Tell Me Who | Am:
An Interactive Recommendation System

EXTENDED ABSTRACT

Noga Alort Baruch Awerbuch Yossi Azaf Boaz Patt-Sharriir
May 27, 2006

Abstract

We consider a model of recommendation systems, where each member from a giveplagéisthas a
binary preference to each element in a given sethpécts intuitively, each player either likes or dislikes each
object. However, the players do not know their preferences. To find his preference of an object, a player may
probeit, but each probe incurs unit cost. The goal of the players is to learn their complete preference vector
(approximately) while incurring minimal cost. This is possible if many players have similar preference vectors:
such a set of players with similar “taste” may split the cost of probing all objects among them, and share the
results of their probes by posting them on a pubilithoard. The problem is that players do not know a priori
whose taste is close to theirs. In this paper we present a distributed randomized peer-to-peer algorithm in which
each player outputs a vector which is close to the best possible approximation of the player’s real preference
vector after a polylogarithmic number of rounds. constraint. The algorithm works under adversarial preferences.
Previous algorithms either made severely limiting assumptions on the structure of the preference vectors, or had
polynomial overhead.

*Schools of Mathematics and Computer Science, Tel Aviv University, Tel Aviv 69978, Israel and IAS, Princeton, NJ 08540, USA.
Email: nogaa@tau.ac.il. Research supported in part by the Israel Science Foundation and by the Von Neumann Fund.

fDept. of Computer Science, Johns Hopkins University. Email: baruch@cs.jhu.edu. Supported by NSF grant ANIR-0240551 and NSF
grant CCR-0311795.

tSchool of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. Email: azar@tau.ac.il. Research supported in part by the
German-Israeli Foundation and by the Israel Science Foundation.

§School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel. Email: boaz@eng.tau.ac.il. Supported in part by Israel
Ministry of Science and Technology and by the Israel Science Foundation.

1 Introduction

Information fusion, recommendation systems, belief propagation networks, collaborative filtering, distributed
agent learning are all classical subfields of Computer Science and Atrtificial Intelligence. These sub-fields attemp
to improve efficiency of multiple agents (human or mechanical), which are trying to leverage past experience of
others in spite of significant diversity or uncertainty in their perception of the world. There are many reasons for
such diversity, e.g., people may have different taste (for books, movies, food, etc.), sensors may experience diffe
ent reception due to different location, some eBay users may be dishonest, links on websites of different companie
point to different suppliers preferred by these companies, etc. Even when no inherent diversity appears to exis
various time-variable factors (such as noise, weather, mood) may create diversity as a side effect.

There is a tremendous amount of work in Al and CS on modeling such diversity (e.g., [10, 16, 13]); in fact,
some conferences are dedicated exclusively to this topic. Intuitively, it seems that arbitrary diversity is unman-
ageable, and strong assumption need to be made in order come up with algorithms algorithmic tools. All existing
approaches restrict diversity somehow, e.g., by assuming that user profiles are a linear combination of a few “me
jor types.” These assumptions are hard to justify, but superficially they appear unavoidable. In this paper, perhag
counter-intuitively, we present novel algorithmic tools that show that effective (near optimal) collaboration by
cooperative agents is possible even with unrestricted diversity.

Many commercial systems (e.g., Amazon, eBay, Epinion) are based on explicit or implicit notion of trust and
user preferences. Such preferences may be represented by a matrix where rows represent agents, and columns
resent objects. Each entfl j) represents the (unknown) opinion of ageabout objecyj. One of the fundamental
tasks of a recommendation system (e.g., an advertiser like Google) is to reconstruct the full matrix.

The challenge in these systems is how to take advantage of the existence of users with related opinions: Ir
tuitively, a set of users with similar preferences should be able to collaborate, implicitly or explicitly, by sharing
the load of searching the object space and sharing the results of their probes. To facilitate information sharing, i
is assumed that the system maintains a shhilflbard, similar, for example, to the eBay ranking matrix, where
users post the results of their probes. The difficulty is that users do not know whose grades to adopt and the
tastes may differ to some degree even between potential collaborators. Below, we describe two basic models fi
recommendation systems: interactive and non-interactive.

Interactive recommendation system.In this model, the basic action available to algorithms is to reveal a grade
the algorithm chooses, but such an action incurs cost [6, 4]. Revealing a grade models the process of a user testi
a product, callegrobing For example, consider advertisement placement. Probing takes place each time the
advertiser provides a user with an ad for some product: if the user clicks on this ad, the appropriate matrix entry
is set to 1, and if the user does not click, it is set to 0. In any case, the matrix entry is revealed. The task is tc
reconstruct, for each user, his preference vector, namely his row in the matrix (e.g., so that the advertiser can leal
what type does the user belong to). We call such modehtmactiverecommendation system. We note that
that many other scenarios, for example tracking dynamic environment by unreliable sensors, or estimating Interne
latencies in a peer-to-peer networks [1] fall under this “interactive” framework.

Non-interactive recommendation systemThis model received much attention, e.g., [12, 11]. Intuitively, while

the essence of algorithms for the interactive modabi to samplethe essence of algorithms for non-interactive
model ishow to interpretprior sampling. Some assumptions must be made about the known samples in the non-
interactive model (on top of the assumptions about the preferences). Typically, it is assumed that the matrix i
generated by a low-entropy random process, and that the given probe results are generated by some probabil
distribution which reflects the users’ preferences.

1.1 Problem and Statement of Results

In this paper we focus on the interactive model, and present a solution with polylogarithmic cost to interactive
recommendation systems that finds all preferences with precision comparable to the best possible for the give

probing budget, while makingo assumptionen user preferences. To date, the best known algorithm in this case
had polynomial overhead.

