
Class constrained bin covering∗

Leah Epstein† Csanád Imreh‡ Asaf Levin§

Abstract

We study the following variant of the bin covering problem. We are given a set of
unit sized items, where each item has a color associated with it. We are given an integer
parameter k ≥ 1 and an integer bin size B ≥ k. The goal is to assign the items (or a subset
of the items) into a maximum number of subsets of at least B items each, such that in
each such subset the total number of distinct colors of items is at least k. We study both
the offline and the online variants of this problem. We first design an optimal polynomial
time algorithm for the offline problem. For the online problem we give a lower bound of
1+Hk−1 (where Hk−1 denotes the (k−1)-th harmonic number), and an O(k)-competitive
algorithm. Finally, we analyze the performance of the natural heuristic First fit.

1 Introduction

Consider the following imaginary application which illustrates the problem studied in this
paper. An internet provider has access to a fixed number of communication satellites, each
having its own capacity. Each client is interested in getting a total bandwidth of B units. The
provider needs to allocate each served client at least this requested bandwidth. In order to
make the usage of communication network more reliable, in case of failures in some satellites,
the bandwidth supplied to each customer needs to be coming from at least k different sources.
The provider thus allocates some units of bandwidth from each satellite, so that a failure in
up to k − 1 satellites would still keep each served client connected, that is, the number of
satellites with non-zero bandwidth given to each client has to be at least k. The goal is to
maximize the number of served clients, without exceeding the capacity of the satellites.

In the class constrained bin covering problem of unit sized items (ccbc) we
are given a set of unit sized items I = {1, 2, . . . , n} where each item has a color associated
with it. The color of item i is denoted by ci (i.e., if i and j have the same color then ci = cj).
The set of items of one color is called a color class. We are also given (non-negative) integer
parameters k and B ≥ k. A feasible solution of profit m is a partition of I into subsets
S1, . . . , Sm+t such that for each i = 1, 2, . . . ,m the following two conditions hold: |Si| ≥ B

(i.e., the items of Si have a total size of at least B) and Si has items from at least k color classes
(i.e., |⋃j∈Si

cj | ≥ k). Note that we do not require these properties from Sm+1, . . . , Sm+t and

∗This research has been partially supported by the Hungarian National Foundation for Scientific Research,

Grant F048587.
†Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il
‡Department of Informatics, University of Szeged, 6720 Szeged, Hungary. cimreh@inf.u-szeged.hu
§Department of Statistics, The Hebrew University, 91905 Jerusalem, Israel. levinas@mscc.huji.ac.il

1

these sets do not count toward the goal function. We say that a bin is covered if both it has
at least B items, and items of at least k color classes. Note that we assume throughout this
paper that B ≥ k since otherwise we let B = k without changing the problem.

The goal of ccbc is to find a feasible solution that maximizes the number of valid subsets
m in the partition. We denote by q the total number of colors in the instance. We note that
if q = n, or if B = k = 1, the resulting problem is equivalent to the bin covering problem of
identical sized items, which can be easily solved by packing B items to each bin (except for
at most one invalid bin). Therefore we assume B ≥ 2 and q < n.

In our possible application, the satellites correspond to colors, the clients to bins, the
served clients to covered bins, and the capacity of a satellite is the number of unit sized items
of its color. Hence the scenario we describe is equivalent to ccbc.

For an algorithm A, we denote its profit by A as well. The profit of an optimal offline
algorithm (that in the case of comparison to online algorithms, knows the complete sequence
of items) is denoted by opt. For maximization problems, the (asymptotic) competitive ratio
of an algorithm A is the infimum R ≥ 1 such that for any input, opt ≤ R ·A+ c, where c is
a constant independent of the input.
Related work. Packing problems attract much attention for many years [12, 6, 10, 9, 7].
Shachnai and Tamir [18, 19] suggested a model of packing with unit sized colorful items into
(identical) integer sized bins. Each color represents a class of items, and each bin of size B

has a given number of compartments, k ≤ B, and thus can accommodate items only of this
given number of colors. They call this problem class-constrained bin packing. They studied
the offline problem in [18] and designed a dual polynomial time approximation scheme for
constant values of q (which as in ccbc, denotes the total number of distinct colors in the
input), that is, an algorithm that given ε > 0 finds in polynomial time, a packing into opt

bins of size (1+ε)B, where opt is the minimum number of bins of size B required to pack all
items. The problem is NP-hard for k = 2 [17, 14] and NP-hard in the strong sense for k ≥ 3
[14] (these papers study a throughput version of the class-constrained bin packing). The
online variant is studied in [19], where two algorithms of competitive ratio 2 were introduced,
and a matching lower bound (for some types of instances) was given. The generalization of
the packing problem with items of arbitrary size was studied in [20]. A different model of
packing colorful unit sized items was studied in [16].

The standard bin covering problem of unit sized items (ccbc where k = 1) can be solved
trivially in both the offline and the online scenarios. The more general bin covering problem,
with arbitrary sizes of items, was first investigated in [1, 2]. Assman et al. [2] proved
that the greedy algorithm (that simply keeps putting items into the same bin until it is
covered and then moves on to the next bin) has a competitive ratio of 2. In the same paper,
offline algorithms with approximation ratios 3

2 and 4
3 , respectively, were presented. Csirik and

Totik [11] proved that in fact the greedy algorithm is a best possible on-line algorithm, since
no on-line algorithm can have a worst case competitive ratio that is strictly smaller than 2.

