
Theory Comput Syst (2008) 42: 157–186
DOI 10.1007/s00224-007-9053-2

Storage Products and Linear Control of Derivations

Christian Wartena

Published online: 3 October 2007
© Springer Science+Business Media, LLC 2007

Abstract Various automata using certain kinds of tuples of storages are defined in
the literature. In this paper we investigate some possibilities to define such storages
independently of automata by a restricted type of product on storages, called con-
catenation. It is shown that there is a strong relation between automata with con-
catenated pushdowns and restricted classes of linear controlled grammars. Using this
result, some relations between hierarchies of automata with an ascending number of
concatenated pushdowns and some well-known hierarchies of controlled grammars
follow naturally.

Keywords Formal language theory · Automata theory · Linguistics · Pushdown
storage

1 Introduction

In [19, 25, 26] it is argued that automata and certain types of grammars using tuples of
pushdowns provide interesting models for the description of natural languages. The
interest in such systems, however, is not limited to linguistics. For instance, [1] de-
fines multi-pushdown automata and multi-pushdown grammars and [7] defines mul-
tistack pushdown automata. Tuples of pushdowns are very powerful. An automaton
with two pushdowns already can simulate a Turing machine. Thus [1] uses a re-
striction on the accessibility of the stacks. This paper investigates the possibilities
for defining such restrictions on tuples of arbitrary storages, independently of the
concrete systems that may use them. Two different products are introduced, called
concatenation w.r.t. reading (popping) and concatenation w.r.t. writing (pushing), re-
spectively. If the first operation is iteratively applied to concatenate pushdowns we
get exactly the storages employed by the multi-pushdown automata of [1].

C. Wartena (�)
Telematica Instituut, Postbus 589, 7500 AN, Enschede, The Netherlands
e-mail: Christian.Wartena@telin.nl

158 Theory Comput Syst (2008) 42: 157–186

In [24] it is shown that the classes of languages that are accepted by multi-
pushdown automata of either type are mildly context-sensitive. Mildly context-
sensitivity was defined by Aravind Joshi (see, e.g., [14]) to characterize classes of lan-
guages that are only a bit stronger than context-free languages, in the sense that they
still have a number of nice properties of the context-free languages, but at the same
time are strong enough to describe natural languages in an adequate manner. Though
storages consisting of sequences of pushdowns formed by concatenation w.r.t. read-
ing as well as those formed by concatenation w.r.t. writing both give rise to mildly
context-sensitive classes of languages, it can be argued that especially concatenation
w.r.t. writing is of interest for the study of formal properties of natural languages
(cf. [24, 26]). The following two paragraphs sketch the linguistic argumentation and
are not essential for the understanding of the rest of the paper, but might give the
interested reader a short impression how composite storages can be used to describe
structures in natural languages and why concatenation w.r.t. writing is to be preferred
to the other type of concatenation.

In the first place, automata with two pushdowns concatenated w.r.t. writing accept
exactly the class of languages generated by extended right-linear indexed grammars
(ERLIGs). ERLIGs arise from a restriction on the rule format of linear indexed gram-
mars (LIGs) that we have argued to be appropriate for the description of natural lan-
guages (cf. [17, 18]). In an LIG a stack of indices is passed on through a derivation
from a parent node to one of its children in each rewriting step. At each point an index
can be pushed onto the stack or popped from the stack. Thus a dependency between
two nodes, that are not in one local subtree, can be accounted for by pushing an index
and popping the same index symbol again. For linguistic description this mechanism
can, e.g., be used to code the dependency between a fronted element and its “origi-
nal” context, like that between a question word and its “original position”, speaking
in terms of generative transformational grammar. Looking at linguistic structures we
found that the stack of indices is always passed to the rightmost nonterminal child.
Inheriting the stack to the left always results in an ungrammatical sentence (marked
with ∗ in the examples below). The contrast is illustrated in the following example
sentences, in which the underlying or original position of the question word is marked
by an underscore:

1. (a) [Who did [Mary think [that John loves __]]]?
(b) *[Who did [[that John loves __] annoy Mary]]?

More examples and an extensive discussion of the issue is found in [17, 18].
In the second place, it can be argued that a concatenation of pushdowns is a

more appropriate storage to keep information about nonlocal dependencies during
a derivation than the stack of indices used in LIGs: there are various types of nonlo-
cal dependencies that we need to keep apart. This is, e.g., clear in Dutch sentences
in which there is both, question word fronting and so called verb-raising (sentence 2)
or in (marginally acceptable) Hungarian sentence 3 in which there is question word
fronting of multiple question words and topicalization at the same time:

2. [Wiet heeftk [Gijs [[de buurman_t muizen _i _j] zien latenj vangeni] _k]]?
Who has Gijs the neighbor mice see let catch
“Whom has Gijs seen the neighbor let catch mice?”

Theory Comput Syst (2008) 42: 157–186 159

3. A háborut , kineki és miértj mondta _i János, hogy _t _j kitört?
The war, whom and why said János, that has broken out.

For both examples it is easy to check that a simple stack will not suffice to account
for the dependencies if it is used as sketched above, while a concatenation of two
pushdowns can be used straightforwardly. In this case, the restrictions imposed on the
accessibility of the storage components can be argued to be consonant with linguistic
conditions on non-local dependencies if the storage is formed by concatenation w.r.t.
writing but not if it is formed using the other operation (for discussion see [24]).

The classes of languages accepted by automata using a concatenation of n push-
downs constitute an infinite hierarchy in case the concatenation was done with respect
to reading as well as in the case the storages were concatenated with respect to writ-
ing. Thus two hierarchies are defined, the former of which was established by [1]. The
two hierarchies can be related by inversion of storages, defined below, or by reversal
of languages. The main result of this paper shows that there is a strong connection be-
tween storage concatenation and linear control of context-free grammars. Especially
it is shown that an automaton with the concatenation of a storage S and a pushdown
is equivalent to a subclass of context-free grammars which are linearly controlled by
an automaton using S as its storage. Using this result we can redefine both hierar-
chies in terms of controlled grammars. Furthermore, we directly get the inclusion of
the multi-pushdown hierarchy in a hierarchy of controlled grammars established by
Weir [27]. Finally, a new proof will be given for the fact that Weir’s hierarchy can
be embedded in the multi-pushdown hierarchy as well. The last two results were first
proved in [5].

2 Concatenation of Storages

A system with two pushdowns in general can simulate a Turing machine. In [20]
it was noted that the power of automata with two (or more) stacks can be reduced
by imposing a restriction on the possibilities for reading from the pushdowns. This
led to the definition of multi-pushdown automata in [1, 20]. Here, the definition of
the used storages is implicit in the definition of the multi-pushdown automata. It is
however possible to define storages independently of the devices that use them. The
idea of defining storages without reference to automata (or grammars) was exploited
in, e.g., [2, 9, 11, 21, 22]. Using the concept of abstract storages we will define two
concatenation operations by explicitly putting restrictions on a tuple of two storages.
These operations in turn can be used to define the kind of storage that is used by
multi-pushdown automata.

In the following we assume the reader to be familiar with the fundamental concepts
of formal language and automata theory, particularly with context-free grammars and
pushdown automata.

160 Theory Comput Syst (2008) 42: 157–186

2.1 Storages

Definition 1 A storage1 is a quintuple S = (C, cε,F, id,m), where C is a set of
configurations, cε ∈ C is the empty configuration, F a set of function symbols, id ∈ F

the identity symbol and m is the meaning function, which associates every f ∈ F

with a partial function m(f) : C → C, such that m(id) is the identity on C.

A trivial storage, denoted Striv, is defined as Striv = ({c}, c, {id}, id,m), where c

is an arbitrary object. A pushdown over a finite alphabet Γ is defined by2 Spd(Γ) =
(Γ ∗, ε,F, id,m) with F = {id} ∪ {push(a) | a ∈ Γ } ∪ {pop(a) | a ∈ Γ } and for every
a ∈ Γ and β ∈ Γ ∗,

m(push(a))(β) = aβ,

m(pop(a))(aβ) = β.

Usually pushdowns are defined with only one function for erasing the topmost sym-
bol. In our definition there is for each a ∈ Γ a function to erase a. The advantage of
this definition is that each (partial) function m(f) (with f ∈ F) is injective, which
will be important for the inversion of storages. The classes of all trivial and all push-
down storages are denoted Striv and Spd, respectively.

Definition 2 An S-automaton is a tuple M = (Q,Σ,S, δ,QI ,QF), where Q is
a finite set of states, Σ is the input alphabet, S = (C, cε,F, id,m) is a storage,
QI ⊆ Q and QF ⊆ Q the set of initial and final states, respectively, and δ, the transi-
tion relation, a finite subset of Q × Σ∗ × Q × F .

The set ID(M) = Q × Σ∗ × C is called the set of instantaneous descriptions. For
(q1, vw, c1), (q2,w, c2) ∈ ID(M) with w ∈ Σ∗ we write (q1, vw, c1) M

� (q2,w, c2) if
there exists (q1, v, q2, f) ∈ δ such that m(f) is defined for c1 and m(f)(c1) = c2.
The transitive and reflexive closure

M
�∗ of

M
� is defined as usual. We write I

M
�n K

for I,K ∈ ID(M) if K can be derived from I in n steps. Usually, automata accept
languages either by final state or by empty configuration. Here it is convenient to
require both, i.e. to accept by empty configuration and final state (cf. [11, Sect. 4.1]).
Thus the language accepted by M is defined as L(M) = {w ∈ Σ∗ | (q0,w, cε) M

�∗
(q, ε, cε) for some q0 ∈ QI and q ∈ QF }.

Note that S-automata are defined here as one-way, nondeterministic automata.
Sometimes we will use the “sugared notation” (p, v, q, f1 &f2) ∈ δ as an abbre-
viation for (p, v,p′, f1) ∈ δ and (p′, ε, q, f2) ∈ δ where p′ is a new state. Alter-
natively, we can see f1 &f2 as a new function symbol for which m(f1 &f2)(c) =
m(f2)(m(f1)(c)) for each c ∈ C for which m(f1)(c)) and (m(f2)(m(f1)(c)) are
defined. Finally, for pushdowns and v ∈ Γ ∗ we will write push(v) for push(an)

1Often the definition of a storage is more elaborate, using, e.g., predicates and sets of initial and final
configurations.
2Throughout the paper the following notational conventions are used. The empty string is denoted by ε.
For each set V the notation Vε is used as an abbreviation for V ∪ {ε}. As usual V ∗ and V + denote Kleene
closure and positive Kleene closure of V , resp.

Theory Comput Syst (2008) 42: 157–186 161

& push(an−1) · · · & push(a1) if v = a1 · · ·an−1an, with a1, . . . , an ∈ Γ , and we will
take push(ε) to be identical with id.

For each storage S we set L(S) = {L(M) | M is an S-automaton}, the class of
languages accepted by S-automata. For any class of storages S we define L(S) =⋃

S∈S L(S).