Statement of the problem. There aren playersandm objects each player has an unknown 0/1 grade for each
object. The algorithm proceeds in parallel rounds: in each round, each player reads the shared billboard, probe
one object, and writes the result on the billboard. The task of the algorithm is for each player to output a vector
as close as possible to that player’s original preference vector (under the Hamming distance metric). We formaliz
the problem as implementing the following input-output relation.

Definition 1.1 (Problem FIND_PREFERENCE$ Letdist(x,y) denote the Hamming distance betweesndy.

Input: A setP of n players and a vecton(p) € {0,1}™ for each playemp.
Output: Each playerp outputs an estimate(p) € {0, 1} minimizingdist(w(p), v(p)).

We note that vectos(p) can be accessed only by playebutw(p) is accessible to all players.

Evaluating the algorithms. Intuitively, our goal is as follows. Call a set of players with similar pereferences a vir-
tual community (for some measure of similarity). We would like to show that even in the worst case, players who
are members of a sufficiency large virtual community need only a small number of samples to reconstruct (approx
imately) all their preferences. Obviously, the larger is the community we are considering, the more leverage we ge
from other members of that community, and thus preference reconstruction for this community is faster. On the
other hand, the larger is the community, the larger are internal disagreements between members of the communi
and the larger is the error. Our approach is that the probing budget defines the size of the community.For exampls
linear probing budget means that the player can “go it alone,” and constant (or poly-logarithmic) probing budget
means that the player must leverage probes of a large community. Naturally, it is best to pick the tightest (smalles
radius) community of the required size. This could have been easily accomplished if each player had access to ¢
oracle that produces a list of players in decreasing similarity of taste, but building such an oracle is, essentially
the task we wish to accomplish. In fact, our algorithm can continuously reconstructs all such sub-communities in
parallel, refining clusterings on-the-fly, as time goes on and probing budget is increasing.

What is the best possible output for a given probing budget, i.e., number of probing rounds? Consider first ar
ideal situation: If all players haulentical preference vectors, then by dividing the workload equally, all of them
can output perfect results ®(m /n) time units. More generally, if the disparity (i.e., Hamming distance) between
all preferences vectors were bounded by some known \aluiaen it can be shown that the players can output
a vector withO(D) errors withinO(m/n) time, and then reach full accuracy after timerof The latter case
corresponds to the following scenario. There exists a subset of pl&yesEcardinalityn* and internal disparity
d*. Imagine that these players are perfectly coordinated (in particular, each of them knows the identities of all
members in the set), and their common goal is to find their preference vectors as efficiently as possible. The be:
one could hope for in general is that they can reach disparity df) within 7 = m /n* rounds. This consideration
leads us to define the following concept. Given a time bourahd a set of playerB*, we define theset stretclof
P* as the ratio between the maximal current inaccuracy of a playef #gnd the diameter of the set of preference
vectors ofP* (using the Hamming distance measure).

More formally, given vectors of equal length, léist(x,y) denote the number of coordinates they differ in
(i.e., the Hamming distance between them). Recall that for a playefp) denotes his input vector and(p)
denotes his output vector. Now, for an arbitrary sulidetc P, define

D(P*) = max{dist(v(p),v(q)) | p,q € P*} diameter of the set
ALPY) ¥ max {dist(w'(p),v(p)) | p € P*} input-output discrepancy
plpry 2 ((]ff)) set stretch

Using the definition of stretch, we state our result.

Theorem 1.1 (Main result) Suppose thatn = Q(n). Let P* be any set of players witiP*| = Q(n). Then
there exists a distributed algorithm such that with probability n =", afterlog®™) n rounds the output of each
player in P* has constant stretch, i.eo(P*) = O(1).

Intuitively, we show that users can predict their preferences for objects they never tried, with confidence that
grows with the number of probes executed. The absolute quality of the results depends on how esoteric are tf
preferences of the user, but constant relative quality can be attained in polylogarithmic time. We note that previou:
results either made strong assumptions about the input, or forced polynomial cost on all or some users.

Our techniques and paper organization.We present our solution in increasing order of complexity.

Algorithm ZERO_RADIUS, described in Section 3.1, solves the problem for the special case of communities
of users with identical preferences. This algorithm and its proof are quite simple; it is a modification of work
published in [3]. In Section 4 we present Algorithnrm&LL _RADIUS, which uses ERO_.RADIUS as a subrou-
tine. Algorithm SvALL _RADIUS works for any distribution of the preference vectors, but the probing cost in
SMALL _RADIUS is polynomial in the diameter of the collaborating set. This property makes.S_RADIUS
suitable for the case where many users have close preferences. We note that straightforward recursion does r
work, because (similarly to metric embedding problems) the error grows exponentially with the depth of the re-
cursion. The crux to the efficiency of this algorithm is a non-trivial combinatorial result that we prove in Lemma
4.1. In Section 5, we present AlgorithhnanRGE_RADIUS, which uses both 8ALL _RADIUS and ZERO_RADIUS
as subroutines, and brings down probing cost to poly-logarithmic in the diameter of the collaborating set. It re-
duces general instances to the zero- and low-diameter case, by first partitioning the object set and then clusterir
the subsets. All the above algorithms assume that the size and diameter of the collaborating set are known; th
assumption is removed in Section 6. Some related work is surveyed in Section 2, and the high-level algorithm witk
some basic building blocks are described in Section 3.

