduction is defined as follows

h(φ1, . . . , φ2k) = 〈S,U〉,

where

S =
k⋃

i=1


Ôi ∪ Êi ∪

⋃

1≤j,ℓ≤n

{xi,j → yi,ℓ}




and

U =
⋃

1≤j,ℓ≤n

{xj → xℓ} ∪
n−1⋃

j=1

{yj ∨ yj+1} ∪
⋃

1≤j,ℓ≤n

{xj → yℓ}.

Clearly, h is computable in polynomial time and S and U are sets of constraint
applications of C, since there exists a constraint application A(x, y) of D that is
equivalent to x→ y.

It remains to show that there exists an i such that Ôi⇒̃
⋃

1≤j,ℓ≤n{xi,j → xi,ℓ}

and Êi⇒̃{yi,j ∨ yi,j+1 | 1 ≤ j < n} if and only if S⇒̃U .

For the left-to-right direction, let i0 be such that 1 ≤ i0 ≤ k, Ôi0⇒̃
⋃

1≤j,ℓ≤n{xi0,j →

xi0,ℓ} and Êi0⇒̃{yi0,j ∨ yi0,j+1 | 1 ≤ j < n}. Let πx be a permutation of

19

{xi0,1, . . . , xi0,n} such that πx(Ôi0) ⇒
⋃

1≤j,ℓ≤n{xi0,j → xi0,ℓ} and let πy be a

permutation of {yi0,1, . . . , yi0,n} such that πy(Êi0) ⇒ {yi0,j∨yi0,j+1 | 1 ≤ j < n}.

Define a permutation π on the variables occurring in S ∪ U such that for all
1 ≤ j, ℓ ≤ n, π(xi0,j) = xℓ if πx(xi0,j) = xi0,ℓ and π(yi0,j) = yℓ if πy(yi0,j) = yi0,ℓ.

It is immediate that π(Ôi0) ⇒
⋃

1≤j,ℓ≤n{xj → xℓ}, π(Êi0) ⇒ {yj ∨ yj+1 | 1 ≤
j < n}, and π(

⋃
1≤j,ℓ≤n{xi0,j → yi0,ℓ}) ⇒

⋃
1≤j,ℓ≤n{xj → yℓ}. It follows that

π(S) ⇒ U .

For the converse, suppose that S⇒̃U . It is easy to see (see Lemma 27) that
there exists a permutation π of the variables that occur in S ∪ U such that
π(S) ⇒ U and such that for all j, 1 ≤ j ≤ n, π(xj) and π(yj) do not occur in
U .

We will now show that for all 1 ≤ j ≤ n, π cannot map a y-variable to xj . For
suppose that π(yi,ℓ) = xj . S is satisfied by the assignment that sets all y-variables
to 1 and all x-variables to 0, and S remains satisfied if in this assignment we
change the value of yi,ℓ to 0 (recall that if z∨ z′ ∈ Ej then z 6= z′). Then π(S) is
satisfied by the assignment that sets π(y) to 1 for all y-variables and π(x) to 0
for all x-variables, and π(S) is still satisfied if in this assignment we change the
value of π(yi,ℓ) to 0. But this is a contradiction, since π(yi,ℓ) = xj and changing
the value of xj in a satisfying assignment for U will always make U false.

Let i0, j0 be such that π(xi0,j0) = x1. Now suppose that π(z) = xj . Then
z = xi,ℓ. Since π(S) ⇒ (x1 ↔ xj), S ⇒ (xi0,j0 ↔ xi,ℓ). It follows that i = i0,
and thus, π({xi0,ℓ | 1 ≤ ℓ ≤ n}) = {xℓ | 1 ≤ ℓ ≤ n}.

Next, suppose that π(z) = yj . Since π(S) ⇒ (x1 → yj), S ⇒ (xi0,j0 → z).
It follows that z = xi0,ℓ or z = yi0,ℓ. Since π({xi0,ℓ | 1 ≤ ℓ ≤ n}) = {xℓ | 1 ≤
ℓ ≤ n}, the only possibility is z = yi0,ℓ. It follows that π({yi0,ℓ | 1 ≤ ℓ ≤ n}) =
{yℓ | 1 ≤ ℓ ≤ n}.

Let α be the partial assignment that sets all y-variables to 1, and all x-
variables except those in {xℓ | 1 ≤ ℓ ≤ n} to 0. Then π(S)[α] is equivalent to

π(Ôi0) and U [α] is equivalent to
⋃

1≤j,ℓ≤n{xj → xℓ}. Since π(S) ⇒ U , π(S)[α] ⇒

U [α], i.e., π(Ôi0) ⇒
⋃

1≤j,ℓ≤n{xj → xℓ}, and thus Ôi0⇒̃
⋃

1≤j,ℓ≤n{xi0,j →
xi0,ℓ}.

Let β be the partial assignment that sets all x-variables to 0, and all y-
variables except those in {yℓ | 1 ≤ ℓ ≤ n} to 1. Then π(S)[β] is equivalent to

π(Êi0) and U [β] is equivalent to
⋃n−1

j=1 {yj ∨ yj+1}. Since π(S) ⇒ U , π(S)[β] ⇒

U [β]. It follows that π(Êi0) ⇒
⋃n−1

j=1 {yj ∨ yj+1}, and thus Êi0⇒̃
⋃n−1

j=1 {yi0,j ∨
yi0,j+1}. This completes the proof of Theorem 28. ✷

It should be noted that constructions similar to the proof of Theorem 28
can be used to prove PNP

|| -hardness for some other cases as well. However, new

insights and constructions will be needed to obtain PNP
|| -hardness for all non-

Schaefer cases.