Definition 3 For storages S1 = (C1, c
1
ε ,F1, id1,m1) and S2 = (C2, c

2
ε ,F2, id2,m2),

S1 and S2 are isomorphic, written S1 ∼= S2, if there exist bijections hcn : C1 → C2 and
hfn : F1 → F2 such that:

1. hcn(c
1
ε) = c2

ε ;
2. hcn(m1(f)(c)) = m2(hfn(f))(hcn(c)) for each c ∈ C1 and f ∈ F1.

Proposition 1 For storages S1 and S2, S1 ∼= S2 implies L(S1) = L(S2).

2.2 Operations on Storages

The storage that the multi-pushdown automata of [1] use can be considered as a tuple
of pushdowns if writing (pushing) is concerned, but with respect to reading (popping)
the storage behaves like a single pushdown. A possible configuration of such a storage
is shown in Fig. 1. In [24–26] it is argued that it is more appropriate for the descrip-
tion of non-local dependencies in natural languages to leave reading unrestrained and
restrict the writing operations. Both storages can be defined by iterative application
of an appropriate concatenation operation. Concatenation will be defined below on
the basis of the product of storages by restricting the domain of the functions. The
two types of concatenation we consider can be related by inversion of storages.

Definition 4 For storages S1 = (C1, c
1
ε ,F1, id1,m1) and S2 = (C2, c

2
ε ,F2, id2,m2),

the product of S1 and S2 is S1 ◦ S2 = (C1 × C2, (c
1
ε , c

2
ε),F,�id1,m) where F =

{�f | f ∈ F1} ∪ {�f | f ∈ F2}, and for every c1 ∈ C1 and c2 ∈ C2

m(�f)((c1, c2)) = (m1(f)(c1), c2) if m1(f)(c1) is defined,

otherwise it is undefined,

m(�f)((c1, c2)) = (c1,m2(f)(c2)) if m2(f)(c2) is defined,

otherwise it is undefined.

Fig. 1 Example of a
configuration of a
Spd ◦r Spd ◦r Spd storage with
marking of possibilities for
reading and writing

162 Theory Comput Syst (2008) 42: 157–186

The set of semi-empty configurations of S1 ◦S2 is defined as CSE = {c1
ε }×C2. For two

classes of storages S1 and S2 the product is defined straightforwardly as S1 ◦ S2 =
{S1 ◦ S2 | S1 ∈ S1 and S2 ∈ S2}.

We assume that � is a fixed injective mapping on symbols, i.e., if f and f ′ are dis-
tinct symbols then so are �f and �f ′ (and similarly for �). Given a set of (function)
symbols F we define the extension of F as the smallest set F ′ of symbols containing
F and closed under � and �.

As mentioned above, the product of two storages is mostly too powerful for our
purposes. Following an idea of [1] we can reduce this power by restricting the oper-
ations that can be applied to the second component. A rather general definition was
suggested by Budach [3].

Definition 5 For storages S1 = (C1, c
1
ε ,F1, id1,m1) and S2 = (C2, c

2
ε ,F2, id2,m2)

such that S1 ◦ S2 = (C, cε,F, id,m), and for a set of symbols K , the K-product of S1
and S2 is S1 ◦K S2 = (C, cε,F, id,m′) with3

m′(�f) = m(�f)|CSE if f ∈ K ′,
m′(�f) = m(�f) if f �∈ K ′,
m′(�f) = m(�f)

where K ′ denotes the extension of K . For classes of storages S1 and S2 and a set of
symbols K , the K-product is S1 ◦K S2 = {S1 ◦K S2 | S1 ∈ S1 and S2 ∈ S2}.

Note that m(�f)((c1, c2)) is undefined if f ∈ K ′ and c1 �= c1
ε . The restricted

product still has some of the usual properties of a product. Every K-product is
associative, i.e., for any storages S1, S2, S3 and any set K , it is easy to see that
(S1 ◦K S2) ◦K S3 ∼= S1 ◦K (S2 ◦K S3) using the obvious bijections hcn and hfn. The
trivial storage serves as a neutral element for all K-products, i.e., for any storage S

and any set K , we have S ◦K Striv ∼= Striv ◦K S ∼= S.
In the following the K-products for two sets K will be of special interest. First

we will consider the set r , which determines what operations (for pushdowns and
similar storages) are considered as reading operations. For pushdowns and products
of pushdowns r is defined as {pop(a) | a a symbol}. Below we sometimes will call
the r-product of two stores the concatenation with respect to reading. The counter-
part of the set r is w which, for pushdowns and products of pushdowns, is defined
as {push(a) | a a symbol}. The product ◦w will be called concatenation with respect
to writing. Concatenation of pushdowns w.r.t. reading yields exactly the storages that
were (implicitly) studied in [1]. The other kind of concatenation yields storages that
can be viewed as a stack with several reading heads, but only one writing head. Since
this type is interesting for the description of natural languages it would be useful if
we could transfer the results concerning complexity and parsability of [1] to concate-
nations of pushdowns w.r.t. writing. Below we will see that this is possible, since

3For any (partial) function f : A → B and any U ⊆ A the restriction of f to U , denoted f |U , is defined
as f |U (u) = f (u) if u ∈ U and f (u) is defined and undefined otherwise.

Theory Comput Syst (2008) 42: 157–186 163

w- and r-products with a pushdown as the second argument can be related by inver-
sion of storages.

Definition 6 Let S = (C, cε,F, id,m) be a storage such that for each f ∈ F , m(f)

is a (partial) injective function. Then S is an invertible storage. The inverse of an
invertible storage S is Sinv = (C, cε,F, id,m′) where m′ is defined by4

m′(f) = m(f)−1 for each f ∈ F.

For any class of invertible storages S we define S inv = {Sinv | S ∈ S}.

Note that (Sinv)inv = S. Furthermore, for any finite alphabet Γ it can be shown
that Spd(Γ)inv ∼= Spd(Γ). In order to do so we have to define bijections hcn be-
tween the configurations and hfn between the function symbols that will constitute
the isomorphism. We let hcn be the identity on Γ ∗. Thus the first condition of De-
finition 3, hcn(ε) = ε, is fulfilled. We define hfn by setting hfn(push(a)) = pop(a),
hfn(pop(a)) = push(a) and hfn(id) = id for each a ∈ Γ . Now it is easy to see that
for each a ∈ Γ and α ∈ Γ ∗, m(push(a))(α) = m(pop(a))−1(α) and m(pop(a))(α) =
m(push(a))−1(α) if m is the meaning function of the pushdown. Thus the second
condition of Definition 3 is fulfilled as well.

However, in the context of a restricted product we cannot simply interchange
Spd(Γ)inv and Spd(Γ). For instance, S ◦r Spd(Γ) and S ◦r Spd(Γ)inv are not isomor-
phic. This is due to the fact that the concatenation operator restricts in both cases the
application of pop(a) (for each a ∈ Γ) while pop(a) in the latter storage corresponds
to push(a) in the former.

Proposition 2 Let S1 and S2 be invertible storages, and let K be a set of symbols.
Then (S1 ◦K S2)

inv = Sinv
1 ◦K Sinv

2 .

Proof Let S1 = (C1, c
1
ε ,F1, id1,m1) and S2 = (C2, c

2
ε ,F2, id2,m2) be two storages.

Furthermore, let mA and mB be the meaning functions of (S1 ◦K S2)
inv and Sinv

1 ◦K

Sinv
2 , respectively, and let F = {�f | f ∈ F1} ∪ {�f | f ∈ F2}.

Both composite storages have the set C1 × C2 as set of configurations, (c1
ε , c

2
ε)

as empty configuration, F as set of function symbols and �id1 as identity symbol.
Thus, it remains to show that mA = mB , i.e., that mA(f)(c1, c2) = mB(f)(c1, c2)

for each c1 ∈ C1, c2 ∈ C2 and f ∈ F . If f = �f ′ for some f ′ ∈ F1 this
is indeed the case since we find by the definitions of product and inversion
mA(�f ′)(c1, c2) = mB(�f ′)(c1, c2) = (m1(f

′)−1(c1), c2). In case f = �f ′ we
find mA(�f ′)(c1, c2) = mB(�f ′)(c1, c2) = (c1,m2(f

′)−1(c2)). Note, moreover,
that operations on the second component in both cases are restricted to configura-
tions with c1

ε as the first component for the same function symbols. �

Proposition 3 Let S1 and S2 be isomorphic storages with sets of function symbols F1
and F2, resp., and let K1 and K2 be two sets such that f ∈ K1 iff h(f) ∈ K2 for each

4For each injective function f the inverse of f , denoted f −1 is defined by f −1(x) = y if f (y) = x.

164 Theory Comput Syst (2008) 42: 157–186

f ∈ F1, where h is the bijection between F1 and F2 that constitutes the isomorphism
of S1 and S2. Then for each storage S, S ◦K1 S1 ∼= S ◦K2 S2.

Proposition 4 For any invertible storage S and any finite set of symbols Γ the fol-
lowing holds:

(a) S ◦r Spd(Γ) ∼= (Sinv ◦w Spd(Γ))inv,

(b) S ◦w Spd(Γ) ∼= (Sinv ◦r Spd(Γ))inv.

Proof Let S be an invertible storage, let Γ be a finite alphabet and let hfn be the
permutation of the function symbols that constitutes the isomorphism of Spd(Γ)

and Spd(Γ)inv. Note that f ∈ w iff hfn(f) ∈ r , since hfn(pop(a)) = push(a) and
hfn(push(a)) = pop(a) for each stack symbol a. By Proposition 3 we find: S ◦r

Spd(Γ) ∼= S ◦w Spd(Γ)inv and by Proposition 2: S ◦w Spd(Γ)inv = (Sinv ◦w Spd(Γ))inv.
The proof of part (b) can be done analogously to the proof of the first equation. �

Inversion of a storage corresponds to reversal5 of the accepted language:

Proposition 5 L(Sinv) = L(S)R for any invertible storage S.

Proof It clearly suffices to prove that L(S)R ⊆ L(Sinv) (by the idempotency
of inversion and reversal). Let S = (C, cε,F, id,m) be a storage and let M =
(Q,Σ,S, δ,QI ,QF) be an S-automaton. Now construct an Sinv-automaton M ′
such that L(M ′) = L(M)R . We define M ′ = (Q,Σ,Sinv, δ′,QF ,QI) with Sinv =
(C, cε,F, id,m′) and

δ′ = {(q2, x, q1, f) | (q1, x, q2, f) ∈ δ}.
Now it can be shown by induction on the number of transitions that (q1,w, c1) M

�n

(q2, ε, c2) iff (q2,w
R, c2) M ′�n (q1, ε, c1). If n = 0 the assertion is trivially true. As-

sume the assertion is true for some n ∈ N.6

Only if. Consider a computation of length n + 1 in M :

(q1, aw, c1) M
� (q2,w, c2) M

�n (q3, ε, c3).

