Network design with edge-connectivity and degree constraints^{*}

Takuro Fukunaga Hiroshi Nagamochi

{takuro, nag}@amp.i.kyoto-u.ac.jp Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Japan

Abstract

We consider the following network design problem; Given a vertex set V with a metric cost c on V, an integer $k \ge 1$, and a degree specification b, find a minimum cost k-edge-connected multigraph on V under the constraint that the degree of each vertex $v \in V$ is equal to b(v). This problem generalizes metric TSP. In this paper, we propose that the problem admits a ρ -approximation algorithm if $b(v) \ge 2$, $v \in V$, where $\rho = 2.5$ if k is even, and $\rho = 2.5 + 1.5/k$ if k is odd. We also prove that the digraph version of this problem admits a 2.5-approximation algorithm and discuss some generalization of metric TSP.

Keywords: approximation algorithm, degree constraint, edge-connectivity, (m, n)-VRP, TSP, vehicle routing problem

1 Introduction

It is a main concern in the field of network design to construct a graph of the least cost which satisfies some connectivity requirement. Actually many results on this topic have been obtained so far. In this paper, we consider a network design problem that asks to find a minimum cost k-edge-connected multipraph on a metric edge cost under degree specification. This provides a natural and flexible framework for treating many network design problems. For example, it generalizes the vehicle routing problem with m vehicles (m-VRP) [4, 8], which will be introduced below, and hence contains a well-known metric traveling salesperson problem (TSP), which has already been applied to numerous practical problems [9].

Let \mathbb{Z}_+ and \mathbb{Q}_+ denote the sets of non-negative integers and non-negative rational numbers, respectively. Let G = (V, E) be a multigraph with a vertex set V and an edge set E, where a multigraph may have some parallel edges but is not allowed to have any loops. For two vertices u and v, an edge joining u and v is denoted by uv. Since we consider multigraphs in this paper, we distinguish two parallel edges $e_1 = uv$ and $e_2 = uv$, which may be simply denoted by uv and uv. For a non-empty vertex set $X \subset V$,

^{*}Technical report 2006-012, October 4, 2006.

Figure 1: A solution for 4-VRP

d(X; G) (or d(X)) denotes the number of edges whose one end vertex is in X and the other is in V - X. In particular d(v; G) (or d(v)) denotes the degree of vertex v in G. The edge-connectivity $\lambda(u, v; G)$ (or $\lambda(u, v)$) between u and v is the maximum number of edge-disjoint paths between them in G. The edge-connectivity $\lambda(G)$ of G is defined as $\min_{u,v \in V} \lambda(u, v; G)$. If $\lambda(G) \geq k$ for some $k \in \mathbb{Z}_+$, then G is called k-edge-connected. For a function $r : {V \choose 2} \to \mathbb{Z}_+$, G is called r-edge-connected if $\lambda(u, v; G) \geq r(u, v)$ for every $u, v \in V$. Edge cost $c : {V \choose 2} \to \mathbb{Q}_+$ is called metric if it obeys the triangle inequality, i.e., $c(uv) + c(vw) \geq c(uw)$ for every $u, v, w \in V$.

For a degree specification $b: V \to \mathbb{Z}_+$, a multigraph G with d(v; G) = b(v) for all $v \in V$ is called a *perfect b-matching*. In this paper, we focus on the following network design problem.

k-edge-connected multigraph with degree specification (k-ECMDS):

A vertex set V, a metric edge cost $c : \binom{V}{2} \to \mathbb{Q}_+$, a degree specification $b : V \to \mathbb{Z}_+$, and a positive integer k are given. We are asked to find a minimum cost perfect b-matching G = (V, E) of edge-connectivity k.

In this paper, we suppose that $b(v) \ge 2$ for all $v \in V$ unless stated otherwise, and propose approximation algorithms to k-ECMDS in this case.

Problem k-ECMDS is a generalization of m-VRP, which asks to find a minimum cost set of m cycles, each containing a designated initial city s, such that each of the other cities is covered by exactly one cycle (see Fig. 1). Observe that this problem is 2-ECMDS where b(s) = 2m for the initial city $s \in V$ and b(v) = 2 for every $v \in V - s$. If m = 1, then m-VRP is exactly TSP. Since TSP is known to be NP-hard [12] even if a given cost is metric (metric TSP), k-ECMDS is also NP-hard. If a given cost is not metric, TSP cannot be approximated unless P = NP [12]. For m-VRP, there is a 2-approximation algorithm based on the primal-dual method [8].

It is well studied to find a minimum cost multigraph either with k-edge-connectivity or with degree specification. It is known that finding a minimum cost k-edge-connected graph is NP-hard since it is equivalent to metric TSP when k = 2 and a given edge cost is metric. On the other hand, it is known that a minimum cost perfect b-matching can be constructed in polynomial time (for example, see [11]). As a prior result on problems equipped with both edge-connectivity requirements and degree constraints, Frank [2] showed that it is polynomially solvable to find a minimum cost r-edge-connected multigraph G with $\ell(v) \leq d(v; G) \leq u(v), v \in V$ for degree lower and upper bounds $\ell, u : V \to \mathbb{Z}_+$ and a metric edge cost c such that c(uv) is defined by w(u) + w(v) for some weight $w : V \to \mathbb{Q}_+$ (in particular, c(uv) = 1 for every $uv \in \binom{V}{2}$). Recently Fukunaga and Nagamochi [5] presented approximation algorithms for a network design problem with a general metric edge cost and some degree bounds; For example, they presented a $(2+1/\lfloor\min_{u,v\in V} r(u,v)/2\rfloor)$ approximation algorithm for constructing a minimum cost r-edge-connected multigraph that meets a local-edge-connectivity requirement r with $r(u,v) \geq 2$, $u, v \in V$ under a uniform degree upper bound. Afterwards Fukunaga and Nagamochi [6] gave a 3approximation algorithm for the case where $r(u,v) \in \{1,2\}$ for every $u, v \in V$ and $\ell(v) = u(v)$ for each $v \in V$. In this paper, we extend the 3-approximation result [6] to k-ECMDS. Concretely, we prove that k-ECMDS is ρ -approximable if $b(v) \geq 2$, $v \in V$, where $\rho = 2.5$ if k is even and $\rho = 2.5 + 1.5/k$ if k is odd. Moreover, we show that this factor can be improved when a degree specification is uniform. To design our algorithms for k-ECMDS, we take a similar approach with famous 2- and 1.5-approximation algorithms for metric TSP.

Furthermore, we also generalize k-ECMDS to a network design problem in digraphs. We denote an arc (i.e., a directed edge) from a vertex u to another vertex v by uv. Two arcs from u to v are called *parallel*. Let D = (V, A) be a multi-digraph, where a multi-digraph may have some parallel arcs but is not allowed to have any loops. For an ordered pair of vertices u and v, $\lambda(u, v; D)$ (or $\lambda(u, v)$) denotes the arc-connectivity from u to v, i.e., the maximum number of arc-disjoint paths from u to v in D. The arc-connectivity $\lambda(D)$ of Dis defined as $\min_{u,v \in V} \lambda(u, v; D)$. If $\lambda(D) \geq k$ for some $k \in \mathbb{Z}_+$, D is called k-arc-connected. Moreover, $d^-(v; D)$ (or $d^-(v)$) and $d^+(v; D)$ (or $d^+(v)$) denote in- and out-degree of vertex v in digraph D, respectively. Arc cost $c: V \times V \to \mathbb{Q}_+$ is called symmetric if c(uv) = c(vu)for every $u, v \in V$, and metric if it obeys the triangle inequality, i.e., $c(uv) + c(vz) \geq c(uz)$ for every $u, v, z \in V$.

