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Abstract

We consider a model of recommendation systems, where each member from a given set ofplayershas a
binary preference to each element in a given set ofobjects: intuitively, each player either likes or dislikes each
object. However, the players do not know their preferences. To find his preference of an object, a player may
probe it, but each probe incurs unit cost. The goal of the players is to learn their complete preference vector
(approximately) while incurring minimal cost. This is possible if many players have similar preference vectors:
such a set of players with similar “taste” may split the cost of probing all objects among them, and share the
results of their probes by posting them on a publicbillboard. The problem is that players do not know a priori
whose taste is close to theirs. In this paper we present a distributed randomized peer-to-peer algorithm in which
each player outputs a vector which is close to the best possible approximation of the player’s real preference
vector after a polylogarithmic number of rounds. constraint. The algorithm works under adversarial preferences.
Previous algorithms either made severely limiting assumptions on the structure of the preference vectors, or had
polynomial overhead.
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1 Introduction

Information fusion, recommendation systems, belief propagation networks, collaborative filtering, distributed
agent learning are all classical subfields of Computer Science and Artificial Intelligence. These sub-fields attempt
to improve efficiency of multiple agents (human or mechanical), which are trying to leverage past experience of
others in spite of significant diversity or uncertainty in their perception of the world. There are many reasons for
such diversity, e.g., people may have different taste (for books, movies, food, etc.), sensors may experience differ-
ent reception due to different location, some eBay users may be dishonest, links on websites of different companies
point to different suppliers preferred by these companies, etc. Even when no inherent diversity appears to exist,
various time-variable factors (such as noise, weather, mood) may create diversity as a side effect.

There is a tremendous amount of work in AI and CS on modeling such diversity (e.g., [10, 16, 13]); in fact,
some conferences are dedicated exclusively to this topic. Intuitively, it seems that arbitrary diversity is unman-
ageable, and strong assumption need to be made in order come up with algorithms algorithmic tools. All existing
approaches restrict diversity somehow, e.g., by assuming that user profiles are a linear combination of a few “ma-
jor types.” These assumptions are hard to justify, but superficially they appear unavoidable. In this paper, perhaps
counter-intuitively, we present novel algorithmic tools that show that effective (near optimal) collaboration by
cooperative agents is possible even with unrestricted diversity.

Many commercial systems (e.g., Amazon, eBay, Epinion) are based on explicit or implicit notion of trust and
user preferences. Such preferences may be represented by a matrix where rows represent agents, and columns rep-
resent objects. Each entry(i, j) represents the (unknown) opinion of agenti about objectj. One of the fundamental
tasks of a recommendation system (e.g., an advertiser like Google) is to reconstruct the full matrix.

The challenge in these systems is how to take advantage of the existence of users with related opinions: In-
tuitively, a set of users with similar preferences should be able to collaborate, implicitly or explicitly, by sharing
the load of searching the object space and sharing the results of their probes. To facilitate information sharing, it
is assumed that the system maintains a sharedbillboard, similar, for example, to the eBay ranking matrix, where
users post the results of their probes. The difficulty is that users do not know whose grades to adopt and that
tastes may differ to some degree even between potential collaborators. Below, we describe two basic models for
recommendation systems: interactive and non-interactive.

Interactive recommendation system.In this model, the basic action available to algorithms is to reveal a grade
the algorithm chooses, but such an action incurs cost [6, 4]. Revealing a grade models the process of a user testing
a product, calledprobing. For example, consider advertisement placement. Probing takes place each time the
advertiser provides a user with an ad for some product: if the user clicks on this ad, the appropriate matrix entry
is set to 1, and if the user does not click, it is set to 0. In any case, the matrix entry is revealed. The task is to
reconstruct, for each user, his preference vector, namely his row in the matrix (e.g., so that the advertiser can learn
what type does the user belong to). We call such model aninteractiverecommendation system. We note that
that many other scenarios, for example tracking dynamic environment by unreliable sensors, or estimating Internet
latencies in a peer-to-peer networks [1] fall under this “interactive” framework.

Non-interactive recommendation system.This model received much attention, e.g., [12, 11]. Intuitively, while
the essence of algorithms for the interactive model ishow to sample, the essence of algorithms for non-interactive
model ishow to interpretprior sampling. Some assumptions must be made about the known samples in the non-
interactive model (on top of the assumptions about the preferences). Typically, it is assumed that the matrix is
generated by a low-entropy random process, and that the given probe results are generated by some probability
distribution which reflects the users’ preferences.

1.1 Problem and Statement of Results

In this paper we focus on the interactive model, and present a solution with polylogarithmic cost to interactive
recommendation systems that finds all preferences with precision comparable to the best possible for the given
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probing budget, while makingno assumptionson user preferences. To date, the best known algorithm in this case
had polynomial overhead.

Statement of the problem. There aren playersandm objects; each player has an unknown 0/1 grade for each
object. The algorithm proceeds in parallel rounds: in each round, each player reads the shared billboard, probes
one object, and writes the result on the billboard. The task of the algorithm is for each player to output a vector
as close as possible to that player’s original preference vector (under the Hamming distance metric). We formalize
the problem as implementing the following input-output relation.

Definition 1.1 (ProblemFIND PREFERENCES) Letdist(x, y) denote the Hamming distance betweenx andy.

Input: A setP of n players, and a vectorv(p) ∈ {0, 1}m for each playerp.
Output: Each playerp outputs an estimatew(p) ∈ {0, 1}m minimizingdist(w(p), v(p)).

We note that vectorv(p) can be accessed only by playerp, butw(p) is accessible to all players.

