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Abstract

We consider the following network design problem; Given a vertex set V with a

metric cost c on V , an integer k ≥ 1, and a degree specification b, find a minimum

cost k-edge-connected multigraph on V under the constraint that the degree of each

vertex v ∈ V is equal to b(v). This problem generalizes metric TSP. In this paper,

we propose that the problem admits a ρ-approximation algorithm if b(v) ≥ 2, v ∈ V ,

where ρ = 2.5 if k is even, and ρ = 2.5 + 1.5/k if k is odd. We also prove that

the digraph version of this problem admits a 2.5-approximation algorithm and discuss

some generalization of metric TSP.

Keywords: approximation algorithm, degree constraint, edge-connectivity, (m, n)-

VRP, TSP, vehicle routing problem

1 Introduction

It is a main concern in the field of network design to construct a graph of the least cost

which satisfies some connectivity requirement. Actually many results on this topic have

been obtained so far. In this paper, we consider a network design problem that asks to

find a minimum cost k-edge-connected multipraph on a metric edge cost under degree

specification. This provides a natural and flexible framework for treating many network

design problems. For example, it generalizes the vehicle routing problem with m vehicles

(m-VRP) [4, 8], which will be introduced below, and hence contains a well-known metric

traveling salesperson problem (TSP), which has already been applied to numerous practical

problems [9].

Let Z+ and Q+ denote the sets of non-negative integers and non-negative rational

numbers, respectively. Let G = (V,E) be a multigraph with a vertex set V and an

edge set E, where a multigraph may have some parallel edges but is not allowed to have

any loops. For two vertices u and v, an edge joining u and v is denoted by uv. Since

we consider multigraphs in this paper, we distinguish two parallel edges e1 = uv and

e2 = uv, which may be simply denoted by uv and uv. For a non-empty vertex set X ⊂ V ,
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Figure 1: A solution for 4-VRP

d(X;G) (or d(X)) denotes the number of edges whose one end vertex is in X and the

other is in V − X. In particular d(v;G) (or d(v)) denotes the degree of vertex v in G.

The edge-connectivity λ(u, v;G) (or λ(u, v)) between u and v is the maximum number

of edge-disjoint paths between them in G. The edge-connectivity λ(G) of G is defined

as minu,v∈V λ(u, v;G). If λ(G) ≥ k for some k ∈ Z+, then G is called k-edge-connected.

For a function r :
(V

2

)

→ Z+, G is called r-edge-connected if λ(u, v;G) ≥ r(u, v) for every

u, v ∈ V . Edge cost c :
(V

2

)

→ Q+ is called metric if it obeys the triangle inequality, i.e.,

c(uv) + c(vw) ≥ c(uw) for every u, v, w ∈ V .

For a degree specification b : V → Z+, a multigraph G with d(v;G) = b(v) for all

v ∈ V is called a perfect b-matching. In this paper, we focus on the following network

design problem.

k-edge-connected multigraph with degree specification (k-ECMDS):

A vertex set V , a metric edge cost c :
(V

2

)

→ Q+, a degree specification b : V → Z+, and

a positive integer k are given. We are asked to find a minimum cost perfect b-matching

G = (V,E) of edge-connectivity k. �

In this paper, we suppose that b(v) ≥ 2 for all v ∈ V unless stated otherwise, and

propose approximation algorithms to k-ECMDS in this case.

Problem k-ECMDS is a generalization of m-VRP, which asks to find a minimum cost

set of m cycles, each containing a designated initial city s, such that each of the other

cities is covered by exactly one cycle (see Fig. 1). Observe that this problem is 2-ECMDS

where b(s) = 2m for the initial city s ∈ V and b(v) = 2 for every v ∈ V − s. If m = 1,

then m-VRP is exactly TSP. Since TSP is known to be NP-hard [12] even if a given cost is

metric (metric TSP), k-ECMDS is also NP-hard. If a given cost is not metric, TSP cannot

be approximated unless P = NP [12]. For m-VRP, there is a 2-approximation algorithm

based on the primal-dual method [8].

It is well studied to find a minimum cost multigraph either with k-edge-connectivity

or with degree specification. It is known that finding a minimum cost k-edge-connected

graph is NP-hard since it is equivalent to metric TSP when k = 2 and a given edge cost is

metric. On the other hand, it is known that a minimum cost perfect b-matching can be con-

structed in polynomial time (for example, see [11]). As a prior result on problems equipped

with both edge-connectivity requirements and degree constraints, Frank [2] showed that

it is polynomially solvable to find a minimum cost r-edge-connected multigraph G with
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`(v) ≤ d(v;G) ≤ u(v), v ∈ V for degree lower and upper bounds `, u : V → Z+ and a

metric edge cost c such that c(uv) is defined by w(u) + w(v) for some weight w : V → Q+

(in particular, c(uv) = 1 for every uv ∈
(V

2

)

). Recently Fukunaga and Nagamochi [5] pre-

sented approximation algorithms for a network design problem with a general metric edge

cost and some degree bounds; For example, they presented a (2+1/bminu,v∈V r(u, v)/2c)-

approximation algorithm for constructing a minimum cost r-edge-connected multigraph

that meets a local-edge-connectivity requirement r with r(u, v) ≥ 2, u, v ∈ V under

a uniform degree upper bound. Afterwards Fukunaga and Nagamochi [6] gave a 3-

approximation algorithm for the case where r(u, v) ∈ {1, 2} for every u, v ∈ V and

`(v) = u(v) for each v ∈ V . In this paper, we extend the 3-approximation result [6]

to k-ECMDS. Concretely, we prove that k-ECMDS is ρ-approximable if b(v) ≥ 2, v ∈ V ,

where ρ = 2.5 if k is even and ρ = 2.5+1.5/k if k is odd. Moreover, we show that this fac-

tor can be improved when a degree specification is uniform. To design our algorithms for

k-ECMDS, we take a similar approach with famous 2- and 1.5-approximation algorithms

for metric TSP.

Furthermore, we also generalize k-ECMDS to a network design problem in digraphs.