The first transition is licensed by some (q1, a, q2, f) ∈ δ such that m(f)(c1) = c2.
From the induction hypothesis we know that there is a computation (q3,w

R, c3) M ′�n

(q2, ε, c2). By the construction we have (q2, a, q1, f) ∈ δ′ and m′(f)(c2)

= m(f)−1(c2) = c1. Thus we find the following computation in M ′:

(q3,w
Ra, c3) M ′�n (q2, a, c2) M ′� (q1, ε, c1).

5For an alphabet Σ and a string w ∈ Σ∗ the reversal wR of w is defined by setting εR = ε and (av)R =
vRa with a ∈ Σ and v ∈ Σ∗ . For a language L the reversal of L is defined as LR = {w | wR ∈ L}. For a
class of languages L the reversal of L is defined as LR = {L | LR ∈L}.
6
N denotes the set of all non-negative integers.

Theory Comput Syst (2008) 42: 157–186 165

If. Consider a computation of length n + 1 in M ′:

(q3,w
Ra, c3) M ′�n (q2, a, c2) M ′� (q1, ε, c1).

The last transition was licensed by some (q2, a, q1, f) ∈ δ′. Consequently, there is a
(q1, a, q2, f) ∈ δ. Thus we find the following computation in M :

(q1, aw, c1) M
� (q2,w, c2) M

�n (q3, ε, c3).

From the assertion it easily follows that L(M ′) = L(M)R . �

3 Linear Controlled Grammars

Linear control of context-free grammars (CFGs) is defined in [27]. The definition is
twofold. The first part says which paths have to be controlled; the second part defines
the control itself.

Definition 7 A linear distinguished grammar (LDG) is a quadruple G = (N,Σ ,
R,Ain), where N and Σ are disjoint finite sets of nonterminal and terminal sym-
bols, respectively, Ain ∈ N is the start symbol, and R is a finite set of production
rules of the form: A → β1X!β2 or A → ε with A ∈ N , X ∈ N ∪ Σ , called the distin-
guished symbol, β1, β2 ∈ (N ∪ Σ)∗, and ! a special symbol not in N ∪ Σ . For each
LDG we assume that there is a finite alphabet P and a bijection ρ : R → P . A linear
controlled grammar (LCG) is a pair K = (G,H), where G is an LDG and H is a
language over P , called the control language.

The sets of nonterminal and terminal objects of K are respectively defined as
ON(K) = N ×P ∗ and OΣ(K) = Σε ×P ∗. Let O(K) = ON(K)∪OΣ(K). A string
σ ∈ O(K)∗ is said to derive a string τ ∈ O(K)∗, written σ

G
⇒ τ , if either case 1 or

case 2:

1. σ = γ (A,ω)δ, 2. σ = γ (A,ω)δ,

r = A → β1X!β2 ∈ R, r = A → ε ∈ R,

τ = γβ ′
1(X,ωρ(r))β ′

2δ, τ = γ (ε,ωρ(r))δ

where A ∈ N , X ∈ N ∪ Σ , β1, β2 ∈ (N ∪ Σ)∗, γ, δ ∈ O(K)∗, ω ∈ P ∗, and β ′
1 and

β ′
2 are obtained from β1 and β2 resp. by replacing every symbol Y ∈ N ∪ Σ by

(Y, ε). In case 1 (X,ωρ(r)) and in case 2 (ε,ωρ(r)) is called the distinguished child
of (A,ω). The reflexive and transitive closure of

G
⇒, denoted by

G
⇒∗, is defined as

usual. The language generated by K is defined as L(K) = {a1a2 · · ·an | (Ain, ε) G
⇒∗

(a1,ω1)(a2,ω2) · · · (an,ωn) and ai ∈ Σε, ωi ∈ Hε for 1 ≤ i ≤ n,n ∈ N}. In the fol-
lowing we will not distinguish between R and P and write r if ρ(r) is intended in
order to obtain better readability.

Example 1 Let G = ({S,T }, {a, b, c, d},R,S) be an LDG with R = {r1 = S →
ε, r2 = S → aS!d, r3 = S → ST !S, r4 = T → bT !c, r5 = T → ε} and let H =
{r1} ∪ {rn

2 r3r
n
4 r5 | n ∈ N} be a (context-free) control language.

166 Theory Comput Syst (2008) 42: 157–186

It can be shown that the LCG K = (G,H) generates the (obviously non-context-
free) language L that can be defined as follows.

L0 = {ε},
Li = {anvbncnwdn | n ∈ N and v,w ∈ Li−1},

L =
∞⋃

i=0

Li.

In order to refer to objects in a derivation it is sometimes assumed that the objects
have addresses in N

∗. In the following we will use two different address assignments,
leftmost and inside-out address assignment. In each case the address of (Ain, ε) is
ε. Suppose a string σ = αXβ ∈ O(K)∗ derives a string τ rewriting the object X

with address ξ into new objects Y1Y2 · · ·Yi · · ·Yn with Yi the distinguished child of
X. If the address assignment is leftmost then the address of each Yk is ξk for each
1 ≤ k ≤ n. In the case of inside-out assignment the address of Yk is ξ(i − k + 1) for
1 ≤ k ≤ i and ξk for i < k ≤ n. For each object in α and β that is not rewritten, the
address in τ is the same as in σ . A sequence of strings of objects σ1, . . . , σn such
that σi ⇒ σi+1 is called a derivation (of σn from σ1). If in each step the nonterminal
object with the lexicographically7 smallest address is rewritten then the derivation is
called leftmost in case the address assignment is leftmost and inside-out in case the
address assignment is inside-out.

Let K be an LCG. A derivation tree in K is defined as for a normal CFG. A spine
is a sequence of nodes χ1, . . . , χn such that χi+1 is the distinguished child of χi and
χn, the foot of the spine, is a leaf. Since these concepts are used only informally we
do not have to make them more precise.

The class of all LDGs is denoted by GLD. Furthermore, for any class of grammars
G for which control by a control language is defined and for any class of languages L,
let G/L = {(G,H) | G ∈ G and H ∈ L} and for any class of grammars G let L(G) =
{L(G) | G ∈ G}.

In [17, 18] restrictions on linear indexed grammars (LIGs)8 were studied that apply
to LDGs as well. The two restrictions that will play an important role in the following
can be verbalized as follows: either the distinguished symbol in each rule has always
to be the leftmost nonterminal child or it has to be the rightmost nonterminal child
in each rule. Following the terminology for the LIG restrictions we will call LDGs
obeying these conditions extended left LDGs and extended right LDGs, respectively.

7The lexicographic ordering relation <lex on N
∗ is defined by: χ <lex χjω and χiψ <lex χjω for all

χ,ψ,ω ∈ N
∗ and i, j ∈ N with i < j .

8In this paper the term LIG always denotes the formalism defined in [10], which should not be confused
with the grammars defined by [8] with the same name.

Theory Comput Syst (2008) 42: 157–186 167

Definition 8 An LDG G = (N,Σ,R,Ain) is an extended left LDG (ELLDG) if each
production is of one of the forms (1a), (2) or (3):

(1a) A → wB!β,

(1b) A → βB!w,

(2) A → va!w,

(3) A → ε

with A,B ∈ N , β ∈ (N ∪ Σ)∗, a ∈ Σ and v,w ∈ Σ∗. If each production is of the
form (1b), (2) or (3), G is an extended right LDG (ERLDG). The class of ELLDGs
(ERLDGs) is denoted by GELLD (GERLD).9

If a grammar is an ELLDG or an ERLDG it is clear for each rule which nontermi-
nal symbol on the right hand side is the distinguished one, even if the !-symbol is not
present. Therefore, we usually drop this symbol. Similarly, we sometimes leave out
this marker from unary rules in LDGs.

By symmetry it is easy to verify the following proposition.

Proposition 6 For any class of languages L, L(GLD/L) = L(GLD/L)R and
(L(GERLD/L))R = L(GELLD/L).

Proof Let K = (G,H) be a linear controlled grammar with G = (N,Σ,R,Ain) an
LDG. Now we construct an LDG G′ = (N,Σ,R′,Ain) with R′ = {A → βR

2 X!βR
1 |

A → β1X!β2 ∈ R} ∪ {A → ε | A → ε ∈ R} where A ∈ N , X ∈ N ∪ Σ and β1, β2 ∈
(N ∪Σ)∗. We set K ′ = (G′,H). Obviously, L(K ′) = (L(K))R . Finally, note that G′
is an ELLDG if G is an ERLDG and vice versa. �

Another useful property that is easy to show is the following proposition which in
fact is a variation of Theorem 2.2 of [12].

Proposition 7 For each class of languages L closed under homomorphism and right
concatenation with a symbol

(a) L⊆ L(GERLD/L),

(b) LR ⊆ L(GELLD/L).

Proof Let L ∈ L with L ⊆ Σ∗ for some alphabet Σ . We construct an LCG
K = (G,H) with G an ERLDG such that L(K) = L in the following way: G =
({S},Σ,R, {S}) with R = {S → aS! | a ∈ Σ} ∪ {S → ε}. Define a homomorphism
h : Σ∗ → R∗ by setting h(a) = S → aS! and extending it to strings in the usual way.
Now H can be defined as H = {h(w) · r | w ∈ L and r = S → ε}. The proof of (b) is
almost the same and can be done using productions of the form S → S!a. �

9Following this terminology an LLDG is an LDG in which each production has the form A → B!β ,
A → a!w or A → ε. RLDGs can be defined symmetrically. RLDGs and LLDGs were investigated in
[17, 18], but do not play a role in the present paper.

168 Theory Comput Syst (2008) 42: 157–186

In the following a further restricted class of controlled grammars called controlled
linear context-free grammars is used.

Definition 9 Let G = (N,Σ,R,Ain) be a CFG. G is a linear grammar if each pro-
duction is of one of the following two forms: A → vBw or A → w, where A,B ∈ N

and v,w ∈ Σ∗. The class of linear grammars is denoted by Glin.

We finish the section on controlled grammars with some useful closure properties
of controlled languages.

Proposition 8 For any class of languages L containing all finite languages and
closed under union and right concatenation with a symbol, L(GLD/L) is closed under
substitution, concatenation and Kleene+.

Proof We first show closure under substitution. With regard to the underlying LDGs
of the original and the substituting languages the proof is almost the same as for
the corresponding proposition for context-free languages. Thus if K = (G,H) is
an LCG with G = (N,Σ,R,Ain) an LDG and for each a ∈ Σ we have an LCG
Ka = (Ga,Ha) with Ga an LDG and Sa the start symbol of Ga , we construct a new
LCG K ′ = (G′,H ′) in the following way: we assume w.l.o.g. that the symbols (and
thus the rules) of the involved grammars are distinct. As usual the rules of G′ are ob-
tained by replacing every symbol a ∈ Σ in the rules of G by Sa , with the following
exceptions. If the symbol a in the original rule is followed by an exclamation mark,
the substituted symbol Sa will not be distinguished by an exclamation mark. Instead,
a new nonterminal symbol X (neither used in G nor in any of the grammars Ga)
followed by the exclamation mark is added to the right-hand side of the rule and a
rule X → ε is added to the set of rules. Similarly, each rule A → ε of G is changed
into A → X, for that same nonterminal X.