2 Related work

Interactive model. Our paper essentially generalizes and improves much of the vast amount of the existing
work on multi-agent learning and interactive collaborative filtering. The first algorithmic theory approach is due
to Drineas et al. [6], who defined the model we use in this paper. The goal in [6] is to provide a single good
recommendation to each user, but the algorithm in fact reproduces the complete preferences of most users. TI
basic idea is to adapt the SVD technique to the competitive model; this adaptation comes at the price of assumin
further restrictions on the preference vectors. Specifically, in addition to assuming the existence of a big gar
between two consecutive singular values of the preference matrix (which is inherent to the SVD technique), the
algorithm of [6] requires that the preference vectors of users belonging to different types are nearly orthogonal
and that the allowed noise is tiny: each preference vector is obtained by its corresponding canonical vector plu
a random noise, which is a vector of independent random variables withmean and)(1/(m + n)) variance.
Recently, it has been shown that the problem of finding a good object for each user can be solved by very simpl
combinatorial algorithms without any restriction on the preference vectors [4]: for anf sétusers with a
common object they all like, onl (m +nlog | P|) probes are required overall until all usersirwill find a good

object (w.h.p.). The result closest to our work is [3], where algorithms are given for the case where many users
have identical preference vectors (see Section 3.1). We note that when the preference matrix is arbitrary, the ca
where user preferences may be concentrated in sets of positive diameter is much harder than dealing with sets
diametel0.

Non-interactive model. The effectiveness of provable algorithms in the non-interactive model relies on the (usu-

ally, implicit) assumption that most user preference vectors can be approximated by a low-rank matrix; basically,
this assumption means that there are a few (say, constant) “canonical” preference vectors such that most user pr
erence vectors are linear combinations of the canonical vectors. Under this assumption, algebraic or clusterin

techniques can reconstruct most preference vectors with relatively few errors, based on the scarce available date

Specifically, there are systems that use principal component analysis [7] or singular value decomposition (SVD
[15]. Papadimitriou et al. [14], and Azar et al. [5] rigorously prove conditions under which SVD is effective. It
turns out that SVD works well when there exists a very significant gap betweéitttlzand the(k + 1)st largest
singular values, wherk is the number of canonical vectors in the underlying generative model.

Other generative processes that were considered in the passive model include simple Markov chain mode
[12, 11], where users randomly select their “type,” and each type is a probability distribution over the objects.

Worst-case (non-stochastic) input is considered in the works by Goldman et al. [8], [9] where, the algorithm is
requested to learn a relation represented as a 0/1 matrix. In a basic step, the algoritpmedicithe value of an
entry in the matrix; then that entry is revealed, and the algorithm is charged one unit if the prediction was wrong.
By contrast, our model we require that prediction becomes perfect after small number number of errors.

Our model charges one unit every time a grade is revealed; moreover, a prediction algorithm gets to know the
true answer regardless of whether the prediction is correct, while in our model, most estimate are never expose
Assuming random sampling pattern and this (much weaker) performance measure, the algorithms in [8], [9] still
suffer frompolynomialoverhead (which might be best possible under the circumstances) even in the simple “noise-
free” case where all the players in a large (constant fraction) community are identical.

3 The High-Level Algorithm and Basic Building Blocks

Simplifying assumptions and notation. Throughout the description of the algorithm, we shall consider #%et
of players with “similar taste.” Formally, we assume that there are two pararﬁ%ﬁ@rg a < landD > 0, such
that|P*| > an D(P*) < D. P*is called an(«, D)-typical sef and its members arey, D)-typical players or
justtypical, whena and D are clear from the context. In general, there may be multiple, overlapping typical sets
of typical players.

For the most part, we describe an algorithm that works with knavand D. This assumption is lifted in
Section 6. To simplify the description, we also assume, without loss of generalityptea®(n) (if m < n we
can add dummy objects, and when> n we can let each real player simuldte/m | players of the algorithm.)
If the assumption thalﬁf—” < « does not hold then the player is better off by just probing all objects on his own.

The main algorithm. Our solution consists of three algorithms, depending on value,&s specified in Fig. 1.
Algorithms ZERO_RADIUS, SMALL _RADIUS and LARGE_RADIUS are specified in Sections 3.1, 4 and 5, resp.

(1) If D = 0 apply procedure ZRO_RADIUS with all players and all objects, using known
(2) If D =0(logn)) apply procedure BALL _RADIUS with all players and all objects, using known
(3) Otherwise (i.e.D > Q(logn)), apply procedure RRGE_RADIUS, using knowrny andD.

Figure 1:Main algorithm for knowr and D (see Section 6).

3.1 Exacttypes solution: Algorithm ZERO_RADIUS

Below we present, for completeness, an algorithm for the special cabe6f0, i.e., the case where typical
players completely agree on all coordinates. This task is carried out by AlgorifRo_RADIUS. The algorithm,
presented in Figure 2, is a slight generalization of an algorithm given in [3]. In the variant we use here, the
algorithm uses an abstraetobe subroutine that, when invoked by a playee P on an objecb € O, returns
the value ofo for p. Another slight generalization is that the set of allowed values for an object is not necessarily
binary. We explain later howrobe is implemented.

For this algorithm, and using Theorem 3.2, we have the following result (cf. [3]).

4

(1) If min(|P|,|O|) < 82" then invokeProbe for all objects inO, output their values, and return.

(2) (Otherwise) Partition randomliy = P’ U P” andO = O" U O”. Let P’ be the half that containsg
and letP” be the other half.

(3) Recursively execute&RO_RADIUS(P’, O’). (Upon returning, values for all objects @ were output
by all players inP’, and values for all objects i®” were output by all players if"”.)

(4) Scan the billboard. Lét be a set of vectors fap” such that each vector W is voted for by at least
«a/2 fraction of the players i?”. Compute 8LECT on V' with distance bound. Output the result
vector for all objects ifD” and return.