Evaluating the algorithms. Intuitively, our goal is as follows. Call a set of players with similar pereferences a vir-
tual community (for some measure of similarity). We would like to show that even in the worst case, players who
are members of a sufficiency large virtual community need only a small number of samples to reconstruct (approx-
imately) all their preferences. Obviously, the larger is the community we are considering, the more leverage we get
from other members of that community, and thus preference reconstruction for this community is faster. On the
other hand, the larger is the community, the larger are internal disagreements between members of the community,
and the larger is the error. Our approach is that the probing budget defines the size of the community.For example,
linear probing budget means that the player can “go it alone,” and constant (or poly-logarithmic) probing budget
means that the player must leverage probes of a large community. Naturally, it is best to pick the tightest (smallest
radius) community of the required size. This could have been easily accomplished if each player had access to an
oracle that produces a list of players in decreasing similarity of taste, but building such an oracle is, essentially,
the task we wish to accomplish. In fact, our algorithm can continuously reconstructs all such sub-communities in
parallel, refining clusterings on-the-fly, as time goes on and probing budget is increasing.

What is the best possible output for a given probing budget, i.e., number of probing rounds? Consider first an
ideal situation: If all players hadidenticalpreference vectors, then by dividing the workload equally, all of them
can output perfect results inO(m/n) time units. More generally, if the disparity (i.e., Hamming distance) between
all preferences vectors were bounded by some known valueD, then it can be shown that the players can output
a vector withO(D) errors withinO(m/n) time, and then reach full accuracy after time ofm. The latter case
corresponds to the following scenario. There exists a subset of playersP ∗ of cardinalityn∗ and internal disparity
d∗. Imagine that these players are perfectly coordinated (in particular, each of them knows the identities of all
members in the set), and their common goal is to find their preference vectors as efficiently as possible. The best
one could hope for in general is that they can reach disparity ofO(d∗) within τ = m/n∗ rounds. This consideration
leads us to define the following concept. Given a time boundτ , and a set of playersP ∗, we define theset stretchof
P ∗ as the ratio between the maximal current inaccuracy of a player inP ∗ and the diameter of the set of preference
vectors ofP ∗ (using the Hamming distance measure).

More formally, given vectors of equal length, letdist(x, y) denote the number of coordinates they differ in
(i.e., the Hamming distance between them). Recall that for a playerp, v(p) denotes his input vector andw(p)
denotes his output vector. Now, for an arbitrary subsetP ∗ ⊂ P, define

D(P ∗) def= max {dist(v(p), v(q)) | p, q ∈ P ∗} diameter of the set

∆t(P ∗) def= max
{
dist(wt(p), v(p)) | p ∈ P ∗} input-output discrepancy

ρt(P ∗) def= ∆t(P ∗)
D(P ∗) set stretch

Using the definition of stretch, we state our result.
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Theorem 1.1 (Main result) Suppose thatm = Ω(n). Let P ∗ be any set of players with|P ∗| = Ω(n). Then
there exists a distributed algorithm such that with probability1−n−Ω(1), after logO(1) n rounds the output of each
player inP ∗ has constant stretch, i.e.,ρ(P ∗) = O(1).

Intuitively, we show that users can predict their preferences for objects they never tried, with confidence that
grows with the number of probes executed. The absolute quality of the results depends on how esoteric are the
preferences of the user, but constant relative quality can be attained in polylogarithmic time. We note that previous
results either made strong assumptions about the input, or forced polynomial cost on all or some users.

Our techniques and paper organization.We present our solution in increasing order of complexity.
Algorithm ZERO RADIUS, described in Section 3.1, solves the problem for the special case of communities

of users with identical preferences. This algorithm and its proof are quite simple; it is a modification of work
published in [3]. In Section 4 we present Algorithm SMALL RADIUS, which uses ZERO RADIUS as a subrou-
tine. Algorithm SMALL RADIUS works for any distribution of the preference vectors, but the probing cost in
SMALL RADIUS is polynomial in the diameter of the collaborating set. This property makes SMALL RADIUS

suitable for the case where many users have close preferences. We note that straightforward recursion does not
work, because (similarly to metric embedding problems) the error grows exponentially with the depth of the re-
cursion. The crux to the efficiency of this algorithm is a non-trivial combinatorial result that we prove in Lemma
4.1. In Section 5, we present Algorithm LARGE RADIUS, which uses both SMALL RADIUS and ZERO RADIUS

as subroutines, and brings down probing cost to poly-logarithmic in the diameter of the collaborating set. It re-
duces general instances to the zero- and low-diameter case, by first partitioning the object set and then clustering
the subsets. All the above algorithms assume that the size and diameter of the collaborating set are known; this
assumption is removed in Section 6. Some related work is surveyed in Section 2, and the high-level algorithm with
some basic building blocks are described in Section 3.

2 Related work

Interactive model. Our paper essentially generalizes and improves much of the vast amount of the existing
work on multi-agent learning and interactive collaborative filtering. The first algorithmic theory approach is due
to Drineas et al. [6], who defined the model we use in this paper. The goal in [6] is to provide a single good
recommendation to each user, but the algorithm in fact reproduces the complete preferences of most users. The
basic idea is to adapt the SVD technique to the competitive model; this adaptation comes at the price of assuming
further restrictions on the preference vectors. Specifically, in addition to assuming the existence of a big gap
between two consecutive singular values of the preference matrix (which is inherent to the SVD technique), the
algorithm of [6] requires that the preference vectors of users belonging to different types are nearly orthogonal,
and that the allowed noise is tiny: each preference vector is obtained by its corresponding canonical vector plus
a random noise, which is a vector ofm independent random variables with0 mean andO(1/(m + n)) variance.
Recently, it has been shown that the problem of finding a good object for each user can be solved by very simple
combinatorial algorithms without any restriction on the preference vectors [4]: for any setP of users with a
common object they all like, onlyO(m+n log |P |) probes are required overall until all users inP will find a good
object (w.h.p.). The result closest to our work is [3], where algorithms are given for the case where many users
have identical preference vectors (see Section 3.1). We note that when the preference matrix is arbitrary, the case
where user preferences may be concentrated in sets of positive diameter is much harder than dealing with sets of
diameter0.