We denote an arc (i.e., a directed edge) from a vertex u to another vertex v by uv. Two arcs

from u to v are called parallel. Let D = (V,A) be a multi-digraph, where a multi-digraph

may have some parallel arcs but is not allowed to have any loops. For an ordered pair of

vertices u and v, λ(u, v;D) (or λ(u, v)) denotes the arc-connectivity from u to v, i.e., the

maximum number of arc-disjoint paths from u to v in D. The arc-connectivity λ(D) of D

is defined as minu,v∈V λ(u, v;D). If λ(D) ≥ k for some k ∈ Z+, D is called k-arc-connected.

Moreover, d−(v;D) (or d−(v)) and d+(v;D) (or d+(v)) denote in- and out-degree of vertex

v in digraph D, respectively. Arc cost c : V ×V → Q+ is called symmetric if c(uv) = c(vu)

for every u, v ∈ V , and metric if it obeys the triangle inequality, i.e., c(uv)+ c(vz) ≥ c(uz)

for every u, v, z ∈ V .

We call a multi-digraph D with d−(v;D) = b−(v) and d+(v;D) = b+(v) for all v ∈

V perfect (b−, b+)-matching for in- and out-degree specifications b−, b+ : V → Z+. A

minimum cost perfect (b−, b+)-matching can be found by computing a minimum cost

perfect b-matching in a bipartite graph. The digraph version of the problem is described

as follows.

k-arc-connected multi-digraph with degree specification (k-ACMDS):

A vertex set V , a symmetric metric arc cost c : V × V → Q+, in- and out-degree spec-

ifications b−, b+ : V → Z+, and a positive integer k are given. We are asked to find a

minimum cost perfect (b−, b+)-matching D = (V,A) of arc-connectivity k. �

We also introduce a problem (m,n)-vehicle routing problem ((m,n)-VRP), which gen-

eralizes m-VRP so that each of the other cities than a special city is visited by exactly n of

the m cycles. This problem is not contained in k-ECMDS. However, we show that our al-

gorithm for k-ECMDS also delivers a 2.5-approximate solution to (m,n)-VRP. Moreover,

we improve this algorithm to an (1.5 + m−n
m )-approximation algorithm.

This paper is organized as follows. Section 2 presents an algorithm for k-ECMDS.

Section 3 provides a 2.5-approximation algorithm for k-ACMDS problem. Section 4 im-
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proves the approximation factors of these algorithms assuming that a degree specification

is uniform. Section 5 shows how to apply our algorithm for k-ECMDS to (m,n)-VRP.

Section 6 makes some concluding remarks.

2 Algorithm for k-ECMDS

This section describes an approximation algorithm for k-ECMDS. Before describing the

algorithm, we consider how to check the feasibility of a given instance.

2.1 Feasibility

For some degree specification b, there is no perfect b-matching. The following theorem

shows provides a necessary and sufficient condition for a degree specification to admit a

perfect b-matching. Note that b(v) can be 1 in this theorem.

Theorem 1 Let V be a vertex set with |V | ≥ 2 and b : V → Z+ be a degree speci-

fication. Then there exists a perfect b-matching if and only if
∑

v∈V b(v) is even and

b(v) ≤
∑

u∈V −v b(u) for each v ∈ V .

Proof: The necessity is trivial. We show the sufficiency by constructing a perfect b-

matching. We let V = {v1, . . . , vn} and B =
∑n

`=1 b(v`)/2. For j = 1, . . . , B, we define ij
as the minimum integer such that

∑ij
`=1 b(v`) ≥ j, and i′j as the minimum integer such that

∑i′j
`=1 b(v`) ≥ B + j. Notice that

∑ij−1
`=1 b(v`) < j holds by the definition if ij ≥ 2. Then

we can see that ij 6= i′j since otherwise we would have b(vij ) =
∑ij

`=1 b(v`)−
∑ij−1

`=1 b(v`) >

(B + j) − j = B if ij ≥ 2 and b(vij ) ≥ B + j > B otherwise, which contradicts to the

assumption.

Let M = {ej = vijvi′j
| j = 1, . . . , B}. Then M contains no loop by ij 6= i′j. Moreover

GM is a perfect b-matching since |{j | ij = ` or i′j = `}| = b(vi), as required. �

Theorem 1 does not mention the edge-connectivity. For existence of connected perfect

b-matchings, we additionally need the condition that
∑

v∈V b(v) ≥ 2(|V | − 1) [6]. This

is always satisfied if b(v) ≥ 2, v ∈ V , which we assume for 1-ECMDS. For k ≥ 2, the

conditions in Theorem 1 and b(v) ≥ k, v ∈ V are sufficient for the existence of k-edge-

connected perfect b-matchings as our algorithm will construct such b-matchings under the

conditions.

2.2 Algorithm

Now we describe our algorithm to k-ECMDS. Let (V, b, c, k) be an instance of k-ECMDS.

The conditions appeared in Theorem 1 and b(v) ≥ k for all v ∈ V can be verified in

polynomial time, where they are apparently necessary for an instance to have k-edge-

connected perfect b-matchings. Hence our algorithm checks them, and if some of them are

violated, it outputs message “INFEASIBLE”. In the following, we suppose the existence

of perfect b-matchings with b(v) ≥ k for all v ∈ V . If 2 ≤ |V | ≤ 3, then every perfect

b-matching is k-edge-connected because any non-empty vertex set X ⊂ V is {v} or V −{v}
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for some v ∈ V , and then d(X) = d(v) ≥ k. Hence we can assume without loss of generality

that |V | ≥ 4.

For an edge set F on V , we denote graph (V, F ) by GF . Let M be a minimum cost

edge set such that GM is a perfect b-matching. In addition, let H be an edge set of a

Hamiltonian cycle spanning V constructed by the 1.5-approximation algorithm for TSP

due to Christofides [12].

Initialization: After testing the feasibility of a given instance, our algorithm first prepares

M and k′ = dk/2e copies H1, . . . ,Hk′ of H. Let E denote the union M ∪ H1 ∪ · · · ∪

Hk′ of them. Notice that GE is 2k′-edge-connected by the existence of edge-disjoint

k′ Hamiltonian cycles. We call a vertex v in a handling graph G an excess vertex if

d(v;G) > b(v) (otherwise a non-excess vertex). In GE , all vertices are excess vertices

since d(v;GE) = b(v) + 2k′. In the following steps, the algorithm reduces the degree of

excess vertices until no excess vertex exists while generating no loops and keeping k-edge-

connectivity (Notice that k < 2k′ if k is odd). This is achieved by two phases, Phase 1

and Phase 2, as follows.