The offline, standard bin covering problem was later studied by Csirik, Johnson and
Kenyon [8], who designed an APTAS. Jansen and Solis-Oba [15] showed an AFPTAS for this
problem. This settled the complexity of the problem, since it is clearly NP-hard.

We finally mention variants of packing and covering, that are related to class constrained

2

problems, which are cardinality constrained bin packing (see e.g. [5, 3]) and cardinality con-
strained bin covering [13]. In these problems, a parameter p is given, where each bin must
contain at most p items, in packing problems, and at least p items, in covering problems.
These problems are the special case of class constrained problems where any two items have
distinct colors, and p = k.
Paper outline. In Section 2, we consider the offline version of ccbc and we show that it is
polynomially solvable. Note the difference with its dual, i.e., the packing problem, which is
NP-hard in the strong sense for k ≥ 3 and NP-hard for k = 2 [17, 14]. In Section 3 we turn
our attention to the online problem where the items arrive one by one revealing their color
and are to be packed by the algorithm before any future items arrive. For this problem we
design a competitive algorithm, and provide a lower bound on the competitive ratio of any
(deterministic or randomized) online algorithm. More precisely, we start by showing that the
First fit algorithm is exactly B-competitive for all fixed values of k ≥ 2. Then, we show
that any (deterministic or randomized) online algorithm has a non-constant competitive ratio
of at least 1 + Hk−1 where for every integer m, Hm = 1 + 1

2 + . . . + 1
m denotes the m-th

harmonic number. For fixed values of B we show that the lower bound remains Ω(log k).
Finally, we present the main result of this paper, that is an O(k)-competitive (deterministic)
algorithm for the online problem. We conclude this paper in Section 4 by discussing some
directions for future research.

2 The offline problem

In this section we discuss how to solve the offline problem in polynomial time. We note
that the encoding of the offline problem is as follows: we are given a set C of q colors, for
each of these colors we have the number of items of this color. For color c ∈ C we denote
the number of items of color c by nc. We require that our polynomial time algorithm is
polynomial in the input length of this (compact) representation. That is, polynomial in q and∑
c∈C

log nc ≥ log
∑
c∈C

nc = log n.

We first show an algorithm which guesses the value of opt via binary search as explained
later. Let o be an integer number such that 0 ≤ o ≤ n. Denote by C1 = {c ∈ C : nc ≥ o}
and by C2 = C \ C1. Denote by S2 the total number of items of color in C2.

Lemma 1 Assume that o ≤ opt. Then the following two conditions hold:

1. B · o ≤ n =
∑
c∈C

nc.

2. (k − |C1|) · o ≤ S2 =
∑

c∈C2

nc.

Proof Condition 1 holds due to the following. Each covered bin needs at least B items, so
in total there need to be at least B · opt items, and thus n ≥ B · opt ≥ B · o. To see that
Condition 2 holds, note that each covered bin must be allocated items of at least k − |C1|
color classes from the items of colors in C2 (because each such bin may have up to |C1| colors
from C1). Since there are opt such bins, we have S2 ≥ opt · (k − |C1|) ≥ o · (k − |C1|), and
the claim follows. ¤

3

Claim 1 Assume that 0 ≤ o ≤ n. If B · o ≤ n holds, then we have b n
oc ≥ B and b n

B c ≥ o.
If (k − |C1|) · o ≤ S2, then we have bS2

o c ≥ k − |C1| and b S2
k−|C1|c ≥ o.

Proof Follows from the fact that B, k − |C1| and o are integers. ¤
We next show that the combination of the two conditions of Lemma 1 is not only necessary

but in fact sufficient to ensure that a solution of value o exists, and can be found efficiently.

Lemma 2 Given a value 0 ≤ o ≤ n with the resulting partition into C1, C2, such that
B · o ≤ n and (k − |C1|) · o ≤ S2, then there exists a feasible solution of profit o. Moreover,
such a solution can be created using O(q) operations.

Proof We show how to construct a solution that covers o bins. We first place the items of
C2 in the o bins such that for each color c ∈ C2 and each bin, the bin has at most one item
of color c, and also each bin has at least bS2

o c items. Note that such allocation of items to
bins can be computed in a round-robin fashion (where the items of each color are allocated
consecutively).

We note that for a fixed value of o, using O(q) operations, we can find an encoding of
such an allocation to bins, where this encoding indicates for each color the (cyclic) interval of
bins that contains items of this color. By the second part of Claim 1, we conclude that each
resulting bin has items of at least k − |C1| colors.

Then, we continue to allocate the items of colors in C1 in a round-robin fashion, specifically,
we continue the process from the bin that was supposed to get the next item at the time in
which the previous allocation was stopped. Once again, the items of each color are allocated
to a consecutive set of bins. We note that since each color c of C1 has at least o items, then
each bin will have at least one item of color c, and therefore each bin will have items of at
least k colors. Moreover, by the first part of Claim 1, at the end of the allocation of the items,
each bin will have at least B items, and therefore this allocation creates a solution that covers
o bins. To conclude that we found a polynomial time algorithm for constructing the solution,
we note that (similarly to the previous case) the allocation of the items of a color c ∈ C1 can
also be identified by the cyclical consecutive interval of bins that contain bnc

o c + 1 items of
color c, and the number of items of color c in the other bins (which must be bnc

o c). Hence,
we can compute the allocation of the items into bins in O(q) operations. ¤

We next show how to find the maximum value of o, that satisfies both conditions that are
shown to be necessary and sufficient due to Lemmas 1 and 2.

