
Fault-tolerant sequential scan

Paola Flocchini ∗§ Andrzej Pelc †§ Nicola Santoro ‡§

Abstract

We consider the fault-tolerant version of the sequential scan problem. A line of
identical cells has to be visited by a scanning head. The head can only distinguish
an end of the line from an internal cell but can distinguish neither one end from the
other, nor one internal cell from another. When the head starts at an internal cell,
its first move is in a direction chosen by the adversary. When the head comes to an
internal cell from a neighbor, it has two possible moves: forward, which means “go
to the other neighbor”, and back which means “return to the previous neighbor”.
At this point the adversary can place a fault whose effect is the change of the motion
direction (going forward instead of back and vice-versa). The head is not aware of
the occurrence of a fault.

The execution cost of a sequential scan algorithm for a line of length n in the
presence of at most k faults is the worst-case number of steps that the head must
perform in order to scan the entire line. The worst case is taken over all adversary’s
decisions. We consider two scenarios: when the length of the line is known to the
algorithm and when it is unknown. Our goal is to construct sequential scan algo-
rithms with minimum execution cost. We completely solve this problem for known
line size. For any parameters k and n we construct a sequential scan algorithm,
analyze its complexity and prove a matching lower bound, thus showing that our
algorithm is optimal. The problem of fault-tolerant sequential scan for unknown
line size is solved partially. For any parameter k we construct a sequential scan
algorithm which explores a line of length n with cost 2kn + o(kn), for arbitrary
n. For k = 1 our algorithm is shown to be optimal. However, we also show an
alternative algorithm that has cost at most O(kn) (with a constant larger than 2)
for any n and cost kn + o(kn) (which is asymptotically optimal) for infinitely many
n. Hence the asymptotic performances of the two algorithms, for unbounded k and
n, are incomparable.
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‡School of Computer Science, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
E-mail: santoro@scs.carleton.ca

§Partially supported by NSERC discovery grant.

1



1 Introduction

Reading all, possibly identical entries in a linear array is a fundamental task arising in
many applications. For example, in the write-all problem [?], all zeroes in a table with
binary entries have to be replaced by ones; in the case when the table initially contains
only zeroes, this task is equivalent to visiting all of its (identical) entries. The problem
of finding in an array the first (last) position containing a non-zero entry was studied in
[?]. In the case of an array of zeroes with only the first and last entries equal to 1, finding
these positions again requires reading an entire linear array of identical entries. The list-
ranking problem (cf., e.g., [?]), requiring finding the distance of every element of a linked
list from its head, also requires visiting all (possibly identical) elements of a list. While
in the above problems the issue was to optimize the execution of the task in parallel,
the nature of other applications requires sequential scanning of a linear array of identical
objects. Such is the case, for example, when a doubly linked list of identical objects is
given and both ends of the list have to be found by a sequential algorithm starting from
any position of it. Likewise, sequential scanning is required when a scanning head has
to read all, possibly identical, entries in cells of a tape. In network exploration, a mobile
agent (robot) has to explore a graph by visiting all of its nodes starting from any node. If
the graph is a path, exploration is equivalent to sequential scanning of a linear array. In
the case of anonymous graphs all entries of the array are identical. Efficient exploration
of paths by a mobile agent was studied, e.g., in [?].

Let us consider the task of network exploration by a robot in more detail, and concentrate
on the case of the path. A robot starts in an unknown node of the path and may or may not
know its length. The robot’s task is to visit all nodes of the path. Nodes are anonymous,
and hence the robot can only distinguish an endpoint from an internal node: all internal
nodes look identical and both endpoints look identical. If the starting node is internal, the
robot starts from it in an arbitrary direction (since the robot does not know the distances
to both ends of the path, both directions look the same, and thus the choice of the initial
direction is made by the adversary). Then, at each internal node, the robot can either
move forward (continue in the same direction), or back. Due to possible faults in the
controls of the robot, the decision to go forward or back may be sometimes subject to
error: if a fault occurs, the robot supposed to go forward goes back and vice-versa. Since
all internal nodes look identical, the robot often does not realize that a fault occurred.
This fault-prone application of the sequential scan problem is one of the motivations of
our paper.

We formulate our scenarios and the problem itself in an abstract way to make it suitable
for a broader range of applications. Consider a line of cells which have to be visited
by a mobile entity called a scanning head. All cells are identical except the two ends
of the line which are called the left and the right walls and are denoted by L and R,
respectively. All other cells are called internal. The head can only distinguish a wall
from an internal cell but can neither distinguish one wall from the other, nor one internal
cell from another. (The names left and right and symbols L and R are used only for
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convenience of description.) If the head is at a wall, its only possible move is towards the
other wall. When the head starts at an internal cell, its first move is in a direction chosen
by the adversary. This reflects the assumption that the head is not aware of its position
on the line and has no “sense of direction”. When the head comes to an internal cell from
a neighbor, it has two possible moves: forward, which means “go to the other neighbor”,
and back which means “return to the previous neighbor”. At this point (before the actual
move) the adversary can place a fault whose effect is the change of the motion direction:
if the original move was forward, a fault causes the head to return to the neighbor from
which it came, and if the original move was back, a fault results in the move of the head
towards the other neighbor. The head is not aware of the occurrence of a fault, unless it
expects to get to an internal cell and hits a wall, or vice-versa. When the head is at a
wall, a fault has no effect.

The execution cost of a fault-tolerant sequential scan (FTSS) algorithm for a line of
length n in the presence of at most k faults is the worst-case number of steps that the
head must perform in order to scan the entire line. The worst case is taken over all
fault configurations, controlled by the adversary and, in the case when the starting cell
is internal, over all possible positions of the starting cell and the two possible starting
directions. There are two main scenarios: when the length of the line is known to the
algorithm and when it is unknown. In each of them we consider the start at a wall and
the start at an internal cell. We are interested in minimizing the execution cost of a FTSS
algorithm in each case. More precisely, both versions of our problem are formulated as
follows.

• Fault-tolerant sequential scan with known line size:

Given positive integers k and n, find a fault-tolerant sequential scan algorithm with
minimum execution cost, for a line of length n, in the presence of at most k faults,
when the head starts at a wall (resp. at an internal cell).

• Fault-tolerant sequential scan with unknown line size:

Given a positive integer k, find a fault-tolerant sequential scan algorithm with min-
imum execution cost, for a line of arbitrary length, in the presence of at most k
faults, when the head starts at a wall (resp. at an internal cell).

Both for the known and for the unknown length of the line we assume that the upper
bound k on the number of faults is known to the algorithm and that the location of faults
is worst case. This is a standard approach used in fault-tolerance (cf., e.g., the survey [?]
for fault-tolerant models concerning network communication, or the seminal paper [?] for
multiprocessor fault diagnosis).
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1.1 Our results

We completely solve the problem of fault-tolerant sequential scan for known line size, for
any positive parameters k and n. Our main contribution for this version of the problem is
the proof of correctness of a natural fault-tolerant sequential scan algorithm which turns
out to be optimal. We then prove a matching lower bound that establishes the optimality
of the algorithm. For even n the optimal cost is (k+2)n−1 when the start is at an internal
cell and (k +1)n when the start is at a wall. For odd n it is, respectively, (k +2)n− k− 1
and (k + 1)n− k.

The problem of fault-tolerant sequential scan for unknown line size is solved partially.
For any number k of faults we construct a fault-tolerant sequential scan algorithm which
performs the scan of a line of length n, for arbitrary n, with cost 2(k +1)n− 2k− 1 when
the start is at an internal cell and with cost 2(k+1)n−2k when the start is at a wall. We
show that this cost cannot be improved for k = 1 by establishing matching lower bounds
in this case, for infinitely many n. It is natural to ask if these lower bounds generalize to
an arbitrary number of faults. In other words, is our algorithm (asymptotically) optimal
for arbitrary k and n? We show that this is not the case. For large k and n, the cost of our
algorithm is asymptotically 2kn. More precisely, it is 2kn+o(kn), when both k and n are
unbounded. However, we also show an alternative algorithm that has cost at most O(kn)
(with a multiplicative constant larger than 2) for any n, and cost kn + o(kn) (which is
asymptotically optimal) for infinitely many n. Hence the asymptotic performances of the
two algorithms, for unbounded k and n, are incomparable. It remains open if there exists
a fault-tolerant sequential scan algorithm for unknown line size which has cost kn+o(kn)
for all k and n.