Phase 1: In this phase, we modify only edges in M while keeping edges in H1, . . . ,Hk′

unchanged. We define the following two operations on an excess vertex v ∈ V .

Operation 1: If v has two incident edges xv and yv in M with x 6= y, replace xv and yv

by new edge xy.

Operation 2: If v has two parallel edges uv in M with d(u) > b(u), remove those edges.

Phase 1 repeats Operations 1 and 2 until none of them is executable. For avoiding

ambiguity, we let M ′ denote M after executing Phase 1, and M denote the original set in

what follows. Moreover, let E ′ = M ′∪H1∪· · ·∪Hk′. Note that d(v)−b(v) is always a non-

negative even integer throughout (and after) these operations because d(v;GE)−b(v) = 2k′

and each operation decreases the degree of a vertex by 2. If no excess vertex remains in

GE′ , then we are done. We consider the case in which there remain some excess vertices,

and show some properties on M ′ before describing Phase 2.

Claim 1 Every excess vertex in GE′ has at least one incident edge in M ′ and its neighbors

in GM ′ are unique.

Proof: Since d(v;GE′) − b(v) is a positive even integer for an excess vertex v in GE′ , it

holds d(v;GM ′) = d(v;GE′)−d(v;GH1∪···∪Hk′
) ≥ (b(v)+2)−2k′ > 0, Hence v has at least

one incident edges in M ′. If neighbors of v in GM ′ are not unique, Operation 1 can be

applied to v. �

For an excess vertex v in GE′ , let n(v) denote the unique neighbor of v in GM ′ . If n(v)

is also an excess vertex in GE′ , we call the pair {v, n(v)} by a strict pair.

Claim 2 Let {v, n(v)} be a strict pair. Then d(v;GM ′) = d(n(v);GM ′) = 1, k is odd, and

b(v) = b(n(v)) = k.
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Proof: By Claim 1, d(v;GM ′ ) = d(n(v);GM ′). If d(v;GM ′ ) = d(n(v);GM ′) > 1, Opera-

tion 2 can be applied to v and n(v), a contradiction. Hence d(v;GM ′) = d(n(v);GM ′ ) = 1

holds. Let u ∈ {v, n(v)}. Then it holds that d(u;GE′) = d(u;GH1∪···∪Hk′
) + d(u;GM ′) =

2k′ + 1 = 2dk/2e + 1. Since d(u;GE′) − b(u) is even, b(u) must be odd. This fact and

d(u,GE′) > b(u) ≥ k indicates that b(u) = k and k is odd. �

By definition, the existence of excess vertices which are in no strict pairs indicate

that of some non-excess vertices. Upon completion of Phase 1, let N denote the set of

non-excess vertices in GE′ , and S denote the set of strict pairs in GE′ . If N = ∅, all

excess vertices are in some strict pairs. By Claim 2, k is an odd integer in this case, and

furthermore k ≥ 3 by the assumption that b(v) ≥ 2, v ∈ V if k = 1. From this fact and

|V | ≥ 4, N = ∅ implies that at least two strict pairs exist (i.e., |S| ≥ 2).

Phase 2: Now we describe Phase 2. First, we deal with a special case in which V consists

of only two strict pairs.

Claim 3 If V consists of two strict pairs after Phase 1, we can transform GE′ into a

k-edge-connected perfect b-matching without increasing the cost.

Proof: Let V = {u, v, w, z} and H = {uv, vw,wz, zu}. Now E ′ = M ′ ∪ H1 ∪ · · · ∪ Hk′

(k ≥ 2). Then either M ′ = {uv,wz} (or {vw, zu}) or M ′ = {uw, vz} holds. In both

cases, we replace M ′ ∪ H1 ∪ H2 by E′′ = {uv, vw,wz, zu, uw, vz} (see Fig. 2). Then, we

can see that d(v;GE′′) = 3 for all v ∈ V and GE′′ is 3-edge-connected. Since d(v;GHi
) =

2 for v ∈ V, i = 3, . . . , k′ and GHi
is 2-edge-connected for i = 3, . . . , k ′, it holds that

d(v;GE′′∪H3∪···∪Hk′
) = 3 + 2(k′ − 2) = k = b(v) for v ∈ V and the edge-connectivity of

GE′′∪H3∪···∪Hk′
is 3 + 2(k′ − 2) = k (The existence of strict pair implies that k is odd by

Claim 2.).

Hence it suffices to show that c(E ′′) ≤ c(M ′) + c(H1) + c(H2). If M ′ = {uw, vz} (or

{vw, zu}), then it is obvious since E ′′ = M ′ ∪ H1 ⊆ M ′ ∪ H1 ∪ H2. Let us consider the

other case, i.e., M ′ = {uv,wz}. From M ′∪H1∪H2, remove {uv, uv}, replace {wz, zu} by

{wu}, and replace {vw,wz} by {vz}. Then the edge set becomes E ′′ without increasing

edge cost, as required. �

In the following, we assume that |S| ≥ 3 when N = ∅. In this case, Phase 2 modifies

only edges in Hi, i = 1, . . . , k′ while keeping the edges in M ′ unchanged. Let V (Hi) denote

the set of vertices spanned by Hi. We define detaching v from cycle Hi to be an operation

that replaces the pair {uv, vw} ⊆ Hi of edges incident to v by a new edge uw. Note that

this decreases d(v) by 2, but Hi remains a cycle on V (Hi) := V (Hi)−{v}. For each excess

vertex v in GE′ , Phase 2 reduces d(v) to b(v) by detaching v from (d(v;GE′) − b(v))/2

cycles in H1, . . . ,Hk′ . We notice that (d(v;GE′) − b(v))/2 ≤ k′ by d(v;GE′) − b(v) ≤

d(v;GE) − b(v) = 2k′. One important point is to keep |V (Hi)| ≥ 2 for each i = 1, . . . , k′

during Phase 2. In other words, we always select Hi with |V (Hi)| ≥ 3 to detach an excess

vertex. This is necessary because, if we detach a vertex from Hi with V (Hi) = 2, then

Hi becomes a loop. In addition, we detach the two excess vertices u and v in a strict

pair from different cycles in H1, . . . ,Hk′ , respectively. This is in order to maintain the

k-edge-connectivity of GE′ as will be explained below.
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Figure 2: Operations when V consists of two strict pairs

Claim 4 It is possible to decrease the degree of each excess vertex v in GE′ to b(v) by

detaching from some cycles in H1, . . . ,Hk′ so that |V (Hi)| remains at least 2 for i =

1, . . . , k′ and the two excess vertices in each strict pair are detached from Hi and Hj with

i 6= j, respectively.