Non-interactive model. The effectiveness of provable algorithms in the non-interactive model relies on the (usu-
ally, implicit) assumption that most user preference vectors can be approximated by a low-rank matrix; basically,
this assumption means that there are a few (say, constant) “canonical” preference vectors such that most user pref-
erence vectors are linear combinations of the canonical vectors. Under this assumption, algebraic or clustering
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techniques can reconstruct most preference vectors with relatively few errors, based on the scarce available data.
Specifically, there are systems that use principal component analysis [7] or singular value decomposition (SVD)

[15]. Papadimitriou et al. [14], and Azar et al. [5] rigorously prove conditions under which SVD is effective. It
turns out that SVD works well when there exists a very significant gap between thekth and the(k + 1)st largest
singular values, wherek is the number of canonical vectors in the underlying generative model.

Other generative processes that were considered in the passive model include simple Markov chain models
[12, 11], where users randomly select their “type,” and each type is a probability distribution over the objects.

Worst-case (non-stochastic) input is considered in the works by Goldman et al. [8], [9] where, the algorithm is
requested to learn a relation represented as a 0/1 matrix. In a basic step, the algorithm mustpredict the value of an
entry in the matrix; then that entry is revealed, and the algorithm is charged one unit if the prediction was wrong.
By contrast, our model we require that prediction becomes perfect after small number number of errors.

Our model charges one unit every time a grade is revealed; moreover, a prediction algorithm gets to know the
true answer regardless of whether the prediction is correct, while in our model, most estimate are never exposed.
Assuming random sampling pattern and this (much weaker) performance measure, the algorithms in [8], [9] still
suffer frompolynomialoverhead (which might be best possible under the circumstances) even in the simple “noise-
free” case where all the players in a large (constant fraction) community are identical.

3 The High-Level Algorithm and Basic Building Blocks

Simplifying assumptions and notation.Throughout the description of the algorithm, we shall consider a setP ∗

of players with “similar taste.” Formally, we assume that there are two parameterslog n
n ≤ α ≤ 1 andD ≥ 0, such

that |P ∗| ≥ αn D(P ∗) ≤ D. P ∗ is called an(α, D)-typical set, and its members are(α, D)-typical players, or
just typical, whenα andD are clear from the context. In general, there may be multiple, overlapping typical sets
of typical players.

For the most part, we describe an algorithm that works with knownα andD. This assumption is lifted in
Section 6. To simplify the description, we also assume, without loss of generality, thatm = Θ(n) (if m < n we
can add dummy objects, and whenm > n we can let each real player simulatedn/me players of the algorithm.)
If the assumption thatlog n

n ≤ α does not hold then the player is better off by just probing all objects on his own.

The main algorithm. Our solution consists of three algorithms, depending on value ofD, as specified in Fig. 1.
Algorithms ZERO RADIUS, SMALL RADIUS and LARGE RADIUS are specified in Sections 3.1, 4 and 5, resp.

(1) If D = 0 apply procedure ZERO RADIUS with all players and all objects, using knownα.

(2) If D = O(log n)) apply procedure SMALL RADIUS with all players and all objects, using knownα.

(3) Otherwise (i.e.,D ≥ Ω(log n)), apply procedure LARGE RADIUS, using knownα andD.

Figure 1:Main algorithm for knownα andD (see Section 6).

3.1 Exact types solution: AlgorithmZERO RADIUS

Below we present, for completeness, an algorithm for the special case ofD = 0, i.e., the case where typical
players completely agree on all coordinates. This task is carried out by Algorithm ZERO RADIUS. The algorithm,
presented in Figure 2, is a slight generalization of an algorithm given in [3]. In the variant we use here, the
algorithm uses an abstractProbe subroutine that, when invoked by a playerp ∈ P on an objecto ∈ O, returns
the value ofo for p. Another slight generalization is that the set of allowed values for an object is not necessarily
binary. We explain later howProbe is implemented.

For this algorithm, and using Theorem 3.2, we have the following result (cf. [3]).
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(1) If min(|P |, |O|) < 8c ln n
α then invokeProbe for all objects inO, output their values, and return.

(2) (Otherwise) Partition randomlyP = P ′ ∪ P ′′ andO = O′ ∪O′′. Let P ′ be the half that containsp,
and letP ′′ be the other half.

(3) Recursively execute ZERO RADIUS(P ′, O′). (Upon returning, values for all objects inO′ were output
by all players inP ′, and values for all objects inO′′ were output by all players inP ′′.)

(4) Scan the billboard. LetV be a set of vectors forO′′ such that each vector inV is voted for by at least
α/2 fraction of the players inP ′′. Compute SELECT onV with distance bound0. Output the result
vector for all objects inO′′ and return.

Figure 2:AlgorithmZERO RADIUS executed by playerp. P is the set of players andO is the set of objects.

Theorem 3.1 Suppose that there are at leastαn players with identical value vectors, and that they all run Algo-
rithm ZERO RADIUS. Then with probability1−n−Ω(1) all of them output the correct vector, afterO( log n

α ) rounds
of executing procedureProbe (as usualm ≥ n).

Proof Sketch: (adapted from [3].) LetPT denote the set of players with identical preference vectors. By Chernoff
(c.f., e.g., [2], Appendix A), in each invocation of ZERO RADIUS with |P | ≥ 8c ln n

α , we have, with probability at
least1− n−Ω(1), that|P ∩ PT | ≥ α|P |/2. Therefore, the correctness of the output follows from induction on the
level of recursion and the correctness of Algorithm SELECT. To bound the cost, we note that Step 1 is executed at
most once by each player, and its cost isO

(
m log n

αn

)
invocations ofProbe per player. Each other recursive call

of ZERO RADIUS entails a call to SELECT with O(1/α) candidate vectors and distance bound0, for a total cost

of O(1/α) invocations ofProbe by Theorem 3.2. Since the depth of the recursion islog
(

n
8c ln n/α

)
= O (log n),

we have that the total number of invocations ofProbe done in Step 4 by each player, throughout the execution of
the algorithm, isO

(
log n

α

)
.