To the best of our knowledge the present paper is the first to consider algorithmic aspects
of fault-tolerant exploration by a mobile entity in which faults concern moves of the entity,
rather than the environment.

1.2 Related work

The previously mentioned problems: write-all [?], finding in an array the first (last) posi-
tion containing a non-zero entry [?], and list-ranking [?], are examples of tasks involving
scanning a linear array or list of possibly identical objects. Unlike in our case, in these
papers the emphasis was on efficient parallel execution of the respective tasks.

Sequential scan is closely related to the problem of network exploration by a mobile
agent (robot). In the latter problem the agent has to visit all nodes and traverse all
edges of an unknown graph. This problem has been studied both for directed [?, ?] and
undirected [?, ?] graphs. In particular, in [?] the authors investigated the problem of
network exploration using an imperfect map: the agent is provided with an unlabeled
isomorphic copy of the undirected graph underlying the network but does not have any
sense of direction. In the case of the line this setting is equivalent to sequential scan with
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known line size (in the fault-free scenario), because having an unlabeled map of the line is
equivalent to knowing its length. The quality measure studied in [?] was the overhead of an
exploration algorithm, defined as the worst case ratio of the time (number of steps) spent
by an algorithm having the imperfect map to the optimal time of exploration assuming
full knowledge of the graph. It turned out that, even for the line in the fault-free case,
finding an exploration algorithm minimizing the overhead is far from trivial. It was proved
in [?] that the best possible overhead for the line is

√
3, and an optimal algorithm was

constructed.

Our present problem can be viewed as an aspect of fault-tolerant network exploration.
One of the well-studied issues in this domain concerns agent security. Protecting mobile
agents from malicious hosts was investigated, e.g., in [?, ?, ?]. In [?, ?, ?] the problem
of locating a black hole in a network was considered. A black hole is a highly harmful
stationary process residing in a node of a network and destroying all mobile agents visiting
the node, without leaving any trace. Another problem related to fault-tolerant network
exploration was investigated in [?]. A robot, situated in a root of a tree and unaware
of the location of faulty edges, has to explore the connected fault-free component of the
root, by visiting all its nodes. For a given rooted tree, the overhead of an exploration
algorithm was defined as the worst-case ratio (taken over all fault configurations) of its
cost to the cost of an optimal algorithm which knows where faults are situated. The goal
in [?] was to find exploration algorithms with minimum overhead.

In all the above problems faults concerned the environment, more precisely components of
the underlying graph. This should be contrasted with our present approach where faults
concern the moves of the exploring agent.

2 Terminology

In the entire paper k denotes an upper bound on the number of faults. It is fixed and
known to FTSS algorithms. The length of the line (i.e., the number of its links) is denoted
by n and could be known or unknown, depending on the scenario. The line to be scanned
will be often viewed as a segment [a, b] with the starting point at 0 and a and b the
left and right walls (denoted L and R), respectively. The mobile entity (scanning head)
performing the scan is called the head for short. We use the predicates inside and at-wall
to mean that the head is at an internal cell, or at a wall, respectively. We say that the
line has been explored if all of its cells have been visited by the head. In the formulation
of our algorithms we use a subroutine go-straight which is a sequence of forward steps
repeated until some condition is met. There are three such conditions: hit means that
the wall has been hit, hit(x) means that the wall has been hit and exactly x forward
steps were performed, and nohit(x) means that the head has performed x forward steps
without hitting a wall. After the condition is met, the direction of the move of the head
is reversed. The sequence of steps during the go-straight subroutine is called a round.
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It should be noted that the head’s movement in one direction in a single round happens
only when there are no faults in this round. Such a round is called correct. With each
fault during a round the actual direction of the move of the head changes. A maximal
sequence of steps in one direction during a round is called a stretch. The length of a
stretch depends both on the algorithm and on the fault configuration. Hence a round can
be composed of many stretches.

3 Line of known size

3.1 Upper bounds

In this section we present FTSS algorithms for a line of arbitrary known size n and at
most k faults. For even n the cost is (k + 2)n− 1 when the start is at an internal cell and
(k + 1)n when the start is at a wall. For odd n it is, respectively, (k + 2)n − k − 1 and
(k + 1)n− k. We later establish lower bounds showing that these algorithms are optimal.

3.1.1 The even size

The algorithm is composed of k + 2 rounds if the head starts inside the line, and of k + 1
rounds if it starts at a wall. During a round the head moves in the same direction until
either it hits a wall, or it performs n − 1 steps (n if starting at a wall) without reaching
any wall. At this point it reverses direction. Obviously the second condition means that
at least one fault has occurred.

Algorithm KnownEven

if inside then count := k + 2 else count := k + 1;
repeat count times

if inside then
go-straight until (nohit(n− 1) OR hit)

else /* at-wall */
go-straight until (nohit(n) OR hit)

endif
reverse direction

end

Consider an arbitrary execution of the algorithm. In this execution, let fi ≥ 0 be the
number of faults occurring in round i; let Z = {i : fi = 0} be the set of correct rounds;
let F = {i : fi > 0} be the set of rounds that contain at least one fault; let E ⊆ F be the
set of rounds that contain an even positive number of faults; finally let z = |Z|, f = |F |,
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e = |E|, and o = |F \ E|. Let dir(i) denote the direction (from R to L or from L to R)
at the start of round i.

By construction, the execution of the algorithm has trivially the following property.

Lemma 3.1 Consider round i, 1 ≤ i ≤ count.

1. If round i is correct, the head hits a wall in this round.

2. If round i contains an even number of faults then the directions at the beginning of
rounds i and i + 1 are different; i.e., dir(i + 1) 6= dir(i).

3. If round i contains an odd number of faults then the directions at the beginning of
rounds i and i + 1 are the same; i.e., dir(i + 1) = dir(i).

Lemma 3.2 If in an execution there are two correct rounds such that all the rounds
between them contain an odd number of faults, then the line is explored.

Proof: Let i and j, i < j, be correct rounds such that all the rounds between them
contain an odd number of faults. By lemma ??(1), the head hits a wall, say R, in round
i and, by construction it starts round i + 1 by moving towards the other wall L. Since in
all the rounds i+1, i+2, . . . , j− 1 an odd number of faults occurs, then by lemma ??(3),
dir(i + 1) = dir(i + 2) = . . . = dir(j − 1) = dir(j); hence, in round j the head will move
towards L and, since j is correct, will reach L. �

We now show that the condition of the above lemma always holds if the head starts inside
the line.

Lemma 3.3 Let the head start inside the line. In any execution there are always two
correct rounds such that all the rounds between them contain an odd number of faults.

Proof: Let the head start inside the line; then the number of rounds is k + 2. We need
to prove that there exist i, j ∈ Z such that for all l, with i < l < j, we have l /∈ E. It is
sufficient to prove that the number of correct rounds exceeds by at least two the number
of rounds with an even number of faults; i.e., z ≥ e + 2. First notice that a round in
E must contain at least two faults, a round in F \ E must contain at least one; hence
k ≥ o + 2e. Moreover, since there are k + 2 rounds, we have z + e + o = k + 2; i.e.,
z = k − o− e + 2 ≥ 2e− e + 2 = e + 2. �

In the case when the head starts at a wall, there is an additional property.

Lemma 3.4 Let the head start at a wall. If in an execution all the rounds before the first
correct one contain an odd number of faults, then the line is explored.
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Proof: Let the head start from a wall, say R, let j be the first correct round, and let all
rounds i < j contain an odd number of faults. By construction the head starts round 1
by moving towards the other wall L. Since in all the rounds 1, 2, . . . , j−1 an odd number
of faults occurs, then by lemma ??(3), dir(i) = dir(i−1) = L; hence, in round j the head
will move towards L and, since j is correct, will reach L. �

We now show that if the head starts at a wall, at least one of the conditions expressed by
Lemmas ?? and ?? holds.