Proof: First, let us consider the case of S 6= ∅. Recall k ≥ 3 and k ′ = dk/2e ≥ 2 in this

case. For each strict pair {u, v} ∈ S, we detach u and v from different cycles in H1, . . . ,Hk′ .

On the other hand, we detach excess vertex z from arbitrary (d(z;GE′) − b(z))/2 cycles.

After this, each of H1, . . . ,Hk′ is incident to at least one vertex of any strict pair in S in

addition to all non-excess vertices in N . By the relation between |S| and |N | we explained

in the above, it holds that |V (Hi)| ≥ |S| + |N | ≥ 2 for each i = 1, . . . , k′, as required.

Next, let us consider the case of S = ∅. As explained in the above, |N | ≥ 1 holds

for this case. If |N | ≥ 2, the claim is obvious since each of H1, . . . ,Hk′ is always incident

to all vertices in N . Hence suppose that |N | = 1, and let x be the unique non-excess

vertex in N . Then all edges in M ′ are incident to x, since otherwise S = ∅ implies

that Operation 1 or 2 would be applicable to some vertex in V − x. In other words,

b(x) = d(x;GE′) = |M ′| + 2k′ holds before Phase 2. Moreover
∑

v∈V −x b(v) ≥ b(x)

also holds by the assumption that perfect b-matchings exist. Now assume that we have

converted some excess vertices in GE′ into non-excess vertices by detaching them from

some of H1, . . . ,Hk′ while keeping |V (Hi)| ≥ 2, i = 1, . . . , k′, and yet an excess vertex

y ∈ V − x remains. Hence
∑

v∈V d(v) >
∑

v∈V b(v). Then there remains a cycle Hi with

|V (Hi)| > 2 because

2
∑

1≤i≤k′

|V (Hi)| =
∑

v∈V

d(v;GH1∪···∪Hk′
) =

∑

v∈V

d(v) − 2|M ′|

>
∑

v∈V −{x}

b(v) + b(x) − 2|M ′| ≥ 2(b(x) − |M ′|) ≥ 4k′.

Therefore we can detach an excess vertex y from such Hi as long as such a vertex exists.

This implies that the claim holds also for |N | = 1. �

In the following, we let H ′
i denote Hi after Phase 2, and Hi denote the original Hamil-

tonian cycle for i = 1, . . . , k′. Moreover let E ′′ = M ′ ∪ H ′
1 ∪ · · · ∪ H ′

k′ . The algorithm

outputs GE′′ . The entire algorithm is described as follows.

Algorithm UNDIRECT(k)
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Input: A vertex set V , a degree specification b : V → Z+, a metric edge cost c : V → Q+,

and a positive integer k

Output: A k-edge-connected perfect b-matching or “INFEASIBLE”

1: if
∑

v∈V b(v) is odd, ∃v : b(v) >
∑

u∈V −v b(u) or k > b(v) then

2: Output “INFEASIBLE” and halt

3: end if ;

4: Compute a minimum cost perfect b-matching GM ;

5: if |V | ≤ 3 then

6: Output GM and halt

7: end if ;

8: Compute a Hamiltonian cycle GH on V by Christofides’ algorithm;

9: k′ := dk/2e; Let H1, . . . ,Hk′ be k′ copies of H;

# Phase 1

10: M ′ := M ;

11: while Operation 1 or 2 is applicable to a vertex v ∈ V

with d(v;GM ′∪H1∪···∪Hk′
) > b(v) do

12: if ∃{xv, vy} ⊆ M ′ such that x 6= y then

13: M ′ := (M ′ − {xv, vy}) ∪ {xy} # Operation 1

14: else

15: if ∃{xv, vx} ⊆ M ′ such that d(x;GM ′∪H1∪···∪Hk′
) > b(x) then

16: M ′ := M ′ − {xv, vx} # Operation 2

17: end if

18: end if

19: end while;

# Phase 2

20: if V consists of two strict pairs then

21: Rename vertices so that H = {uv, vw,wz, zu};

22: H ′
2 := ∅; M ′ := {uw, vz};

23: Output GM ′∪H′

1
∪···∪H′

k′
and halt

24: end if ;

25: H ′
i := Hi for each i = 1, . . . , k′;

26: while ∃v ∈ V with d(v;GM ′∪H′

1
∪···∪H′

k′
) > b(v) do

27: if v and n(v) forms a strict pair then

28: Detach v from H ′
i and n(v) from H ′

j, where i 6= j

29: else

30: Detach v from H ′
i with V (H ′

i) > 2

31: end if

32: end while;

33: E′′ := M ′ ∪ H ′
1 ∪ · · · ∪ H ′

k′ ;

34: Output GE′′

Claim 5 GE′′ is a k-edge-connected perfect b-matching.
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Proof: We have already seen the case in which V consists of two strict pairs. Hence

we suppose the other case in the following. Moreover we have already observed that

d(v;GE′′) = b(v) holds for each v ∈ V . Furthermore GE′′ is loopless since GE is loopless

and no operations in the algorithm generate loops. Hence we prove the k-edge-connectivity

of GE′′ below.