Figure 2:Algorithm ZERO_RADIUS executed by player. P is the set of players an@ is the set of objects.

Theorem 3.1 Suppose that there are at least players with identical value vectors, and that they all run Algo-
rithm ZERO_RADIUS. Then with probabilityl —»~*1) all of them output the correct vector, aft@(lo%) rounds
of executing procedur@robe (as usualn > n).

Proof Sketch (adapted from [3].) LeP’r denote the set of players with identical preference vectors. By Chernoff
(c.f., e.q., [2], Appendix A), in each invocation 0ERO_RADIUS with |P| > 85{% we have, with probability at

leastl — n~*(), that| P N Pr| > a|P|/2. Therefore, the correctness of the output follows from induction on the
level of recursion and the correctness of Algorithe 8cT. To bound the cost, we note that Step 1 is executed at

most once by each player, and its cos@%%) invocations ofProbe per player. Each other recursive call
of ZERO_RADIUS entails a call to SLECT with O(1/«) candidate vectors and distance bowndor a total cost

of O(1/«) invocations ofProbe by Theorem 3.2. Since the depth of the recur&dngs(gclnn/a) = O (logn),

we have that the total number of invocationdwbbe done in Step 4 by each player, throughout the execution of
the algorithm, i0 (IOg") 1

3.2 TheCHOOSECLOSESTproblem: Algorithm SELECT

In Algorithm ZERO_RADIUS and in many other places we use an algorithm solving a problem which can be
formulated as follows.

Definition 3.1 (Problem CHOOSE CLOSEST)
e Input: a setV of k vectors and a playep with preference vector(p).
e Output: a vectorw* € V such thatdist(w*, v(p)) < dist(w, v(p)) forall w € V.
The algorithm we describe below requires an additional input parameter:
¢ Additional input: A distance bound > 0 such that for some € V, dist(w, v(p)) < D.

Given D, this task can easily be implemented by playeat the cost of probing(2D + 1) coordinates; we
present a slightly more efficient algorithm in Figure 3. The algorithm uses the following notation.

Notation 3.2 For given vectors), v € {0,1,x}™, d(u,v) denotes the number of differing coordinates in which
bothu andv have entries that are net d; (v, u) % d(v|;, u|;) is the restriction off to the coordinate sef.

The algorithm uses the abstrdetobe action. Its properties are summarized in the following theorem (see
Appendix A for a proof).

(1) Repeat
(1a) LetX (V) be set of coordinates on which some two vector¥ idiffer.
(1b) ExecuteProbe on the first coordinate itX that has not been probed yet.
(1c) Remove fronl/ any vector with more tha® disagreements with(p).

Until all coordinates inX (V') are probed oX (V') is empty.

(2) LetY be the set of coordinates probedthroughout the algorithm. Find the set of vectdrsC V
closesttav(p) onY,i.e.,

U={veV|dy(v,v(p)) <dy(uvp) foralucv} .

Output the lexicographically first vector .

Figure 3:Algorithm SELECT using distance bounf), executed by player.

Theorem 3.2 If V' contains a vector at distance at mdstfrom v(p), then ProceduréSELECT outputs the lexi-
cographically first vector in/ among the vectors closest#@p). Moreover, the total number of tim&sobe is
invoked is never more thae(D + 1).

Remark: To ensure that the result oEBECTis completely defined by its input, we require tha&L . 8cT disregards
probes done before its execution.

4 Algorithm SmALL _RADIUS

In this sectoin we describe AlgorithmvaLL _RADIUS. We assume that and D are given, and the goal is that all
these players will output a vector which differs from their input vector by at g£2). The running time of the
algorithm is polynomial inD, and hence it is suitable only for smdM values (in the main algorithm, Algorithm
SMALL _RADIUS is invoked withD = O(log n)).

The algorithm proceeds by repeating the following prodésanes (we always sék’ = O(log n)): The object
setO is partitioned intas = O(D3/2) random parts denoted;, and all players run Algorithm ZRO_RADIUS on
eachO; object set (Step 1b). However, AlgorithmeZO_RADIUS is guaranteed to succeed only if there are
sufficiently many players that fully agree. To this end, we show that with constant probability, a random partition
of O will have, in all O; parts simultaneously, many (but not all) typical playkenty agreeing Therefore, one of
the K independent executions of the exact algorithm will succeed in all parts with probability at lea@st(<).
However, in each part there may be may typical players whose preferences are not shared by masyaatihers
and may therefore have arbitrary results in that part, because Theorem 3.1 does not apply in that case. To sol
this problem, in Step 1c we force each player to adopt, for eattte closest of the popular vectorsa@h. Then,
in Step 2, each player chooses the closest result among the vectors producel ibetfations. Since the typical
players differ on th& objects, they will not all choose the same vector in Step 1c; however, we prove that all their
chosen vectors lie withi® (D) distance from each other.

4.1 Analysis ofSMALL RADIUS

We now state the properties AlgorithnmM8LL _RADIUS. There are a few points which are not obvious. First,
in Step 1b we use Algorithm ZRo_RADIUS which is guaranteed to work only if there are at least/5 players
who completely agree on all objects. It turns out thatdoe= O(D?3/2), there is a constant probability that all
instances of ERO_RADIUS are successful in any given iteration. The following lemma proves this crucial fact in
more general terms.

(1) Foreacht € {1,...,K} do:
(1a) PartitionO randomly intos = O(D?3/2) disjoint subsets® = O; U Oy U - - - U O
(1b) Foreach € {1,..., s}: all players apply procedureER0_RADIUS to the objects 0D); using
parametery/5; let U; be the set of vectors s.t. each is output by at leasts players.
(1c) Each playep applies procedureeRECT to U; with distance bound, obtaining vector;(p) for
eachi € {1,...,s}. Letu!(p) denote the concatenationof(p) over alli.