We create an array Q of size q to store the values nc, and sort the numbers in a non-
decreasing order of the values. This step can be implemented using O(q log q) operations.
In one scan of the array, we create an array Q′ of length q + 1, with the prefix sums of Q.
This step can be implemented using O(q) operations. Each prefix sum corresponds to a fixed
partition into C1 and C2 such that if c1 ∈ C1(P) and c2 ∈ C2(P), then nc2 < nc1 .

For a given partition, P = (C1(P) : C2(P)), we can find the maximum number of bins that
can be covered, optP as follows. By Lemma 1, we have optP ≤

⌊
n
B

⌋
and optP ≤

⌊
S2(P)

k−|C1|)
⌋
,

where S2(P) denotes the total number of items in color classes of C2(P). On the other hand,
by Lemma 2, any value o that satisfies both conditions admits a feasible solution of this value.
Therefore we have optP = min

{⌊
n
B

⌋
,
⌊

S2(P)
k−|C1|)

⌋}
.

4

We create the values optP of all q + 1 partitions (using O(q) operations for all these
values) and pick the maximum value.

The output is the allocation of items for the partition P which maximizes optP , which can
be created using O(q) operations, as established in Lemma 2. Note that the construction of
Lemma 2, which we use here, is algorithmically required only for obtaining the final solution.

This gives a total of O(q log q) operations. The running time of the algorithm is in fact
influenced by n, since each operation takes O(log n) time, given the size of input numbers.
Thus, this algorithm would result in running time of O(q log q · log n), taking both the number
of operations, and the time of each operation, into account.

Therefore, we established the following theorem.

Theorem 1 There is an O(q log q · log n) time algorithm that solves (optimally) the offline
version of ccbc.

3 The online problem

In this section, we study the online problem. We start by defining and analyzing several
reasonable algorithms that are all natural variants of the First fit algorithm. The last
variant, which has the best performance is exactly B-competitive even for k = 2. Typically,
First fit type algorithms have a relatively good performance for packing and covering
problems, including the packing problem that is dual to ccbc (see [19]). This raises the
question whether it is possible to get an improved upper bound for ccbc, using a different
algorithm.

In Section 3.2 we show that any online algorithm has a non-constant competitive ratio.
More precisely we show a lower bound of 1+Hk−1 = Ω(log k) on the competitive ratio where
for every integer m, Hm = 1+ 1

2+. . .+ 1
m denotes the m-th harmonic number. In subsection 3.3

we present the main result of this paper, that is an O(k)-competitive deterministic algorithm
for the online problem.

3.1 Algorithm First fit (ff)

We start by considering the First fit (ff) algorithm, and showing that it performs poorly
even if k = 2 (note that if k = 1 then ff is optimal).

The simplest way to define ff is as follows. Assign a new item to the first bin that is
not covered yet. This algorithm is not competitive. The following example shows that a
reasonable definition of ff should not keep packing items into bins that have enough items,
unless these additional items have different colors. Let N be a large integer. We first have
N(B − k + 1) items, all of color class 1. Our algorithm assigns all these items to one bin,
since it is not covered. Next, for 2 ≤ i ≤ k, there are N items of color class i. After the
arrival of these items, the first bin becomes covered, but no additional bin can be covered,
since all additional bins would contain items of at most k− 1 color classes (actually, only one
additional bin is created). An optimal solution would create N identical bins, each of which
with B − k + 1 items of color class 1, and one item of each other color class.

This leads to the following possible alternative definition of ff. An item x of color c is
packed into the first bin that is not covered, where x can contribute towards covering this bin.

5

This can happen either if the bin contains less than B items, or if the bin does not contain
an item of color c.

Another reasonable definition of a ff type algorithm is the following algorithm ff(1).
When a new item of color c arrives, we allocate it to the first uncovered bin that either
contains less than B items, or contains at least B items, but does not contain an item of color
c. If no such bin exists, we pack it in a new bin.

Note that ff(1) never packs an item into a new bin if it has a bin that contains less than
B items. In the Appendix, we prove the following theorem.

Theorem 2 The competitive ratio of ff(1) is exactly B + k− 1 for all values of k such that
k ≥ 2.

Algorithm ff(2) is a modification of ff(1) that takes into account the fact that if a bin
already has at least one item, but is lacking t ≤ k − 1 colors, then in order to get covered,
it must receive at least t additional items of other colors, and thus if a bin received a total
of k − t colors and it is filled by B − t items, an additional item of one of the colors that are
already packed in this bin would not be helpful towards covering the bin, and therefore in
this case we do not see the bin as suitable for the item. For a bin that contains at least one
item, we define the notion of being useful for adding an item of color c to the bin as follows. If
the bin is covered, that is, it contains at least B items of at least k colors, then clearly adding
an additional item is not useful. If the bin contains items of at most k − t colors, for some
1 < t < k, and c is one of these colors, then adding the new item is useful if the number of
items is no larger than B − t− 1, and otherwise, not useful. In any other case (an uncovered
bin that does not contain an item of color c, or an uncovered bin that already contains items
of k different colors), the packing is useful. The algorithm is defined as follows. When a new
item of color c arrives, we allocate it to the first bin for which adding the new item would be
useful. If no such bin exists, we pack it into a new bin.