Let u, v ∈ V . (i) First suppose that u and v are in some (possibly different) strict

pairs in GE′ . Moreover, let u 6∈ V (H ′
i) and v 6∈ V (H ′

j) (hence u ∈ V (H ′
i′) for i′ 6= i and

v ∈ V (H ′
j′) for j′ 6= j). For each ` ∈ {1, . . . , k′} − {i, j}, λ(u, v;GH′

`
) = 2 holds because

u, v ∈ V (H ′
`). If i = j, λ(u, v;GH′

i∪M ′) = 1 holds because d(u;GM ′) = d(v;GM ′) = 1 and

n(u), n(v) ∈ V (H ′
i). Then it holds that λ(u, v;GE′′ ) = 2(k′−1)+1 = k in this case (Recall

that the existence of strict pairs implies that k is odd by Claim 2). Hence we let i 6= j, and

show that λ(u, v;GH′

i∪H′

j∪M ′) ≥ 3 from now on, from which λ(u, v;GE′′) ≥ 2(k′−2)+3 = k

can be derived.

Let N and S denote the sets of non-excess vertices and strict pairs in GE′ after Phase 1,

respectively. Suppose that V (H ′
i) ∩ V (H ′

j) = ∅. In this case, it can be seen that N = ∅,

and hence |S| ≥ 3 by the assumption about the relation between N and S. Since at least

one vertex of each strict pair is spanned by each cycle in H ′
1, . . . ,H

′
k′ , we can see that M ′

contains at least three vertex-disjoint edges that join vertices in V (H ′
i) and in V (H ′

j), two

of which are u and v. This indicates that λ(u, v;GH′

i∪H′

j∪M ′) ≥ 3 holds (see the graph of

Figure 3 (b)).

Let us consider the case of V (H ′
i) ∩ V (H ′

j) 6= ∅ in the next. By the existence of u and

v, |S| ≥ 1 holds. If u and v forms a strict pair (i.e., uv ∈ M ′), λ(u, v;GM ′ ) = 1 holds.

Since V (H ′
i) ∩ V (H ′

j) 6= ∅ implies λ(GH′

i
∪H′

j
) ≥ 2, we see that λ(u, v;GH′

i
∪H′

j
∪M ′) ≥ 3

in this case. Thus let u and v belong to different strict pairs (i.e., |S| ≥ 2). Then there

exists two vertex-disjoint edges in M ′ joins vertices in V (H ′
i) and in V (H ′

j) (see Figure 3

(a)). If we split each vertex w ∈ V (H ′
i) ∩ V (H ′

j) into two vertices w′ and w′′ so that

H ′
i and H ′

j are vertex-disjoint cycles, and add new edges w′w′′ joining those two split

vertices to M ′, then we can reduce this case to the case of V (H ′
i) ∩ V (H ′

j) = ∅, in which

λ(u, v;GH′

i∪H′

j∪M ′) ≥ 3 has already been observed in the above (see Figure 3). Accordingly,

we have λ(u, v;GH′

i∪H′

j∪M ′) ≥ 3 if u and v are in some strict pairs, as required.

(ii) In the next, let u and v be not in any strict pairs. For z ∈ {u, v}, let n′(z) denote

z itself if z ∈ N , and n(z) otherwise. Notice that n′(z) ∈ N for any z ∈ {u, v}, i.e., it is

spanned by H ′
1, . . . ,H

′
k′ . If z ∈ {u, v} is not spanned by p > 0 cycles in H ′

1, . . . ,H
′
k′ (and

hence z is an excess vertex in GE′), then z has at least k − 2(k′ − p) incident edges in M ′

9



because d(z;GM ′) = b(z) − d(z;GH′

1
∪···∪H′

k′
) ≥ k − 2(k′ − p). Hence λ(z, n′(z);GE′′) ≥

2(k′−p)+k−2(k′−p) = k holds for each z ∈ {u, v}, where we define λ(z, z;GE′′ ) = +∞.

Moreover it is obvious that λ(n′(u), n′(v);GE′′ ) ≥ 2k′. Therefore, it holds that

λ(u, v;GE′′ ) ≥ min{λ(u, n′(u);GE′′), λ(n′(u), n′(v);GE′′), λ(n′(v), v;GE′′ )} ≥ k.

(iii) Finally, let us consider the remaining case, i.e., u is in a strict pair and v is a vertex

which is not in any strict pair. Let us define n′(v) as in the above. Then λ(v, n′(v);GE′′) ≥

k holds. Without loss of generality, let u be detached from H ′
1, and spanned by H ′

2, . . . ,H
′
k′ .

Since un(u) ∈ M ′ and n(u), n′(v) ∈ V (H ′
1), it holds that λ(u, n(u);GM ′∪H′

1
) = 1, and

λ(n(u), n′(v);GM ′∪H′

1
) ≥ 2. Then,

λ(u, n′(v);GE′′) ≥ min{λ(u, n(u);GM ′∪H′

1
), λ(n(u), n′(v);GM ′∪H′

1
)}

+ λ(u, n′(v);GH′

2
∪···∪H′

k′
) ≥ 1 + 2(k′ − 1) = 2k′ − 1 = k.

Therefore,

λ(u, v;GE′′ ) ≥ min{λ(u, n′(v);GE′′), λ(v, n′(v);GE′′)} ≥ k,

holds, as required. �

Let us consider the cost of the graph GE′′ . The following theorem on the Christofides’

algorithm gives us an upper bound on c(H). Here, we let δ(U) denote the set of edges

whose one end vertex is in U and the other is in V − U for nonempty U ⊂ V .

Theorem 2 ([7, 13]) Let

OPTTSP = min
∑

e∈E c(e)x(e)

subject to
∑

e∈δ(U) x(e) ≥ 2 for each nonempty U ⊂ V ,

x(e) ≥ 0 for each e ∈ E.

Christofides’ algorithm for TSP always outputs a solution of cost at most 1.5OPTTSP .

�

Claim 6 c(E ′′) is at most 1 + 3dk/2e/k times the optimal cost of k-ECMDS.

Proof: No operation in Phases 1 and 2 increases the cost of the graph since the edge cost is

metric. Hence it suffices to show that c(M ∪H1∪· · ·∪Hk′) is at most (1+3dk/2e/k) ·c(G),

where G denotes an optimal solution of k-ECMDS. Since G is a perfect b-matching, c(M) ≤

c(G) obviously holds. Thus it suffices to show that c(Hi) ≤ 3c(G)/k for 1 ≤ i ≤ k′, from

which the claim follows.