The control language is defined as H ′ = {w · r | w ∈ H and r = X → ε} ∪⋃
a∈Σ Ha . Since L is closed under union and right concatenation with a symbol,

H ′ ∈ L.
For closure under concatenation consider two languages L1 and L2, respec-

tively generated by the LCGs K1 = (G1,H1) and K2 = (G2,H2) with G1 =
(N1,Σ1,R1,A

1
in) and G2 = (N2,Σ2,R2,A

2
in) two LDGs. We again assume that the

symbols (and thus the rules) of both grammars are distinct. We construct a grammar
K = (G,H) with G = (N,Σ,R,Ain) where N = {X,Ain}∪N1 ∪N2, Σ = Σ1 ∪Σ2,
R = {X → ε,Ain → A1

inX!A2
in} ∪ R1 ∪ R2 and X, Ain �∈ N1 ∪ N2 are new sym-

bols. The control language is defined as H = {r1r2 | r1 = Ain → A1
inX!A2

in and r2 =
X → ε} ∪ H1 ∪ H2.

Finally, consider a language L = L(K) with K = (G,H) is an LCG with
G = (N,Σ,R,Ain). The language L+ is generated by K ′ = (G′,H ′) with G′ =
(N ′,Σ,R′,A′

in) where N ′ = {X,A′
in} ∪ N , R = {X → ε,A′

in → X!AinA
′
in,A

′
in →

X!Ain} ∪ R and X, A′
in /∈ N are new symbols. The control language is finally

defined as H ′ = {r1r3, r2r3 | r1 = A′
in → X!AinA

′
in and r2 = A′

in → X!Ain and
r3 = X → ε} ∪ H1 ∪ H2.

For all three assertions it is a standard exercise to show that the constructed gram-
mars indeed generate the required languages. Finally, note that for the proof of the

Theory Comput Syst (2008) 42: 157–186 169

closure under concatenation and Kleene+ we did not need the closure of L under
right concatenation with a symbol, whereas for the proof of closure under substitu-
tion it is not required that L contains all finite languages. �

Proposition 9 For any class of languages L, L(GLD/L), L(GELLD/L) and
L(GERLD/L) are closed under homomorphism. If L is closed under union and left
concatenation with a symbol, L(GLD/L), L(GELLD/L) and L(GERLD/L) are closed
under union and left and right concatenation with a symbol.

Proof Let K = (G,H) be an LCG with G = (N,Σ,R,Ain) an LDG, ELLDG or
ERLDG and let h : Σ∗ → Δ∗ be a homomorphism. We assume w.l.o.g. that N ∩Δ =
∅ and define a homomorphism h′ : (Σ ∪ N)∗ → (Δ ∪ N)∗ by setting h′(X) = h(X)

if X ∈ Σ and h′(X) = X if X ∈ N and extending it to strings in the usual way. Now
construct a grammar G′ = (N,Δ,R′,Ain) with R′ = {A → h′(β) | A → β ∈ R} and
let K ′ = (G′,H). Obviously L(K ′) = h(L(K)).

For the closure under union consider two LCGs K1 = (G1,H1) and K2 =
(G2,H2) with G = (N1,Σ1,R1,A

1
in) and G = (N2,Σ2,R2,A

2
in) LDGs, ELLDGs

or ERLDGs and H1,H2 ∈ L. Now construct a grammar G = (N1 ∪ N2 ∪ {A′
in},Σ ∪

Σ2,R
′,A′

in) with A′
in a new symbol and R′ = {r1 = A′

in → A1
in, r2 = A′

in → A2
in} ∪

R1 ∪R2. We define a control language H ′ = {r1w | w ∈ H1} ∪ {r2w | w ∈ H2} and an
LCG K ′ = (G′,H ′). Again it is easy to see that L(K ′) = L(K1) ∪ L(K2). Since L is
closed under union and left concatenation with a symbol, H ′ ∈ L.

For the closure under right concatenation with a symbol consider an LCG K =
(G,H) with G = (N,Σ,R,Ain) an LDG, ELLDG or ERLDG and H ∈ L. For a
symbol a construct a grammar G = (N ∪ {A′

in},Σ ∪ {a},R′,A′
in) with A′

in a new
symbol and R′ = {r = A′

in → Aina} ∪ R. We define a control language H ′ = {rw |
w ∈ H } and an LCG K ′ = (G′,H ′). Again it is easy to see that L(K ′) = L(K) · {a}.
Since L is closed under left concatenation with a symbol, H ′ ∈ L. For closure under
left concatenation with a symbol we can use a rule A′

in → aAin and leave the rest of
the proof unchanged. �

4 The Relation between Concatenation and Linear Control

In this section we will show that there is a strong relation between linear control and
concatenation of storages. It is shown that each language that is accepted by an au-
tomaton with a storage S and a pushdown concatenated w.r.t. reading, is generated by
an ELLDG controlled by an S-automaton, and vice versa. Using the inversion in the
relation between both types of concatenation (Proposition 4) we show a symmetrical
result for concatenation w.r.t. writing and ERLDGs.

Similar relations between controlled grammars and storage concatenation are
shown in [23] for linear grammars and one-turn pushdowns.

The languages that are accepted by an S ◦r Spd-automaton can be characterized by
linear control of an ELLDG G by some L ∈ L(S). In order to construct an S ◦r Spd-
automaton accepting the language generated by a controlled ELLDG, we let the push-
down component of the automaton’s storage store the grammar symbols, simulating

170 Theory Comput Syst (2008) 42: 157–186

a leftmost derivation. The first component corresponds to the storage of an automa-
ton accepting the control language. Each time a symbol of the control word, i.e., a
rule of the grammar, is produced, this rule is carried out: the initial terminals are
read from the input, the first nonterminal is coded in a new state and all other sym-
bols are pushed onto the second component of the store. As long as the expansion
of distinguished symbols is controlled, reading from the second component is not
necessary since the controlled path leads from leftmost nonterminal to leftmost non-
terminal child. Since each control word has to be computed on the first component
of the storage, the simulation is only possible if the configuration of that component
after recognizing a control word is again the empty configuration, which is the case
because recognition is by final state and empty configuration.

Lemma 1 For each class of storages S ,

L(GELLD/L(S)) ⊆ L(S ◦r Spd).

Proof Let S be a class of storages, let S = (C, cε,F, id,m) ∈ S and let K =
(G,L(M)) be an LCG, with G = (N,Σ,R,Ain) an ELLDG and M = (Q,R,S, δ,
QI ,QF) an automaton. Construct an automaton M ′ = (Q × Nε,Σ,S◦r

Spd(N ∪ Σ), δ′,Q′
I ,Q

′
F), with Q′

I = {(q,Ain) | q ∈ QI } and Q′
F = {(q, ε) | q ∈

QF }, such that L(M ′) = L(K) by setting

δ′ = {((q1,A), v, (q2,B),�f & � push(β)) |
r = A → vB!β ∈ R and (q1, r, q2, f) ∈ δ

with A,B ∈ N,v ∈ Σ∗ and β ∈ (N ∪ Σ)∗} (1)

∪ {((q1,A), v, (q2, ε),�f & � push(w)) |
r = A → v!w ∈ R,v ∈ Σ+,w ∈ Σ∗ and (q1, r, q2, f) ∈ δ} (2)

∪ {((q1,A), ε, (q2, ε),�f) |
r = A → ε ∈ R, and (q1, r, q2, f) ∈ δ} (3)

∪ {((q1,A), ε, (q2,A),�f) | (q1, ε, q2, f) ∈ δ and A ∈ Nε} (4)

∪ {((q, ε), ε, (q0,A),�pop(A)) | A ∈ N,q0 ∈ QI ,q ∈ QF } (5)

∪ {((q, ε), a, (q, ε),�pop(a)) | a ∈ Σ,q ∈ QF }. (6)

An example for the construction is given in Fig. 2.
In the following we will consider only leftmost derivations for G. In order to

show that L(M ′) = L(K) we first show that the derivation of each spine and the
computation of its control word corresponds to a computation of M ′. This is formally
expressed in the following assertion.

For all q1 ∈ Q, A ∈ N , x ∈ Σ∗, c1 ∈ C, q2 ∈ QF and X1, . . . ,Xn ∈ N ∪ Σ :

((q1,A), x, (c1, ε)) M ′�+ ((q2, ε), ε, (cε,Xn · · ·X1)) and

M ′ does not use transitions of type (5) and (6) in this computation

iff

there exist ω ∈ R+, a1, . . . , ak−1 ∈ Σ and ak ∈ Σε such that

(A, ε)
G
⇒+ (a1, ε) · · · (ak−1, ε)(ak,ω)(Xn, ε) · · · (X1, ε),

(q1,ω, c1) M
�+ (q2, ε, cε) and x = a1 · · ·ak. (7)

Theory Comput Syst (2008) 42: 157–186 171

Fig. 2 Example of the simulation of a controlled ELLDG derivation

This assertion can be proved straightforwardly by induction on the length of the
derivation and the length of the computation, respectively:

If. Suppose we have a derivation (A, ε)
G
⇒i (a1, ε) · · · (ak−1, ε)(ak,ω)(Xn, ε) · · ·

(X1, ε) and a corresponding computation (q1,ω, c1) M
�∗ (q2, ε, cε). In case i = 1 the

applied production ω ∈ R cannot be of the form mentioned in (1) since we know
that the object (ak,ω) must be the distinguished child of (A, ε) by the definition of
ELLDG. Thus the production must be one like those treated in (2) and (3). Using in
addition the necessary number of transitions corresponding to the computation of M

for accepting ω, introduced by (4), a computation for M ′ can be found, in which no
pops on the second component are used.

For the induction suppose the assertion is true for some i ∈ N. A derivation of
length i + 1 has the following shape:

(A, ε)
G
⇒

(a1, ε) · · · (ag, ε)(B, r)(Xm, ε) · · · (X1, ε) G
⇒∗

(a1, ε) · · · (ak−1, ε)(ak, rω)(Xn, ε) · · · (X1, ε)

172 Theory Comput Syst (2008) 42: 157–186

with 0 ≤ g ≤ k and 0 ≤ m ≤ n, A,B ∈ N , a1, . . . , ak−1 ∈ Σ , ak ∈ Σε , X1, . . . ,Xn ∈
N ∪ Σ , r ∈ R and ω ∈ R+. For M we have (q1, rω, c1) M

�∗ (q2, rω, c2) M
� (q3,ω, c3)

M
�∗ (q4, ε, cε). For M ′ we find correspondingly:

((q1,A), a1 · · ·ak, (c1, ε)) M ′�∗ (by (4))
((q2,A), a1 · · ·ak, (c2, ε)) M ′� (by (1))

((q3,B), ag+1 · · ·ak, (c3,Xm · · ·X1)) M ′� (by induction)
((q4, ε), ε, (cε,Xn · · ·X1)).