Theorem 3 The competitive ratio of ff(2) is exactly B for all values of k such that k ≥ 2.

Proof To show the lower bound consider the following sequence consisting of four parts.
Let N be a large integer and fix the value of k. The first part is (B−k+1)N items of color 1.
At the end of this part ff(2) will pack B−k +1 items in each of the first N bins. The second
part consists of N items of each of the colors 2, 3, . . . , k. At this stage, ff(2) pack these items
one of each color per each bin of the first N bins (and hence it will cover the first N bins).
The third part is (B − k + 1)BN items of color k + 1. The fourth part is BN items of each
one of the colors k + 2, . . . , 2k − 1. Since the third and fourth parts of the input (together)
consist of only k − 1 colors, no additional bins can be covered by ff(2), except for the first
N bins. Therefore the value of its solution is exactly N .

The optimal solution has exactly BN covered bins. Each such bin has B − k + 1 items
of color k + 1, one item of the BN items of each of the colors k + 2, k + 3, . . . , 2k − 1, and
one item of just one of the colors 1, . . . , k (in total, there are BN items of these colors). The
ratio between the value of the two solutions is exactly B, and since N can be arbitrary large,
we conclude that the asymptotic competitive ratio of ff(2) is at least B.

6

It remains to show the upper bound. Note that ff(2) never packs more than B items in
one bin.

By definition of ff(2), an item is packed into a new bin only after all other bins have a
total of at least B−k +1 items each. Moreover, we show that a bin that contains B− t items
for some 0 ≤ t < k contains items of at least k − t colors. This can be proved by induction
on k − t. If k − t = 1, B − t = B − k + 1 ≥ 1, and thus it contains items of at least one
color. Assume that the claim is true for k − t = s. k − t increases to s + 1 when a new item
is assigned. If the bin already contains s + 1 colors, we are done. Otherwise, ff(2) assigns a
new item into a bin with B − t items and k − t colors. This is done only if the new item has
a different color from the previous items in this bin.

We show that every bin that contains at least k colors, except for possibly the last bin
ever opened, is covered. Assume that bin i has items of k colors but is not covered, and is
not the last bin ever opened. Let B − d be the number of items in bin i at the time that the
next bin receives the first item. At this time, by our claim, bin i already has items of k − d

different colors. By definition of ff(2), since an item is assigned to bin i′, bin i has exactly
k − d colors at this time. Since it eventually has at least k colors, it means that it receives d

additional items, and thus becomes covered.
Let j be the index of the first bin (in the order in which bins were opened) that has less

than k colors. If no such bin was opened, and j′ bins were opened in total, by our claim,
ff(2) has at least j′ − 1 covered bins, with B items each, and at most B items in bin j′,
therefore, opt ≤ j′ and ff(2) ≥ j′ − 1, which gives a ratio of at most 2 if j′ ≥ 1. If j′ = 1
then ff(2) = opt.

By our claim, all bins 1, . . . , j − 1 are covered. The proof in this case is similar to the
proof for ff(1). We have ff(2) = j − 1, and bins j, j + 1, . . . have items of at most k − 1
distinct colors. Thus each bin of any optimal solution has at least one item from one of the
first j − 1 bins, and there are at most B(j − 1) such items, therefore opt ≤ B(j − 1). ¤

3.2 Lower bound

In this section we show that any online algorithm has an unbounded competitive ratio if k

can grow to infinity.

Theorem 4 The competitive ratio of any deterministic online algorithm is at least 1+Hk−1 =
Ω(log k). Moreover, given a fixed value of B > k, the competitive ratio of any online algorithm
is at least (B−1)(B−k+1)

B(B−k)+B−1 ·
(

B−k
B−1 + Hk−1

)
= Ω(log k). For B = k, the competitive ratio of any

online algorithm is at least Hk−1.

Proof We fix k and B, and we first assume that B > k. Let N be a large integer, divisible
by B!, thus N is divisible by k − i for any 0 ≤ i ≤ k − 1 (since B ≥ k), and by B − 1.
Our lower bound input sequence consists of two phases. In the first phase we have a set of
N items of each of the colors 1, 2, . . . , k − 1. The second phase has k different scenarios. In
the first scenario this phase consists of N(k−1)

B−1 items of color k. In this scenario the optimal

solution has exactly N(k−1)
B−1 covered bins, each of them has B− 1 items of colors 1, 2, . . . k− 1

(with at least one representative for each color class) and one additional item of color k.