Let xG :
(V

2

)

→ Z+ be the function such that xG(uv) denotes the number of edges

joining u and v in G. Since G is k-edge-connected,
∑

e∈δ(U) xG(e) ≥ k holds for every

nonempty U ⊂ V . Hence 2xG/k is feasible for the linear programming in Theorem 2,

which means that OPTTSP ≤ 2c(G)/k. By Theorem 2, c(Hi) ≤ 1.5OPTTSP . Therefore

we have c(Hi) ≤ 3c(G)/k, as required. �

Claims 5 and 6 establish the next.
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Theorem 3 Algorithm UNDIRECT(k) is a ρ-approximation algorithm for k-ECMDS,

where ρ = 2.5 if k is even and ρ = 2.5 + 1.5/k if k is odd. �

Algorithm UNDIRECT(k) always outputs a solution for k ≥ 2 as long as there exists

a perfect b-matching and b(v) ≥ k for all v ∈ V . This fact and Theorem 1 imply the

following corollary.

Corollary 1 For k ≥ 2, there exists a k-edge-connected perfect b-matching if and only if
∑

v∈V b(v) is even and k ≤ b(v) ≤
∑

u∈V −v b(u) for all v ∈ V . �

We close this section with a few remarks. The operations in Phases 1 and 2 are

equivalent to a graph transformation called splitting, followed by removing generated loops

if any. There are many results on the conditions for splitting to maintain the edge-

connectivity [3, 10]. However, the splittings in these results may generate loops. Hence

algorithm UNDIRECT(k) needs to specify a sequence of splitting so that removing loops

does not make the degrees lower than the degree specification.

One may consider that a perfect (b−2k ′)-matching is more appropriate than a perfect

b-matching as a building block of our algorithm, since there is no excess vertex for the

union of a perfect (b − 2k′)-matching and k′ Hamiltonian cycles. However, there is a

degree specification b that admits a perfect b-matching, and no perfect (b−2k ′)-matching.

Furthermore, even if there exits a perfect (b − 2k ′)-matching, the minimum cost of the

perfect (b − 2k′)-matching may not be a lower bound on the optimal cost of k-ECMDS.

Therefore we do not use a perfect (b − 2k ′)-matching in general case. In Section 4, we

show that a perfect (b − 2k′)-matching always exist and its cost can be estimated when a

degree specification b is uniform.

3 Algorithm for k-ACMDS

This section shows that k-ACMDS is 2.5-approximable. The algorithm for k-ACMDS

can be designed analogously with that for k-ECMDS. Before describing the algorithm, we

consider the feasibility of k-ACMDS.

3.1 Feasibility

Frobenius’ classic theorem (see [11] for example) tells the relation-ship between the exis-

tence of perfect bipartite matchings and the minimum size of vertex covers in bipartite

graphs.

Theorem 4 (Frobenius) A bipartite graph G has a perfect matching if and only if each

vertex cover has size at least |V (G)|/2. �

From this, we can immediately derive a condition for a digraph to have a perfect

(b−, b+)-matching.

Theorem 5 Let V be a vertex set, and b−, b+ : V → Z+ be in- and out- degree specifica-

tions, respectively. There exists a perfect (b−, b+)-matching if and only if
∑

v∈V b−(v) =

11



∑

v∈V b+(v), b−(v) ≤
∑

u∈V −v b+(u) for each v ∈ V , and b+(v) ≤
∑

u∈V −v b−(u) for each

v ∈ V .

Proof: The necessity is obvious. Hence we consider the sufficiency in the following. For

each v ∈ V , prepare two vertex sets V −
v and V +

v corresponding to v such that |V −
v | = b−(v)

and |V +
v | = b+(v). Furthermore, let V − = ∪v∈V V −

v , V + = ∪v∈V V +
v , and E = {u−v+ |

u− ∈ V −
u , v+ ∈ V +

v , u 6= v}. Then a perfect matching in a bipartite graph (V −, V +, E)

corresponds to a perfect (b−, b+)-matching on V . So by Theorem 4, it suffices to show

that each vertex cover of (V −, V +, E) has size at least (|V −| + |V +|)/2.

To the contrary, let us suppose that there exists a vertex cover C ⊂ V − ∪ V + of

(V −, V +, E) such that |C| < (|V −|+ |V +|)/2 under the assumption in this theorem. Since

|V −| =
∑

v∈V b−(v) =
∑

v∈V b+(v) = |V +|, it holds that |C| < |V −| = |V +|. This implies

the existence of vertices x ∈ V − − C and y ∈ V + − C. Let x correspond to u ∈ V (i.e.,

x ∈ V −
u ) and y correspond to v ∈ V (i.e., y ∈ V +

v ). If u 6= v, there exists an edge xy ∈ E,

which is not covered by any vertices in C, a contradiction. Hence u = v holds. Then

∪z∈V −v(V
−
z ∪ V +

z ) ⊆ C holds. This implies that |C| ≥
∑

z∈V −v |V
−
z | +

∑

z∈V −v |V
+
z |.

Then it holds that

(
∑

v∈V

b−(v) +
∑

v∈V

b+(v))/2 = (|V −| + |V +|)/2 > |C|

≥
∑

z∈V −v

|V −
z | +

∑

z∈V −v

|V +
z | =

∑

z∈V −v

b−(z) +
∑

z∈V −v

b+(z),

implying b−(v) + b+(v) >
∑

z∈V −v b−(z) +
∑

z∈V −v b+(z). However, this indicates that

at least b−(v) >
∑

z∈V −v b−(z) or b+(v) >
∑

z∈V −v b+(z) holds, contradicting to the

assumption. �

Notice that the proof of Theorem 5 indicates the reduction of the minimum cost per-

fect (b−, b+)-matching problem to the minimum cost perfect b-matching problem in an

undirected bipartite graph.

3.2 Algorithm

We are ready to explain the algorithm for k-ACMDS. In the following, we assume that

b−(v), b+(v) ≥ k for each v ∈ V and a perfect (b−, b+)-matching exists.

Let M be a minimum cost perfect (b−, b+)-matching and H be a directed Hamiltonian

cycle constructed by Christofides’ algorithm for the edge cost obtained from c by ignoring

the direction of arcs (Recall that c is symmetric). Moreover let H1, . . . ,Hk be k copies

of H, A = M ∪ H1 ∪ · · · ∪ Hk, and DF denote the digraph (V, F ) for an arc set F . A

vertex v ∈ V is called an excess vertex if d−(v) > b−(v) or d+(v) > b+(v) (otherwise

v is called a non-excess vertex). Notice that d−(v;DA) − b−(v) = d+(v;DA) − b+(v).