Only if. Consider a computation ((q1,A), x, (c1, ε)) M ′�i ((q2, ε), ε, (cε,Xn · · ·X1))

with q2 ∈ QF that does not use transitions of type (5) or (6). First consider the case
in which the computation starts with a transition introduced by (2) or (3) of the con-
struction. In this case the (possibly) remaining transitions must be of type (4) with
A = ε, and it is easy to see that the implication is true. If i = 1 a transition introduced
by (2) or (3) of the construction must have been applied and the implication thus is
true.

If the implication is true for some i ∈ N, for a computation of length i + 1 we
have now only to pay attention to those cases in which the first transition applied was
introduced by (1) or (4). The interesting case is, of course, the one in which (1) was
used. Here, we have for M ′:

((q1,A), vx, (c1, ε)) M ′� ((q2,B), x, (c2,Xm · · ·X1)) M ′�i ((q3, ε), ε, (cε,Xn · · ·X1))

with 0 ≤ m ≤ n, A,B ∈ N , v, x ∈ Σ∗, X1, . . . ,Xn ∈ N ∪Σ . By (1) and by induction
we can be sure that there is a derivation

(A, ε)
G
⇒

(a1, ε) · · · (ag, ε)(B, r)(Xm, ε) · · · (X1, ε) G
⇒i

(a1, ε) · · · (ak−1, ε)(ak, rω)(Xn, ε) · · · (X1, ε)

where 0 ≤ g ≤ k, a1 · · ·ag = v and ag+1 · · ·ak = x. An associated computation in M

with input rω is easily found as well.
After we have used induction on the length of spines above, in the second part

of the proof we will in some sense do an induction on the number of spines in a
derivation. We show that for all A ∈ N , x ∈ Σ∗ and X1, . . . ,Xk ∈ N ∪ Σ :

there exist q1 ∈ QI and q2 ∈ QF such that

((q1,A), x, (cε,Xk · · ·X1)) M ′�∗ ((q2, ε), ε, (cε, ε))

iff

there exist ω1, . . . ,ωn ∈ L(M)ε and a1, . . . , an ∈ Σε such that

(A, ε)(Xk, ε) · · · (X1, ε) G
⇒∗ (a1,ω1) · · · (an,ωn) and x = a1 · · ·an. (8)

If. Consider a (leftmost) derivation of length i, assuming that the implication holds
for all (leftmost) derivations of length j < i. Since the derivation is leftmost, it starts
by rewriting (A, ε). We split up the derivation into two parts. The first part corre-
sponds to a derivation of (A, ε) as in (7) and the second part is the remainder of the

Theory Comput Syst (2008) 42: 157–186 173

derivation. Hence the derivation has one of the following two forms (where the first
form corresponds to the case that the remainder of the derivation is empty): either

(A, ε)(Xk, ε) · · · (X1, ε) G
⇒∗

(a1, ε) · · · (am−1, ε)(am,ω)(am+1, ε) · · · (ap, ε)(Xk, ε) · · · (X1, ε) =
(a1,ω1) · · · (an,ωn)

or

(A, ε)(Xk, ε) · · · (X1, ε) G
⇒∗

(a1, ε) · · · (am−1, ε)(am,ω)(am+1, ε) · · · (ap, ε)(B, ε)(Xl, ε) · · · (X1, ε) G
⇒∗

(a1,ω1) · · · (an,ωn)

with m ≤ p ≤ n, A,B ∈ N , X1, . . . ,Xk ∈ N ∪ Σ , ω ∈ R+ and (for the second
form) either l < k and B = Xl+1 or l ≥ k. Since ω ∈ L(M), there exist q1 ∈ QI and
q2 ∈ QF such that (q1,ω, cε) M

�∗ (q2, ε, cε).
For the first form of derivation (in which Xk · · ·X1 = ap+1 · · ·an) we find for M ′:

((q1,A), a1 · · ·an, (cε,Xk · · ·X1)) M ′�∗ (by (7))
((q2, ε), am+1 · · ·an, (cε, am+1 · · ·an)) M ′�∗ (by (6))

((q2, ε), ε, (cε, ε)).

Note that the transitions from (6) are applicable because the configuration of the first
component is cε .

For the second form of derivation we find for M ′:

((q1,A), a1 · · ·an, (cε,Xk · · ·X1)) M ′�∗ (by (7))
((q2, ε), am+1 · · ·an, (cε, am+1 · · ·apBXl · · ·X1)) M ′�∗ (by (6))

((q2, ε), ap+1 · · ·an, (cε,BXl · · ·X1)) M ′� (by (5))
((q3,B), ap+1 · · ·an, (cε,Xl · · ·X1)) M ′�∗ (by induction)

((q4, ε), ε, (cε, ε))

with q3 ∈ QI and q4 ∈ QF .
Only if. Suppose the implication is true for each j < i, and consider a computation

of M ′ of length i. We split up the computation into three parts. In the first part M ′ does
not pop from the second component, i.e., does not use transitions of type (5) or (6). In
the second part it uses transitions of type (6) only. The third part is the remainder of
the computation, starting with a transition of type (5). Note that at the end of the first
part the first component of the configuration must be cε , because otherwise the pops
are not defined; for the same reason the state must be (q3, ε) for some q3 ∈ Q. Hence,
the computation has one of the following two forms (where the first corresponds to
the case that the third part of the computation is empty): either

((q1,A), x, (cε,Xk · · ·X1)) M ′�∗ (using (1–4))
((q3, ε), y, (cε, uXk · · ·X1)) M ′�∗ (using (6))

((q2, ε), ε, (cε, ε))

174 Theory Comput Syst (2008) 42: 157–186

where y = uXk · · ·X1 is a postfix of x and q3 = q2, or

((q1,A), x, (cε,Xk · · ·X1)) M ′�∗ (using (1–4))
((q3, ε), y, (cε, uBXl · · ·X1)) M ′�∗ (using (6))
((q3, ε), v, (cε,BXl · · ·X1)) M ′� (using (5))
((q4,B), v, (cε,Xl · · ·X1)) M ′�∗

((q2, ε), ε, (cε, ε))

where y = uv is a postfix of x, q1 ∈ QI , q2 ∈ QF , B ∈ N , Xi ∈ N ∪ Σ and (for the
second form) either l < k and B = Xl+1 or l ≥ k; moreover, by (5), q3 ∈ QF and
q4 ∈ QI .

The corresponding derivations of G are:

(A, ε)(Xk, ε) · · · (X1, ε) G
⇒∗ (by (7))

(a1, ε) · · · (am−1, ε)(am,ω)(am+1, ε) · · · (ap, ε)(Xk, ε) · · · (X1, ε) =
(a1,ω1) · · · (an,ωn)

with x = a1 · · ·an = a1 · · ·amy and u = am+1 · · ·ap , and

(A, ε)(Xk, ε) · · · (X1, ε) G
⇒∗ (by (7))

(a1, ε) · · · (am−1, ε)(am,ω)(am+1, ε) · · ·
(ap, ε)(B, ε)(Xl, ε) · · · (X1, ε) G

⇒∗ (by induction)
(a1,ω1) · · · (an,ωn)

with x = a1 · · ·an, u = am+1 · · ·ap and v = ap+1 · · ·an, respectively. By (7) we more-
over know that (q1,ω, cε) M

�+ (q3, ε, cε). Since q1 ∈ QI and q3 ∈ QF we see that
ω ∈ L(M).

Taking A = Ain and k = 0 in assertion (8) we finally see that L(M ′) = L(K). �

Before we proceed showing that the inclusion between controlled ELLDGs and
automata with concatenated storages also holds in the other direction, we first define
a kind of normal form for S ◦r Spd-automata.

Proposition 10 For a storage S and a finite alphabet Γ , let M be an S ◦r

Spd(Γ)-automaton. Then there exists an automaton M ′ = (Q,Σ,S ◦r Spd(Γ ∪
{#}), δ, {q0}, {qf }) such that L(M ′) = L(M) and (i) each computation of M ′ starts
with pushing # onto the stack, ends with popping # and no intermediate transi-
tion pops or pushes #, where #, called the bottom of stack symbol, is a new sym-
bol not in Γ and (ii) M reads at most one symbol in each derivation step (i.e.,
δ ⊆ Q × Σε × Q × F , where F denotes the set of function symbols of the composite
storage).

Proof First we show that given a storage S = (C, cε,F, id,m) and an S-automaton
M = (Q,Σ,S, δ,QI ,QF) we can construct an equivalent S-automaton M ′ =
(Q′,Σ,S, δ′,QI ,QF) with δ′ ⊆ Q×Σε ×Q×F . To do so, we set Q′ = Q∪{qw,p |
(q, vw,p,f) ∈ δ with v,w ∈ Σ∗} and let

δ′ = {(q, a,p,f) | (q, a,p,f) ∈ δ and a ∈ Σε}

Theory Comput Syst (2008) 42: 157–186 175

∪{(q, a, qv,p, f) | (q, av,p,f) ∈ δ and a ∈ Σ,v ∈ Σ+}
∪{(qav,p, a, qv,p, id) | a ∈ Σ,v ∈ Σ+}
∪{(qa,p, a,p, id) | a ∈ Σ}.

Now let M = (Q,Σ,S ◦r Spd(Γ), δ,QI ,QF) be an automaton for a finite al-
phabet Γ and a storage S. We construct an automaton M ′ = (Q ∪ {q0, qf },Σ,S ◦r

Spd(Γ ∪ {#}), δ′, {q0}, {qf }), where q0 and qf are new, distinct, symbols not in
Q and # a new symbol not in Γ , and where δ′ = δ ∪ {(q0, ε, q,�push(#)) | q ∈
QI } ∪ {(q, ε, qf ,�pop(#)) | q ∈ QF }. It is obvious that L(M ′) = L(M), each com-
putation of M ′ starts with pushing # and ends with popping that symbol. �

Given an S ◦r Spd(Γ)-automaton M , the idea for constructing an equivalent
ELLDG G controlled by (a language accepted by) an S-automaton M ′ is again
straightforward, similar to the usual “triple construction” for simulating a pushdown
automaton by a context-free grammar. The grammar G is used to code the config-
urations of the pushdown component and M ′ follows the configurations of the first
component. The computation of a control word and hence the simulation of the first
component of the S ◦r Spd(Γ) storage has to stop as soon as the foot of a spine in the
ELLDG is reached. This is exactly the point at which M will pop an element from the
second component and has to be in a semi-empty configuration, so to speak accepting
the control word. The subsequent configurations of the first component are simulated
along a new spine by a new computation of the S-automaton, starting with cε . Thus
the final configuration that was reached by the first component has to be cε which is
the case because recognition is by final state and empty configuration.