(2) Each playep applies procedurees ECT with distance boundD to the vectors:!(p), . .., u’ (p)
computed in Step 1c and outputs the res(lp).

Figure 4:Algorithm SMALL _RADIUS. o and D are given,K is a confidence parameter.

Lemma 4.1 LetV be a set ofd/ binary vectors on a seb of coordinates, and suppose théit(v,v") < d for
anyv,v’ € V. LetO = O UOs U --- U O, be a random partition oD into s pairwise disjoint sets, where
each coordinatg € O is chosen, randomly and independently, to lie in a uniformly chékerCall the partition

successful if for every € {1,..., s} there is a seU; C V of size|U;| > M/5, and such that|o, = u'|o, for
3.5 73

all u,u € U;. Then, the probability that the partition is not successful is at mest— — . In particular, if
: S

6
s > 100d°/2 then this probability is smaller thah/2.

Proof: Let X be the random variable whose value is the number of ordetegles(i, vy, ve, vs, v4, v5), Where
1<i<s,v,...,v5€V,and

foreach 1 < j <k <5, the vectorsv;, v, differon O; QD

Forafixedi, 1 < i < s, and for fixed distinct vectors, . . . , v5 € V, the probability that the tuplg, v, v, vs, ..., v5)
satisfies (1) can be bounded as follows. Note, first, that there are at@wbst: 10d coordinates in which some
pair of the vectorsy; differ. In order to satisfy (1)(; has to contain at leastsuch coordinates (as, by the pi-
geonhole principle, at least two of the vectors will agree on each pair of coordinates). Therefore, the requirec

probability is at most
10d) 1 _ 10343
3)s3 6s3

By linearity of expectation, the expected valueXfsatisfies

10 103 M°d3

X) < sM° .
BE(X) <s 653 652

On the other hand, if there exists somsuch that no set a#//5 of the vectors completely agree 6h, then
the number of ordereSttuples of vectors, . . ., v5 so that each pair of them differs @p is at least

AM 3M 2M M 4! MP
)L/ A ——
5 5 5 5 54

It follows that if the partition is not successful, then the value of the random varilideat Ieasl‘“5—]){[5, and hence,
by Markov’s Inequality, the probability this happens does not exceed
40 M5 10355 a3
< —.
549 — 6! s2

E(X)/ 1

To deal with our case, let us first introduce the following standard notation.

7

Notation 4.1 Given a vectorv and a subsetS C O of coordinates, let)|s denote the projection of on S.
Similarly, letdist|s denote the Hamming distance applied to vectors projectefl.on

Lemma 4.1, applied to our setting wifti = an, implies the following immediate corollary.

Corollary 4.2 For s = ©(D?/?), the following holds with probability at leagt— 2~%(%) after the execution of
Step 1 of AlgorithnBMALL _RADIUS: there exists an iterationy € {1,..., K} in which for eachi € {1,...,s}
there exists a set of playe€s; C P* satisfying|G;| > an/5 andv(p)|o, = v(p')|o, for anyp,p’ € G;.

By the correctness condition of AlgorithmeRo_RADIUS, Corollary 4.2 implies that after Step 1b of Algo-
rithm SMALL _RADIUS, w.h.p., there exists an iteratiap such that for each € {1,..., s} there exists a vector
u?’ which is identical to the vector of all players in a €&t C P* with |G;| > an/5. However, theG;s may be
different for eachi. Moreover, note that it is possible to have more than one sijclor any given par);. In
Step 1c, the algorithm “stitches” a vectaf for O from theu! components for),;. We can now prove that in a
successful iteratiorgny vector produced in Step 1c by a typical player is closaltd®* players.

Lemma 4.3 Consider a partition0O1, ..., Os of O. Suppose that for eache {1, ..., s} there exists a vectai;
and a setG; C P* with |G;| > an/5 such thatv(p)|o, = u; for anyp € G;. Letu be any vector satisfying
ulo, =w; forall i € {1,...,s}. Thendisto(u,v(p)) < 5D for any playerp € P*.

Proof: Fix a value vectow™ of a player inP*. We count the sum of the distances from the vectors of the players
in P* to v* in two different ways. First, by the precondition of Algorithrm&LL _RADIUS,

Y disto(v(p),v*) < |P*[-D. 2
pEP*

On the other hand,

S

Z disto (v(p),v*) = Z Zdistoi(v(p),v*) Z Z disto, (u;, v*) (3)

pEP* peEP* i=1 i=1peG;

S P*
> Z |5| - disto, (us, v*) =
i=1

v

[P

-disto(u, v™) .

Combining Eq. (2) and Eq. (3), we obtain thatto (u, v*) < 5D. |
We can thus summarize the properties of AlgorithemSL _RADIUS as follows:

Theorem 4.4 Suppose that there exists a g&t of at leastan players such thadlist(v(p), v(p’)) < D for any
p,p’ € P*. Letw(p) be the output vector of playerc P* after running AlgorithmSMALL RADIUS. Then with
probability at leastl — 2~%), disto (v(p), w(p)) < 5D for everyp € P*. Furthermore, the total number of

probing rounds isD (gD?’/Q(D + log n)).