We call a multi-digraph D with $d^-(v; D) = b^-(v)$ and $d^+(v; D) = b^+(v)$ for all $v \in V$ perfect (b^-, b^+) -matching for in- and out-degree specifications $b^-, b^+ : V \to \mathbb{Z}_+$. A minimum cost perfect (b^-, b^+) -matching can be found by computing a minimum cost perfect b-matching in a bipartite graph. The digraph version of the problem is described as follows.

k-arc-connected multi-digraph with degree specification (k-ACMDS):

A vertex set V, a symmetric metric arc cost $c : V \times V \to \mathbb{Q}_+$, in- and out-degree specifications $b^-, b^+ : V \to \mathbb{Z}_+$, and a positive integer k are given. We are asked to find a minimum cost perfect (b^-, b^+) -matching D = (V, A) of arc-connectivity k.

We also introduce a problem (m, n)-vehicle routing problem ((m, n)-VRP), which generalizes m-VRP so that each of the other cities than a special city is visited by exactly n of the m cycles. This problem is not contained in k-ECMDS. However, we show that our algorithm for k-ECMDS also delivers a 2.5-approximate solution to (m, n)-VRP. Moreover, we improve this algorithm to an $(1.5 + \frac{m-n}{m})$ -approximation algorithm.

This paper is organized as follows. Section 2 presents an algorithm for k-ECMDS. Section 3 provides a 2.5-approximation algorithm for k-ACMDS problem. Section 4 improves the approximation factors of these algorithms assuming that a degree specification is uniform. Section 5 shows how to apply our algorithm for k-ECMDS to (m, n)-VRP. Section 6 makes some concluding remarks.

2 Algorithm for *k*-ECMDS

This section describes an approximation algorithm for k-ECMDS. Before describing the algorithm, we consider how to check the feasibility of a given instance.

2.1 Feasibility

For some degree specification b, there is no perfect b-matching. The following theorem shows provides a necessary and sufficient condition for a degree specification to admit a perfect b-matching. Note that b(v) can be 1 in this theorem.

Theorem 1 Let V be a vertex set with $|V| \ge 2$ and $b : V \to \mathbb{Z}_+$ be a degree specification. Then there exists a perfect b-matching if and only if $\sum_{v \in V} b(v)$ is even and $b(v) \le \sum_{u \in V-v} b(u)$ for each $v \in V$.

Proof: The necessity is trivial. We show the sufficiency by constructing a perfect *b*-matching. We let $V = \{v_1, \ldots, v_n\}$ and $B = \sum_{\ell=1}^n b(v_\ell)/2$. For $j = 1, \ldots, B$, we define i_j as the minimum integer such that $\sum_{\ell=1}^{i_j} b(v_\ell) \ge j$, and i'_j as the minimum integer such that $\sum_{\ell=1}^{i_j} b(v_\ell) \ge j$, and i'_j as the minimum integer such that $\sum_{\ell=1}^{i_j-1} b(v_\ell) < j$ holds by the definition if $i_j \ge 2$. Then we can see that $i_j \ne i'_j$ since otherwise we would have $b(v_{i_j}) = \sum_{\ell=1}^{i_j} b(v_\ell) - \sum_{\ell=1}^{i_j-1} b(v_\ell) > (B+j) - j = B$ if $i_j \ge 2$ and $b(v_{i_j}) \ge B + j > B$ otherwise, which contradicts to the assumption.

Let $M = \{e_j = v_{i_j}v_{i'_j} \mid j = 1, ..., B\}$. Then M contains no loop by $i_j \neq i'_j$. Moreover G_M is a perfect *b*-matching since $|\{j \mid i_j = \ell \text{ or } i'_j = \ell\}| = b(v_i)$, as required. \Box

Theorem 1 does not mention the edge-connectivity. For existence of connected perfect b-matchings, we additionally need the condition that $\sum_{v \in V} b(v) \ge 2(|V| - 1)$ [6]. This is always satisfied if $b(v) \ge 2$, $v \in V$, which we assume for 1-ECMDS. For $k \ge 2$, the conditions in Theorem 1 and $b(v) \ge k$, $v \in V$ are sufficient for the existence of k-edge-connected perfect b-matchings as our algorithm will construct such b-matchings under the conditions.

2.2 Algorithm

Now we describe our algorithm to k-ECMDS. Let (V, b, c, k) be an instance of k-ECMDS. The conditions appeared in Theorem 1 and $b(v) \ge k$ for all $v \in V$ can be verified in polynomial time, where they are apparently necessary for an instance to have k-edgeconnected perfect b-matchings. Hence our algorithm checks them, and if some of them are violated, it outputs message "INFEASIBLE". In the following, we suppose the existence of perfect b-matchings with $b(v) \ge k$ for all $v \in V$. If $2 \le |V| \le 3$, then every perfect b-matching is k-edge-connected because any non-empty vertex set $X \subset V$ is $\{v\}$ or $V - \{v\}$ for some $v \in V$, and then $d(X) = d(v) \ge k$. Hence we can assume without loss of generality that $|V| \ge 4$.

For an edge set F on V, we denote graph (V, F) by G_F . Let M be a minimum cost edge set such that G_M is a perfect *b*-matching. In addition, let H be an edge set of a Hamiltonian cycle spanning V constructed by the 1.5-approximation algorithm for TSP due to Christofides [12].

Initialization: After testing the feasibility of a given instance, our algorithm first prepares M and $k' = \lceil k/2 \rceil$ copies $H_1, \ldots, H_{k'}$ of H. Let E denote the union $M \cup H_1 \cup \cdots \cup H_{k'}$ of them. Notice that G_E is 2k'-edge-connected by the existence of edge-disjoint k' Hamiltonian cycles. We call a vertex v in a handling graph G an excess vertex if d(v;G) > b(v) (otherwise a non-excess vertex). In G_E , all vertices are excess vertices since $d(v;G_E) = b(v) + 2k'$. In the following steps, the algorithm reduces the degree of excess vertices until no excess vertex exists while generating no loops and keeping k-edge-connectivity (Notice that k < 2k' if k is odd). This is achieved by two phases, Phase 1 and Phase 2, as follows.

Phase 1: In this phase, we modify only edges in M while keeping edges in $H_1, \ldots, H_{k'}$ unchanged. We define the following two operations on an excess vertex $v \in V$.

Operation 1: If v has two incident edges xv and yv in M with $x \neq y$, replace xv and yv by new edge xy.

Operation 2: If v has two parallel edges uv in M with d(u) > b(u), remove those edges.

Phase 1 repeats Operations 1 and 2 until none of them is executable. For avoiding ambiguity, we let M' denote M after executing Phase 1, and M denote the original set in what follows. Moreover, let $E' = M' \cup H_1 \cup \cdots \cup H_{k'}$. Note that d(v) - b(v) is always a nonnegative even integer throughout (and after) these operations because $d(v; G_E) - b(v) = 2k'$ and each operation decreases the degree of a vertex by 2. If no excess vertex remains in $G_{E'}$, then we are done. We consider the case in which there remain some excess vertices, and show some properties on M' before describing Phase 2.

Claim 1 Every excess vertex in $G_{E'}$ has at least one incident edge in M' and its neighbors in $G_{M'}$ are unique.

Proof: Since $d(v; G_{E'}) - b(v)$ is a positive even integer for an excess vertex v in $G_{E'}$, it holds $d(v; G_{M'}) = d(v; G_{E'}) - d(v; G_{H_1 \cup \cdots \cup H_{k'}}) \ge (b(v) + 2) - 2k' > 0$, Hence v has at least one incident edges in M'. If neighbors of v in $G_{M'}$ are not unique, Operation 1 can be applied to v.