Lemma 2 For each class of storages S ,

L(S ◦r Spd) ⊆ L(GELLD/L(S)).

Proof Let S be a class of storages, let M = (Q,Σ,S ◦r Spd(Γ), δ,QI ,QF) be an
automaton for a finite alphabet Γ and S = (C, cε,F, id,m) ∈ S . Assume w.l.o.g. that
M is in the form as described in Proposition 10. Thus QI = {q0} and QF = {qz} for
some q0, qz ∈ Q, there is a symbol # ∈ Γ that serves as the bottom of stack symbol
and M reads at most one input symbol at each transition.

Construct an ELLDG G = (N,Σ,R,Ain) where Ain is a new symbol and N =
(Q × Γ × Q) ∪ {Ain} and construct an automaton M ′ = ({qin, qfn},R,S, δ′, {qin},
{qfn}) where qin, qfn are new, distinct, symbols and where R and δ′ are determined
by the following:

If (q1, a, q2,�f) ∈ δ then,

for each q ∈ Q and A ∈ Γ,

r = (q1,A,q) → a(q2,A,q) ∈ R and
(qin, r, qin, f) ∈ δ′. (1)

176 Theory Comput Syst (2008) 42: 157–186

If (q1, a, q2,�id) ∈ δ then,

for each q ∈ Q and A ∈ Γ,

r = (q1,A,q) → a(q2,A,q) ∈ R and
(qin, r, qin, id) ∈ δ′. (2)

If (q1, a, q2,�push(B)) ∈ δ with B �= # then,

for each q3, q4 ∈ Q and A ∈ Γ,

r = (q1,A,q4) → a(q2,B, q3)(q3,A,q4) ∈ R and
(qin, r, qin, id) ∈ δ′. (3)

If (q0, ε, q1,�push(#)) ∈ δ then
r = Ain → (q1,#, qz) ∈ R and
(qin, r, qin, id) ∈ δ′. (4)

If (q1, a, q2,�pop(A)) ∈ δ then
r = (q1,A,q2) → a ∈ R and
(qin, r, qfn, id) ∈ δ′. (5)

An example for the construction is given in Fig. 3. In the following, for the rules
introduced by (1–3), we need to distinguish the case in which the symbol a mentioned
in the construction is a terminal symbol and the case a = ε. For convenience we
identify (ε, ε) (which cannot be derived by a linear controlled grammar) with ε and
subsume the latter case under the former.

To establish that L(G,L(M ′)) = L(M) we will show that for all p,q ∈ Q, x ∈
Σ∗, c1 ∈ C and A ∈ Γ , the following two statements are equivalent:

(i) there exist a1, . . . , an ∈ Σε , k ∈ {1, . . . , n},ωk ∈ R+ and ωk+1, . . . ,ωn ∈ L(M ′)ε
such that (qin,ωk, c1) M ′�∗ (qfn, ε, cε), x = a1 · · ·an and

((p,A,q), ε)
G
⇒∗ (a1, ε) · · · (ak−1, ε)(ak,ωk)(ak+1,ωk+1) · · · (an,ωn).

(ii) (p, x, (c1,A))
M
�∗ (q, ε, (cε, ε)), no intermediate configuration in this computa-

tion equals (cε, ε) and no transition uses �push(#).

If. The first part of the proof can be done by induction on the number of steps in
a computation, i, starting with i = 1. Suppose (p, x, (c1,A))

M
� (q, ε, (cε, ε)). In this

case x ∈ Σε and c1 = cε . By rule (5) of the construction we find ((p,A,q), ε)
G
⇒

(x, r) and (qin, r, cε) � (qfn, ε, cε).
Suppose that the assertion is true for each j , 1 ≤ j ≤ i, for some i ∈ N. Consider

a computation of length i + 1.
If the first transition that is applied is of the form (p, a1,p1,�f) the computation

has the following shape:

(p, x, (c1,A))
M
� (p1, y, (m(f)(c1),A))

M
�i (q, ε, (cε, ε))

for some y ∈ Σ∗ with x = a1y. Using a production r in G corresponding to the first
transition we have

((p,A,q), ε)
G
⇒ (by (1))

(a1, ε)((p1,A,q), r)
G
⇒∗ (by induction)

(a1, ε)(a2, ε) · · · (ak−1, ε)(ak, rωk) · · · (an,ωn)

Theory Comput Syst (2008) 42: 157–186 177

Fig. 3 Example of the simulation of an S ◦r Spd-automaton

with a2 · · ·an = y. For M ′ we find again by (1) and by induction:

(qin, rωk, c1) M ′� (qin,ωk,m(f)(c1)) M ′�∗ (qfn, ε, cε).

By induction we can conclude that ωk+1, . . . ,ωn ∈ L(M ′)ε .
If the first transition is of the form (p, a,p1,�id) the situation is almost the same

as in the case above.
Otherwise, if the first transition is (p, a1,p1,�push(B)) with B �= #, we have

(p, x, (c1,A))
M
� (p1, yz, (c1,BA))

M
�i−j (p2, z, (cε,A))

M
�j (q, ε, (cε, ε))

for some j such that 1 ≤ j < i, some y, z ∈ Σ∗ with x = a1yz and some p2 ∈ Q. By
(3) and the induction hypothesis we may conclude that there is a production rule r

178 Theory Comput Syst (2008) 42: 157–186

such that

((p,A,q), ε)
G
⇒ (by (3))

(a1, ε)((p1,B,p2), r)((p2,A,q), ε)
G
⇒∗ (by induction)

(a1, ε) · · · (ak−1, ε)(ak, rωk) · · · (al,ωl)((p2,A,q), ε)
G
⇒∗ (by induction)

(a1, ε) · · · (ak−1, ε)(ak, rωk) · · · (al,ωl) · · · (an,ωn)

with 2 ≤ k ≤ l ≤ n, y = a2 · · ·al and z = al+1 · · ·an (and so x = a1 · · ·an). For M ′
we find

(qin, rωk, c1) M ′� (qin,ωk, c1) M ′�∗ (qfn, ε, cε).

Furthermore we find (by induction) that ωi ∈ L(M ′)ε for each k < i ≤ n.
Finally, note that the first transition can neither be of type (4), which is excluded

by the assertion, nor of type (5). In the latter case the computation has length 1 since
no intermediate configuration is the empty one.

Only if. Suppose that ((p,A,q), ε)
G
⇒i v(a,ω)w with v ∈ (Σ × {ε})∗, a ∈ Σε ,

ω ∈ R+, w ∈ (Σ × L(M ′)ε)∗ and (qin,ω, c1) M ′�∗ (qfn, ε, cε). If i = 1, the single ap-
plied production has to be one introduced by (5). Consequently, we know that c1 = cε ,
ω = r , and v = w = ε. Thus we have (p, a, (cε,A))

M
� (q, ε, (cε, ε)) what was to be

shown.
Suppose that for some i ≥ 1 the assertion is true for each 1 ≤ j ≤ i. Consider

a derivation of length i + 1. Since i + 1 ≥ 2, the first rule applied is of type (1),
(2) or (3). Suppose the first rule applied is of type (1). Then we have the following
derivation:

((p,A,q), ε)
G
⇒ (a1, ε)((p1,A,q), r)

G
⇒i (a1, ε) · · · (ak−1, ε)(ak, rωk) · · · (an,ωn)

and (qin, rωk, c1) M ′� (qin,ωk,m(f)(c1)) M ′�∗ (qfn, ε, cε)

with 2 ≤ k ≤ n, a1, . . . , an ∈ Σε , p1 ∈ Q, r ∈ R and ωk ∈ R∗. Using the transition
which has allowed the introduction of the production rule of type (1) and the induction
hypothesis we may conclude now:

(p, a1a2 · · ·an, (c1,A))
M
� (p1, a2 · · ·an, (m(f)(c1),A))

M
�∗ (q, ε, (cε, ε)).

In case the first applied rule was introduced by (2) the argumentation is almost the
same and left to the reader. If otherwise a rule of type (3) is used we have a derivation
of the following shape:

((p,A,q), ε)
G
⇒

(a1, ε)((p1,B, q1), r)((q1,A,q), ε)
G
⇒i−j

(a1, ε) · · · (ak−1, ε)(ak, rωk) · · · (al,ωl)((q1,A,q), ε)
G
⇒j

(a1, ε) · · · (ak−1, ε)(ak, rωk) · · · (al,ωl) · · · (am,ωm) · · · (an,ωn)

and (qin, rωk, c1) M ′� (qin,ωk, c1) M ′�∗ (qfn, ε, cε)

Theory Comput Syst (2008) 42: 157–186 179

for some 1 ≤ j < i and with 2 ≤ k ≤ l ≤ n, a1, . . . , an ∈ Σε , B ∈ Γ , p1, q1 ∈ Q,
r ∈ R and ωk ∈ R∗. Now we may conclude

(p, a1a2 · · ·an, (c1,A))
M
� (by the construction)

(p1, a2 · · ·an, (c1,BA))
M
�∗ (by induction)

(q1, al+1 · · ·an, (cε,A))
M
�∗ (by induction)

(q, ε, (cε, ε)).

Note that the induction hypothesis can be applied to the derivation starting with
((q1,A,q), ε) because ωm ∈ L(M ′) and thus (qin,ωm, cε) M ′�∗ (qfn, ε, cε).

To complete the proof we recall that M was assumed to be in the normal form
of Proposition 10. Thus a computation of M has to start like (q0, x, (cε, ε)) M

�
(q1, x, (cε,#)) for some q1 ∈ Q, no intermediate configuration can be the empty one
and no intermediate transition uses �push(#). By (4) of the construction we find the
beginning of a derivation in G starting with the start symbol of G: Ain G

⇒ (q1,#, qz).
The implication holds the other way around as well. The correspondence of the re-
maining derivation and computation is established by the assertion just shown, that is
applicable because of the normal form properties of M . Thus (G,L(M ′)) generates
exactly the strings that M accepts. �

From the last two lemmata we can conclude immediately the following theorem.

Theorem 1 For each class of storages S ,

L(S ◦r Spd) = L(GELLD/L(S)).

Using the relation between concatenation w.r.t. reading and writing, the result of
Theorem 1 can be translated directly to obtain a characterization of concatenation
w.r.t. writing in terms of controlled grammars. A sketch of a direct proof is given
in [26].

Theorem 2 For each class of invertible storages S ,

L(S ◦w Spd) = L(GERLD/L(S)R).

Proof

L(S ◦w Spd) = L((S inv ◦r Spd)
inv) (by Propositions 4 and 1)

= L(S inv ◦r Spd)
R (by Proposition 5)

= L(GELLD/L(S inv))R (by Theorem 1)
= L(GERLD/L(S inv)) (by Proposition 6)
= L(GERLD/L(S)R) (by Proposition 5). �

The main result of the paper, the relation between control and composition of
storages, is captured by the two theorems above. In the following final section we
will try to place this result in a somewhat broader context and consider a number of
related results from the literature.