Lemma 3.5 Let the head start at a wall. In any execution one of the following conditions
holds:

1. All the rounds, if any, before the first correct one contain an odd number of faults.

2. There are two correct rounds such that all the rounds between them contain an odd
number of faults.

Proof: Let the head start at a wall, say R; in this case the number of rounds is k+1. We
will prove that if condition (1) does not hold, then condition (2) does. Let i > 1 be the
first correct round and let p ≥ 1 preceding rounds contain an even number of faults. After
one step in round i, the head is exactly in the situation of an head starting Algorithm
Knowneven from the current cell with at most k− i faults. The result then follows from
Lemma ??.

�

As a consequence of Lemmas ?? - ??, we get:

Theorem 3.1 Algorithm KnownEven allows the head to correctly explore any line of
even and known size, with at most k faults, regardless of the starting point.

Theorem 3.2 During the execution of Algorithm KnownEven, the head performs at
most (k + 2)n− 1 steps if it starts inside the line, and at most (k + 1)n steps if it starts
at a wall.

Proof: Let x be the number of rounds starting at a wall and let y be the number of
rounds starting inside the line. Clearly x + y = count. Every time a round starts with
the head at a wall, the number of steps of that round is at most n; when a round starts
with the head inside the line, the number of steps is at most n− 1. The total number of
steps is at most S(x) = xn + y(n− 1) = xn + (count− x)(n− 1).
If the head is initially inside the line, then y ≥ 1 and thus x < count; moreover, according
to the algorithm, count = k + 2. In this case S(x) is maximized when x = k + 1; thus,
the number of steps when starting inside the line is at most (k + 2)n− 1.
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If the head is initially at a wall, S(x) is maximized when x = count. According to the
algorithm, when starting at a wall, count = k + 1. Thus, the number of steps when
starting at a wall is at most (k + 1)n.

�

3.1.2 The odd size

When the size of the line is known and is odd, the algorithm can exploit this fact by
discovering termination conditions without having to perform a fixed number of rounds.
Intuitively, in this case the odd parity of n allows to detect the absence/presence of failures
during a round, thus allowing the algorithm to terminate sooner.

Whenever a round starts with the head at a wall, the head moves in the same direction
until either it hits a wall, or it performs n steps without reaching any wall. This second
condition is particularly important (as we will see later); the head has to remember its
occurrence by setting a special flag. On the other hand, if the head finishes this round by
hitting a wall in exactly n steps, then the algorithm terminates; this is due to the fact that
a walk of odd length from wall to wall cannot hit the same wall, and thus must result in
the exploration of the entire line. If the algorithm does not terminate, the head reverses
its direction before proceeding to the next round.

Whenever a round starts with the head inside the line, the head moves in the same
direction until either it hits a wall, or it performs n− 1 steps without reaching any wall.
If the head finishes this round by hitting the wall in an even number of steps, then the
head has to check whether the special flag mentioned above is set or not. As we will show
later, if the flag is set, the algorithm can terminate. If the algorithm does not terminate,
the head reverses its direction before proceeding to the next round.

Algorithm KnownOdd

halt:= flag:= 0;
repeat until halt=1

if at-wall then
go-straight until (hit OR nohit(n))
if nohit(n) then flag:=1;
if hit(n) then halt:= 1;

else /* inside */
go-straight until (hit OR nohit(n− 1))
if ((hit(x) with x even) AND flag=1) then halt:= 1;

endif
reverse direction

end repeat
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Figure 1: Examples of different types of rounds with various numbers of faults.

Correctness

Consider an arbitrary execution of the algorithm. This execution is composed of a se-
quence of rounds.

Depending where the head starts and ends a round, we have four possible types of rounds.
In the following we enumerate all the possible situations.

A. Inside/Wall. A round is of type A when the head starts the round inside the line
and ends it at a wall within at most n− 1 steps. There are two subtypes of such a
round:

A1 : In this case, the predicate hit(x) holds with x even.

A2 : In this case, the predicate hit(x) holds with x odd.

B. Inside/Inside. A round is of type B when the head starts and ends the round inside
the line. It is the only round type in which the predicate nohit(n−1) holds. In this
round, there has been at least one fault. The round is composed of exactly n − 1
steps.

C. Wall/Wall. A round is of type C when the head starts and ends the round at a wall.
There are two subtypes of such a round:

C1 : In this case, the predicate hit(n) holds; this round is composed of exactly n
steps and, as we will show, does not contain any fault.

C2 : In this case, the predicate hit(n′) holds with n′ < n; this round contains at
least one fault. In the worst case there are n− 1 steps.
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D. Wall/Inside. A round is of type D when the head starts the round at a wall and ends
inside the line. This is the only round type in which the predicate nohit(n) holds,
and there has been at least one fault. The round is composed of exactly n steps.

In Figure ?? are shown examples of: rounds of type A with two, one, and no faults;
rounds of type B with one and two faults; rounds of type C with no faults and one fault;
a round of type D with one fault.

Lemma 3.6 After a round of type C1, the line has been explored.

Proof: Since n is odd, a round of type C1 must be correct. In fact, a walk from wall to
wall composed of an odd number of steps cannot hit the same wall. �

Lemma 3.7 After a round of type D, the head is at an odd distance from the wall where
it started that round.

Proof: By definition, a round of type D starts from a wall, say L, and terminates after n
steps with the head inside the line. Let this round contain m faults; thus, the movement of
this round is composed of a sequence of m+1 stretches s0, s1, . . . , sm, with

∑m
i=0 |si| = n.

The distance d of the head from L can be calculated as follows: d =
∑m

i=0(−1)i|si| =∑bm/2c
i=0 |s2i| −

∑bm−1
2

c
i=0 |s2i+1|. Let S1 =

∑bm/2c
i=0 |s2i|and S2 =

∑bm−1
2

c
i=0 |s2i+1|. Since n =

S1 + S2 is odd, we know that either S1 or S2 is odd; but then also d = S1 − S2 must be
odd. �

Lemma 3.8 After a round of type B, if the head started at an odd distance from a wall,
it will also end at an odd distance from the same wall.

Proof: Let x be the initial distance of the head from wall L. Let this round contain m
faults; thus, the movement of this round is composed of a sequence of m + 1 stretches
s0, s1, . . . , sm, with

∑m
i=0 |si| = n − 1. After this movement, the head is at distance

d = x +
∑m

i=0(−1)i|si| from L, if it starts the round moving towards R, and at distance

d = x −
∑m

i=0(−1)i|si|, otherwise. As in the previous lemmas, let S1 =
∑bm/2c

i=0 |s2i| and

S2 =
∑bm−1

2
c

i=0 |s2i+1| (thus, d = x + S1 − S2 if the head starts the round towards R, and
d = x + S2 − S1 otherwise). Since n − 1 is even, S1 + S2 is also even. But then both
S1 − S2 and S2 − S1 are even. Since x is odd by hypothesis, the distance x + S2 − S1 (or
x + S1 − S2) to L at the end of the round must also be odd. �

Lemma 3.9 Consider a round of type A. Let x be the distance of the head from wall L
at the beginning of the round, and let y be the number of steps of the round.
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a) If x is odd and y is even, then the head hits R.
b) If both x and y are odd, then the head hits L.
Moreover, in the latter case:
b1) If the head starts by moving away from wall L, then round A contains at least one
fault;
b2) If the head starts by moving away from wall R and wall L has been already visited,
then between the previous hit of the wall and the current there have been at least as many
faults as the number of rounds.