3.2 TheCHOOSE CLOSESTproblem: Algorithm SELECT

In Algorithm ZERO RADIUS and in many other places we use an algorithm solving a problem which can be
formulated as follows.

Definition 3.1 (ProblemCHOOSE CLOSEST)

• Input: a setV of k vectors and a playerp with preference vectorv(p).

• Output: a vectorw∗ ∈ V such thatdist(w∗, v(p)) ≤ dist(w, v(p)) for all w ∈ V .

The algorithm we describe below requires an additional input parameter:

• Additional input: A distance boundD ≥ 0 such that for somew ∈ V , dist(w, v(p)) ≤ D.

GivenD, this task can easily be implemented by playerp at the cost of probingk(2D + 1) coordinates; we
present a slightly more efficient algorithm in Figure 3. The algorithm uses the following notation.

Notation 3.2 For given vectorsv, u ∈ {0, 1, ?}m, d̃(u, v) denotes the number of differing coordinates in which

bothu andv have entries that are not?. d̃I(v, u) def= d̃(v|I , u|I) is the restriction ofd̃ to the coordinate setI.

The algorithm uses the abstractProbe action. Its properties are summarized in the following theorem (see
Appendix A for a proof).
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(1) Repeat

(1a) LetX(V ) be set of coordinates on which some two vectors inV differ.

(1b) ExecuteProbe on the first coordinate inX that has not been probed yet.

(1c) Remove fromV any vector with more thanD disagreements withv(p).

Until all coordinates inX(V ) are probed orX(V ) is empty.

(2) LetY be the set of coordinates probed byp throughout the algorithm. Find the set of vectorsU ⊆ V
closest tov(p) onY , i.e.,

U =
{
v ∈ V | d̃Y (v, v(p)) ≤ d̃Y (u, v(p)) for all u ∈ V

}
.

Output the lexicographically first vector inU .

Figure 3:AlgorithmSELECT using distance boundD, executed by playerp.

Theorem 3.2 If V contains a vector at distance at mostD from v(p), then ProcedureSELECT outputs the lexi-
cographically first vector inV among the vectors closest tov(p). Moreover, the total number of timesProbe is
invoked is never more thank(D + 1).

Remark: To ensure that the result of SELECT is completely defined by its input, we require that SELECT disregards
probes done before its execution.

4 Algorithm SMALL RADIUS

In this sectoin we describe Algorithm SMALL RADIUS. We assume thatα andD are given, and the goal is that all
these players will output a vector which differs from their input vector by at mostO(D). The running time of the
algorithm is polynomial inD, and hence it is suitable only for smallD values (in the main algorithm, Algorithm
SMALL RADIUS is invoked withD = O(log n)).

The algorithm proceeds by repeating the following processK times (we always setK = O(log n)): The object
setO is partitioned intos = O(D3/2) random parts denotedOi, and all players run Algorithm ZERO RADIUS on
eachOi object set (Step 1b). However, Algorithm ZERO RADIUS is guaranteed to succeed only if there are
sufficiently many players that fully agree. To this end, we show that with constant probability, a random partition
of O will have, in allOi parts simultaneously, many (but not all) typical playersfully agreeing. Therefore, one of
theK independent executions of the exact algorithm will succeed in all parts with probability at least1− 2−Ω(K).
However, in each part there may be may typical players whose preferences are not shared by many othersexactly,
and may therefore have arbitrary results in that part, because Theorem 3.1 does not apply in that case. To solve
this problem, in Step 1c we force each player to adopt, for eachi, the closest of the popular vectors inOi. Then,
in Step 2, each player chooses the closest result among the vectors produced in theK iterations. Since the typical
players differ on theO objects, they will not all choose the same vector in Step 1c; however, we prove that all their
chosen vectors lie withinO(D) distance from each other.

4.1 Analysis ofSMALL RADIUS

We now state the properties Algorithm SMALL RADIUS. There are a few points which are not obvious. First,
in Step 1b we use Algorithm ZERO RADIUS which is guaranteed to work only if there are at leastαn/5 players
who completely agree on all objects. It turns out that fors = O(D3/2), there is a constant probability that all
instances of ZERO RADIUS are successful in any given iteration. The following lemma proves this crucial fact in
more general terms.
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(1) For eacht ∈ {1, . . . ,K} do:

(1a) PartitionO randomly intos = O(D3/2) disjoint subsets:O = O1 ∪O2 ∪ · · · ∪Os.

(1b) For eachi ∈ {1, . . . , s}: all players apply procedure ZERO RADIUS to the objects ofOi using
parameterα/5; let Ui be the set of vectors s.t. each is output by at leastαn/5 players.

(1c) Each playerp applies procedure SELECT to Ui with distance boundD, obtaining vectorui(p) for
eachi ∈ {1, . . . , s}. Let ut(p) denote the concatenation ofui(p) over alli.

(2) Each playerp applies procedure SELECT with distance bound5D to the vectorsu1(p), . . . , uK(p)
computed in Step 1c and outputs the resultw(p).

Figure 4:AlgorithmSMALL RADIUS. α andD are given,K is a confidence parameter.

Lemma 4.1 Let V be a set ofM binary vectors on a setO of coordinates, and suppose thatdist(v, v′) ≤ d for
any v, v′ ∈ V . Let O = O1 ∪ O2 ∪ · · · ∪ Os be a random partition ofO into s pairwise disjoint sets, where
each coordinatej ∈ O is chosen, randomly and independently, to lie in a uniformly chosenOi. Call the partition
successful if for everyi ∈ {1, . . . , s} there is a setUi ⊂ V of size|Ui| ≥ M/5, and such thatu|Oi = u′|Oi for

all u, u′ ∈ Ui. Then, the probability that the partition is not successful is at most
103 · 55

6!
d3

s2
. In particular, if

s ≥ 100d3/2 then this probability is smaller than1/2.