180 Theory Comput Syst (2008) 42: 157–186

5 Some Hierarchies of Controlled Languages

In [1] a hierarchy of languages accepted by multi-pushdown automata is established.
By Theorem 1 this hierarchy can be defined in terms of controlled ELLDGs. This
representation lends itself to a comparison with other hierarchies defined by iterated
control. In the following, let LREG denote the class of regular and let LCF be the class
of context-free languages.

5.1 The Hierarchy of Breveglieri et al.

In the terminology developed above the classes constituting the hierarchy of [1]
can be reconstructed10 as CRi = L(Si) for each i ≥ 0 where S0 = Striv and Si =
Si−1 ◦r Spd. (C is intended as a mnemonic for concatenation, the superscript R in-
dicating that concatenation w.r.t. reading is meant.) By Theorem 1 and by the fact
that L(Striv) = LREG, these classes of languages can be defined as well by setting
CR0 = LREG and CRi = L(GELLD/CRi−1).

Similarly we can define a “reverse” hierarchy based on concatenation w.r.t. writ-
ing or control of ERLDGs: CWi = L(Si) for each i ≥ 0 where S0 = Striv and
Si = Si−1 ◦w Spd. Theorem 2 gives a grammatical characterization of the same
classes: CW0 = LREG and CWi = L(GERLD/(CWi−1)

R). As an immediate consequence
of Proposition 12 below (and the fact that the authors in [1] show that their hierarchy
is a proper and infinite one), we find that the classes of this hierarchy form a proper
infinite hierarchy.

Proposition 11 CWi and CRi with i ≥ 0 are closed under homomorphism, union and
left and right concatenation with a symbol.

Proof If the hierarchies are defined by control, closure under homomorphism follows
directly from Proposition 9. Closure under union and concatenation with a symbol
follow from the same proposition by induction, starting with the fact that LREG has
the required closure properties. For the classes CRi the proposition corresponds to
statements 6, 9 and 11 of [1]. For the other classes the properties also follow by these
statements and Proposition 12 below. �

Proposition 12 (CWi)R = CRi .

Proof In case i = 0 the assertion is true by the fact that LREG is closed under reversal.
If the assertion is true for i ∈ N, then it holds for i + 1 as well, since

(CWi+1)
R = (L(GERLD/(CWi)R))R (by Theorem 2)

= L(GELLD/(CWi)R) (by Proposition 6)
= L(GELLD/CRi) (by induction)
= CRi+1 (by Theorem 1). �

10We assume that the equivalence of both definitions is obvious to the attentive reader and we will not give
a proof of equivalence.

Theory Comput Syst (2008) 42: 157–186 181

Proposition 13 For i > 1, CWi �= CRi .

Proof In the proof of Theorem 2.2 of [6] it is shown that the language Li =
{an

1bm
1 bm

2 · · ·bm
2i a

n
2 · · ·an

2i | m,n ≥ 0} is not in CRi . This language is, however, gen-
erated by the controlled ERLDG Ki = (Gi,Hi) where Gi = ({A1,A2, . . . ,A2i−1 ,

B1,B2, . . . ,B2i−1}, {a1, a2, . . . , a2i , b1, b2, . . . , b2i }, R,A1) and

R = {r1 = A1 → a1A1a2i ,

r ′
1 = A1 → B1A2,

r2 = A2 → a2A2a2i−1,

r ′
2 = A2 → A3,

...

r2i−1 = A2i−1 → a2i−1A2i−1a2i−1+1,

r ′
2i−1 = A2i−1 → ε,

s1 = B1 → b1B1b2i ,

s′
1 = B1 → B2,

...

s2i−1 = B2i−1 → b2i−1B2i−1b2i−1+1,

s′
2i−1 = B2i−1 → ε}

and

H = {rn
1 r ′

1r
n
2 r ′

2 . . . rn
2i−1r

′
2i−1 | n ∈ N}

∪{sn
1 s′

1s
n
2 s′

2 . . . sn
2i−1s

′
2i−1 | n ∈ N}.

It is left to the reader to verify that L(Ki) = Li . Obviously, Hi ∈ CRi−1. Thus by the

definition of the reverse hierarchy and by Proposition 12 we find Li ∈ CWi . �

In other words, the classes of languages under consideration are not closed under
reversal for i > 1. Note that CR1 = CW1 = LCF. However, the super-families

⋃∞
i=0 CRi

and
⋃∞

i=0 CWi are identical.

Proposition 14

(a) CRi ⊂ CWi+1,

(b) CWi ⊂ CRi+1.

Proof For case (a) we know by Theorem 2 and Proposition 12 that CWi+1 =
L(GERLD/CRi). By Propositions 7 and 11 we conclude that CRi ⊆ CWi+1, which inclu-

sion follows also immediately from Lemma 4.6 of [6]. It is easy to see that CRi = CWi+1

leads to a contradiction: by Proposition 12 we would get CRi = (CRi+1)
R = (CWi+2)

R =
CRi+2. Thus the inclusion is proper.

182 Theory Comput Syst (2008) 42: 157–186

The assertion of (b) follows immediately from (a) and Proposition 12. �

Corollary 1
⋃∞

i=0 CRi = ⋃∞
i=0 CWi .

5.2 The Hierarchies of Weir and Khabbaz

Given the representation of the classes of multi-pushdown languages as controlled
grammars, the inclusion in the classes of Weir’s hierarchy of LCGs follows imme-
diately. The hierarchy of Weir can in turn be embedded in the multi-pushdown hi-
erarchies as well. The multi-pushdown hierarchy however ‘grows’ slower than the
other one. The results presented in this section were also found by [4–6]. However,
Lemma 3 below states an explicit and more general relation between linear control
of grammars and automata using concatenated pushdown storages. Thus this lemma
closely relates to Theorems 1 and 2.

The classes of languages constituting Weir’s hierarchy can be defined by setting
W0 = LREG and Wi = L(GLD/Wi−1) for each i > 0. By the definitions of the lan-
guage classes and the fact that Wi is closed under reversal (cf. Proposition 6) but CWi
and CRi not (cf. Proposition 13), we find immediately:

Corollary 2 For i > 1:

(a) CWi ⊂ Wi

(b) CRi ⊂ Wi .

This corollary is a stricter version of Theorem 4.2 of [5].
The inclusion of the multiple-pushdown languages in the classes from Weir’s hi-

erarchy can intuitively be understood in another way considering the storages defined
by [28]. Take the automata accepting languages of the second class in Weir’s hierar-
chy as an example. These automata use (linear) pushdowns of pushdowns. Among the
allowed operations there is not only replacing of the topmost symbol of the topmost
pushdown by a sequence of symbols, but as well replacing the entire topmost push-
down by a sequence of pushdowns including the original one. This means in fact that
we can either write on the top or below the topmost pushdown. Thus in some sense
these automata, too, incorporate the idea of having several possibilities for writing
but only one for reading.

The languages accepted by these nested pushdowns are accepted by concatenated
pushdowns as well. An LDG controlled by some S-automaton can be simulated by an
(S ◦r (Spd ◦r Spd))-automaton. The idea is that the automaton follows one spine using
the first component to control the expansion of the spine. Everything that is generated
to the right of the spine is written on the lower pushdown, terminal and nonterminal
symbols generated to the left of the spine are written on the upper pushdown. If
the foot of the spine is reached the upper pushdown contains the left part of the
derived sentential form in reversed order. The automaton continues by expanding the
nonterminals on the upper pushdown, due to the reversed order on that store starting
with the nonterminal directly to the left of the foot of the spine that is just reached. If
the storage is in a semi-empty configuration the nonterminals on the lower pushdown
are expanded. Thus the automaton simulates an inside-out derivation (see Sect. 3).

Theory Comput Syst (2008) 42: 157–186 183

Lemma 3 For each class of storages S ,

L(GLD/L(S)) ⊆ L(S ◦r (Spd ◦r Spd)).

Proof Let S be a class of storages, let S = (C, cε,F, id,m) ∈ S and let K =
(G,L(M)) be an LCG with G = (N,Σ,R,Ain) an LDG and M = (Q,R,S, δ,QI ,
QF) an automaton. Construct an automaton

M ′ = (Q×Nε,Σ, (S ◦r (Spd(Γ) ◦r Spd(Γ)), δ′,Q′
I ,Q

′
F)

with Q′
I = {(q,Ain) | q ∈ QI }, Q′

F = {(q, ε) | q ∈ QF } and Γ = N ∪ Σ , by setting

δ′ = {((q1,A), ε, (q2,B)),�f & � �push(βR
1)& � �push(β2) |

r = A → β1B!β2 ∈ R and (q1, r, q2, f) ∈ δ} (1)

∪{((q1,A), ε, (q2, ε),�f & � �push(vR)& � �push(w)) |
r = A → v!w ∈ R and (q1, r, q2, f) ∈ δ} (2)

∪{((q1,A), ε, (q2, ε),�f) |
r = A → ε ∈ R and (q1, r, q2, f) ∈ δ} (3)

∪{((q1,A), ε, (q2,A),�f) | A ∈ Nε and (q1, ε, q2, f) ∈ δ} (4)

∪{((q, ε), ε, (q0,A),� � pop(A)) | A ∈ N,q0 ∈ QI ,q ∈ QF } (5a)
∪{((q, ε), ε, (q0,A),� � pop(A)) | A ∈ N,q0 ∈ QI ,q ∈ QF } (5b)

∪{((q, ε), a, (q, ε),� � pop(a)) | a ∈ Σ,q ∈ QF } (6a)
∪{((q, ε), a, (q, ε),� � pop(a)) | a ∈ Σ,q ∈ QF }. (6b)

The construction is very similar to the one used in the proof of Lemma 1. Again the
proof starts establishing the relation between the derivation of a spine and its control
word on the one hand side and the computation of M ′ on the other. For G we use an
inside-out derivation in order to be able to follow the expansion of the distinguished
children. This in fact is similar to the situation in the proof of Lemma 1, in which
we simulated a leftmost derivation, which in the case of ELLDGs is the same as an
inside-out derivation. For the rest of the proof all derivations are assumed to be inside-
out if nothing else is indicated. By induction on the number of steps in a computation
and in a derivation, respectively, it can be shown that

((q1,A), a, (c1, (ε, ε))) M ′�∗ ((q2, ε), ε, (cε, (Y1 · · ·Ym,X1 · · ·Xk))) and
M ′ does not use transitions of type (5) and (6) in this computation

iff
there exists ω ∈ R+ such that
(A, ε)

G
⇒∗ (Ym, ε) · · · (Y1, ε)(a,ω)(X1, ε) · · · (Xk, ε) and

(q1,ω, c1) M
�∗ (q2, ε, cε)

with q1 ∈ Q, q2 ∈ QF , A ∈ N , a ∈ Σε , c1 ∈ C, Y1, . . . , Ym ∈ N ∪ Σ and
X1, . . . ,Xk ∈ N ∪ Σ . Once this implication is established, again by induction, we

184 Theory Comput Syst (2008) 42: 157–186

can show that for all A ∈ N , x ∈ Σ∗, Y1, . . . , Ym ∈ N ∪ Σ and X1, . . . ,Xk ∈ N ∪ Σ

there exist q1 ∈ QI and q2 ∈ QF such that
((q1,A), x, (cε, (Y1 · · ·Ym,X1 · · ·Xk))) M ′�∗ ((q2, ε), ε, (cε, (ε, ε)))

iff
there exist ω1, . . . ,ωn ∈ L(M)ε and a1, . . . , an ∈ Σε such that
(Ym, ε) · · · (Y1, ε)(A, ε)(X1, ε) · · · (Xk, ε) G

⇒∗
(a1,ω1) · · · (an,ωn) and x = a1 · · ·an. �

From this general relation between linear control and concatenation we get an
alternative proof for Theorem 4.3 of [5]:

Proposition 15 (Theorem 4.3 of [5]) For each i > 1: Wi ⊂ CR2i−1.