Proof: By Corollary 4.2, with probability at least — 2-(*) at least one of the iterations satisfies the premise of
Lemma 4.3. Using Theorem 3.2 (correctness BEICT), the correctness claim follows. Regarding complexity,
consider a single iteration of Step 1. In such an iteration, procedeR®@RADIUS is invokeds = O(D?3/?) times,
each time with alln users, and the total number of objects over all invocations in an iteration ik follows
from Theorem 3.1 that the total number of probing rounds spent in procedi®re RADIUS throughout a single
iteration of Step 1i©('°2™ D3/2). In addition, each iteration contaies= O(D?/2) applications of 8LECT, each
time with a boundD and at most(1/a) candidates, totaling(D5/2 /) probes in each iteration. Since Step 2
entails onlyO(K D) probes, the overall complexity is dominated by Step

(1) Partition randomly the objects intd / log n disjoint subset$), for 1 < ¢ < ¢D/logn. The partition
is done by assigning each object independently and uniformly to one of the object subsets.
Assign randomly the players td/ log n subsets?, for 1 < ¢ < ¢D/logn. Each player is assigned to

{O%W subsets.
(2) Foreacll € {1,...,¢D/logn}, the players of?; apply procedure 8ALL _RADIUS to objectsO,

with frequency parameter/2 and confidence paramet&r = log n.
Letvy(p) denote the output of a playgre P, on Oy.

(3) All players apply procedure @ALESCEto each of the sets of vectofs,(p) | p € P;} produced in Step 2
The result of this step is, for eacl, a setB, of at mostO(1/a) vectors of{0, 1, x} (™ 1eem)/ (D)

(4) Apply procedure ERO_RADIUS with all players, where each “object” for the algorithm is aGet
of primitive objects (see Step 1), with possible values fromiheectors (computed in Step 3).

Figure 5:Algorithm LARGE_RADIUS for knowna and D

5 Algorithm LARGE_RADIUS

In this section we assume thatand D are known. Algorithm IARGE_RADIUS, presented in Figure 5, deals with
the case oD > log n, and it uses, as subroutines, AlgorithmsrRO_RADIUS and SMALL _RADIUS.

The algorithm starts (in Step 1) by randomly chopping the object set into small parts dénotedi the
player set into corresponding parts denaoied The number of parts is such that w.h.p., the distance between any
two («, D)-typical players on the objects @l is bounded byO(logn). In Step 2, each player sé} applies
procedure BALL _RADIUS to the object se@,. When procedure aLL _RADIUS returns, each player iR, has
a complete output vector fap,, and, w.h.p., the output vectors of any tie, D)-typical players differ in only
O(logn) coordinates. Relying on this property, in Step 3 we aggregate the resulds teming a basic clustering
algorithm called @ALESCE The outcome of the clustering, for each object@gtis a collectionB, of only
O(1/«) possible value vectors (“candidates”), such that for eadhere is exactly one candidate which is the
closest taall typical players orO,. This key property allows us to apply AlgorithmERO_RADIUS in Step 4 by
all players, where the “objects” are actually complétesets, and the possible values for each such object are the
By vectors computed in Step 4. (Recall that AlgorithmrO_RADIUS uses &LECT to find the “value” of such
virtual object.) When the algorithm ends, any two typical players will have the same output vector, which may
include up toO(g) “don’t care” entries (which may be set @).

Let us first present the details of AlgorithnDBLESCE (Step 3).

5.1 Algorithm COALESCE

The problem we solve here is the following.
Input: A multisetV of n vectors, each if0, 1}""; a distance parametér; a frequency parameter.
Output: A setU of at mostl/« vectors from{0, 1, x}".
The requirement is that if there exists a subigetC V of size at leastvn satisfyingdist(v,v") < D for all
v,v’" € Vp, then there exists a unique vector € U such that (1p* is the closest i/ to any vector inV, and
(2) the number ok coordinates in* is small (specifically at mostD/«).
Note that this problem does not involve probing at all and hence in our case, all players have the same inpuf
The algorithm to solve this problem is presented in Figure 6. It uses the ndbati¢n, D) def {u|d;(v,u) < D}
to denote the ball in the distance metivhich ignores coordinates withentries (see Notation 3.2).
Pseudo code for the algorithm is presented in Figure 6. To analyze it, we use use the following concept. Fo
each vector removed fro® in Step 4b (denoted, v’ in Figure 6), there is a unique vector that is added3to

(1) A<0.
(2) WhileV # 0 do
(2a) Remove fronV all vectorsv with |ball(v, D)| < an.
(2b) Letw be the lexicographically first vectarc V.
(2c) A — AU {v}; V «— V \ ball(v, D).
(3) LetB — A.
(4) While there are two distinct vectorsy’ € B with d(v,v') < 5D do:

(4a) Define a vector* by v, v’ as follows: Ifv andv” have the same value for an objgclet the value of
v* for 7 be their common value. if andv’ disagree on, let the value of* for j bex.

(4b) B — B\ {v,v'} U {v*}.
(5) OutputB.

Figure 6:Algorithm COALESCE

(denotedv* there). Extending this relation transitively in the natural way, we define for each veetot a vector
rep(v) that appears in the final output set. Using this concept, we have the following lemmas.

Lemma 5.1 For any input vectow € V and anyu € A, d(v, rep(u)) < dist(v, u).
Lemma 5.2 For anyv € Vi there exists a vectar in the output set such thad{v, u) < 2D.
We summarize with the following statement (see Appendix A for proofs).

Theorem 5.3 The output of Algorithn€CoALESCE contains at most /« vectors. There is exactly one vector
in the output set which is closest to all vectorslgf, andd(v*,v) < 2D for any vectorv € V. Moreover, the
number of« entries inv* is at most.D/a.

Note that the output of Algorithm GaLESCEis deterministic (the order in which vectors are merged in Step 4
is immaterial). Since there is no probing and all players have the same input, all players will have the same output

5.2 Analysis of Algorithm LARGE_RADIUS

We summarize the properties of the main algorithm (Fig. 1) in the following theorem. See Appendix A for detalils.