Proof: Consider a round of type A. Let this round contain m faults; thus, it is composed
of a sequence of m + 1 stretches s0, s1, . . . , sm, with

∑m
i=0 |si| = y. Let S1 =

∑bm/2c
i=0 |s2i|

and S2 =
∑bm−1

2
c

i=0 |s2i+1|.
Case a). Let x be odd and y be even. By contradiction, let the head hit wall L. Since
S1 + S2 is even, also S1 − S2 and S2 − S1 are even. The distance of the head from L after
this round is either x + S1 − S2 (if stretch s0 is towards R) or x + S2 − S1 (if stretch s0

is towards L); that is, in both cases, it is odd and hence different from 0; thus, it is not
wall L that is hit by the head.
Case b). Let both x and y be odd. By contradiction, let the head end this round at wall
R. At the beginning of the round the head is at distance n−x from R, thus n−x = S1−S2

if the head is moving towards R, and n − x = S2 − S1 otherwise. Since y = S1 + S2 is
odd, we know that S1 −S2 and S2 −S1 are also odd. However n− x is even, which yields
a contradiction.
Subcase b1). If the head started the round moving away from L, there has been at least
one fault during this round since it is terminating in L again.
Subcase b2). In this case, between the previous and the current hit of wall L there has
been one round of type D starting from L, possibly followed by several rounds of type
B, and then by the round of type A that we are considering. We want to show that at
least one of the above rounds that precede A contains more than one fault. Suppose,
by contradiction, that each of them contains a single fault (recall that rounds of type B
and D must contain at least one fault). Since after each of these rounds the direction is
inverted, all these rounds, as well as round A, start with the head moving away from wall
L. This is impossible because by hypothesis the head starts round A by moving away
from R. This contradiction implies that at least one round must have more than one
fault, in order to allow a change of direction. This implies that between the previous hit
of the wall and the current one there have been at least as many faults as the number of
rounds. �

Lemma 3.10 Let the head execute a (possibly empty) sequence of rounds of type B,
preceded by a round of type D. If the next round is of type A1, then at the end of that
round the line has been explored.
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Figure 2: Possible transitions between rounds.

Proof: Let the head start a round of type D at wall L. By Lemma ??, after that round,
the distance d of the head from L is odd. Let now the head execute a possibly empty
sequence of rounds of type B. After this sequence of rounds (by Lemma ?? if the sequence
is not empty and trivially if it is empty) the head is still at an odd distance from L. Let
the next round be a round of type A1. The proof now follows from Lemma ?? case a). �

Theorem 3.3 Algorithm KnownOdd allows the head to correctly explore any line of
odd and known size after at most k +2 rounds, if the head starts inside the line, and after
at most k + 1 rounds, if it starts at a wall.

Proof: First suppose that the head starts inside the line. After the initial round, de-
pending on its type, the head either hits a wall (type A, possibly containing faults) or is
still inside the line after n− 1 steps (type B, containing at least one fault). If still inside
the line, the head can continue to remain inside after n− 1 steps for several rounds (type
B, containing at least one fault). Let p be the number of rounds before the head hits a
wall for the first time; then at least p − 1 of these rounds are faulty. Since the number
of faults is at most k, after at most k rounds, the head will eventually hit a wall. If the
head initially starts at a wall, the description of its behavior starts here.

Once at a wall (say L), two events can occur: either the head hits a wall again or it
performs n steps and ends up inside the line.
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Suppose that the head hits the wall again. If this happens after n steps, this is a round
of type C1 and, by Lemma ??, the line has been explored; notice that in the algorithm,
the variable halt is set to 1 and the algorithm terminates. Otherwise, this is a round of
type C2, containing at least one fault.

If the round is finished with the head ending up inside the line after n steps, this is a
round of type D and at least one fault has occurred; in the algorithm, when this round
occurs, the variable flag is set to 1. Two possible situations can occur next: either the
head continues to stay inside the line after performing n − 1 further steps, or it hits a
wall. In the first case this is a round of type B that contains at least one fault. The head
may continue to experience several rounds of this type. In the second case, the head hits
a wall. This is a round of type A. If this happens after an even number of steps (i.e.,
round of type A1), then by Lemma ??, the line has been explored; notice that in the
algorithm, in this case the variable halt is set to 1 (recall that the flag has been set to 1
in the previous type D round) and the algorithm terminates. Otherwise (if this happens
after an odd number of steps), this is a round of type A2 and the head is back at the
starting wall.
The overall situation is summarized in Figure ??.

There are three types of correct rounds that could occur: C1, A1 and A2. If a correct
round of type C1 occurs, the algorithm correctly terminates (the algorithm correctly sets
the variable halt to 1). If a correct round r of type A1 occurs, this round must have been
preceded by a round of type D, and hence by Lemma ?? the distance of the head from L
at the beginning of round r is odd, which implies that round r terminates at wall R after
an even number of steps (ensuring that the algorithm correctly sets the variable halt to
1). We call a correct round of type A1 or C1 a correct terminating round. On the other
hand, a correct round of type A2 could send the head back to wall L. In such an event,
however, we are guaranteed that in the s rounds between the last two hittings of the wall,
there have been at least s faults (Lemma ??). We call a correct round of type A2 a correct
non-terminating round.

To conclude the proof, we need to show that a correct terminating round will occur within
at most k + 1 rounds, if the head started at a wall, and within at most k + 2 rounds if
the head started from inside the line.

Consider the two cases. If the head started at a wall, every round that terminates inside
the line contains at least one fault, and every correct non terminating round implies that
at least one earlier round between the current and the previous hit contains at least
two faults (Lemma ??). This implies that within k + 1 rounds at least one is a correct
terminating round. Hence, the algorithm terminates after at most k + 1 rounds. If the
head started inside the line, there are p initial rounds until the head first hits a wall
(possibly p = 0, if the head started at a wall), of which at least p − 1 contain a fault (if
p > 1). At this point there remain at most k − (p− 1) other faults. For the same reason
as above, in the next k − (p − 1) + 1 rounds at least one is a correct terminating round.
Hence, the algorithm terminates after at most p + k − (p− 1) + 1 = k + 2 rounds. �
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Complexity

Theorem 3.4 During the execution of Algorithm KnownOdd, the head performs in the
worst case (k+2)n−k−1 steps if it starts inside the line, and (k+1)n−k steps otherwise.

Proof: Any execution of the algorithm corresponds to a path in the graph of Figure ??.
On each edge the type and the worst case number of steps of the corresponding round
is indicated. Since we are interested in the worst case, we will only consider executions
where the maximum number of steps is incurred in each round.

Let us call cheap a round composed of n − 2 steps, medium a round composed of n − 1
steps, and expensive a round composed of n steps.

Let 1, 2, . . . ,m be the rounds during an arbitrary execution of the algorithm. Let E =
{e1, . . . es} denote the set of expensive rounds, and C denote the set of cheap rounds. Let
y be the number of medium rounds, and z the number of cheap rounds. We first show
that, if s > 1, then for all i, 1 ≤ i ≤ s−1, there exists c ∈ C, such that c occurs between ei

and ei+1. The only rounds composed of n steps are terminal rounds of type C1, or rounds
of type D. Clearly e1, . . . , es−1 must be rounds of type D, thus terminating inside the
line. After each round ei (1 ≤ i ≤ s − 1), before the next expensive round ei+1, a round
of type A2 must necessarily occur (see Fig. ??). In other words, between two expensive
rounds there must be a cheap one, which implies that s− 1 ≤ z .

Let us consider first the case when the head started inside the line. The total number of
steps T is at most sn+y(n−1)+z(n−2) = (s+y+z)(n−1)+s−z. Since s−z ≤ 1, we have
T ≤ (s+y+z)(n−1)+s−z ≤ (s+y+z)(n−1)+1. If the head started inside the line we
have k+2 rounds (Theorem ??) and then: T ≤ (k+2)(n−1)+1 = (k+2)n−k−1. If the
head started at the wall we have k+1 rounds and then: T ≤ (k+1)(n−1)+1 = (k+1)n−k
�

3.2 Lower bounds

In this section we establish lower bounds on the cost of fault-tolerant sequential scan,
showing that the algorithms presented in the previous section are optimal.

Theorem 3.5 For any FTSS algorithm for a line of known size n with at most k faults,
there exists a starting point inside the line and an adversary that forces the head to perform
at least (k + 2)n− 1 steps, if n is even, and (k + 2)n− k − 1 steps, if n is odd.