For an excess vertex v in $G_{E'}$, let n(v) denote the unique neighbor of v in $G_{M'}$. If n(v) is also an excess vertex in $G_{E'}$, we call the pair $\{v, n(v)\}$ by a strict pair.

Claim 2 Let $\{v, n(v)\}$ be a strict pair. Then $d(v; G_{M'}) = d(n(v); G_{M'}) = 1$, k is odd, and b(v) = b(n(v)) = k.

Proof: By Claim 1, $d(v; G_{M'}) = d(n(v); G_{M'})$. If $d(v; G_{M'}) = d(n(v); G_{M'}) > 1$, Operation 2 can be applied to v and n(v), a contradiction. Hence $d(v; G_{M'}) = d(n(v); G_{M'}) = 1$ holds. Let $u \in \{v, n(v)\}$. Then it holds that $d(u; G_{E'}) = d(u; G_{H_1 \cup \cdots \cup H_{k'}}) + d(u; G_{M'}) = 2k' + 1 = 2\lceil k/2 \rceil + 1$. Since $d(u; G_{E'}) - b(u)$ is even, b(u) must be odd. This fact and $d(u, G_{E'}) > b(u) \ge k$ indicates that b(u) = k and k is odd. \Box

By definition, the existence of excess vertices which are in no strict pairs indicate that of some non-excess vertices. Upon completion of Phase 1, let N denote the set of non-excess vertices in $G_{E'}$, and S denote the set of strict pairs in $G_{E'}$. If $N = \emptyset$, all excess vertices are in some strict pairs. By Claim 2, k is an odd integer in this case, and furthermore $k \ge 3$ by the assumption that $b(v) \ge 2$, $v \in V$ if k = 1. From this fact and $|V| \ge 4$, $N = \emptyset$ implies that at least two strict pairs exist (i.e., $|S| \ge 2$).

Phase 2: Now we describe Phase 2. First, we deal with a special case in which V consists of only two strict pairs.

Claim 3 If V consists of two strict pairs after Phase 1, we can transform $G_{E'}$ into a k-edge-connected perfect b-matching without increasing the cost.

Proof: Let $V = \{u, v, w, z\}$ and $H = \{uv, vw, wz, zu\}$. Now $E' = M' \cup H_1 \cup \cdots \cup H_{k'}$ $(k \geq 2)$. Then either $M' = \{uv, wz\}$ (or $\{vw, zu\}$) or $M' = \{uw, vz\}$ holds. In both cases, we replace $M' \cup H_1 \cup H_2$ by $E'' = \{uv, vw, wz, zu, uw, vz\}$ (see Fig. 2). Then, we can see that $d(v; G_{E''}) = 3$ for all $v \in V$ and $G_{E''}$ is 3-edge-connected. Since $d(v; G_{H_i}) = 2$ for $v \in V, i = 3, \ldots, k'$ and G_{H_i} is 2-edge-connected for $i = 3, \ldots, k'$, it holds that $d(v; G_{E'' \cup H_3 \cup \cdots \cup H_{k'}}) = 3 + 2(k' - 2) = k = b(v)$ for $v \in V$ and the edge-connectivity of $G_{E'' \cup H_3 \cup \cdots \cup H_{k'}}$ is 3 + 2(k' - 2) = k (The existence of strict pair implies that k is odd by Claim 2.).

Hence it suffices to show that $c(E'') \leq c(M') + c(H_1) + c(H_2)$. If $M' = \{uw, vz\}$ (or $\{vw, zu\}$), then it is obvious since $E'' = M' \cup H_1 \subseteq M' \cup H_1 \cup H_2$. Let us consider the other case, i.e., $M' = \{uv, wz\}$. From $M' \cup H_1 \cup H_2$, remove $\{uv, uv\}$, replace $\{wz, zu\}$ by $\{wu\}$, and replace $\{vw, wz\}$ by $\{vz\}$. Then the edge set becomes E'' without increasing edge cost, as required.

In the following, we assume that $|S| \geq 3$ when $N = \emptyset$. In this case, Phase 2 modifies only edges in H_i , $i = 1, \ldots, k'$ while keeping the edges in M' unchanged. Let $V(H_i)$ denote the set of vertices spanned by H_i . We define *detaching* v from cycle H_i to be an operation that replaces the pair $\{uv, vw\} \subseteq H_i$ of edges incident to v by a new edge uw. Note that this decreases d(v) by 2, but H_i remains a cycle on $V(H_i) := V(H_i) - \{v\}$. For each excess vertex v in $G_{E'}$, Phase 2 reduces d(v) to b(v) by detaching v from $(d(v; G_{E'}) - b(v))/2$ cycles in $H_1, \ldots, H_{k'}$. We notice that $(d(v; G_{E'}) - b(v))/2 \leq k'$ by $d(v; G_{E'}) - b(v) \leq$ $d(v; G_E) - b(v) = 2k'$. One important point is to keep $|V(H_i)| \geq 2$ for each $i = 1, \ldots, k'$ during Phase 2. In other words, we always select H_i with $|V(H_i)| \geq 3$ to detach an excess vertex. This is necessary because, if we detach a vertex from H_i with $V(H_i) = 2$, then H_i becomes a loop. In addition, we detach the two excess vertices u and v in a strict pair from different cycles in $H_1, \ldots, H_{k'}$, respectively. This is in order to maintain the k-edge-connectivity of $G_{E'}$ as will be explained below.

Figure 2: Operations when V consists of two strict pairs

Claim 4 It is possible to decrease the degree of each excess vertex v in $G_{E'}$ to b(v) by detaching from some cycles in $H_1, \ldots, H_{k'}$ so that $|V(H_i)|$ remains at least 2 for $i = 1, \ldots, k'$ and the two excess vertices in each strict pair are detached from H_i and H_j with $i \neq j$, respectively.

Proof: First, let us consider the case of $S \neq \emptyset$. Recall $k \geq 3$ and $k' = \lceil k/2 \rceil \geq 2$ in this case. For each strict pair $\{u, v\} \in S$, we detach u and v from different cycles in $H_1, \ldots, H_{k'}$. On the other hand, we detach excess vertex z from arbitrary $(d(z; G_{E'}) - b(z))/2$ cycles. After this, each of $H_1, \ldots, H_{k'}$ is incident to at least one vertex of any strict pair in S in addition to all non-excess vertices in N. By the relation between |S| and |N| we explained in the above, it holds that $|V(H_i)| \geq |S| + |N| \geq 2$ for each $i = 1, \ldots, k'$, as required.

Next, let us consider the case of $S = \emptyset$. As explained in the above, $|N| \ge 1$ holds for this case. If $|N| \ge 2$, the claim is obvious since each of $H_1, \ldots, H_{k'}$ is always incident to all vertices in N. Hence suppose that |N| = 1, and let x be the unique non-excess vertex in N. Then all edges in M' are incident to x, since otherwise $S = \emptyset$ implies that Operation 1 or 2 would be applicable to some vertex in V - x. In other words, $b(x) = d(x; G_{E'}) = |M'| + 2k'$ holds before Phase 2. Moreover $\sum_{v \in V-x} b(v) \ge b(x)$ also holds by the assumption that perfect b-matchings exist. Now assume that we have converted some excess vertices in $G_{E'}$ into non-excess vertices by detaching them from some of $H_1, \ldots, H_{k'}$ while keeping $|V(H_i)| \ge 2$, $i = 1, \ldots, k'$, and yet an excess vertex $y \in V - x$ remains. Hence $\sum_{v \in V} d(v) > \sum_{v \in V} b(v)$. Then there remains a cycle H_i with $|V(H_i)| > 2$ because

$$2\sum_{1\leq i\leq k'} |V(H_i)| = \sum_{v\in V} d(v; G_{H_1\cup\dots\cup H_{k'}}) = \sum_{v\in V} d(v) - 2|M'|$$

>
$$\sum_{v\in V-\{x\}} b(v) + b(x) - 2|M'| \ge 2(b(x) - |M'|) \ge 4k'.$$

Therefore we can detach an excess vertex y from such H_i as long as such a vertex exists. This implies that the claim holds also for |N| = 1.