Proof: Let X be the random variable whose value is the number of ordered6-tuples(i, v1, v2, v3, v4, v5), where
1 ≤ i ≤ s, v1, . . . , v5 ∈ V , and

for each 1 ≤ j < k ≤ 5, the vectorsvj , vk differ on Oi (1)

For a fixedi, 1 ≤ i ≤ s, and for fixed distinct vectorsv1, . . . , v5 ∈ V , the probability that the tuple(i, v1, v2, v3, ..., v5)
satisfies (1) can be bounded as follows. Note, first, that there are at most

(5
2

)
d = 10d coordinates in which some

pair of the vectorsvj differ. In order to satisfy (1),Oi has to contain at least3 such coordinates (as, by the pi-
geonhole principle, at least two of the vectors will agree on each pair of coordinates). Therefore, the required
probability is at most (

10d

3

)
1
s3

<
103d3

6s3
.

By linearity of expectation, the expected value ofX satisfies

E(X) ≤ sM5 · 103d3

6s3
=

103M5d3

6s2
.

On the other hand, if there exists somei such that no set ofM/5 of the vectors completely agree onOi, then
the number of ordered5-tuples of vectorsv1, . . . , v5 so that each pair of them differs onOi is at least

M · 4M

5
· 3M

5
· 2M

5
· M

5
=

4! M5

54
.

It follows that if the partition is not successful, then the value of the random variableX is at least4! M5

54 , and hence,
by Markov’s Inequality, the probability this happens does not exceed

E(X)/
4! M5

54
≤ 103 · 55

6!
d3

s2
.

To deal with our case, let us first introduce the following standard notation.
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Notation 4.1 Given a vectorv and a subsetS ⊂ O of coordinates, letv|S denote the projection ofv on S.
Similarly, letdist|S denote the Hamming distance applied to vectors projected onS.

Lemma 4.1, applied to our setting withM = αn, implies the following immediate corollary.

Corollary 4.2 For s = Θ(D3/2), the following holds with probability at least1 − 2−Ω(K) after the execution of
Step 1 of AlgorithmSMALL RADIUS: there exists an iterationt0 ∈ {1, . . . ,K} in which for eachi ∈ {1, . . . , s}
there exists a set of playersGi ⊆ P ∗ satisfying|Gi| ≥ αn/5 andv(p)|Oi = v(p′)|Oi for anyp, p′ ∈ Gi.

By the correctness condition of Algorithm ZERO RADIUS, Corollary 4.2 implies that after Step 1b of Algo-
rithm SMALL RADIUS, w.h.p., there exists an iterationt0 such that for eachi ∈ {1, . . . , s} there exists a vector
ut0

i which is identical to the vector of all players in a setGi ⊆ P ∗ with |Gi| ≥ αn/5. However, theGis may be
different for eachi. Moreover, note that it is possible to have more than one suchGi for any given partOi. In
Step 1c, the algorithm “stitches” a vectorut for O from theut

i components forOi. We can now prove that in a
successful iteration,anyvector produced in Step 1c by a typical player is close toall P ∗ players.

Lemma 4.3 Consider a partitionO1, . . . , Os of O. Suppose that for eachi ∈ {1, . . . , s} there exists a vectorui

and a setGi ⊆ P ∗ with |Gi| ≥ αn/5 such thatv(p)|Oi = ui for any p ∈ Gi. Let u be any vector satisfying
u|Oi = ui for all i ∈ {1, . . . , s}. ThendistO(u, v(p)) ≤ 5D for any playerp ∈ P ∗.

Proof: Fix a value vectorv∗ of a player inP ∗. We count the sum of the distances from the vectors of the players
in P ∗ to v∗ in two different ways. First, by the precondition of Algorithm SMALL RADIUS,∑

p∈P ∗
distO(v(p), v∗) ≤ |P ∗| ·D . (2)

On the other hand,

∑
p∈P ∗

distO(v(p), v∗) =
∑

p∈P ∗

s∑
i=1

distOi(v(p), v∗) ≥
s∑

i=1

∑
p∈Gi

distOi(ui, v
∗) (3)

≥
s∑

i=1

|P ∗|
5
· distOi(ui, v

∗) =
|P ∗|
5
· distO(u, v∗) .

Combining Eq. (2) and Eq. (3), we obtain thatdistO(u, v∗) ≤ 5D.

We can thus summarize the properties of Algorithm SMALL RADIUS as follows:

Theorem 4.4 Suppose that there exists a setP ∗ of at leastαn players such thatdist(v(p), v(p′)) ≤ D for any
p, p′ ∈ P ∗. Letw(p) be the output vector of playerp ∈ P ∗ after running AlgorithmSMALL RADIUS. Then with
probability at least1 − 2−Ω(K), distO(v(p), w(p)) ≤ 5D for everyp ∈ P ∗. Furthermore, the total number of

probing rounds isO
(

K
α D3/2(D + log n)

)
.

Proof: By Corollary 4.2, with probability at least1 − 2−Ω(k) at least one of the iterations satisfies the premise of
Lemma 4.3. Using Theorem 3.2 (correctness of SELECT), the correctness claim follows. Regarding complexity,
consider a single iteration of Step 1. In such an iteration, procedure ZERO RADIUS is invokeds = O(D3/2) times,
each time with alln users, and the total number of objects over all invocations in an iteration ism. It follows
from Theorem 3.1 that the total number of probing rounds spent in procedure ZERO RADIUS throughout a single
iteration of Step 1 isO( log n

α D3/2). In addition, each iteration containss = O(D3/2) applications of SELECT, each
time with a boundD and at mostO(1/α) candidates, totalingO(D5/2/α) probes in each iteration. Since Step 2
entails onlyO(KD) probes, the overall complexity is dominated by Step 1.
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(1) Partition randomly the objects intocD/ log n disjoint subsetsO` for 1 ≤ ` ≤ cD/ log n. The partition
is done by assigning each object independently and uniformly to one of the object subsets.
Assign randomly the players tocD/ log n subsetsP` for 1 ≤ ` ≤ cD/ log n. Each player is assigned to⌈

D
αn

⌉
subsets.