Proof: Fix a FTSS algorithm A on a line of size n. Let position 0 correspond to the left
wall. Consider a sequence α = (s1, s2, . . . , sk) coding the fault-free execution of A until a
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wall is hit for the first time, starting from dn−1
2
e (w.l.o.g, let the wall hit be L, a similar

argument holds when the wall hit is R). The meaning of the sequence α is the following:

Go s1 steps in one direction;
go s2 steps in the other direction;
go s3 steps in the first direction;
go s4 steps in the other direction;
...

Let y be the rightmost point of α. Thus dn−1
2
e ≤ y < n− 1.

Now consider a different scenario for the same algorithm: more precisely, we consider the
same execution of algorithm A (i.e., the same sequence α) with a different starting point
dn−1

2
e + n − y − 1. In this scenario, the line starts n − y − 1 positions before the end of

α and ends one position after its rightmost point (obviously a wall is not hit during the
execution of α). At least additional n− y − 1 steps are required for hitting the left wall,
and at least y + 1 steps are required for hitting the right wall. Thus, the number of steps
required to hit a wall for the first time in this scenario is h ≥ y + min{y + 1, n− y − 1}.
Since y ≥ dn−1

2
e, we have that min{y + 1, n− y − 1} = n− y − 1, and, thus: h ≥ n− 1.

The head has now reached the (left) wall for the first time. Since the line is not yet
fully explored, the head has to perform a walk of at least n steps eventually reaching the
opposite wall in a fault-free execution of the algorithm. Consider such a walk. Let the
adversary place a fault when the head is, for the last time, at distance n

2
from the left wall,

if n is even, and at distance n−1
2

, if n is odd. In this way the left wall is hit again after
at least n steps, if n is even, and n − 1 steps, if n is odd. Repeating the same argument
k times we can conclude that the head is back at the left wall after performing, since the
beginning of the execution, at least n − 1 + kn steps, if n is even, and n − 1 + k(n − 1)
steps, if n is odd. However, the line is not yet fully explored. Hence, the head must still
perform at least n steps to reach the right wall, for a total of (k + 2)n − 1 steps, if n is
even, and (k + 2)n− k − 1 steps, if n is odd. �

Theorem 3.6 Let the head start at a wall. For any FTSS algorithm for a line of known
size n with at most k > 0 faults, there exists an adversary that forces the head to perform
at least (k + 1)n steps, if n is even, and (k + 1)n− k steps, if n is odd.

Proof: Fix a FTSS algorithm A on a line of size n. Let the head start at the left wall.
In any fault-free execution the head has to perform a walk of at least n steps eventually
reaching the opposite wall. Consider such a walk. Using an argument similar to the one
of Theorem ??, we have that the head must still perform at least n steps to reach the
right wall, for a total of (k + 1)n steps, if n is even, and (k + 1)n− k steps, if n is odd.

�
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4 Line of unknown size

4.1 An upper bound

In this section we present a FTSS algorithm working for unknown line size. If there are
at most k faults, the head performs no more than 2(k + 1)n − 2k − 1 steps, if it starts
inside the line, and no more than n(2k + 1) − 2k steps, if it starts at a wall. Hence the
asymptotic cost of the algorithm is 2kn + o(kn), for unbounded k and n. The algorithm
is composed of k +2 or k +1 rounds depending on whether the head starts inside the line
or at a wall. During each round the subroutine go-straight is executed until a wall is hit.

Algorithm Unknown

if inside then count := k + 2 else count := k + 1;
repeat count times

go-straight until hit
reverse direction

end

Theorem 4.1 Algorithm Unknown allows the head to correctly explore any line, with
at most k faults, without knowing its size.

Proof: By construction, each round ends as soon as the head hits a wall. If the head
started at a wall, the line is correctly explored the first time there is a correct round.
Since there are k + 1 rounds and at most k of them are faulty, the line will be correctly
explored. Consider now the case when the head starts inside the line. Let the head hit
R in the first round. If in the next round the head hits the other wall, the entire line is
explored; else, at least one fault must have occurred since, otherwise, according to the
algorithm, the head would have hit L. Inductively, if the head has not hit L in the first j
rounds, 2 ≤ j ≤ k + 1, then at least j − 1 faults have occurred. Since the total number of
faults is k and the number of rounds is k+2, it follows that the line will be fully explored.
�

Theorem 4.2 During the execution of Algorithm Unknown, the head performs no more
than 2(k+1)n−2k−1 steps, if it started inside the line, and no more than n(2k+1)−2k
steps, if it started at a wall.

Proof: Consider first the case when the head starts inside the line. The algorithm is
composed of k + 2 rounds. Let fi denote the number of faults that occur during round i,
with 1 ≤ i ≤ k + 2. Clearly

∑k+2
i=1 fi = k and fi ≥ 0.

The first round starts with the head inside the line and contains f1 faults; it is thus
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composed of f1 +1 stretches, the last of which hits the wall. None of the first f1 stretches
hits a wall. Thus, each of them is composed of at most n−2 steps. The last stretch starts
inside the line and ends at a wall; hence, it is composed of at most n− 1 steps. In other
words, the head performs at most (n− 2)f1 + n− 1 steps in this round.
Any subsequent round i is also composed of fi+1 stretches; the first and the last stretches
have one extremity at a wall and the other inside the line; hence, they are composed of
at most n − 1 steps. None of the other stretches hits a wall and thus each of them is
composed of at most n − 2 steps. As a consequence, during round i, the head performs
at most 2(n− 1) + (fi − 1)(n− 2) steps. The total number of steps is thus at most

S = S(f1, f2, . . . , fk+2) = (n− 2)f1 + n− 1 +
∑k

i=2( 2(n− 1) + (fi − 1)(n− 2) )

where
∑k

i=1 fi = k and fi ≥ 0. We have: (n−2)f1+n−1+
∑k+2

i=2 (2(n−1)+(fi−1)(n−2)) =

n− 1 +
∑k+2

i=2 (2(n− 1))−
∑k+2

i=2 (n− 2) + (n− 2)
∑k+2

i=1 (fi) = (2(k + 1) + 1)(n− 1)− (k +
1)(n− 2) + k(n− 2) = 2(k + 1)(n− 1) + 1 = 2(k + 1)n− 2k − 1

Consider now the case when the head starts at a wall. In this case, following the same
reasoning, the total number of steps is at most

S = S(f1, f2, . . . , fk+1) =
∑k+1

i=1 ( 2(n− 1) + (fi − 1)(n− 2) )

where
∑k−1

i=1 fi = k and fi ≥ 0. We have:
∑k+1

i=1 (2(n− 1)+ (fi − 1)(n− 2)) =
∑k+1

i=1 (2(n−
1)− (n− 2)) + (n− 2)

∑k+1
i=1 (fi) = (k + 1)n + (n− 2)k = n(2k + 1)− 2k �

4.2 The lower bound for one fault

In this section we prove that the upper bound from the previous section cannot be im-
proved for k = 1. We first consider the head starting inside the line.

Fix any FTSS algorithm A and consider the part of its fault-free execution until a wall is
hit for the first time. This part can be coded in one of two possible ways.

• As an infinite sequence of integers (s1, t1, s2, t2, . . . , ) with the following meaning:

Go s1 steps in one direction;
Go t1 steps in the other direction;
Go s2 steps in the first direction;
Go t2 steps in the other direction;
...

• As a finite sequence of integers (s1, t1, s2, t2, . . . , sk) or (s1, t1, s2, t2, . . . sk, tk) with
the following meaning:
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Go s1 steps in one direction;
Go t1 steps in the other direction;
Go s2 steps in the first direction;
Go t2 steps in the other direction;
...
Go sk steps in the first direction (resp. tk steps in the other direction);
Go until hitting the wall in the other (resp. first) direction.

Call a FTSS algorithm that can be coded in the first (resp. second) way, a type 1 (resp.
type 2) algorithm. Parts of the execution that correspond to integers si or ti are called
swings. The last swing of an algorithm of type 2 is called the infinite swing.