In the following, we let H'_i denote H_i after Phase 2, and H_i denote the original Hamiltonian cycle for $i = 1, \ldots, k'$. Moreover let $E'' = M' \cup H'_1 \cup \cdots \cup H'_{k'}$. The algorithm outputs $G_{E''}$. The entire algorithm is described as follows.

Algorithm UNDIRECT(k)

Input: A vertex set V, a degree specification $b: V \to \mathbb{Z}_+$, a metric edge cost $c: V \to \mathbb{Q}_+$, and a positive integer k

Output: A k-edge-connected perfect b-matching or "INFEASIBLE"

```
1: if \sum_{v \in V} b(v) is odd, \exists v : b(v) > \sum_{u \in V-v} b(u) or k > b(v) then
 2:
       Output "INFEASIBLE" and halt
 3: end if;
 4: Compute a minimum cost perfect b-matching G_M;
 5: if |V| \leq 3 then
       Output G_M and halt
 6:
 7: end if;
 8: Compute a Hamiltonian cycle G_H on V by Christofides' algorithm;
 9: k' := \lfloor k/2 \rfloor; Let H_1, ..., H_{k'} be k' copies of H;
    \# Phase 1
10: M' := M;
11: while Operation 1 or 2 is applicable to a vertex v \in V
    with d(v; G_{M'\cup H_1\cup\cdots\cup H_{k'}}) > b(v) do
       if \exists \{xv, vy\} \subseteq M' such that x \neq y then
12:
          M' := (M' - \{xv, vy\}) \cup \{xy\} \quad \text{ # Operation 1}
13:
       else
14:
         if \exists \{xv, vx\} \subseteq M' such that d(x; G_{M' \cup H_1 \cup \cdots \cup H_{k'}}) > b(x) then
15:
            M' := M' - \{xv, vx\}
                                                  \# Operation 2
16:
          end if
17:
       end if
18:
19: end while;
    \# Phase 2
20: if V consists of two strict pairs then
       Rename vertices so that H = \{uv, vw, wz, zu\};
21:
       H'_2 := \emptyset; M' := \{uw, vz\};
22:
       Output G_{M'\cup H'_1\cup\cdots\cup H'_{k'}} and halt
23:
24: end if;
25: H'_i := H_i for each i = 1, ..., k';
26: while \exists v \in V with d(v; G_{M' \cup H'_1 \cup \cdots \cup H'_{k'}}) > b(v) do
       if v and n(v) forms a strict pair then
27:
          Detach v from H'_i and n(v) from H'_j, where i \neq j
28:
29:
       else
          Detach v from H'_i with V(H'_i) > 2
30:
       end if
31:
32: end while;
33: E'' := M' \cup H'_1 \cup \cdots \cup H'_{k'};
34: Output G_{E''}
```

Claim 5 $G_{E''}$ is a k-edge-connected perfect b-matching.

Figure 3: Reduction to the case of $V(H'_i) \cap V(H'_i) = \emptyset$

Proof: We have already seen the case in which V consists of two strict pairs. Hence we suppose the other case in the following. Moreover we have already observed that $d(v; G_{E''}) = b(v)$ holds for each $v \in V$. Furthermore $G_{E''}$ is loopless since G_E is loopless and no operations in the algorithm generate loops. Hence we prove the k-edge-connectivity of $G_{E''}$ below.

Let $u, v \in V$. (i) First suppose that u and v are in some (possibly different) strict pairs in $G_{E'}$. Moreover, let $u \notin V(H'_i)$ and $v \notin V(H'_j)$ (hence $u \in V(H'_{i'})$ for $i' \neq i$ and $v \in V(H'_{j'})$ for $j' \neq j$). For each $\ell \in \{1, \ldots, k'\} - \{i, j\}$, $\lambda(u, v; G_{H'_{\ell}}) = 2$ holds because $u, v \in V(H'_{\ell})$. If i = j, $\lambda(u, v; G_{H'_i \cup M'}) = 1$ holds because $d(u; G_{M'}) = d(v; G_{M'}) = 1$ and $n(u), n(v) \in V(H'_i)$. Then it holds that $\lambda(u, v; G_{E''}) = 2(k'-1)+1 = k$ in this case (Recall that the existence of strict pairs implies that k is odd by Claim 2). Hence we let $i \neq j$, and show that $\lambda(u, v; G_{H'_i \cup H'_j \cup M'}) \geq 3$ from now on, from which $\lambda(u, v; G_{E''}) \geq 2(k'-2)+3 = k$ can be derived.

Let N and S denote the sets of non-excess vertices and strict pairs in $G_{E'}$ after Phase 1, respectively. Suppose that $V(H'_i) \cap V(H'_j) = \emptyset$. In this case, it can be seen that $N = \emptyset$, and hence $|S| \ge 3$ by the assumption about the relation between N and S. Since at least one vertex of each strict pair is spanned by each cycle in $H'_1, \ldots, H'_{k'}$, we can see that M'contains at least three vertex-disjoint edges that join vertices in $V(H'_i)$ and in $V(H'_j)$, two of which are u and v. This indicates that $\lambda(u, v; G_{H'_i \cup H'_j \cup M'}) \ge 3$ holds (see the graph of Figure 3 (b)).

Let us consider the case of $V(H'_i) \cap V(H'_j) \neq \emptyset$ in the next. By the existence of u and v, $|S| \geq 1$ holds. If u and v forms a strict pair (i.e., $uv \in M'$), $\lambda(u, v; G_{M'}) = 1$ holds. Since $V(H'_i) \cap V(H'_j) \neq \emptyset$ implies $\lambda(G_{H'_i \cup H'_j}) \geq 2$, we see that $\lambda(u, v; G_{H'_i \cup H'_j \cup M'}) \geq 3$ in this case. Thus let u and v belong to different strict pairs (i.e., $|S| \geq 2$). Then there exists two vertex-disjoint edges in M' joins vertices in $V(H'_i)$ and in $V(H'_j)$ (see Figure 3 (a)). If we split each vertex $w \in V(H'_i) \cap V(H'_j)$ into two vertices w' and w'' so that H'_i and H'_j are vertex-disjoint cycles, and add new edges w'w'' joining those two split vertices to M', then we can reduce this case to the case of $V(H'_i) \cap V(H'_j) = \emptyset$, in which $\lambda(u, v; G_{H'_i \cup H'_j \cup M'}) \geq 3$ has already been observed in the above (see Figure 3). Accordingly, we have $\lambda(u, v; G_{H'_i \cup H'_i \cup M'}) \geq 3$ if u and v are in some strict pairs, as required.