7

For i = 1, 2, . . . , k − 1, the (i + 1)-th scenario consists of NBk items of each of the i colors
k, k + 1, . . . , k + i − 1. The number of items from each color is chosen such that there can
never be a shortage of items of these colors. In the (i + 1)-th scenario the optimal solution
consists of allocating exactly k − i items of the first phase to each bin (with different colors)
and additional B − k + i items of the additional i colors, with at least one representative of
each color. Hence N(k−1)

(k−i) bins are covered by opt.
Consider an online algorithm. Since the input consists of one of these k scenarios, we can

assume without loss of generality that at the end of the first phase the algorithm has bins of
several types. The first type is bins with B − 1 items, and at least one representative of each
color 1, 2, . . . , k − 1. We denote the number of these bins by y. For every j = 1, 2, . . . , k − 1,
there can be bins with exactly one item from each of (exactly) j colors (we denote the number
of bins of this type for each value of j by xj). To show that we may assume that no other
types of bins need to be considered, note first that we can allow the variables y, x1, . . . , xk−1

to be rational (but non-negative), rather than integral. We may also assume that a bin which
contains i items, contains min{i, k − 1} colors, since this is the maximum number of colors
that such a bin can contain, and assuming the largest possible number of colors for each bin
may only help the algorithm. Since the number of colors at this time is only k − 1, every
bin must receive at least one additional item, thus we may assume that no bin contains more
than B − 1 items. Now assume that the algorithm created a bin with B − r items, such that
1 < r ≤ B − k. We replace it by two fractions of bins, one is a r−1

B−k -fraction of a bin with
k− 1 items, and the other one is a B−k−r+1

B−k -fraction of a bin with B− 1 items. If the second
phase is according to the first scenario, the algorithm may only benefit from the change, since
r items that would cover a bin with B − r items, are sufficient to cover the bin fractions; the
fraction with k−1 items needs a r−1

B−k -fraction of B−k +1, and the fraction with B−1 items
needs a B−k−r+1

B−k -fraction of a single item. Together this results in r items. In all other cases,
both the original bin and the fractional bins created from it already have k colors and can be
covered in all the other scenarios.

Then, in the first scenario the algorithm is able to cover only bins with either B−1 or k−1
items, i.e., at most y + N(k−1)

(B−1)(B−k+1) bins. In the (i + 1)-th scenario (for i = 1, 2, . . . , k − 1)

the algorithm is able to cover at most y +
∑k

j=k−i xj bins, as the algorithm can cover only
bins having items of at least k− i colors. Denote by R the competitive ratio of the algorithm,
then the following are satisfied:

y(B − 1) +
k−1∑

j=1

jxj = (k − 1)N (1)

y ≥ 1
R
· N(k − 1)

B − 1
− N(k − 1)

(B − 1)(B − k + 1)
(2)

y +
k−1∑

j=k−i

xj ≥ 1
R
· N(k − 1)

(k − i)
∀i = 1, 2, . . . , k − 1 (3)

y, x1, x2, . . . , xk−1 ≥ 0, (4)

where (1) holds by counting the number of elements in the first phase, (2) holds by the per-
formance guarantee in case scenario 1 holds, (3) holds for all i by the performance guarantee

8

in case the (i + 1)-th scenario holds.
We sum up all the constraints (3) together with B−k times constraint (2). In the resulting

inequality we get that the left hand side is equal to the left hand side of equation (1) and
therefore we obtain the following:

(k − 1)N ≥ 1
R
·
(

N(k − 1)(B − k)
B − 1

+
k−1∑

i=1

N(k − 1)
(k − i)

)
− N(k − 1)(B − k)

(B − 1)(B − k + 1)

=
N(k − 1)

R
·
(

B − k

B − 1
+ Hk−1

)
− N(k − 1)(B − k)

(B − 1)(B − k + 1)
,

and so R ≥ (B−1)(B−k+1)
B(B−k)+B−1 ·

(
B−k
B−1 + Hk−1

)
. When B goes to infinity the last expression

approaches 1 + Hk−1, and we get that R ≥ 1 + Hk−1 when B goes to infinity.
For fixed values of B, if B > k, the proof still holds and results in a lower bound of

(B−1)(B−k+1)
B(B−k)+B−1 ·

(
B−k
B−1 + Hk−1

)
= Ω(log k). If B = k, we apply a small modification to the

sequence, and do not use the first scenario. Note that in the case B = k, the variables y and
xk−1 correspond both to the same number, that is, to the number of bins with k− 1 items of
different colors. Thus we do not use a variable y, we substitute y = 0 in all conditions, and
omit condition (2). This yields a lower bound of Hk−1, as required. ¤

Remark 1 The competitive ratio of any randomized online algorithm is at least 1 + Hk−1 =
Ω(log k). Moreover, given a fixed value of B > k, the competitive ratio of any online algorithm
is at least (B−1)(B−k+1)

B(B−k)+B−1 ·
(

B−k
B−1 + Hk−1

)
= Ω(log k). For B = k, the competitive ratio of any

online algorithm is at least Hk−1.

Proof We note that the proof of Theorem 4 holds also for randomized algorithms. The
variables y and xi can denote the expected number of bins rather than the exact number. We
can apply Yao’s principle [21] (see also Chapter 8.3.1 in [4]). Yao’s principle states that given
a probability measure, defined over a set of input sequences, a lower bound the competitive
ratio of any online algorithm (for a maximization problem) is implied by a lower bound on
the ratio between the the expected value of an optimal solution divided by the expected value
of a deterministic algorithm (both expectations are taken with respect to the probability
distribution defined for the random choice of the input sequence).

In order to apply this method for any B ≥ k, we choose the first scenario with probability
B−k
B−1 and each other scenario with probability 1

B−1 . The analysis reduces to the analysis of
the proof of Theorem 4. ¤

3.3 Algorithm Color&Size (CnS)

In this section, we consider the case B ≥ 2k and design an algorithm of competitive ratio of
O(k) for this case. If B < 2k, it is possible to use ff(2), which has a competitive ratio of at
most 2k.