(2) For each̀ ∈ {1, . . . , cD/ log n}, the players ofP` apply procedure SMALL RADIUS to objectsO`

with frequency parameterα/2 and confidence parameterK = log n.
Let v`(p) denote the output of a playerp ∈ P` onO`.

(3) All players apply procedure COALESCE to each of the sets of vectors{v`(p) | p ∈ P`} produced in Step 2.
The result of this step is, for eachO`, a setB` of at mostO(1/α) vectors of{0, 1, ?}(m log n)/(cD).

(4) Apply procedure ZERO RADIUS with all players, where each “object” for the algorithm is a setO`

of primitive objects (see Step 1), with possible values from theB` vectors (computed in Step 3).

Figure 5:AlgorithmLARGE RADIUS for knownα andD

5 Algorithm LARGE RADIUS

In this section we assume thatα andD are known. Algorithm LARGE RADIUS, presented in Figure 5, deals with
the case ofD > log n, and it uses, as subroutines, Algorithms ZERO RADIUS and SMALL RADIUS.

The algorithm starts (in Step 1) by randomly chopping the object set into small parts denotedO` and the
player set into corresponding parts denotedP`. The number of parts is such that w.h.p., the distance between any
two (α, D)-typical players on the objects ofO` is bounded byO(log n). In Step 2, each player setP` applies
procedure SMALL RADIUS to the object setO`. When procedure SMALL RADIUS returns, each player inP` has
a complete output vector forO`, and, w.h.p., the output vectors of any two(α, D)-typical players differ in only
O(log n) coordinates. Relying on this property, in Step 3 we aggregate the results forO` using a basic clustering
algorithm called COALESCE. The outcome of the clustering, for each object setO`, is a collectionB` of only
O(1/α) possible value vectors (“candidates”), such that for each`, there is exactly one candidate which is the
closest toall typical players onO`. This key property allows us to apply Algorithm ZERO RADIUS in Step 4 by
all players, where the “objects” are actually completeO` sets, and the possible values for each such object are the
B` vectors computed in Step 4. (Recall that Algorithm ZERO RADIUS uses SELECT to find the “value” of such
virtual object.) When the algorithm ends, any two typical players will have the same output vector, which may
include up toO(D

α ) “don’t care” entries (which may be set to0).
Let us first present the details of Algorithm COALESCE(Step 3).

5.1 Algorithm COALESCE

The problem we solve here is the following.
Input: A multisetV of n vectors, each in{0, 1}m; a distance parameterD; a frequency parameterα.
Output: A setU of at most1/α vectors from{0, 1, ?}m.
The requirement is that if there exists a subsetVT ⊆ V of size at leastαn satisfyingdist(v, v′) ≤ D for all
v, v′ ∈ VT , then there exists a unique vectorv∗ ∈ U such that (1)v∗ is the closest inU to any vector inVT , and
(2) the number of? coordinates inv∗ is small (specifically at most5D/α).

Note that this problem does not involve probing at all and hence in our case, all players have the same input.

The algorithm to solve this problem is presented in Figure 6. It uses the notationball(v,D) def= {u | d̃I(v, u) ≤ D}
to denote the ball in the distance metricd̃ which ignores coordinates with? entries (see Notation 3.2).

Pseudo code for the algorithm is presented in Figure 6. To analyze it, we use use the following concept. For
each vector removed fromB in Step 4b (denotedv, v′ in Figure 6), there is a unique vector that is added toB

9



(1) A← ∅.
(2) WhileV 6= ∅ do

(2a) Remove fromV all vectorsv with |ball(v,D)| < αn.

(2b) Letv be the lexicographically first vectorv ∈ V .

(2c) A← A ∪ {v}; V ← V \ ball(v,D).

(3) LetB ← A.

(4) While there are two distinct vectorsv, v′ ∈ B with d̃(v, v′) ≤ 5D do:

(4a) Define a vectorv∗ by v, v′ as follows: Ifv andv′ have the same value for an objectj, let the value of
v∗ for j be their common value. Ifv andv′ disagree onj, let the value ofv∗ for j be?.

(4b) B ← B \ {v, v′} ∪ {v∗}.
(5) OutputB.

Figure 6:AlgorithmCOALESCE.

(denotedv∗ there). Extending this relation transitively in the natural way, we define for each vectorv ∈ A a vector
rep(v) that appears in the final output set. Using this concept, we have the following lemmas.

Lemma 5.1 For any input vectorv ∈ V and anyu ∈ A, d̃(v, rep(u)) ≤ dist(v, u).

Lemma 5.2 For anyv ∈ VT there exists a vectoru in the output set such that̃d(v, u) ≤ 2D.

We summarize with the following statement (see Appendix A for proofs).

Theorem 5.3 The output of AlgorithmCOALESCE contains at most1/α vectors. There is exactly one vectorv∗

in the output set which is closest to all vectors ofVT , and d̃(v∗, v) ≤ 2D for any vectorv ∈ VT . Moreover, the
number of? entries inv∗ is at most5D/α.

Note that the output of Algorithm COALESCE is deterministic (the order in which vectors are merged in Step 4
is immaterial). Since there is no probing and all players have the same input, all players will have the same output.

5.2 Analysis of Algorithm LARGE RADIUS

We summarize the properties of the main algorithm (Fig. 1) in the following theorem. See Appendix A for details.

Theorem 5.4 Suppose that the algorithm is given0 < α ≤ 1 andD ≥ 0 such that there exists a set of players
P ∗ ⊆ P with |P ∗| ≥ αn satisfyingdist(v(p), v(p′)) ≤ D for anyp, p′ ∈ P ∗. Then w.h.p., the output vectorw(p)
of each playerp ∈ P ∗ satisfiesdist(w(p), v(p)) = O(D/α). The number of probes performed by each player

throughout the execution of the algorithm isO
(

log7/2 n
α2

)
for n ≥ m (for n < m we lose a factor ofm/n).