(ii) In the next, let u and v be not in any strict pairs. For $z \in \{u, v\}$, let n'(z) denote z itself if $z \in N$, and n(z) otherwise. Notice that $n'(z) \in N$ for any $z \in \{u, v\}$, i.e., it is spanned by $H'_1, \ldots, H'_{k'}$. If $z \in \{u, v\}$ is not spanned by p > 0 cycles in $H'_1, \ldots, H'_{k'}$ (and hence z is an excess vertex in $G_{E'}$), then z has at least k - 2(k' - p) incident edges in M'

because $d(z; G_{M'}) = b(z) - d(z; G_{H'_1 \cup \cdots \cup H'_{k'}}) \geq k - 2(k' - p)$. Hence $\lambda(z, n'(z); G_{E''}) \geq 2(k' - p) + k - 2(k' - p) = k$ holds for each $z \in \{u, v\}$, where we define $\lambda(z, z; G_{E''}) = +\infty$. Moreover it is obvious that $\lambda(n'(u), n'(v); G_{E''}) \geq 2k'$. Therefore, it holds that

$$\lambda(u, v; G_{E''}) \ge \min\{\lambda(u, n'(u); G_{E''}), \lambda(n'(u), n'(v); G_{E''}), \lambda(n'(v), v; G_{E''})\} \ge k.$$

(iii) Finally, let us consider the remaining case, i.e., u is in a strict pair and v is a vertex which is not in any strict pair. Let us define n'(v) as in the above. Then $\lambda(v, n'(v); G_{E''}) \geq k$ holds. Without loss of generality, let u be detached from H'_1 , and spanned by $H'_2, \ldots, H'_{k'}$. Since $un(u) \in M'$ and $n(u), n'(v) \in V(H'_1)$, it holds that $\lambda(u, n(u); G_{M' \cup H'_1}) = 1$, and $\lambda(n(u), n'(v); G_{M' \cup H'_1}) \geq 2$. Then,

$$\begin{aligned} \lambda(u, n'(v); G_{E''}) &\geq \min\{\lambda(u, n(u); G_{M' \cup H'_1}), \lambda(n(u), n'(v); G_{M' \cup H'_1})\} \\ &+ \lambda(u, n'(v); G_{H'_2 \cup \dots \cup H'_{k'}}) \geq 1 + 2(k' - 1) = 2k' - 1 = k. \end{aligned}$$

Therefore,

 $\lambda(u,v;G_{E^{\prime\prime}})\geq\min\{\lambda(u,n^\prime(v);G_{E^{\prime\prime}}),\lambda(v,n^\prime(v);G_{E^{\prime\prime}})\}\geq k,$

holds, as required.

Let us consider the cost of the graph $G_{E''}$. The following theorem on the Christofides' algorithm gives us an upper bound on c(H). Here, we let $\delta(U)$ denote the set of edges whose one end vertex is in U and the other is in V - U for nonempty $U \subset V$.

Theorem 2 ([7, 13]) Let

$$\begin{array}{ll} OPT_{TSP} = \min & \sum_{e \in E} c(e)x(e) \\ subject \ to & \sum_{e \in \delta(U)} x(e) \geq 2 & for \ each \ nonempty \ U \subset V, \\ x(e) \geq 0 & for \ each \ e \in E. \end{array}$$

Christofides' algorithm for TSP always outputs a solution of cost at most $1.5OPT_{TSP}$.

Claim 6 c(E'') is at most $1 + 3\lceil k/2 \rceil/k$ times the optimal cost of k-ECMDS.

Proof: No operation in Phases 1 and 2 increases the cost of the graph since the edge cost is metric. Hence it suffices to show that $c(M \cup H_1 \cup \cdots \cup H_{k'})$ is at most $(1+3\lceil k/2\rceil/k) \cdot c(G)$, where G denotes an optimal solution of k-ECMDS. Since G is a perfect b-matching, $c(M) \leq c(G)$ obviously holds. Thus it suffices to show that $c(H_i) \leq 3c(G)/k$ for $1 \leq i \leq k'$, from which the claim follows.

Let $x_G : \binom{V}{2} \to \mathbb{Z}_+$ be the function such that $x_G(uv)$ denotes the number of edges joining u and v in G. Since G is k-edge-connected, $\sum_{e \in \delta(U)} x_G(e) \ge k$ holds for every nonempty $U \subset V$. Hence $2x_G/k$ is feasible for the linear programming in Theorem 2, which means that $\operatorname{OPT}_{TSP} \le 2c(G)/k$. By Theorem 2, $c(H_i) \le 1.5\operatorname{OPT}_{TSP}$. Therefore we have $c(H_i) \le 3c(G)/k$, as required.

Claims 5 and 6 establish the next.

Theorem 3 Algorithm UNDIRECT(k) is a ρ -approximation algorithm for k-ECMDS, where $\rho = 2.5$ if k is even and $\rho = 2.5 + 1.5/k$ if k is odd.

Algorithm UNDIRECT(k) always outputs a solution for $k \ge 2$ as long as there exists a perfect b-matching and $b(v) \ge k$ for all $v \in V$. This fact and Theorem 1 imply the following corollary.

Corollary 1 For $k \ge 2$, there exists a k-edge-connected perfect b-matching if and only if $\sum_{v \in V} b(v)$ is even and $k \le b(v) \le \sum_{u \in V-v} b(u)$ for all $v \in V$.

We close this section with a few remarks. The operations in Phases 1 and 2 are equivalent to a graph transformation called *splitting*, followed by removing generated loops if any. There are many results on the conditions for splitting to maintain the edge-connectivity [3, 10]. However, the splittings in these results may generate loops. Hence algorithm UNDIRECT(k) needs to specify a sequence of splitting so that removing loops does not make the degrees lower than the degree specification.

One may consider that a perfect (b-2k')-matching is more appropriate than a perfect b-matching as a building block of our algorithm, since there is no excess vertex for the union of a perfect (b-2k')-matching and k' Hamiltonian cycles. However, there is a degree specification b that admits a perfect b-matching, and no perfect (b-2k')-matching. Furthermore, even if there exits a perfect (b-2k')-matching, the minimum cost of the perfect (b-2k')-matching may not be a lower bound on the optimal cost of k-ECMDS. Therefore we do not use a perfect (b-2k')-matching in general case. In Section 4, we show that a perfect (b-2k')-matching always exist and its cost can be estimated when a degree specification b is uniform.

3 Algorithm for *k*-ACMDS

This section shows that k-ACMDS is 2.5-approximable. The algorithm for k-ACMDS can be designed analogously with that for k-ECMDS. Before describing the algorithm, we consider the feasibility of k-ACMDS.

3.1 Feasibility

Frobenius' classic theorem (see [11] for example) tells the relation-ship between the existence of perfect bipartite matchings and the minimum size of vertex covers in bipartite graphs.

Theorem 4 (Frobenius) A bipartite graph G has a perfect matching if and only if each vertex cover has size at least |V(G)|/2.

From this, we can immediately derive a condition for a digraph to have a perfect (b^-, b^+) -matching.

Theorem 5 Let V be a vertex set, and $b^-, b^+ : V \to \mathbb{Z}_+$ be in- and out- degree specifications, respectively. There exists a perfect (b^-, b^+) -matching if and only if $\sum_{v \in V} b^-(v) =$ $\sum_{v \in V} b^+(v), \ b^-(v) \leq \sum_{u \in V-v} b^+(u) \text{ for each } v \in V, \text{ and } b^+(v) \leq \sum_{u \in V-v} b^-(u) \text{ for each } v \in V.$

Proof: The necessity is obvious. Hence we consider the sufficiency in the following. For each $v \in V$, prepare two vertex sets V_v^- and V_v^+ corresponding to v such that $|V_v^-| = b^-(v)$ and $|V_v^+| = b^+(v)$. Furthermore, let $V^- = \bigcup_{v \in V} V_v^-$, $V^+ = \bigcup_{v \in V} V_v^+$, and $E = \{u^-v^+ \mid u^- \in V_u^-, v^+ \in V_v^+, u \neq v\}$. Then a perfect matching in a bipartite graph (V^-, V^+, E) corresponds to a perfect (b^-, b^+) -matching on V. So by Theorem 4, it suffices to show that each vertex cover of (V^-, V^+, E) has size at least $(|V^-| + |V^+|)/2$.