Theorem 5.4 Suppose that the algorithm is givén< o < 1 and D > 0 such that there exists a set of players
P* C P with |P*| > an satisfyingdist(v(p), v(p')) < D for anyp,p’ € P*. Then w.h.p., the output vectat(p)
of each playep € P* satisfiesdist(w(p),v(p)) = O(D/«a). The number of probes performed by each player

throughout the execution of the aIgorithnﬂ)s(lOg;#) for n > m (for n < m we lose a factor ofn/n).

6 Coping with unknown distance boundD

Our main algorithm (Figure 1) so far required knowifigfor a givena. We now describe how to extend it to the
case of unknownx and D. First, note that for any given and a playep, there exists a minimaD = D, («)
such that at least am fraction of the players are within distané& from p. So suppose for now that is given
andD is not known. In this case we ruii(log n) independent versions of the main algorithm (sequentially or in
parallel): in theith version, it is run withD; = 2¢. We also run another version with = 0. From allO(log n)

10

resulting output vectors(p), we select (using procedureHO0SE CLOSESTdescribed in Appendix B) the vector
that appears to be closest to its input veetQr) and output it.

The search procedure increases the running time of the algorithm by a logarithmic factor, and decreases th
quality of the output by a constant factor, as compared to the algorithm that assumesdkaod®. Hence the
discrepancy in the running times between Theorem 1.1 and Theorem 5.4.

Next we discuss how to choose Clearly, the running time of the algorithm dependslgn. Given a bound
on the running time of the algorithm (as defined in Theorem 5.4), we can compute the smallest poasiblein
the algorithm with it. Furthermore, using repeated doubling (and paying a constant factor increase in the running
time), we can lift of the requirement that the running time is given: in phiase run the algorithm witly = 277,

This way we obtain an “anytime algorithm”, i.e., an algorithm whose output quality at anyttismelose to the
best possible im time units. We omit the straightforward details from this extended abstract.

References
[1] I. Abraham, Y. Bartal, T.-H. Chan, K. Dhamdhere, A. Gupta, J. Kleinberg, O. Neiman, and A. Slivkins. Metric embed-
dings with relaxed guarantees. Pnoc. 46th IEEE Symp. on Foundations of Computer Scie2@@5.
[2] N. Alon and J. H. Spenceilhe Probabilistic MethodWiley, second edition, 2000.

[3] B. Awerbuch, Y. Azar, Z. Lotker, B. Patt-Shamir, and M. Tuttle. Collaborate with strangers to find own preferences. In
Proc. 17th ACM Symp. on Parallelism in Algorithms and Architectypages 263-269, 2005.

[4] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. Tuttle. Improved recommendation systeficlril6th ACM-SIAM
Symposium on Discrete Algorithms (SODggges 1174-1183, January 2005.

[5] Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia. Spectral analysis of datBrdn. 33rd ACM Symp. on Theory of
Computing (STOG)pages 619-626, 2001.

[6] P.Drineas, I. Kerenidis, and P. Raghavan. Competitive recommendation systemec.l84th ACM Symp. on Theory
of Computing (STOCpages 82-90, 2002.

[7] K. Goldberg, T. Roeder, D. Gupta, , and C. Perkins. Eigentaste: A constant time collaborative filtering algorithm.
Information Retrieval Journal(2):133-151, July 2001.

[8] S. A. Goldman, R. L. Rivest, and R. E. Schapire. Learning binary relations and total orgekd1 J. Computing
22(5):1006—1034, October 1993.

[9] S. A. Goldman and M. K. Warmuth. Learning binary relations using weighted majority vofifachine Learning
20(3):245-271, 1995.

[10] J. Hu and M. P. Wellman. Self-fulfilling bias in multiagent learning. In V. Lesser, edtmceedings of the First
International Conference on Multi-Agent SysteM§T Press, 1995.

[11] J. Kleinberg and M. Sandler. Convergent algorithms for collaborative filteringrdn. 4th ACM Conf. on Electronic
Commerce (EG)ages 1-10, 2003.

[12] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Recommendation systems: A probabilistic analysis. In
Proc. 39th IEEE Symp. on Foundations of Computer Science (FQage¢s 664—673, 1998.

[13] M. L. Littman. Markov games as a framework for multi-agent reinforcement learningrda: 11th Int. Conference on
Machine Learning (ML-94)Morgan Kaufmann.

[14] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent semantic indexing: A probabilistic analysis. In
Proc. 17th ACM Symp. on Principles of Database Systems (PQiag¢s 159-168. ACM Press, 1998.

[15] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis of recommendation algorithms for e-commeéme. End
ACM Conf. on Electronic Commerce (E@pges 158—-167. ACM Press, 2000.

[16] G. Wei. Learning to coordinate actions in multi-agent systems. In R. Bajcsy, editmeedings of the Thirteenth
International Joint Conference on Arti cial Intelligence (IJCAI-9B)IT Press, 1993.