Our algorithm is based on an online partition of the items into color items and size items.
The first set of items is denoted by C and the second set is denoted by S. Afterwards we pack
the items using the First fit algorithm into a joint set of bins, but the two types of items

9

are packed independently of each other and even obliviously of the contents of the bins with
respect to the other type of items. For items of S, the First fit algorithm packs an item in
the first bin which contains less than B items of S. If no such bin exists, a new bin is opened.
Note that an open bin may contain zero items of S, if it was opened to accommodate some
item of C. The First fit algorithm packs an item of C into the first bin that has items of C

of at most k − 1 different colors, provided that the color of the current item is different from
all the colors of items of C that the bin contains. If no such bin exists, a new bin is opened.

Note that it is possible to define the packing of items of S so that every bin would contain
B− k such items rather than B such items. Since a bin must contain at least k items of C to
be covered, this would result in a sufficient number of items in a covered bin. However, since
we assume B ≥ 2k, this may only change the competitive ratio by a constant multiplicative
factor, and therefore for simplicity, we analyze the algorithm in which each covered bin receives
B items of S.

It remains to describe the online partition of the items into the sets C and S. Algorithm
Color&Size (CnS) has an integer parameter p that we will select afterwards. Each color is
assigned an index by the algorithm, according to its appearance order in the sequence. That
is, a color is assigned index i if items of i− 1 different colors appeared in the sequence before
the 1st appearance of this color. Assume now that a new item that arrives, is the j-th item
of color i. If one of the following conditions holds, the item belongs to C, and otherwise to S.
The first condition is i mod p 6= 0 and j mod p 6= 0 and the second condition is i mod p = 0
and j mod p 6= 1. Thus, the very first item belongs to the set C.

Claim 2 Given the input that contains at least p2 items, the ratio of the numbers of items
in C and S satisfies p− 2 ≤ |C|

|S| ≤ 2p(p− 1).

Proof First note that in a sequence of the first p2 items there is at least one item of S. This
holds since if there are at least p colors, then already the first item of color p is defined to be
an item of S. Otherwise, there are at most p− 1 colors and in this case there is at least one
color with at least p items, and this color has an item in S. Therefore, the ratio in the claim
is well-defined.

We first show that (p − 2)|S| ≤ |C|. We partition a subset of C into subsets of at least
p−2 items, and each subset is assigned to some item of S, so that every item of S is assigned
some subset of items of C.

We partition the colors into blocks of p consecutive colors. For every block that contains
p colors, we consider the first item of each color. Out of these items, the first p− 1 are in C

and the last one is in S. From these p− 1 items of C, we create a set and assign it to belong
to the item of S. If there exists a block with less than p colors, the first items of its colors
remain unassigned. We removed the first item of every color and thus we are left with colors
which have more than one item.

The items of each color are now sequences of items of C, some of which are followed by an
item of S. We put every subset of items of C that appear consecutively in a set, and assign it
to belong to the item of S that appears after them in the same color. If there is no such item
in S, these items of C remain unassigned. The subsets that are followed by an item of S in
the sequences are of size p − 2 (if they are items of indices 2, . . . , p − 1 of some color whose
first item is in C), or otherwise of size p− 1.

10

Since every item of S was assigned at least p− 2 items of C, and the sets of such items of
C are disjoint, the claim follows.

We next show that |C| ≤ 2p(p − 1)|S|. We make a list of the items, such that we first
write down the items of the first color, then the items of the second color and so on, for each
color, the items are sorted according to their arrival order. In this list it suffices to show that
there is no set of p(p − 1) + 1 consecutive items that are all in C. Assume the contrary, so
there exists a set of p(p − 1) + 1 consecutive items of C. Note that after p − 1 items of this
list, if there is no item of S, it means that we must have moved to a new color (as for colors
that start with an item of C, the p-th item is in S). Starting from the beginning of this list
and after at most p(p − 1) items we considered at least p colors, and out of them, at least
p− 1 complete lists of colors, we must reach a color whose first item is in S. ¤

Consider the bins that algorithm CnS creates with less than k colors of items of C. Let
C1, C2, . . . , Cs be the sets of colors of the items of C in these bins (when ordered according
to the order of the bins).

Claim 3 We have Cs ⊆ Cs−1 ⊆ · · · ⊆ C1. Moreover, the set of bins containing k items of C

is a consecutive set of bins. If it is non-empty, it starts from the first bin ever opened.

Proof We prove the first part of the claim. Assume by contradiction that for some t we do
not have Ct+1 ⊆ Ct. There is an item of C of a color c /∈ Ct that is assigned to the bin with
the set of colors Ct+1. By definition of the First fit rule, this can only happen if |Ct| = k,
which is not the case, contradiction. Assume now that there exists a bin j that received
less than k colors, while bin j + 1 received k colors. Similarly to the first part of the claim,
since bin j + 1 receives at least one item of C of a color that bin j does not have, we get a
contradiction to the action of the algorithm. ¤

Note that the items of S are assigned to bins consecutively, the first B items of S to the
first bin, the next B items of S to the next bin etc. Therefore the set of bins containing B

items of S is a prefix of the bins. By Claim 3 we find that the set of bins containing k items
of C is a prefix of the bins as well. Since one of these prefixes may be longer than the other,
we need to consider these two cases.