To the contrary, let us suppose that there exists a vertex cover $C \subset V^- \cup V^+$ of (V^-, V^+, E) such that $|C| < (|V^-| + |V^+|)/2$ under the assumption in this theorem. Since $|V^-| = \sum_{v \in V} b^-(v) = \sum_{v \in V} b^+(v) = |V^+|$, it holds that $|C| < |V^-| = |V^+|$. This implies the existence of vertices $x \in V^- - C$ and $y \in V^+ - C$. Let x correspond to $u \in V$ (i.e., $x \in V_u^-$) and y correspond to $v \in V$ (i.e., $y \in V_v^+$). If $u \neq v$, there exists an edge $xy \in E$, which is not covered by any vertices in C, a contradiction. Hence u = v holds. Then $\cup_{z \in V - v} (V_z^- \cup V_z^+) \subseteq C$ holds. This implies that $|C| \geq \sum_{z \in V - v} |V_z^-| + \sum_{z \in V - v} |V_z^+|$. Then it holds that

$$\begin{split} (\sum_{v \in V} b^-(v) + \sum_{v \in V} b^+(v))/2 &= (|V^-| + |V^+|)/2 > |C| \\ &\geq \sum_{z \in V-v} |V_z^-| + \sum_{z \in V-v} |V_z^+| = \sum_{z \in V-v} b^-(z) + \sum_{z \in V-v} b^+(z), \end{split}$$

implying $b^-(v) + b^+(v) > \sum_{z \in V-v} b^-(z) + \sum_{z \in V-v} b^+(z)$. However, this indicates that at least $b^-(v) > \sum_{z \in V-v} b^-(z)$ or $b^+(v) > \sum_{z \in V-v} b^+(z)$ holds, contradicting to the assumption.

Notice that the proof of Theorem 5 indicates the reduction of the minimum cost perfect (b^-, b^+) -matching problem to the minimum cost perfect *b*-matching problem in an undirected bipartite graph.

3.2 Algorithm

We are ready to explain the algorithm for k-ACMDS. In the following, we assume that $b^{-}(v), b^{+}(v) \geq k$ for each $v \in V$ and a perfect (b^{-}, b^{+}) -matching exists.

Let M be a minimum cost perfect (b^-, b^+) -matching and H be a directed Hamiltonian cycle constructed by Christofides' algorithm for the edge cost obtained from c by ignoring the direction of arcs (Recall that c is symmetric). Moreover let H_1, \ldots, H_k be k copies of H, $A = M \cup H_1 \cup \cdots \cup H_k$, and D_F denote the digraph (V, F) for an arc set F. A vertex $v \in V$ is called an *excess vertex* if $d^-(v) > b^-(v)$ or $d^+(v) > b^+(v)$ (otherwise v is called a *non-excess vertex*). Notice that $d^-(v; D_A) - b^-(v) = d^+(v; D_A) - b^+(v)$. This condition is maintained throughout the algorithm, i.e., $d^-(v) > b^-(v)$ is equivalent to $d^+(v) > b^+(v)$. Our algorithm for k-ACMDS decreases the degree of excess vertices as k-ECMDS. One difference between algorithms for k-ECMDS and for k-ACMDS is the definition of Operations 1 and 2. These will be executed for a pair of arcs entering and leaving the same vertex as follows.

- Operation 1: If an excess vertex v has two incident arcs xv and vy in M with $x \neq y$, replace xv and vy by new edge $xy \in M$.
- Operation 2: If an excess vertex v has two arcs uv and vu in M with $d^{-}(u) > b^{-}(u)$ (and $d^{+}(v) > b^{+}(v)$), remove these arcs.

Phase 1 of our algorithm modifies edges in M by repeating Operations 1 and 2 until none of them is executable. We let M' denote M after Phase 1, and M denote the original set in the following. Moreover let $A' = M' \cup H_1 \cup \cdots \cup H_k$, and N denote the set of non-excess vertices in $D_{A'}$. Note that the number of arcs in M' entering (resp., leaving) each excess vertices v in $D_{A'}$ has $d^-(v; D_{A'}) - k \ge d^-(v; D_{A'}) - b^-(v)$ (resp., $d^-(v; D_{A'}) - b^-(v) > d^+(v; D_{A'}) - b^+(v)$) arcs. The other end vertex of them is unique and in N (i.e., a non-excess vertex in $D_{A'}$) since otherwise Operation 1 or 2 can be applied to v. This situation is simpler than after Phase 2 of UNDIRECT(k) since no correspondence of strict pairs exists. Notice that $N \neq \emptyset$ always holds here.

Phase 2 of our algorithm for k-ACMDS modifies edges in H_1, \ldots, H_k so as to decrease the degrees of all excess vertices as in UNDIRECT(k). We repeat *detaching* each excess vertex from some of H_1, \ldots, H_k , where detaching a vertex v from H_i is defined as an operation that replaces the pair $\{uv, vw\} \subseteq H_i$ of arcs entering and leaving v by new arc uw. We can prove that it is possible to detach excess vertices from Hamiltonian cycles while keeping $V(H_i) \ge 2$ for $1 \le i \le k$ as in UNDIRECT(k).

Claim 7 It is possible to decrease the degree of each excess vertex v to b(v) by detaching v from some cycles in H_1, \ldots, H_k so that $|V(H_i)|$ remains at least two for all $i = 1, \ldots, k$.

Proof: Recall that $N \neq \emptyset$. If $|N| \geq 2$, the claim is obvious since each of H_1, \dots, H_k is incident to all vertices in N. Hence suppose that |N| = 1, and let x be the unique vertex in N. Then all arcs in M' are incident to x since otherwise Operation 1 or 2 would be applicable to some vertex in V - x. In other words, it hold $|M'| = d^-(x; D_{M'}) +$ $d^+(v; D_{M'}) = b^-(x) + b^+(x) - 2k$. Recall that $\sum_{v \in V - x} b^+(v) \geq b^-(x)$ and $\sum_{v \in V - x} b^-(v) \geq$ $b^+(x)$ hold by the assumption that perfect (b^-, b^+) -matchings exist. Now assume that we have converted some excess vertices in $D_{A'}$ into non-excess vertices by detaching them from some of H_1, \dots, H_k while keeping $|V(H_i)| \geq 2$, $i = 1, \dots, k$, and yet an excess vertex $y \in V - x$ remains. Then there remains a cycles H_i with $|V(H_i)| > 2$ because

$$\sum_{1 \le i \le k} |V(H_i)| = \sum_{v \in V} d^-(v; D_{H_1 \cup \dots \cup H_k}) = \sum_{v \in V} d^-(v; D_{E'}) - |M'|$$

>
$$\sum_{v \in V - \{x\}} b^-(v) + d^-(x; D_{E'}) - |M'| \ge b^+(x) + b^-(x) - |M'| \ge 2k.$$

Hence we can detach y from such H_i , implying the claim also for |N| = 1.

In the following, we let H'_i denote H_i after Phase 2, and H_i denote the original Hamiltonian cycle for i = 1, ..., k in order to avoid the ambiguity. Moreover let $A'' = M' \cup H'_1 \cup \cdots \cup H'_k$. Our algorithm outputs $D_{A''}$ as a solution.