This condition is maintained throughout the algorithm, i.e., d−(v) > b−(v) is equivalent

to d+(v) > b+(v). Our algorithm for k-ACMDS decreases the degree of excess vertices

as k-ECMDS. One difference between algorithms for k-ECMDS and for k-ACMDS is the

definition of Operations 1 and 2. These will be executed for a pair of arcs entering and

leaving the same vertex as follows.
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Operation 1: If an excess vertex v has two incident arcs xv and vy in M with x 6= y,

replace xv and vy by new edge xy ∈ M .

Operation 2: If an excess vertex v has two arcs uv and vu in M with d−(u) > b−(u) (and

d+(v) > b+(v)), remove these arcs.

Phase 1 of our algorithm modifies edges in M by repeating Operations 1 and 2 until

none of them is executable. We let M ′ denote M after Phase 1, and M denote the

original set in the following. Moreover let A′ = M ′ ∪ H1 ∪ · · · ∪ Hk, and N denote the

set of non-excess vertices in DA′ . Note that the number of arcs in M ′ entering (resp.,

leaving) each excess vertices v in DA′ has d−(v;DA′) − k ≥ d−(v;DA′) − b−(v) (resp.,

d−(v;DA′) − b−(v) > d+(v;DA′) − b+(v)) arcs. The other end vertex of them is unique

and in N (i.e., a non-excess vertex in DA′) since otherwise Operation 1 or 2 can be

applied to v. This situation is simpler than after Phase 2 of UNDIRECT(k) since no

correspondence of strict pairs exists. Notice that N 6= ∅ always holds here.

Phase 2 of our algorithm for k-ACMDS modifies edges in H1, . . . ,Hk so as to decrease

the degrees of all excess vertices as in UNDIRECT(k). We repeat detaching each excess

vertex from some of H1, . . . ,Hk, where detaching a vertex v from Hi is defined as an

operation that replaces the pair {uv, vw} ⊆ Hi of arcs entering and leaving v by new arc

uw. We can prove that it is possible to detach excess vertices from Hamiltonian cycles

while keeping V (Hi) ≥ 2 for 1 ≤ i ≤ k as in UNDIRECT(k).

Claim 7 It is possible to decrease the degree of each excess vertex v to b(v) by detaching

v from some cycles in H1, . . . ,Hk so that |V (Hi)| remains at least two for all i = 1, . . . , k.

Proof: Recall that N 6= ∅. If |N | ≥ 2, the claim is obvious since each of H1, · · · ,Hk

is incident to all vertices in N . Hence suppose that |N | = 1, and let x be the unique

vertex in N . Then all arcs in M ′ are incident to x since otherwise Operation 1 or 2

would be applicable to some vertex in V −x. In other words, it hold |M ′| = d−(x;DM ′)+

d+(v;DM ′) = b−(x)+b+(x)−2k. Recall that
∑

v∈V −x b+(v) ≥ b−(x) and
∑

v∈V −x b−(v) ≥

b+(x) hold by the assumption that perfect (b−, b+)-matchings exist. Now assume that we

have converted some excess vertices in DA′ into non-excess vertices by detaching them

from some of H1, . . . ,Hk while keeping |V (Hi)| ≥ 2, i = 1, . . . , k, and yet an excess vertex

y ∈ V − x remains. Then there remains a cycles Hi with |V (Hi)| > 2 because

∑

1≤i≤k

|V (Hi)| =
∑

v∈V

d−(v;DH1∪···∪Hk
) =

∑

v∈V

d−(v;DE′) − |M ′|

>
∑

v∈V −{x}

b−(v) + d−(x;DE′) − |M ′| ≥ b+(x) + b−(x) − |M ′| ≥ 2k.

Hence we can detach y from such Hi, implying the claim also for |N | = 1. �

In the following, we let H ′
i denote Hi after Phase 2, and Hi denote the original

Hamiltonian cycle for i = 1, . . . , k in order to avoid the ambiguity. Moreover let A ′′ =

M ′ ∪ H ′
1 ∪ · · · ∪ H ′

k. Our algorithm outputs DA′′ as a solution.

Algorithm DIRECT(k)
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Input: A vertex set V , in- and out-degree specification b−, b+ : V → Z+, a symmetric

metric arc cost c : V × V → Q+, and a positive integer k

Output: A k-arc-connected perfect (b−, b+)-matching or “INFEASIBLE”

1: if
∑

v∈V b−(v) 6=
∑

v∈V b+(v), ∃v : b−(v) >
∑

u∈V −v b+(u), ∃v : b+(v) >
∑

u∈V −v b−(u),

∃v : k > b−(v), or ∃v : k > b+(v) then

2: Output “INFEASIBLE” and halt

3: end if ;

4: Compute a minimum cost perfect (b−, b+)-matching DM ;

5: Compute a Hamiltonian cycle DH on V by Christofides’ algorithm; Let H1, . . . ,Hk be

k copies of H;

# Phase 1

6: M ′ := M ;

7: while Operation 1 or 2 is applicable to a vertex v ∈ V

with d−(v;DM ′∪H1∪···∪Hk
) > b−(v) do

8: if ∃{xv, vy} ⊆ M ′ such that x 6= y then

9: M ′ := (M ′ − {xv, vy}) ∪ {xy} # Operation 1

10: else if ∃{xv, vx} ⊆ M ′ such that d−(x;DM ′∪H1∪···∪Hk
) > b−(x) then

11: M ′ := M ′ − {xv, vx} # Operation 2

12: end if

13: end while;

# Phase 2

14: H ′
i := Hi for each i = 1, . . . , k;

15: while ∃v ∈ V with d−(v;DM ′∪H′

1
∪···∪H′

k
) > b−(v) do

16: Detach v from H ′
i with V (H ′

i) > 2

17: end while;

18: A′′ := M ′ ∪ H ′
1 ∪ · · · ∪ H ′

k;

19: Output DA′′

Let OPT denote the optimal cost of k-ACMDS. We can show that DA′′ is k-arc-

connected, c(M) ≤ OPT and c(Hi) ≤ 1.5OPT/k for 1 ≤ i ≤ k, similarly for UNDIRECT(k)

although we leave the proof to the readers. As a conclusion, we have the following theorem.