We first consider the case where the prefix of bins with k items of C is longer than the
prefix of bins with B items of S. That is, there is a bin (in the output of CnS) that has t

items of S where 0 ≤ t < B and exactly k items of C. In this case CnS = b |S|B c and opt is
at most the total number of items divided by B. This amount is |S|+|C|

B ≤ |S|·(1+2p(p−1))
B ≤

(CnS + 1)(2p2 − 2p + 1).
In the remaining case we can assume that every bin of CnS with k items of C has exactly

B items of S. We define C ′ to be the subset of C of all items whose color does not belong
to C1. Similarly we define S′ as the subset of S of all items whose color does not belong to
C1. Since each bin of the optimal solution must contain at least one item whose color is not
in C1 (as |C1| ≤ k − 1), we conclude that opt ≤ |S′|+ |C ′|.

We next argue that CnS ≥ |C′|
k . This is so because the number of covered bins in the

solution returned by CnS is exactly the number of bins that have k items of C. If a bin has
k items of C ′, then it is clearly covered by CnS. Since each item of C ′ contributes to one
of the covered bins, we conclude that the number of covered bins is at least |C′|

k and hence
|C ′| ≤ k · CnS.

11

Claim 4 (p− 2)|S′| ≤ |C ′|+ k − 1

Proof We use the additive constant of k−1 as a way to make up deleted colors. We consider
this as a global budget.

We apply a similar proof to the proof of the first part of Claim 2. We partition all colors
(including the colors of C1) into blocks of p consecutive colors, and assign the subsets of C to
items of S exactly as in that proof. That is, for every block with exactly p colors, we assign
the set of first items of the p−1 first colors to the item of S which is the first item of the p-th
color of this block. Each other item of S receives a subset of items of C of the same color.
Thus, when the C1 colors are removed, the only case where an item of S was not removed
while the subset of items of C assigned to it was changed, is the case where all these items are
each a first item of some color. Thus, the number of items of C removed in this way without
an item of S they were assigned to, is at most the number of removed colors, i.e., at most
k − 1. Hence this claim follows. ¤

We conclude that in this case opt ≤ |S′| + |C ′| ≤ |C′|+k−1
p−2 + |C ′| = p−1

p−2 · |C ′| + k−1
p−2 ≤

(p−1)k
p−2 CnS + k−1

p−2 . We conclude that the competitive ratio of CnS is at most max{2p2 − 2p +

1, (p−1)k
p−2 }.
If k ≥ 36, we use p = b

√
k

2 c. Then p ≥ 3 and p−1
p−2 ≤ 2, so the second term in the maximum

is at most 2k (but is approximately k for large k). The first term in this case is smaller than
k. Otherwise, we use p = 5, and get the competitive ratio of at most max{41, 140/3} = O(1).
The competitive ratio is therefore O(k). Note that the additive constant in all cases is O(k).
Hence we established the following.

Theorem 5 The algorithm CnS has competitive ratio of O(k) (with an additive constant of
O(k)).

We summarize the algorithm as follows.

Algorithm CnS

1. If k ≥ 36 let p = b
√

k
2 c, and otherwise let p = 5.

2. Let C = S = ∅.

3. Upon arrival of a new item, which is the j-th item of the i-th color.

(a) If (i mod p 6= 0 and j mod p 6= 0) or (i mod p = 0 and j mod p 6= 1), augment
the set C with the new item. Otherwise, augment S with the new item.

(b) If the new item is in C, pack it into the first bin that contains items of C of at
most k − 1 distinct colors, none of which is color i.

(c) If the new item is in S, pack it into the first bin that contains less than B items
of the set S.

12

4 Concluding remarks

In this paper we studied the case of equal sized items. The study of the generalization of
the problem where each item has an arbitrary non-negative size is left for future research.
Moreover, closing the gaps of the competitive ratio of the online algorithms (for the identical
size case) between the lower bound and the upper bound is also left for future research.

Note that our results for the online algorithms hold for any value of B, including large
values. When B is of the same order as the size of k, one can hope to get better competitive
ratios. This line of research is also left for future investigation.

References

[1] S.F. Assmann. Problems in discrete applied mathematics. PhD thesis, Mathematics
Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1983.

[2] S.F. Assmann, D.S. Johnson, D.J. Kleitman, and J.Y.-T. Leung. On a dual version of
the one-dimensional bin packing problem. Journal of Algorithms, 5:502–525, 1984.

[3] L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-packing prob-
lems with cardinality constraints. Discrete Applied Mathematics, 143(1-3):238–251, 2004.

[4] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

[5] A. Caprara, H. Kellerer, and U. Pferschy. Approximation schemes for ordered vector
packing problems. Naval Research Logistics, 92:58–69, 2003.

[6] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin
packing: A survey. In D. Hochbaum, editor, Approximation algorithms. PWS Publishing
Company, 1997.

[7] E. G. Coffman Jr. and J. Csirik. Performance guarantees for one-dimensional bin packing.
In T. F. Gonzalez, editor, Handbook of Approximation Algorithms and Metaheuristics,
chapter 32, pages (32–1)–(32–18). Chapman & Hall/Crc, 2007.

[8] J. Csirik, D. S. Johnson, and C. Kenyon. Better approximation algorithms for bin
covering. In Proc.of the 12th Annual Symposium on Discrete Algorithms (SODA2001),
pages 557–566, 2001.