6 Coping with unknown distance boundD

Our main algorithm (Figure 1) so far required knowingD for a givenα. We now describe how to extend it to the
case of unknownα andD. First, note that for any givenα and a playerp, there exists a minimalD = Dp(α)
such that at least anα fraction of the players are within distanceD from p. So suppose for now thatα is given
andD is not known. In this case we runO(log n) independent versions of the main algorithm (sequentially or in
parallel): in theith version, it is run withDi = 2i. We also run another version withD = 0. From allO(log n)
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resulting output vectorsw(p), we select (using procedure CHOOSE CLOSESTdescribed in Appendix B) the vector
that appears to be closest to its input vectorv(p) and output it.

The search procedure increases the running time of the algorithm by a logarithmic factor, and decreases the
quality of the output by a constant factor, as compared to the algorithm that assumes knownα andD. Hence the
discrepancy in the running times between Theorem 1.1 and Theorem 5.4.

Next we discuss how to chooseα. Clearly, the running time of the algorithm depends on1/α. Given a bound
on the running time of the algorithm (as defined in Theorem 5.4), we can compute the smallest possibleα and run
the algorithm with it. Furthermore, using repeated doubling (and paying a constant factor increase in the running
time), we can lift of the requirement that the running time is given: in phasej, we run the algorithm withα = 2−j .
This way we obtain an “anytime algorithm”, i.e., an algorithm whose output quality at any timet is close to the
best possible int time units. We omit the straightforward details from this extended abstract.

References

[1] I. Abraham, Y. Bartal, T.-H. Chan, K. Dhamdhere, A. Gupta, J. Kleinberg, O. Neiman, and A. Slivkins. Metric embed-
dings with relaxed guarantees. InProc. 46th IEEE Symp. on Foundations of Computer Science, 2005.

[2] N. Alon and J. H. Spencer.The Probabilistic Method. Wiley, second edition, 2000.

[3] B. Awerbuch, Y. Azar, Z. Lotker, B. Patt-Shamir, and M. Tuttle. Collaborate with strangers to find own preferences. In
Proc. 17th ACM Symp. on Parallelism in Algorithms and Architectures, pages 263–269, 2005.

[4] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. Tuttle. Improved recommendation systems. InProc. 16th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1174–1183, January 2005.

[5] Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia. Spectral analysis of data. InProc. 33rd ACM Symp. on Theory of
Computing (STOC), pages 619–626, 2001.

[6] P. Drineas, I. Kerenidis, and P. Raghavan. Competitive recommendation systems. InProc. 34th ACM Symp. on Theory
of Computing (STOC), pages 82–90, 2002.

[7] K. Goldberg, T. Roeder, D. Gupta, , and C. Perkins. Eigentaste: A constant time collaborative filtering algorithm.
Information Retrieval Journal, 4(2):133–151, July 2001.

[8] S. A. Goldman, R. L. Rivest, and R. E. Schapire. Learning binary relations and total orders.SIAM J. Computing,
22(5):1006–1034, October 1993.

[9] S. A. Goldman and M. K. Warmuth. Learning binary relations using weighted majority voting.Machine Learning,
20(3):245–271, 1995.

[10] J. Hu and M. P. Wellman. Self-fulfilling bias in multiagent learning. In V. Lesser, editor,Proceedings of the First
International Conference on Multi–Agent Systems. MIT Press, 1995.

[11] J. Kleinberg and M. Sandler. Convergent algorithms for collaborative filtering. InProc. 4th ACM Conf. on Electronic
Commerce (EC), pages 1–10, 2003.

[12] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Recommendation systems: A probabilistic analysis. In
Proc. 39th IEEE Symp. on Foundations of Computer Science (FOCS), pages 664–673, 1998.

[13] M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. InProc. 11th Int. Conference on
Machine Learning (ML-94). Morgan Kaufmann.

[14] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent semantic indexing: A probabilistic analysis. In
Proc. 17th ACM Symp. on Principles of Database Systems (PODS), pages 159–168. ACM Press, 1998.

[15] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis of recommendation algorithms for e-commerce. InProc. 2nd
ACM Conf. on Electronic Commerce (EC), pages 158–167. ACM Press, 2000.

[16] G. Wei. Learning to coordinate actions in multi-agent systems. In R. Bajcsy, editor,Proceedings of the Thirteenth
International Joint Conference on Arti cial Intelligence (IJCAI-93). MIT Press, 1993.

11



Appendix

A Additional Proofs

Proof of Theorem 3.2: Any vector removed fromV in Step 1c is at distance more thanD from v(p). Among
the vectors remaining inV in Step 2, all distinguishing coordinates were probed, so their distances fromv(p)
are precisely computed, up to a common additive term. Therefore, the output made in Step 2 is trivially correct
by assumption that the closest vector is at distance at mostD. To bound the total number of probes in SELECT,
consider the total number of disagreements betweenv(p) and all vectors of the input setV . By definition ofX,
each probe exposes at least one such disagreement. Since no vector remains inV after findingD + 1 coordinates
on which it disagrees withv(p), we get that the total number of probes is at mostk(D + 1).

Proof of Lemma 5.1: By definition, thed̃ measure ignores? entries. The lemma follows from the observation
thatu and rep(u) agree on all coordinates except the? coordinates in rep(u).

Proof of Lemma 5.2: Observe first that there must be a vectorv1 ∈ A such thatball(v1, D) ∩ ball(v,D) 6= ∅:
otherwise, the vectorv would have been added toA in Step 2 since by assumption,|ball(v,D)| ≥ αn. For that
vectorv1 we havedist(v1, v) ≤ 2D by the triangle inequality. Therefore, by Lemma 5.1,d̃(v, rep(v1)) ≤ 2D.