20

6 Open Problems

The most important question left open by this paper is whether Conjecture 23
holds. In addition, the complexity of the isomorphic implication problem for
Boolean formulas is still open. This problem is trivially in Σp

2 , and, by Theo-
rem 28, PNP

|| -hard. Note that an improvement of the upper bound will likely

give an improvement of the best-known upper bound (Σp
2) for the isomorphism

problem for Boolean formulas, since that problem is 2-conjunctive-truth-table
reducible to the isomorphic implication problem.

Schaefer’s framework is not the only framework to study generalized Boolean
problems. It would be interesting to study the complexity of isomorphic impli-
cation in other frameworks, for example, for Boolean circuits over a fixed base.

Acknowledgments: The authors thank Henning Schnoor and Heribert Vollmer
for helpful comments.

References

AT00. M. Agrawal and T. Thierauf. The formula isomorphism problem. SIAM
Journal on Computing, 30(3):990–1009, 2000.

BCRV04. E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean
blocks, part II: Constraint Satisfaction Problems. SIGACT News, 35(1):22–
35, 2004.

BH91. S. Buss and L. Hay. On truth-table reducibility to SAT. Information and
Computation, 91(1):86–102, 1991.

BHRV02. E. Böhler, E. Hemaspaandra, S. Reith, and H. Vollmer. Equivalence and
isomorphism for Boolean constraint satisfaction. In Proceedings of the 16th
Annual Conference of the EACSL (CSL 2002), pages 412–426. Springer-
Verlag Lecture Notes in Computer Science #2471, September 2002.

BHRV03. E. Böhler, E. Hemaspaandra, S. Reith, and H. Vollmer. The complexity of
Boolean constraint isomorphism. Technical Report cs.CC/0306134, Com-
puting Research Repository, http://www.acm.org/repository/, June 2003.
Revised, April 2004.

BHRV04. E. Böhler, E. Hemaspaandra, S. Reith, and H. Vollmer. The complexity of
Boolean constraint isomorphism. In Proceedings of the 21st Symposium on
Theoretical Aspects of Computer Science, pages 164–175. Springer-Verlag
Lecture Notes in Computer Science #2996, March 2004.

BKJ00. A. Bulatov, A. Krokhin, and P. Jeavons. Constraint satisfaction problems
and finite algebras. In Proceedings of the 27th International Colloquium on
Automata, Languages and Programming, pages 272–282. Springer-Verlag,
2000.

BR93. B. Borchert and D. Ranjan. The ciruit subfunction relations are Σ
p

2
-

complete. Technical Report MPI-I-93-121, MPI, Saarbrücken, 1993.
BRS98. B. Borchert, D. Ranjan, and F. Stephan. On the computational complexity

of some classical equivalence relations on Boolean functions. Theory of
Computing Systems, 31(6):679–693, 1998.

CH96. N. Creignou and M. Hermann. Complexity of generalized satisfiability
counting problems. Information and Computation, 125:1–12, 1996.

21

CKS01. N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of
Boolean Constraint Satisfaction Problems. Monographs on Discrete Ap-
plied Mathematics. SIAM, 2001.

Coo71. S. Cook. The complexity of theorem-proving procedures. In Proceedings of
the 3rd ACM Symposium on Theory of Computing, pages 151–158. ACM
Press, 1971.

Cre95. N. Creignou. A dichotomy theorem for maximum generalized satisfiability
problems. Journal of Computer and System Sciences, 51:511–522, 1995.

GJ79. M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

Hem04. E. Hemaspaandra. Dichotomy theorems for alternation-bounded quantified
Boolean formulas. Technical Report cs.CC/0406006, Computing Research
Repository, http://www.acm.org/repository/, June 2004.

HHR97. E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Raising NP lower
bounds to parallel NP lower bounds. SIGACT News, 28(2):2–13, 1997.

JCG97. P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints.
Journal of the ACM, 44(4):527–548, 1997.

Jea98. P. Jeavons. On the algebraic structure of combinatorial problems. Theoret-
ical Computer Science, 200(1-2):185–204, 1998.

Jub99. L. Juban. Dichotomy theorem for generalized unique satisfiability problem.
In Proceedings of the 12th Conference on Fundamentals of Computation
Theory, pages 327–337. Springer-Verlag Lecture Notes in Computer Science
#1684, 1999.

KK01. L. Kirousis and P. Kolaitis. The complexity of minimal satisfiability prob-
lems. In Proceedings of the 18th Symposium on Theoretical Aspects of Com-
puter Science, pages 407–418. Springer-Verlag Lecture Notes in Computer
Science #2010, 2001.

KS98. D. Kavvadias and M. Sideri. The inverse satisfiability problem. SIAM
Journal on Computing, 28(1):152–163, 1998.

KST93. J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem:
Its Structural Complexity. Birkhäuser, 1993.

KSTW01. S. Khanna, M. Sudan, L. Trevisan, and D. Williamson. The approxima-
bility of constraint satisfaction problems. SIAM Journal on Computing,
30(6):1863–1920, 2001.

Pos44. E. Post. Recursively enumerable sets of integers and their decision problems.
Bulletin of the AMS, 50:284–316, 1944.

Sch78. T. Schaefer. The complexity of satisfiability problems. In Proceedings of
the 10th ACM Symposium on Theory of Computing, pages 216–226, 1978.

Wag87. K. Wagner. More complicated questions about maxima and minima, and
some closures of NP. Theoretical Computer Science, 51(1–2):53–80, 1987.

22

	Isomorphic Implication