11

Appendix
A Additional Proofs

Proof of Theorem 3.2: Any vector removed fron¥ in Step 1c is at distance more thanfrom v(p). Among

the vectors remaining i in Step 2, all distinguishing coordinates were probed, so their distancesuiigm

are precisely computed, up to a common additive term. Therefore, the output made in Step 2 is trivially correct
by assumption that the closest vector is at distance at mogio bound the total number of probes iEIECT,
consider the total number of disagreements betwéghand all vectors of the input séf. By definition of X,

each probe exposes at least one such disagreement. Since no vector revaafieifindingD + 1 coordinates

on which it disagrees with(p), we get that the total number of probesis at miadd + 1). 1

Proof of Lemma 5.1: By definition, thed measure ignores entries. The lemma follows from the observation
thatu and regu) agree on all coordinates except theoordinates in refu). |

Proof of Lemma 5.2: Observe first that there must be a veatpre A such thaball(vq, D) N ball(v, D) # 0:
otherwise, the vectar would have been added tbin Step 2 since by assumptiofvall(v, D)| > an. For that
vectorv; we havedist(vi,v) < 2D by the triangle inequality. Therefore, by Lemma 5ily, rep(v;)) < 2D.
|

Proof of Theorem 5.3: Regarding the size of the output set, note that by Step 2, each vecforepresents a
disjoint set of size at leastn vectors from a set whose total sizenisand hence starts at Step 3 with size at most
1/a; the claim about the size follows, since Step 4 may only reduce the si2zeTiie distance claim follows from
Lemma 5.2. To see unigueness, suppose that there were vectodrs B andv, v’ € Vi such thatu is the closest
to v andu’ is the closest te’. Then by the triangle inequalitf(u, ') < d(u,v) + d(v,v') + d(v/,u’) < 5D. But
by the stopping condition of the while loop of Step#y, v') < 5D iff u = «. Finally, regarding the number ef
entries inv*, note that Step 4 is performed at madt < 1/« times, and each iteration adds at m@bt « entries.

To prove Theorem 5.4 we first prove the following immediate properties of the random patrtitions of Step 1.

Lemma A.1 With probability at leastt — n—1), the following properties hold for each< ¢ < ¢D/ log n:
o |Of = O(ken),
o |P| = Q(kEn).
° ’Pg ﬂP*’ = @(Q‘Pg‘)
e For any two typical playerg, p’ € P, N P*, disto, (v(p),v(p')) = O(logn).

Proof of Lemma A.1: By Chernoff. For the partition of objects, note that the expected sizg, d$ % =

Q(log n) sinceD < m always; for the partition of players, the expected number of playa‘?g,imcw%- [a%w =

Q(k’%). The expected number of typical playersinis Q2(logn), and the expected number of objectsipon

which any two typical players differ i% = O(logn). |

Proof of Theorem 5.4: Let1 < ¢ < ¢D/logn. By Lemma A.1, with probability at least — n=%(1), there

are at leasf)(«|P|) players fromP* in P, and the distance between any two of them@nis at mosti %ef

min(D, O(logn)). It therefore follows from Theorem 4.4 that with probability at least n—*(1), after Step 2

is done,dist(ve(p), v(p)) < Aforanyp € P* N Py. Next we note that by Theorem 5.3, after executing Step 3,
there exists exactly one vector among allO(1/«) vectors of B, which is the closest to any playere P*, and
furthermore, thatlo, (v, v(p)) < O(logn). This means that the preconditions for Theorem 3.1 hold, and hence,
with probability at least — n~ %), all players inP* will output the vector composed of the components.

12

Regarding complexity, note that Steps 1 and 3 do not involve any probing. Consider Step 2. Let us conside

Algorithm SMALL _RADIUS in context: denote by’ andm’ the number of players and objects (respectively) in

the invocation of ®IALL _RADIUS. Algorithm SvALL _RADIUS is invoked withn’ = O(logn/a) players and

m’ = O(mlogn/D) objects in Step 2 of the main algorithm. (We haggez ~). Also, the confidence parameter

is K = O(logn), and distance bound i = O(logn). It follows from Theorem 4.4 that after Step 2 of the main
algorithm, the vectow(p) adopted by a player € P, satisfieslisto, (v(p), w(p)) < O(logn), and that the total
number of probing rounds is at mo@t(lo% log3/? nlog n) =0 (%) Next, consider Step 4. Algorithm
ZERO_RADIUS is invoked withn players andD/logn < n objects. Since each logical probe of this invocation

consists of0(1/«) primitive probes, we conclude from Theorem 3.1 that the total number of probes per player in
this step isD(1%"). 11

B Solving CHooseE CLosESsTwithout a distance bound

1. For any pair of distinct vectors v' € V' in turn do:

() LetX be the set of coordinates on which newalues forv andv’ differ.
(b) Probe randomly logn coordinates fronX (if | X| < clogn, probe all coordinates iX).

(c) Declarev’ “loser” if 2/3 or more of the probed coordinates agree witlleclarev “loser” if 2/3 or more of the
probed coordinates agree with otherwise none is declared loser.

2. Output any vector with losses.

Figure 7:Algorithm RSELECT for the CHOOSE CLOSESTproblem.

We give an alternative algorithm for solvingHO0sSe CLOSEST, which we call below RELECT. RSELECT
solves the same problem asL%CT, with the following important differences outlined below.

In SELECT, a boundD on the distance af(p) to the set is given as input, and the number of probes is linear in
D. In RSELECT, no such bound is given, and the number of probes per input vectdtag), irrespective of the
distance between the vectors. On the other hardgST is deterministic and guaranteed to produce the closest
vector, while R&LECTis randomized, and is only guaranteed to be close to the closest vector.

Theorem B.1 Suppose thaD = min {J(v(p),v) |ve V}. With probability at leastl — n—*(1), Algorithm

RSELECT outputs a vector, such thatd(u, v(p)) = O(D). The number of probes executed REELECT is
O(|V|?1logn).

Proof: The complexity bound is obvious. For correctnessulebe the vector i/ which is closest ta(p). By
Chernoff, the probability thai, loses against any other vectorlis- n~*(!). Therefore there is at least one vector
with 0 losses (w.h.p.). Also, iﬂ(u’,v) > ¢D for someu’ € V, then the probability that’ is declared a loser
againstu is alsol — n~*(1). Hence only a vector whose distance frofp) is at mostO(D) may haveD losses.
The result follows. [

13