Proof First we show by induction that Wi ⊆ CR2i−1 for i ≥ 1. For i = 1 the propo-

sition is trivially true, since W1 = CR1 = LCF. Suppose that the assertion is true for
i ∈ N and let Si be the class of storages such that L(Si) = CRi . For i + 1 we find:

Wi+1 = L(GLD/Wi) (by definition)
⊆ L(GLD/CR2i−1) (by induction)
= L(GLD/L(S2i−1))

⊆ L(S2i−1 ◦r (Spd ◦r Spd)) (by Lemma 3)
= L((S2i−1 ◦r Spd) ◦r Spd) (by the associativity of ◦r)

= L(S2i+1) = CR2i+1 = CR2(i+1)−1 (by definition).

It is known that both CRi and Wi contain the language {an
1 · · ·an

2i | n ∈ N} but not the
language {an

1 · · ·an
2i+1 | n ∈ N} (cf. [6, Statement 2.1] and [27, p. 244]). Thus CR2i−1

contains the language {an
1 · · ·an

4i−2 | n ∈ N} whereas this language is not contained in
Wi if 4i − 2 > 2i. Thus the inclusion is proper for i > 1. �

This result combined with the fact that CRi ⊆ Wi (Corollary 2) implies that the
languages from the multi-pushdown hierarchy are the same as those in Weir’s hierar-
chy.

Corollary 3 (Corollary 4.3 of [5])
⋃∞

i=0 Wi = ⋃∞
i=0 CRi .

Let us finally consider the well-known hierarchy of Khabbaz [15, 16] that can be
defined by control too, letting K0 = LCF and Ki = L(Glin/Ki−1). Though we have
nothing new to offer concerning this hierarchy, we repeat some results from [5] to
round off the picture of hierarchies of controlled languages.

Proposition 16 (Theorem 6.11 of [13]) For each i ≥ 1, Ki is not closed under con-
catenation;

⋃∞
i=1 Ki is not closed under Kleene+. 11

11The theorem of Greibach states more generally that the proposition holds for each hierarchy defined as
Li = L(Glin/Li−1) and L0 a full semi-AFL.

Theory Comput Syst (2008) 42: 157–186 185

Proposition 17 For each i ≥ 0, Wi is closed under union, concatenation and
Kleene+.

Proof The proof can be done straightforwardly by induction using Propositions 8 and
9 starting with the fact that LREG is closed under union, concatenation and Kleene+.
Note that concatenation with a symbol is a special case of concatenation and Propo-
sition 8 thus can be applied in each step. �

Corollary 4 (Corollaries 3.2 and 4.2 of [5]) For each i ≥ 1: Ki ⊂ Wi+1, Ki ⊂ CRi+1

and Ki ⊂ CWi+1.

Proof By the definitions of the language classes we find immediately Ki ⊆ Wi+1.
From Propositions 16 and 17 it follows that Ki �= Wi+1. The other cases are shown
similarly. �

Corollary 5 (Corollary 3.3 of [5])
⋃∞

i=0 Ki ⊂ ⋃∞
i=0 Wi .

Proof The inclusion is clear by the definitions of the language classes and the previ-
ous corollary. From Proposition 17 it follows that

⋃∞
i=0 Wi is closed under Kleene+.

Since
⋃∞

i=0 Ki is not closed under Kleene+ we find
⋃∞

i=0 Ki �= ⋃∞
i=0 Wi . �

6 Conclusion

The main result of this paper is captured in Theorems 1 and 2 establishing a rela-
tion between control of ELLDGs and ERLDGs on the one hand and the composition
of new classes of storages from pushdowns with ◦r and ◦w on the other hand. On
the basis of this result some relations between hierarchies defined by iterative con-
trol and iterative concatenation of pushdowns were shown. Thus it was found that⋃∞

i=0 CRi = ⋃∞
i=0 CWi = ⋃∞

i=0 Wi where for i ∈ N, CRi denote the classes of the
multi-pushdown hierarchy established by Breveglieri et al., CWi denote the classes of
the reverse hierarchy and finally Wi are the classes of a hierarchy defined by Weir. For
the inclusion of Weir’s language classes in the multi-pushdown hierarchy we found
Wi ⊆ CRj for j = 2i − 1. It remains an open question whether the inclusion holds for
some smaller j .

Acknowledgements This paper is largely based on research carried out at the University Potsdam within
the Innovationskolleg ‘Formale Modelle kognitiver Komplexität’ (INK 12) funded by the DFG. We ac-
knowledge the constructive comments of an anonymous referee, in particular the suggestion of Proposi-
tion 13. We would like to thank Peter Staudacher, Jens Michaelis and Lothar Budach for many helpful
discussions and comments. Finally we thank Joost Engelfriet for his numerous useful suggestions on ear-
lier versions of this paper.

References

1. Breveglieri, L., Cherubini, A., Citrini, C., Crespi Reghizzi, S.: Multi-push-down languages and gram-
mars. Int. J. Found. Comput. Sci. 7(3), 253–291 (1996)

186 Theory Comput Syst (2008) 42: 157–186

2. Budach, L.: Environments, labyrinths and automata. In: Karpiński, M. (ed.) Fundamentals of Compu-
tation Theory. Lecture Notes in Computer Science, vol. 56, pp. 54–64. Springer, Berlin (1977)

3. Budach, L.: Personal communication (1999)
4. Cherubini, A., San Pietro, P.: On the relation between multi-depth grammars and tree-adjoining gram-

mars. Publ. Math. Debrecen 54(Supplement), 625–640 (1999)
5. Cherubini, A., San Pietro, P.: On the relations between multi-depth grammars and label-distinguished

control grammars. In: Nehaniv, C.L., Ito, M. (eds.) Algebraic Engineering. World Scientific, Singa-
pore (1999)

6. Cherubini, A., San Pietro, P.: Tree adjoining languages and multipushdown languages. Theory Com-
put. Syst. 33(4), 257–293 (2000)

7. Dassow, J., Mitrana, V.: Stack cooperation in multistack pushdown automata. J. Comput. Syst. Sci.
58, 611–621 (1999)

8. Duske, J., Parchmann, R.: Linear indexed languages. Theor. Comput. Sci. 32(1–2), 47–60 (1984)
9. Engelfriet, J.: Context-free grammars with storage. Report 86–11, Vakgroep Informatica, Rijks-

Universiteit Leiden (1986)
10. Gazdar, G.: Applicability of indexed grammars to natural languages. In: Reyle, U., Rohrer, C. (eds.)

Natural Language Parsing and Linguistic Theories, pp. 69–94. Reidel, Dordrecht (1988)
11. Ginsburg, S.: Automata-theoretic Properties of Formal Languages. North-Holland, Amsterdam

(1975)
12. Ginsburg, S., Spanier, E.H.: Control sets on grammars. Math. Syst. Theory 2(2), 159–177 (1968)
13. Greibach, S.A.: Control sets on context-free grammar forms. J. Comput. Syst. Sci. 15(1), 35–98

(1977)
14. Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required to provide reasonable

structural descriptions? In: Dowty, D., Karttunen, L., Zwicky, A. (eds.) Natural Language Parsing.
Theoretical, Computational and Psychological Perspective, pp. 206–250. Cambridge University Press,
Cambridge (1985)

15. Khabbaz, N.A.: Generalized context free languages. Ph.D. thesis, University of Iowa (1972)
16. Khabbaz, N.A.: A geometric hierarchy of languages. J. Comput. Syst. Sci. 8(2), 142–157 (1974)
17. Michaelis, J., Wartena, C.: How linguistic constraints on movement conspire to yield languages an-

alyzable with a restricted form of LIGs. In: Proceedings of the Conference on Formal Grammar
(FG’97), pp. 158–168, Aix en Provence, 1997

18. Michaelis, J., Wartena, C.: LIGs with reduced derivation sets. In: Bouma, G., Kruijff, G.-J.M., Hin-
richs, E., Oehrle, R.T. (eds.) Constraints and Resources in Natural Language Syntax and Semantics.
Studies in Constrained Based Lexicalism, vol. II, pp. 263–279. CSLI, Stanford (1999)

19. Rado, J.: Topic-focus vs. background: the role of structural information in discourse interpretation.
Ph.D. thesis, University of Massachusetts, Amherst (1997)

20. San Pietro, P.: Two-stack automata. Internal report 92–073, Dipartimento di Elettronica e Infor-
mazione, Politecnico di Milano (1992)

21. Scott, D.: Some definitional suggestions for automata theory. J. Comput. Syst. Sci. 1, 187–212 (1967)
22. Vogler, H.: Iterated linear control and iterated one-turn pushdowns. Math. Syst. Theory 19(2), 117–

133 (1986)
23. Wartena, C.: On the concatenation of one-turn pushdowns. Grammars 2(3), 259–269 (1999)
24. Wartena, C.: Storage structures and conditions on movement in natural languages. Ph.D. thesis, Uni-

versität Potsdam (1999)
25. Wartena, C.: Extending linear indexed grammars. In: Proceedings of the TAG+5 Workshop, pp. 207–

214, Paris, 2000
26. Wartena, C.: Grammars with composite storages. In: Moortgat, M. (ed.) Logical Aspects of Compu-

tational Linguistics, pp. 266–285. Springer, Berlin/Heidelberg (2001)
27. Weir, D.J.: A geometric hierarchy beyond context-free languages. Theor. Comput. Sci. 104(4), 235–

261 (1992)
28. Weir, D.J.: Linear iterated pushdowns. Comput. Intell. 10(4), 422–430 (1994)

	Storage Products and Linear Control of Derivations
	Abstract
	Introduction
	Concatenation of Storages
	Storages
	Operations on Storages

	Linear Controlled Grammars
	The Relation between Concatenation and Linear Control
	Some Hierarchies of Controlled Languages
	The Hierarchy of Breveglieri et al.
	The Hierarchies of Weir and Khabbaz

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