Consider the execution of a FTSS algorithm (of type 1 or type 2) in the infinite line in
which the starting point is 0 and the first direction is positive. Hence the swing s1 ends
in point b1 = s1. Let a1 = 0. Let ai and bi, for i > 1, be the left and right endpoints of
swing si. Let ak+1 be the left endpoint of the infinite swing of a type 2 algorithm, if the
direction of this infinite swing is positive.

Theorem 4.3 For any FTSS algorithm for a line of unknown size with at most one fault
there exist arbitrarily large integers n such that for some starting point inside the line of
length n there exists an adversary that forces the head to perform at least 4n− 3 steps.

Proof: Fix a FTSS algorithm A. Take an arbitrary threshold n0. We have to show
an n > n0 such that A performs at least 4n − 3 steps for some adversary, on the line
of length n. First suppose that A is of type 1 and let (s1, t1, s2, t2, . . .) be the infinite
sequence coding its first part. Let ai and bi, for i ≥ 1, be the left and right endpoints of
swing si. The set of integers {ai, bi : i > 1} cannot be contained in a finite interval, for
otherwise the algorithm would be incorrect. Hence either the sequence (a1, a2, . . .) does
not contain the smallest number or the sequence (b1, b2, . . .) does not contain the largest
number. Consider three cases.

Case 1. The sequence (a1, a2, . . .) does not contain the smallest number and the sequence
(b1, b2, . . .) does not contain the largest number.

We define the following infinite sequences (a′
1, a

′
2, . . .) and (b′1, b

′
2, . . .) by induction. Let

a′
1 = a1 = 0. Let j be the smallest index such that aj < a′

1. Define b′1 to be the largest
integer among b1, . . . , bj−1. Suppose that a′

1, . . . , a
′
k−1 and b′1, . . . , b

′
k−1 are already defined

and let r and s be the smallest indices such that a′
k−1 = ar and b′k−1 = bs. Suppose that

s ≥ r. Let t be the smallest index such that bt > bs. Define a′
k to be the smallest integer

among as+1, as+2, . . . , at. Let z be the smallest index among s + 1, s + 2, . . . , t such that
a′

k = az. Let m be the smallest index such that am < a′
k. Define b′k to be the largest

integer among bz, bz+1, . . . , bm−1. Let x be the smallest index among z, z + 1, . . . ,m − 1,
such that b′k = bx. We have x ≥ z, hence the inductive construction is completed (cf. Fig.
??).
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a1 = a′
1
0

b′1 = bs

aj

a2 = a′
2

bt

b′2
am

Figure 3: The construction of the sequences (a′
i), (b′i) in the proof of Theorem ??, (case

1).

By construction, the sequences (a′
1, a

′
2, . . .) and (b′1, b

′
2, . . .) have the following properties.

• the sequence (a′
1, a

′
2, . . .) is strictly decreasing;

• the sequence (b′1, b
′
2, . . .) is strictly increasing;

• in the fault-free execution of the algorithm in the line segment I = [a′
v − 1, b′v + 1],

the head does not hit a wall between reaching point a′
v and point b′v for the first

time.

Let v > 2 be such that b′v − a′
v > n0. Consider the line segment I = [a′

v − 1, b′v + 1]. Let
n = b′v − a′

v + 2 be its length. Before reaching point a′
v for the first time, the head does

not hit a wall and performs at least 3 steps. After reaching point a′
v it reaches point b′v

without hitting a wall and subsequently hits the wall for the first time. By construction,
this must be the left wall. Hence by the time of first hitting a wall the head performs at
least 3 + (n− 2) + (n− 1) = 2n steps (and the line is not yet fully explored). Hence the
head must still perform a walk to a distance n from the left wall without hitting a wall
during this walk. Now the adversary places the fault in the first point of this walk when
the head is at distance n/2 (resp. (n − 1)/2) from the left wall, if n is even (resp. odd).
Hence, at least n − 1 steps after hitting the left wall for the first time, the head hits the
left wall again. Since the interval I is still not fully explored, n more steps are needed,
for a total of at least 2n + (n− 1) + n = 4n− 1 > 4n− 3 steps, in this case.

Case 2. The sequence (a1, a2, . . .) contains the smallest number and the sequence (b1, b2, . . .)
does not contain the largest number.

Subcase 2.1. There exist arbitrarily large integers m such that for all j larger than some
index i(m) we have aj > m.
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Take such an integer m >max(n0, a2) and let i(m) be the smallest index such that for all
j > i(m) we have aj > m. Let a be the smallest number among a1, . . . ai(m) and let b be
the largest number among b1, . . . bi(m)−1. Consider the line segment I = [a − 1, b + 1] or
I = [a−2, b+1], whichever is of even length. Let n be equal to this length. Hence n is an
even integer larger than n0. The rest of the argument is carried out for I = [a− 1, b + 1].
The other case is similar. Denote x = m− a + 1 and y = b + 1−m. Hence n = x + y.

The swing si(m) contains the point m. The adversary places the fault during swing si(m)

in this point. Since the sequence (b1, b2, . . .) does not contain the largest number and in
view of the placement of the fault, the first time the head hits a wall, it will be the left
wall. Since the head started at 0 and before the encounter of the fault it has changed
direction at points a and b, the number of steps until hitting the wall is at least 2n− 3.

Take c < a so small that x + z ≥ 2(n − 1), where z = m − c. At the moment of hitting
the left wall in the line segment I in the way described above, the situation from the
point of view of the head is identical as if there were no fault but the segment were
J = [c, 2m − a + 1] and the wall hit were the right one (at point 2m − a + 1). In this
second scenario a part of the segment J has not been visited yet, and the adversary is
left with a fault. Hence in this scenario the head must still hit the opposite wall and
hence make a walk at distance at least n without hitting a wall in the meantime. Now
the adversary places the fault when the head first gets at distance n/2 from the right
wall during this walk (recall that n is even). This results in hitting the right wall again
after n steps. The same is true in the first scenario where the head will hit the right
wall (and in this scenario the segment I is fully explored). However now the situation
is again identical in both scenarios and in the second scenario the segment J is not yet
fully explored. Hence another walk at distance at least n is needed for the algorithm to
be correct in this case. Since the head is in the same situation in both scenarios, it must
walk again at distance n from the wall in the first scenario as well (thus performing at
least n more steps). This implies that (in the first scenario) it must perform a total of at
least (2n− 3) + 2n = 4n− 3 steps.

Subcase 2.2. There exists an integer m0 such that for all m ≥ m0 we have ai ≤ m for
infinitely many indices i.

Take m >max(m0, n0). Let c be the smallest number in the sequence (a1, a2, . . .). Let i
be such that:
1. ai ≤ m;
2. the sum of lengths of swings sj and tj for j < i exceeds 2(m− c + 2);
3. bj > m for some j < i.

Let b be the largest integer among bj for j < i. Let k > i be such that ak ≤ m and
bj > b for some j < k. Let d be the largest integer among b1, b2, . . . bk−1. Consider the
line segment I = [c− 1, d + 1] and let n be its length. Since d > m, we have n > n0. The
sum of lengths of swings sj and tj, for i ≤ j < k, is at least 2(d−m). The sum of lengths
of swings sj and tj, for j < i, exceeds 2(m− c+2). Hence the number of steps performed
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till the end of swing tk−1 is at least 2n and this is before the first hit of a wall. Hence the
number of steps until hitting a wall for the first time is also at least 2n.

Now an argument analogous to that in Case 1 shows that the head must perform at least
(n−1)+n steps after hitting a wall for the first time, for a total of at least 4n−1 > 4n−3
steps, in this case.

Case 3. The sequence (b1, b2, . . .) contains the smallest number and the sequence (a1, a2, . . .)
does not contain the largest number.

The argument is similar as in Case 2, hence we omit it.

