Skip to main content
Log in

Covering Many or Few Points with Unit Disks

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Let P be a set of n weighted points. We study approximation algorithms for the following two continuous facility-location problems.

In the first problem we want to place m unit disks, for a given constant m≥1, such that the total weight of the points from P inside the union of the disks is maximized. We present algorithms that compute, for any fixed ε>0, a (1−ε)-approximation to the optimal solution in O(nlog n) time.

In the second problem we want to place a single disk with center in a given constant-complexity region X such that the total weight of the points from P inside the disk is minimized. Here we present an algorithm that computes, for any fixed ε>0, in O(nlog 2 n) expected time a disk that is, with high probability, a (1+ε)-approximation to the optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, P.K., Hagerup, T., Ray, R., Sharir, M., Smid, M., Welzl, E.: Translating a planar object to maximize point containment. In: ESA 2002. LNCS, vol. 2461. Springer, Berlin (2002)

    Google Scholar 

  2. Agarwal, P.K., Procopiuc, C.M.: Exact and approximation algorithms for clustering. Algorithmica 33(2), 201–226 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon, N., Spencer, J.: The Probabilistic Method, 2nd edn. Wiley, New York (2000)

    MATH  Google Scholar 

  4. Aronov, B., Har-Peled, S.: On approximating the depth and related problems. SIAM J. Comput. 38, 899–921 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bose, P., van Kreveld, M., Maheshwari, A., Morin, P., Morrison, J.: Translating a regular grid over a point set. Comput. Geom. Theory Appl. 25, 21–34 (2003)

    MATH  Google Scholar 

  6. Cabello, S., Díaz Báñez, J.M., Seara, C., Sellarès, J.A., Urrutia, J., Ventura, I.: Covering point sets with two disjoint disks or squares. Comput. Geom. Theory Appl. 40, 195–206 (2008)

    MATH  Google Scholar 

  7. Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press, New York (2001)

    Google Scholar 

  8. Chazelle, B.: The discrepancy method in computational geometry. In: Handbook of Discrete and Computational Geometry, pp. 983–996. CRC, Boca Raton (2004)

    Google Scholar 

  9. Chazelle, B., Lee, D.T.: On a circle placement problem. Computing 36, 1–16 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry II. Discrete Comput. Geom. 4, 387–421 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  12. Drezner, Z.: On a modified one-center model. Manag. Sci. 27, 848–851 (1981)

    Article  MATH  Google Scholar 

  13. Drezner, Z., Wesolowsky, G.O.: Finding the circle or rectangle containing the minimum weight of points. Location Sci. 2, 83–90 (1994)

    MATH  Google Scholar 

  14. Gajentaan, A., Overmars, M.H.: On a class of O(n 2) problems in computational geometry. Comput. Geom. Theory Appl. 5, 165–185 (1995)

    MATH  MathSciNet  Google Scholar 

  15. Halperin, D.: Arrangements. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 529–562. CRC, Boca Raton (2004)

    Google Scholar 

  16. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and vlsi. J. ACM 32(1), 130–136 (1985)

    MATH  MathSciNet  Google Scholar 

  17. Katz, M.J., Kedem, K., Segal, M.: Improved algorithms for placing undesirable facilities. Comput. Oper. Res. 29, 1859–1872 (2002)

    Article  MathSciNet  Google Scholar 

  18. Katz, M.J., Sharir, M.: An expander-based approach to geometric optimization. SIAM J. Comput. 26, 1384–1408 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley, Reading (2005)

    Google Scholar 

  20. Matoušek, J.: Efficient partition trees. Discrete Comput. Geom. 8, 315–334 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Matoušek, J.: Approximations and optimal geometric divide-an-conquer. J. Comput. Syst. Sci. 50, 203–208 (1995)

    Article  Google Scholar 

  22. Plastria, F.: Continuous covering location problems. In: Hamacher, H., Drezner, Z. (eds.) Location Analysis: Theory and Applications, pp. 39–83. Springer, Berlin (2001), Chap. 2

    Google Scholar 

  23. Sharir, M.: On k-sets in arrangements of curves and surfaces. Discrete Comput. Geom. 6, 593–613 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Cabello.

Additional information

A preliminary version of this work has appeared in Approximation and Online Algorithms—WAOA 2006, LNCS, vol. 4368.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Berg, M., Cabello, S. & Har-Peled, S. Covering Many or Few Points with Unit Disks. Theory Comput Syst 45, 446–469 (2009). https://doi.org/10.1007/s00224-008-9135-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-008-9135-9

Keywords

Navigation