Proof of Theorem 5.3: Regarding the size of the output set, note that by Step 2, each vector inA represents a
disjoint set of size at leastαn vectors from a set whose total size isn, and henceB starts at Step 3 with size at most
1/α; the claim about the size follows, since Step 4 may only reduce the size ofB. The distance claim follows from
Lemma 5.2. To see uniqueness, suppose that there were vectorsu, u′ ∈ B andv, v′ ∈ VT such thatu is the closest
to v andu′ is the closest tov′. Then by the triangle inequalitỹd(u, u′) ≤ d̃(u, v) + d̃(v, v′) + d̃(v′, u′) ≤ 5D. But
by the stopping condition of the while loop of Step 4,d̃(u, u′) ≤ 5D iff u = u′. Finally, regarding the number of?
entries inv∗, note that Step 4 is performed at most|A| ≤ 1/α times, and each iteration adds at most5D ? entries.

To prove Theorem 5.4 we first prove the following immediate properties of the random partitions of Step 1.

Lemma A.1 With probability at least1− n−Ω(1), the following properties hold for each1 ≤ ` ≤ cD/ log n:

• |O`| = Θ(m log n
D ).

• |P`| = Ω( log n
α ).

• |P` ∩ P ∗| = Θ(α|P`|).
• For any two typical playersp, p′ ∈ P` ∩ P ∗, distO`

(v(p), v(p′)) = O(log n).

Proof of Lemma A.1: By Chernoff. For the partition of objects, note that the expected size ofO` is m log n
cD =

Ω(log n) sinceD ≤ m always; for the partition of players, the expected number of players inP` is n
cD/ log n ·

⌈
D
αn

⌉
=

Ω( log n
α ). The expected number of typical players inP` is Ω(log n), and the expected number of objects inO` on

which any two typical players differ is D
cD/ log n = O(log n).

Proof of Theorem 5.4: Let 1 ≤ ` ≤ cD/ log n. By Lemma A.1, with probability at least1 − n−Ω(1), there

are at leastΩ(α|P`|) players fromP ∗ in P`, and the distance between any two of them onO` is at mostλ def=
min(D,O(log n)). It therefore follows from Theorem 4.4 that with probability at least1 − n−Ω(1), after Step 2
is done,dist(v`(p), v(p)) ≤ λ for anyp ∈ P ∗ ∩ P`. Next we note that by Theorem 5.3, after executing Step 3,
there exists exactly one vectorv` among allO(1/α) vectors ofB` which is the closest to any playerp ∈ P ∗, and
furthermore, that̃dO`

(v`, v(p)) ≤ O(log n). This means that the preconditions for Theorem 3.1 hold, and hence,
with probability at least1− n−Ω(1), all players inP ∗ will output the vector composed of thev` components.
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Regarding complexity, note that Steps 1 and 3 do not involve any probing. Consider Step 2. Let us consider
Algorithm SMALL RADIUS in context: denote byn′ andm′ the number of players and objects (respectively) in
the invocation of SMALL RADIUS. Algorithm SMALL RADIUS is invoked withn′ = O(log n/α) players and
m′ = O(m log n/D) objects in Step 2 of the main algorithm. (We haven′

m′ ≥ n
m ). Also, the confidence parameter

is K = O(log n), and distance bound isD = O(log n). It follows from Theorem 4.4 that after Step 2 of the main
algorithm, the vectorw(p) adopted by a playerp ∈ P` satisfiesdistO`

(v(p), w(p)) ≤ O(log n), and that the total

number of probing rounds is at mostO
(

log n
α log3/2 n log n

)
= O

(
log7/2 n

α

)
. Next, consider Step 4. Algorithm

ZERO RADIUS is invoked withn players andD/ log n < n objects. Since each logical probe of this invocation
consists ofO(1/α) primitive probes, we conclude from Theorem 3.1 that the total number of probes per player in
this step isO( log n

α2 ).

B Solving CHOOSE CLOSESTwithout a distance bound

1. For any pair of distinct vectorsv, v′ ∈ V in turn do:

(a) LetX be the set of coordinates on which non-? values forv andv′ differ.

(b) Probe randomlyc log n coordinates fromX (if |X| < c log n, probe all coordinates inX).

(c) Declarev′ “loser” if 2/3 or more of the probed coordinates agree withv; declarev “loser” if 2/3 or more of the
probed coordinates agree withv′; otherwise none is declared loser.

2. Output any vector with0 losses.

Figure 7:AlgorithmRSELECT for theCHOOSE CLOSESTproblem.

We give an alternative algorithm for solving CHOOSE CLOSEST, which we call below RSELECT. RSELECT

solves the same problem as SELECT, with the following important differences outlined below.
In SELECT, a boundD on the distance ofv(p) to the set is given as input, and the number of probes is linear in

D. In RSELECT, no such bound is given, and the number of probes per input vector isO(log n), irrespective of the
distance between the vectors. On the other hand, SELECT is deterministic and guaranteed to produce the closest
vector, while RSELECT is randomized, and is only guaranteed to be close to the closest vector.

Theorem B.1 Suppose thatD = min
{
d̃(v(p), v) | v ∈ V

}
. With probability at least1 − n−Ω(1), Algorithm

RSELECT outputs a vectoru such thatd̃(u, v(p)) = O(D). The number of probes executed byRSELECT is
O(|V |2 log n).

Proof: The complexity bound is obvious. For correctness, letu0 be the vector inV which is closest tov(p). By
Chernoff, the probability thatu0 loses against any other vector is1−n−Ω(1). Therefore there is at least one vector
with 0 losses (w.h.p.). Also, if̃d(u′, v) ≥ cD for someu′ ∈ V , then the probability thatu′ is declared a loser
againstu0 is also1− n−Ω(1). Hence only a vector whose distance fromv(p) is at mostO(D) may have0 losses.
The result follows.
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