Algorithm DIRECT(k)

Input: A vertex set V, in- and out-degree specification $b^-, b^+ : V \to \mathbb{Z}_+$, a symmetric metric arc cost $c : V \times V \to \mathbb{Q}_+$, and a positive integer k

Output: A k-arc-connected perfect (b^-, b^+) -matching or "INFEASIBLE"

- 1: if $\sum_{v \in V} b^-(v) \neq \sum_{v \in V} b^+(v), \exists v : b^-(v) > \sum_{u \in V-v} b^+(u), \exists v : b^+(v) > \sum_{u \in V-v} b^-(u), \exists v : k > b^-(v), \text{ or } \exists v : k > b^+(v) \text{ then}$
- 2: Output "INFEASIBLE" and halt
- 3: end if;
- 4: Compute a minimum cost perfect (b^-, b^+) -matching D_M ;
- 5: Compute a Hamiltonian cycle D_H on V by Christofides' algorithm; Let H_1, \ldots, H_k be k copies of H;

Phase 1

6: M' := M;

- 7: while Operation 1 or 2 is applicable to a vertex $v \in V$ with $d^{-}(v; D_{M' \cup H_1 \cup \cdots \cup H_k}) > b^{-}(v)$ do
- 8: **if** $\exists \{xv, vy\} \subseteq M'$ such that $x \neq y$ **then**
- 9: $M' := (M' \{xv, vy\}) \cup \{xy\} \# \text{ Operation 1}$
- 10: else if $\exists \{xv, vx\} \subseteq M'$ such that $d^-(x; D_{M' \cup H_1 \cup \cdots \cup H_k}) > b^-(x)$ then
- 11: $M' := M' \{xv, vx\}$ # Operation 2
- 12: end if
- 13: end while;

Phase 2 14: $H'_i := H_i$ for each i = 1, ..., k; 15: while $\exists v \in V$ with $d^-(v; D_{M' \cup H'_1 \cup \cdots \cup H'_k}) > b^-(v)$ do 16: Detach v from H'_i with $V(H'_i) > 2$ 17: end while; 18: $A'' := M' \cup H'_1 \cup \cdots \cup H'_k$; 19: Output $D_{A''}$

Let OPT denote the optimal cost of k-ACMDS. We can show that $D_{A''}$ is k-arcconnected, $c(M) \leq \text{OPT}$ and $c(H_i) \leq 1.5\text{OPT}/k$ for $1 \leq i \leq k$, similarly for UNDIRECT(k) although we leave the proof to the readers. As a conclusion, we have the following theorem.

Theorem 6 Algorithm DIRECT(k) is a 2.5-approximation algorithm for k-ACMDS. \Box

Algorithm DIRECT(k) always outputs a solution when there exists a perfect (b^-, b^+) matching and $b^-(v) \ge k$, $b^+(v) \ge k$ for all $v \in V$. This fact and Theorem 5 implies the following corollary.

Corollary 2 For $k \ge 1$, there exists a k-arc-connected perfect (b^-, b^+) -matching if and only if $\sum_{v \in V} b^-(v) = \sum_{v \in V} b^+(v)$, $k \le b^-(v) \le \sum_{u \in V-v} b^+(u)$ for each $v \in V$, and $k \le b^+(v) \le \sum_{u \in V-v} b^-(u)$ for each $v \in V$.

4 Uniform degree specification

In this section, we show that the approximation factor of our algorithms can be improved when $b(v) = \ell$ in k-ECMDS or $b^-(v) = b^+(v) = \ell$ in k-ACMDS for all $v \in V$ with some integer $\ell \geq k$.

We call a perfect b-matching (resp., a perfect (b^-, b^+) -matching) $M \ \ell$ -regular if $b(v) = \ell$ (resp., $b^-(v) = b^+(v) = \ell$) for all $v \in V$.

Lemma 1 Assume that $b^-(v) = b^+(v) = \ell$ for all $v \in V$ and an ℓ -regular digraph exists. Let OPT denote the optimal cost of k-ACMDS. Then there exists an $(\ell-m)$ -regular digraph D_R with $c(R) \leq \frac{\ell-m}{\ell} OPT$ for an arbitrary non-negative integer $m \leq \ell$.

Proof: Let A denote an optimal arc set of k-ACMDS. As seen in Section 3, digraph D_A corresponds to the bipartite undirected graph (V^-, V^+, E) , which is a ℓ -regular. A theorem derived from Frobenius' theorem tells that every ℓ -regular bipartite graph can be decomposed into ℓ graphs each of which is 1-regular [11]. Let R be the set of arcs corresponding to edges in least cost $\ell - m$ graphs of them. Then R is $(\ell - m)$ -regular and $c(R) \leq \frac{\ell - m}{\ell} c(A)$, as required.

The union of an $(\ell - k)$ -regular digraph and k Hamiltonian cycles are obviously feasible to k-ACMDS if $b^-(v) = b^+(v) = \ell$, $v \in V$. Therefore we can derive the following theorem.

Theorem 7 If $b^-(v) = b^+(v) = \ell$ for all $v \in V$, then k-ACMDS is approximable within a factor of $1.5 + \frac{\ell-k}{\ell}$.

Next, we consider k-ECMDS.

Lemma 2 Assume that $b(v) = \ell$ for all $v \in V$ and an ℓ -regular graph exists. Let OPT denote the optimal cost of k-ECMDS. Then there exists an $(\ell - 2m)$ -regular graph G_R such that $c(R) \leq \frac{\ell - 2m}{\ell} OPT$ if ℓ is even, and $c(R) \leq (\frac{\ell - 2m - 1}{\ell} + \frac{1}{k}) OPT$ if ℓ is odd for an arbitrary non-negative integer m with $2m \leq \ell$.

Proof: Let E denote an optimal edge set of k-ECMDS. First suppose that ℓ is even. Then E can be oriented into an arc set A such that D_A is $\ell/2$ -regular. Let c' be an arc cost on A naturally defined from c (i.e., c'(a) = c(e) if $a \in A$ corresponds to $e \in E$). As in the proof of Lemma 1, we can obtain an $(\ell/2 - m)$ -regular digraph R' with $c'(R') \leq \frac{\ell/2 - m}{\ell/2}c'(A)$. Let R be an edge set corresponding to R'. Then clearly G_R is $(\ell - 2m)$ -regular and $c(R) \leq \frac{\ell/2 - m}{\ell/2}c(E)$, as required.

Next, suppose that ℓ is odd. Let 2E denote the edge set obtained by duplicating each edge in E. Then G_{2E} is 2ℓ -regular. By the above argument about the case of ℓ is even, we can obtain an $(\ell - 2m - 1)$ -regular graph G_F such that $c(F) \leq \frac{\ell - 2m - 1}{2\ell}c(2E) = \frac{\ell - 2m - 1}{\ell}c(E)$ (Notice that $\ell - 2m - 1$ is even). Let M be a minimum cost 1-regular graph. Notice that such M exists since |V| is even by the existence of an ℓ -regular graph with odd ℓ . Since the minimum cost of Hamiltonian cycles spanning all vertices is at most 2c(E)/k as shown in the proof of Claim 6, we can see that $c(M) \leq c(E)/k$. Let $R = F \cup M$. Then G_R is $(\ell - 2m)$ -regular and $c(R) = c(F) + c(M) \leq (\frac{\ell - 2m - 1}{\ell} + \frac{1}{k})c(E)$, as required. \Box

Let $k' = \lceil k/2 \rceil$. The union of an $(\ell - 2k')$ -regular graph and 2k' Hamiltonian cycles are obviously feasible to k-ECMDS if $b(v) = \ell$, $v \in V$. Therefore we can derive the following theorem.

Theorem 8 If $b(v) = \ell$ for all $v \in V$, then k-ECMDS is approximable within a factor of $\frac{\ell-2k'}{\ell} + 3\frac{k'}{k}$ if ℓ is even, and $\frac{(\ell-2k'-1)}{\ell} + \frac{1+3k'}{k}$ if ℓ is odd, where $k' = \lceil k/2 \rceil$.

Recall that metric TSP can be formulated as k-ECMDS with $b(v) = 2, v \in V$ and k = 2. Theorem 8 indicates that this case can be approximated within 1.5 as Christofides' algorithm.