This concludes the proof for type 1 algorithms. Now suppose that algorithm A is of type
2. We present the proof in the case when the infinite swing is in the positive direction.
The other case is similar. Fix a positive integer n0. Let (s1, t1, s2, t2, . . . , sk, tk) be the
sequence coding the first part of algorithm A. Let ai and bi, for i ≥ 1, be the left and
right endpoint of swing si. Let a be the smallest among integers a1, a2, . . . , ak, ak+1 and
let b′ be the largest among integers n0, b1, b2, . . . , bk. If b′ − a is even, let b = b′, otherwise
let b = b′ + 1. Consider the line segment I = [a− 1, b + 1]. Let n be equal to this length.
Hence n is an even integer larger than n0. The adversary places the first fault during the
infinite swing in point b. The first time the head hits the wall, it will be the left wall,
after at least 2n− 3 steps. It remains to show that 2n more steps are required. The proof
is similar as in Subcase 2.1 for type 1 algorithms, hence we omit it. �

We now turn attention to the case when the head starts at a wall. Suppose, without loss
of generality, that this is the left wall. Fix any FTSS algorithm A and consider the part
of its execution until a wall is hit for the first time. This part can be again coded in one
of the two ways described previously. We keep the same notation and terminology and
define the two types of algorithms similarly as before. In particular, the left wall at which
the head starts is the point 0. Now the infinite swing of a type 2 algorithm must be in
the positive direction. For the case of start at a wall we have the following lower bound
which again matches the performance of Algorithm Unknown for k = 1.

Theorem 4.4 For any FTSS algorithm for a line of unknown size with at most one fault
there exist arbitrarily large integers n such that if the head starts at a wall of a line of
length n then there exists an adversary that forces the head to perform at least 3n − 2
steps.

Proof: Fix a FTSS algorithm A. Take an arbitrary threshold n0. We have to show
an n > n0 such that A performs at least 3n − 2 steps for some adversary, on the line
of length n. First suppose that A is of type 1 and let (s1, t1, s2, t2, . . .) be the infinite
sequence coding its first part. Let ai and bi, for i ≥ 1, be the left and right endpoints
of swing si. The sequence of integers {bi : i > 1} must be unbounded, for otherwise the
algorithm would be incorrect. Consider two cases.
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Case 1. There exist arbitrarily large integers m such that for all j larger than some index
i(m) we have aj > m.

Take such an integer m > n0 and let i(m) be the smallest index such that for all j > i(m)
we have aj > m. Let b be the largest number among b1, . . . bi(m)−1. Consider the line
segment I = [0, b + 1]. Let n = b + 1 be its length. The swing si(m) contains the point
m. The adversary places the fault during swing si(m) in this point. Since the sequence
(b1, b2, . . .) does not contain the largest number and in view of the placement of the fault,
the first time the head hits a wall, it will be the left wall. The number of steps until
hitting the wall is at least 2n − 2. n more steps are necessary to explore the entire line,
for a total of 3n− 2 steps.

Case 2. There exists an integer m0 such that for all m ≥ m0 we have ai ≤ m for infinitely
many indices i.

Take m >max(m0, n0). Let i be such that:
1. ai ≤ m;
2. the sum of lengths of swings sj and tj for j < i exceeds 3m + 2;
3. bj > m for some j < i.

Let b be the largest integer among bj, for j < i. Let k > i be such that ak ≤ m and
bj > b, for some j < k. Let d be the largest integer among b1, b2, . . . bk−1. Consider the
line segment I = [0, d + 1] and let n = d + 1 be its length. Since d > m, we have n > n0.
The sum of lengths of swings sj and tj, for i ≤ j < k, is at least 2(d − m). The sum
of lengths of swings sj and tj, for j < i, exceeds 3m + 2. Hence the number of steps
performed till the end of swing tk−1 is at least 2n + m and this is before the first hit of
a wall. The head is now at distance at least n − m from the right wall and this wall has
not been hit yet. Hence the total number of steps needed to explore the entire line is at
least 3n is this case.

This concludes the proof for type 1 algorithms. Now suppose that algorithm A is of type
2. Fix a positive integer n0. Let (s1, t1, s2, t2, . . . , sk, tk) be the sequence coding the first
part of algorithm A. Let ai and bi, for i ≥ 1, be the left and right endpoint of swing si. Let
b be the largest among integers n0, b1, b2, . . . , bk. Consider the line segment I = [0, b + 1].
Let n = b + 1 be its length. The adversary places the first fault during the infinite swing
in point b. The first time the head hits a wall, it will be the left wall, after at least 2n− 2
steps. n more steps are necessary to explore the entire line, for a total of 3n− 2 steps.

�

4.3 An alternative algorithm

Theorems ?? and ?? show that Algorithm Unknown cannot be improved for k = 1 fault
and all (unknown) sizes n of the line. It is natural to ask if the lower bounds from Section
4.2 generalize to an arbitrary number of faults. In other words, is Algorithm Unknown
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(asymptotically) optimal for arbitrary k and n? We now show that this is not the case.
For large k and n, the cost of Algorithm Unknown is asymptotically 2kn. More precisely,
it is 2kn+o(kn), when both k and n are unbounded. The upper bound on this complexity
was shown in Theorem ??, and the lower bound is easily shown by an adversary that puts
a fault one step before the wall in each execution of the repeat loop.

In what follows we present an algorithm working for arbitrary k and arbitrary unknown
n, which for infinitely many n has cost kn + o(kn). This is approximately half of the cost
of Algorithm Unknown and it is asymptotically optimal, in view of our lower bounds
from Theorems ?? and ??, which hold even for known n.

The idea of the algorithm is the following. First we choose an infinite sequence of num-
bers (ni : i = 1, 2, . . .), for which the algorithm will work efficiently. Many such sequences
are possible: it is enough if their terms are odd and grow sufficiently fast. To fix atten-
tion and simplify analysis we define them as follows: n1 = 3 and ni+1 = 2(3k+2)ni + 1.
The algorithm first “guesses” that the length of the line is n1 and executes procedures
probe(n1). If the guess was correct it detects this fact and stops. Otherwise it executes
procedure terminate(n1). The aim of this procedure is to stop the algorithm after the
first guess which exceeds the actual length of the line. If the algorithm did not stop
after terminate(n1), it guesses that the length of the line is n2 and executes procedure
probe(n2) and possibly procedure terminate(n2). This continues until the first guess
larger or equal than the actual length of the line. Then the algorithm stops. For any
length for which a guess was correct, i.e., for any length ni, the algorithm detects the
correctness of the guess and stops after executing procedure probe(ni), before calling
terminate(ni). At this point the line is explored, if it is indeed of size ni. We will prove
that the number of steps for these lengths of the line is kni + o(kni). We will also prove
that the algorithm is correct for all other lengths, although then it is not as efficient.
Nevertheless, for all other lengths n its cost is still O(kn).

The precise description of the two procedures is the following.
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procedure probe(n)

was− at− wall := 0; halt := 0
if inside then count := k + 3
else (count := k + 2, was− at− wall := 1)
repeat count times

if inside then
go-straight until (nohit(n− 1) OR hit)

else /* at-wall */
was− at− wall := 1
go-straight until (nohit(n) OR hit)

if was− at− wall = 1 and at-wall then
x := the number of steps in last round
if (last round started inside and x even) then halt := 1
if (last round started at wall and x odd) then halt := 1

reverse direction
end

procedure terminate(n)

repeat 3k + 2 times
go-straight until (nohit(n) OR hit)
reverse direction

if there were at least k + 1 rounds starting and ending at a wall
then

halt := 1
end

Now our algorithm can be succinctly formulated as follows.

Algorithm guess-and-probe

i := 0; halt := 0
while halt = 0 do

i := i + 1
probe(ni)
if halt = 0 then terminate(ni)

end

Before proceeding to the analysis of our algorithm we explain the meaning of the variables
used in our procedures. was − at − wall is a flag that is set to 1 at the first time when
the head is at a wall and it is never changed subsequently. halt can be set to 1 in both
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procedures and its role is to stop the algorithm as soon as it is certain that the entire line
has been explored. It is set to 1 in procedure probe when the head was previously at a
wall, then it hits the wall again and the last round either started inside and had an even
number of steps or started at a wall and had an odd number of steps. halt can be also set
to 1 in procedure terminate when there were at least k + 1 rounds starting and ending
at a wall.

We first show that the algorithm never stops prematurely, regardless of the length of the
line.