[9] J. Csirik and J. Y.-T. Leung. Variable-sized bin packing and bin covering. In T. F.
Gonzalez, editor, Handbook of Approximation Algorithms and Metaheuristics, chapter 34,
pages (34–1)–(34–11). Chapman & Hall/Crc, 2007.

[10] J. Csirik and J. Y.-T. Leung. Variants of classical one-dimensional bin packing. In T. F.
Gonzalez, editor, Handbook of Approximation Algorithms and Metaheuristics, chapter 33,
pages (33–1)–(33–13). Chapman & Hall/Crc, 2007.

13

[11] J. Csirik and V. Totik. On-line algorithms for a dual version of bin packing. Discrete
Applied Mathematics, 21:163–167, 1988.

[12] J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat and
G. J. Woeginger, editors, Online Algorithms: The State of the Art, chapter 7, pages
147–177. Springer, 1998.

[13] L. Epstein, C. Imreh, and A. Levin. Bin covering with cardinality constraints. Manu-
script, 2007.

[14] L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, and A. Zhu. Approximation algo-
rithms for data placement on parallel disks. In Proc. of the 11th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA2000), pages 223–232, 2000.

[15] K. Jansen and R. Solis-Oba. An asymptotic fully polynomial time approximation scheme
for bin covering. Theoretical Computer Science, 306(1-3):543–551, 2003.

[16] S. O. Krumke, W. de Paepe, J. Rambau, and L. Stougie. Online bin coloring. In Proc.
of the 9th Annual European Symposium on Algorithms (ESA2001), pages 74–85, 2001.

[17] H. Shachnai and T. Tamir. On two class-constrained versions of the multiple knapsack
problem. Algorithmica, 29(3):442–467, 2001.

[18] H. Shachnai and T. Tamir. Polynomial time approximation schemes for class-constrained
packing problems. Journal of Scheduling, 4(6):313–338, 2001.

[19] H. Shachnai and T. Tamir. Tight bounds for online class-constrained packing. Theoretical
Computer Science, 321(1):103–123, 2004.

[20] E. C. Xavier and F. K. Miyazawa. The class constrained bin packing problem with
applications to video-on-demand. In Proc. of the 12th Annual International Conference
on Computing and Combinatorics (COCOON 2006), pages 439–448, 2006.

[21] A. C. C. Yao. Probabilistic computations: towards a unified measure of complexity. In
Proc. of the 18th Symposium on Foundations of Computer Science (FOCS’77), pages
222–227, 1977.

A Proof of Theorem 2

To show the lower bound consider the following sequence consisting of four parts. Let N be
a large integer and fix the value of k. The first part is BN items of color 1. At the end of
this part ff(1) will pack B items in each of the first N bins. The second part consists of N

items of each of the colors 2, 3, . . . , k. At this stage, ff(1) pack these items one of each color
per each bin of the first N bins (and hence it will cover the first N bins). The third part is
(B − k + 1)(B + k− 1)N items of color k + 1. The fourth part is (B + k− 1)N items of each
one of the colors k + 2, . . . , 2k − 1. Since the third and fourth parts of the input (together)
consist of only k − 1 colors, no additional bins can be covered by ff(1), except for the first
N bins. Therefore the value of its solution is exactly N .

14

The optimal solution has exactly (B + k− 1)N covered bins. Each such bin has B− k +1
items of color k+1, one item of the (B+k−1)N items of each of the colors k+2, k+3, . . . , 2k−1,
and one item of just one of the colors 1, . . . , k (in total, there are (B + k− 1)N items of these
colors). The ratio between the value of the two solutions is exactly B + k − 1, and since N

can be arbitrary large, we conclude that the asymptotic competitive ratio of ff(1) is at least
B + k − 1.

It remains to show the upper bound. By definition, a bin can receive additional items
after it has B items only if it receives an item of a new color that this bin does not have, and
this can only happen k − 1 times. Therefore, no bin contains more than B + k − 1 items.

If all created bins are covered, if there are j bins, there are at most j(B + k − 1) < 2jB

items (using k ≤ B), and the competitive ratio is at most 2, since opt < 2j and ff(1) = j.
Otherwise, let j ≥ 1 be the index of the first bin (in the order in which bins were opened)

that was created but is not covered. If bin j contains less than B items, then by definition
of ff(1), bin j + 1 does not exist. In this case, consider bins 1, . . . , j − 1, that contain at
most B + k − 1 items each. In total, there are at most (j − 1)(B + k − 1) + B − 1 ≤
(2B − 1)(j − 1) + B − 1 ≤ (2j − 1)B − j items (using k ≤ B). For j ≥ 2, this gives at
most 3(j − 1)B items. Therefore opt ≤ 3(j − 1), whereas ff(1) = j − 1. In this case, the
competitive ratio is at most 3. If j = 1, there are less than B items, and ff(1) = opt = 0.

In the case that bin j has at least B items, and since it is uncovered, it has items of at
most k − 1 distinct colors. Denote the set of colors in bin j by C ′. Any later bin, j′ > j

can only have items of colors from C ′, otherwise ff(1) would have assigned an item of an
additional color to bin j. Thus, since any bin of an optimal solution must have items of at
least k colors, it must have at least one item from bins 1, . . . , j − 1 of ff(1). As we saw, the
number of items in these bins is at most (j−1)(B +k−1) and thus opt ≤ (j−1)(B +k−1).
Since ff(1) = j − 1, the ratio follows. ¤

15