5 Application for (m, n)-VRP

In this section, we consider the problem (m, n)-VRP. The formal definition of this problem is as follows. An instance of (m, n)-VRP consists of a vertex set V containing a special vertex s, a metric edge cost $c : \binom{V}{2} \to \mathbb{Q}_+$, and two non-negative integers m and n. The objective is to find a minimum cost set of m cycles, each containing s, such that each vertex in V - s is contained in exactly n of those cycles. We can assume without loss of generality that $n \leq m \leq n(|V| - 1)$ since otherwise the instance is clearly infeasible.

An example of applying the (m, n)-VRP is the schedule of garbage collection. Let us consider the case in which a garbage collecting truck must visit each city on n of 5 weekdays in a week. A solution of (5, n)-VRP gives a schedule of this truck minimizing total length of routes.

Each solution to (m, n)-VRP is obviously feasible to 2n-ECMDS with b(s) = 2m and b(v) = 2n for $v \in V - s$ (Hence the optimal value of 2n-ECMDS with such b is at most that of (m, n)-VRP). However, the opposite direction does not hold as an example in Figure 5. Nevertheless we can see that algorithm UNDIRECT(2n) outputs a feasible solution for (m, n)-VRP.

Figure 4: A solution to 4-ECMDS with b(v) = 4, $v \in V$, that is not feasible to (2, 2)-VRP

Theorem 9 Let b(s) = 2m, b(v) = 2n for each $v \in V - s$ and k = 2n. Then algorithm UNDIRECT(k) outputs a 2.5-approximate solution to (m, n)-VRP.

Proof: The solution given by algorithm UNDIRECT(k) consists of edge set M' and cycles H'_1, \ldots, H'_n . In what follows, we see that this solution is feasible to (m, n)-VRP.

Let us consider the moment after Phase 1, and define E', M' and $H'_1, \ldots, H'_{k'}$ as in Section 2. Since k = 2n is even, there exists no strict pair. Hence at least one end vertex of each edge in M' is a non-excess vertex. Let v be such a vertex. Then $b(v) = d(v; G_{E'}) > d(v; G_{H_1 \cup \cdots \cup H_n}) = 2n$ (Recall that each non-excess vertex is covered by all of H_1, \ldots, H_n). However, a vertex of degree more than 2n is only s since b(u) = 2n for each $u \in V - s$. Hence we can see that (i) s is a non-excess vertex after Phase 1, and (ii) one end vertex of each in M' is s. Condition (i) implies that each of H'_1, \ldots, H'_n covers s. Condition (ii) indicates that edges between s and a vertex $v \in V - s$ forms d(v; M')/2cycles whose vertex sets are $\{s, v\}$ because d(v; M') is even. Therefore, combining the fact that $d(v; G_{M' \cup H'_1 \cup \cdots \cup H'_n}) = b(v)$ for all $v \in V$, these shows that UNDIRECT(k) outputs a feasible solution to (m, n)-VRP. \Box

The approximation factor can be improved as follows.

Theorem 10 Problem (m, n)-VRP can be approximated within a factor of $1.5 + \frac{m-n}{m}$.

Proof: Let b(s) = 2m, b(v) = 2n for each $v \in V - s$ and k = 2n. Moreover, let E be an optimal solution for (m, n)-VRP, and F be the set of edges contained by m - n cycles in G_E of least cost. Then it holds that $d(s; G_F) = 2m - 2n$ and $d(v; G_F) \leq 2n$ for $v \in V - s$. Besides this, we have $c(F) \leq \frac{m-n}{m}c(E)$ by the definition of F.

Now we let $V - s = \{v_1, \ldots, v_{|V|-1}\}$ so that $c(sv_1) \leq c(sv_2) \leq \cdots \leq c(sv_{|V|-1})$. Moreover we define R as an edge set which consists of 2n edges sv_i for each $i = 1, \ldots, p$ and 2m - 2n(p+1) edges sv_{p+1} , where $p = \lfloor (m-n)/n \rfloor$. Then it is clear that R is a minimum cost edge set such that $d(s; G_R) = 2np + 2m - 2n(p+1) = 2m - 2n$ and $d(v; G_R) \leq 2n$ for all $v \in V - s$. This implies that $c(R) \leq c(F) \leq \frac{m-n}{m}c(E)$.

By using R instead of M in UNDIRECT(k), we can obtain a feasible solution to k-ECMDS. As in Theorem 9, this solution is also feasible to (m, n)-VRP. Moreover the cost of the solution is at most $c(H_1) + \cdots + c(H_{k'}) + c(R) \leq (1.5 + \frac{m-n}{m})c(E)$, which completes the proof.

6 Concluding Remarks

We note that some cases of k-ECMDS/k-ACMDS remain open. One is 1-ECMDS with b(v) = 1 for some $v \in V$. Our algorithm cannot deal with this case, because detaching the vertices in a strict pair from the same Hamiltonian cycle in Phase 2 may lose the connectivity. Also a key problem for approximating 1-ECMDS would be to find a minimum cost spanning tree such that $d(v) \leq b(v), v \in V$ for a given $b : V \to \mathbb{Z}_+$. However, no constant factor approximation algorithm is known to this problem if b(v) = 1 for some $v \in V$, although it can be approximated within a constant factor of 2 if $b(v) \geq 2$ for all $v \in V$ [1]. Another interesting open problem is a generalization of k-ECMDS (resp., k-ACMDS) in which the k-edge-connectivity (resp., k-arc-connectivity) requirement is replaced by a local-edge-connectivity requirement.

It is also valuable to characterize the feasible solutions to (m, n)-VRP. In Section 5, we noted that specifying the edge-connectivity and the degree of each vertex is not enough for this although our algorithm always outputs a feasible solution to (m, n)-VRP. Moreover, it is interesting to study a further generalization of (m, n)-VRP in which the number b(v)/2 of cycles containing each vertex v is not uniform.

Acknowledgement

This research was partially supported by the Scientific Grant-in-Aid from Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- S. P. Fekete, S. Khuller, M. Klemmstein, B. Raghavachari, N. Young, A network-flow technique for finding low-weight bounded-degree spanning trees, Journal of Algorithms 24 (1997) 310–324.
- [2] A. Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM Journal on Discrete Mathematics 5 (1992) 25–53.
- [3] A. Frank, On a theorem of Mader, Discrete Mathematics 191 (1992) 49–57.
- [4] G. N. Frederickson, M. S. Hecht, C. E. Kim, Approximation algorithms for some routing problems, SIAM Journal of Computing 7 (1978) 178–193.
- [5] T. Fukunaga, H. Nagamochi, Approximating minimum cost multigraphs of specified edge-connectivity under degree bounds, Proceedings of the 9th Japan-Korea Joint Workshop on Algorithm and Computation (2006) 25-32.
- [6] T. Fukunaga, H. Nagamochi, Approximating a generalization of metric TSP, IEICE Transactions on Information and Systems, to appear.
- [7] M. X. Goemans, D. J. Bertsimas, Survivable networks, linear programming relaxations and the parsimonious property, Mathematical Programming 60 (1993) 145– 166.
- [8] M. X. Goemans, D. P. Williamson, The primal-dual method for approximation algorithms and its application to network design problems, PWS, 1997, Ch. 4, pp. 144–191.
- [9] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys (Eds.), The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, John Wiley & Sons, 1985.
- [10] W. Mader, A reduction method for edge-connectivity in graphs, Annals of Discrete Mathematics 3 (1978) 145–164.
- [11] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, 2003.
- [12] V. Vazirani, Approximation Algorithm, Springer, 2001.
- [13] L. A. Wolsey, Heuristic analysis, linear programming and branch and bound, Mathematical Programming Study 13 (1980) 121–134.