Lemma 4.1 For any length of the line, when Algorithm guess-and-probe stops then
the entire line is explored.

Proof: The algorithm stops after the first call of procedure probe(ni) or procedure
terminate(ni) in which the variable halt is set to 1. Consider two cases.

Case 1. halt is first set to 1 in procedure probe(ni).

This happens when the head was previously at a wall then it hits the wall again and the
last round either started inside and had an even number of steps or started at a wall and
had an odd number of steps. We first show that at this point the entire line is explored.
Consider the execution of the procedure since the previous hit of a wall. Without loss of
generality assume that it was wall L. Now the head is again at a wall.

First assume that the last round started inside and had an even number of steps. The
sequence of rounds between the start from wall L and the present hit was the following:
a sequence of rounds ending inside the line followed by the last round hitting a wall. The
cumulative number of steps in the sequence of rounds ending inside the line is odd: the
first round has ni steps, the following ones have ni − 1 steps, and ni is odd. Hence the
distance of the head from wall L after each of these rounds is odd as well. Since the last
round has an even number of steps, the distance of the head from L after this round is
also odd, hence it cannot be 0. It follows that now the head cannot be at wall L. Hence
it is at wall R and the exploration is completed.

Next assume that the last round started at a wall and had an odd number of steps. At
the end of this round the head must be at an odd distance from the wall where it started.
Since it is now at a wall, this cannot be the wall at which it started. Hence it must be
the other wall and the line is explored.

Case 2. halt is first set to 1 in procedure terminate(ni).

This means that there were at least k+1 rounds starting and ending at a wall. At most k
of them could contain a fault, hence at least one of them is correct. During such a round,
the head must go from one wall to the other and hence must explore the entire line. �

We now analyze the algorithm in the case when the length of the line is ni, i.e., when one
of the guesses is correct.
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Lemma 4.2 If the length of the line is ni, for some i > 0, then Algorithm guess-and-
probe stops after executing procedure probe(ni) and the line is explored.

Proof: Lemma ?? implies that when Algorithm guess-and-probe stops, the line is
completely explored. It remains to prove that this will happen after executing procedure
probe(ni). Define a phase to be a sequence of rounds between two consecutive hits of a
wall. Hence a phase is composed of a sequence of rounds ending inside the line and a last
round that hits a wall.

Claim. In every phase of r rounds in which halt is not set to 1 there are at least r faults.

First notice that if r = 1 then there is one round in the phase which starts and ends
at a wall. If this round has less than r faults, i.e., if it is correct then it has exactly ni

steps and halt is set to 1, because ni is odd. Hence the claim holds for r = 1. Assume
that r > 1. In order to prove the claim observe that every round that terminates inside
the line must contain at least one fault. Hence if the claim is false then each of the first
r−1 rounds of the phase must contain exactly 1 fault and the last round must be correct.
Suppose (without loss of generality) that the phase starts at wall L. Then the direction
at the beginning of each round must be from L to R. However (as observed in the proof of
Lemma ??) at the beginning of the last round of the phase the head is at an odd distance
from L, hence at an even distance from R. Therefore the number of steps in the last
phase is even and hence halt is set to 1, contrary to the assumption. This contradiction
proves the claim.

Now consider two cases.

Case 1. The head starts at a wall.

If halt is not set to 1 after the first k rounds then the adversary must have used all the
faults, in view of the proof of the claim. Hence the (k + 1)th round must be correct and
hence the head must hit a wall. Now the (k + 2)th round must be also correct and hence
the head will hit the other wall after exactly ni steps, causing the variable halt to be set
to 1 and the algorithm to stop.

Case 2. The head starts inside the line.

Suppose that there are t rounds before hitting a wall for the first time. Each of the first
t−1 of them terminates inside the line and hence must contain at least one fault. Suppose
that halt is not set to 1 after the first k + 1 rounds. Then the adversary must have used
all the faults, in view of the claim. Similarly as in Case 1, the (k + 2)th round must be
correct and hence the head must hit a wall. Now the (k +3)th round must be also correct
and hence the head will hit the other wall after exactly ni steps, causing the variable halt
to be set to 1 and the algorithm to stop.

It follows that if the line has length ni then Algorithm guess-and-probe always stops
after executing procedure probe(ni) and that the line is then explored. �
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Our next lemma establishes the complexity of Algorithm guess-and-probe for lines of
any length ni.

Lemma 4.3 If the length of the line is ni, for some i > 0, then Algorithm guess-and-
probe uses kni + o(kni) steps.

Proof: If the length of the line is ni, the algorithm executes procedure probe(nj) for
j ≤ i and procedure terminate(nj) for j < i . Procedure probe(nj) has at most
k + 3 rounds of length at most nj, hence it uses at most (k + 3)nj steps. Procedure
terminate(nj) has 3k + 2 rounds of length at most nj, hence it uses at most (3k + 2)nj

steps. Since ni = 2(3k+2)ni−1 + 1, all calls for j < i use a total of O(log(kni)) steps. It
follows that the entire algorithm uses at most (k + 3)ni + O(log(kni)) = kni + o(kni)
steps. �

It remains to show that Algorithm guess-and-probe is always correct, although possibly
less efficient than for lengths ni. In particular we have to show that the algorithm always
stops.

Lemma 4.4 Algorithm guess-and-probe correctly explores a line of any length n and
uses O(kn) steps.

Proof: Fix any length n of the line. Let m be the smallest ni such that m ≥ n and let
j = i−1. We first show that the algorithm stops (at the latest) after executing procedure
terminate(m). Since m ≥ n, every round of procedure terminate(m) that ends inside
the line must contain at least one fault. Hence there are at most 2k+1 rounds in procedure
terminate(m) that do not start and end at a wall. It follows that there are at least
k+1 rounds that start and end at a wall, and consequently Algorithm guess-and-probe
stops after executing procedure terminate(m), unless it stopped before.

We now estimate the number of steps used until the end of procedure terminate(m).
All calls of procedures probe(nt) and terminate(nt), for t < j, take O(log(kn)) steps.
All rounds in procedures probe(nj) and terminate(nj) are of length at most nj < n
and there are O(k) of them, hence procedures probe(nj) and terminate(nj) use O(kn)
steps. It remains to consider procedures probe(m) and terminate(m). Each correct
round in these procedures uses at most n steps and each fault can increase a round by
at most n steps. Since there are O(k) rounds in both these procedures, it follows that
the total number od steps in both of them is O(kn). Hence the entire cost of Algorithm
guess-and-probe is O(kn). �

We have proved the following result.

Theorem 4.5 Algorithm guess-and-probe correctly explores a line of any length n,
with at most k faults. For every n it uses O(kn) steps and for infinitely many n it uses
kn + o(kn) steps, which is asymptotically optimal.
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5 Conclusion

We considered fault-tolerant aspects of the fundamental problem of sequential scan, where
a line of identical objects has to be explored in spite of adversarial faults affecting moves
of the exploring mobile entity. We established optimal cost of fault-tolerant sequential
scan for a line of known size and partially solved the problem for unknown size. It remains
open if there exists a sequential scan algorithm for a line of unknown size n and at most
k faults, which has cost kn + o(kn), for all k and n. Our conjecture is no, i.e., we think
that the leading factor 2 in Theorem ?? cannot be removed.

Viewed from the point of view of applications to network exploration, our study opens
the area of fault-tolerant exploration by a mobile entity in which faults concern moves
of the entity, rather than the environment. In particular, it would be interesting to
investigate optimal fault-tolerant graph exploration algorithms for labeled graphs. Either
nodes or ports of the underlying graph can be labeled and the mobile entity (agent) can
perceive these labels. This capability would add a lot of power to exploration algorithms,
as the agent could memorize its“trace” and compare it to the currently read label, thus
potentially becoming aware of a fault earlier than in an anonymous scenario. Even for the
line, the ability to perceive and memorize labels would probably yield significant changes
in performance, compared to our present model.

Acknowledgments. Thanks are due to the anonymous referees whose detailed remarks
enabled us to remove some errors and improve the readability of the paper.
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