Theorem 6 Algorithm DIRECT(k) is a 2.5-approximation algorithm for k-ACMDS. �

Algorithm DIRECT(k) always outputs a solution when there exists a perfect (b−, b+)-

matching and b−(v) ≥ k, b+(v) ≥ k for all v ∈ V . This fact and Theorem 5 implies the

following corollary.

Corollary 2 For k ≥ 1, there exists a k-arc-connected perfect (b−, b+)-matching if and

only if
∑

v∈V b−(v) =
∑

v∈V b+(v), k ≤ b−(v) ≤
∑

u∈V −v b+(u) for each v ∈ V , and

k ≤ b+(v) ≤
∑

u∈V −v b−(u) for each v ∈ V . �
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4 Uniform degree specification

In this section, we show that the approximation factor of our algorithms can be improved

when b(v) = ` in k-ECMDS or b−(v) = b+(v) = ` in k-ACMDS for all v ∈ V with some

integer ` ≥ k.

We call a perfect b-matching (resp., a perfect (b−, b+)-matching) M `-regular if b(v) = `

(resp., b−(v) = b+(v) = `) for all v ∈ V .

Lemma 1 Assume that b−(v) = b+(v) = ` for all v ∈ V and an `-regular digraph exists.

Let OPT denote the optimal cost of k-ACMDS. Then there exists an (`−m)-regular digraph

DR with c(R) ≤ `−m
` OPT for an arbitrary non-negative integer m ≤ `.

Proof: Let A denote an optimal arc set of k-ACMDS. As seen in Section 3, digraph

DA corresponds to the bipartite undirected graph (V −, V +, E), which is a `-regular. A

theorem derived from Frobenius’ theorem tells that every `-regular bipartite graph can

be decomposed into ` graphs each of which is 1-regular [11]. Let R be the set of arcs

corresponding to edges in least cost `−m graphs of them. Then R is (`−m)-regular and

c(R) ≤ `−m
` c(A), as required. �

The union of an (`−k)-regular digraph and k Hamiltonian cycles are obviously feasible

to k-ACMDS if b−(v) = b+(v) = `, v ∈ V . Therefore we can derive the following theorem.

Theorem 7 If b−(v) = b+(v) = ` for all v ∈ V , then k-ACMDS is approximable within

a factor of 1.5 + `−k
` . �

Next, we consider k-ECMDS.

Lemma 2 Assume that b(v) = ` for all v ∈ V and an `-regular graph exists. Let OPT

denote the optimal cost of k-ECMDS. Then there exists an (` − 2m)-regular graph GR

such that c(R) ≤ `−2m
` OPT if ` is even, and c(R) ≤ ( `−2m−1

` + 1
k )OPT if ` is odd for an

arbitrary non-negative integer m with 2m ≤ `.

Proof: Let E denote an optimal edge set of k-ECMDS. First suppose that ` is even. Then

E can be oriented into an arc set A such that DA is `/2-regular. Let c′ be an arc cost on A

naturally defined from c (i.e., c′(a) = c(e) if a ∈ A corresponds to e ∈ E). As in the proof

of Lemma 1, we can obtain an (`/2 − m)-regular digraph R′ with c′(R′) ≤ `/2−m
`/2 c′(A).

Let R be an edge set corresponding to R′. Then clearly GR is (` − 2m)-regular and

c(R) ≤ `/2−m
`/2 c(E), as required.

Next, suppose that ` is odd. Let 2E denote the edge set obtained by duplicating each

edge in E. Then G2E is 2`-regular. By the above argument about the case of ` is even, we

can obtain an (`−2m−1)-regular graph GF such that c(F ) ≤ `−2m−1
2` c(2E) = `−2m−1

` c(E)

(Notice that `− 2m− 1 is even). Let M be a minimum cost 1-regular graph. Notice that

such M exists since |V | is even by the existence of an `-regular graph with odd `. Since

the minimum cost of Hamiltonian cycles spanning all vertices is at most 2c(E)/k as shown

in the proof of Claim 6, we can see that c(M) ≤ c(E)/k. Let R = F ∪ M . Then GR is

(` − 2m)-regular and c(R) = c(F ) + c(M) ≤ ( `−2m−1
` + 1

k )c(E), as required. �
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Let k′ = dk/2e. The union of an (`−2k′)-regular graph and 2k′ Hamiltonian cycles are

obviously feasible to k-ECMDS if b(v) = `, v ∈ V . Therefore we can derive the following

theorem.

Theorem 8 If b(v) = ` for all v ∈ V , then k-ECMDS is approximable within a factor of
`−2k′

` + 3k′

k if ` is even, and
(`−2k′−1)

` + 1+3k′

k if ` is odd, where k′ = dk/2e. �

Recall that metric TSP can be formulated as k-ECMDS with b(v) = 2, v ∈ V and

k = 2. Theorem 8 indicates that this case can be approximated within 1.5 as Christofides’

algorithm.

5 Application for (m, n)-VRP

In this section, we consider the problem (m,n)-VRP. The formal definition of this problem

is as follows. An instance of (m,n)-VRP consists of a vertex set V containing a special

vertex s, a metric edge cost c :
(V

2

)

→ Q+, and two non-negative integers m and n. The

objective is to find a minimum cost set of m cycles, each containing s, such that each

vertex in V − s is contained in exactly n of those cycles. We can assume without loss of

generality that n ≤ m ≤ n(|V | − 1) since otherwise the instance is clearly infeasible.

An example of applying the (m,n)-VRP is the schedule of garbage collection. Let

us consider the case in which a garbage collecting truck must visit each city on n of 5

weekdays in a week. A solution of (5, n)-VRP gives a schedule of this truck minimizing

total length of routes.

Each solution to (m,n)-VRP is obviously feasible to 2n-ECMDS with b(s) = 2m and

b(v) = 2n for v ∈ V −s (Hence the optimal value of 2n-ECMDS with such b is at most that

of (m,n)-VRP). However, the opposite direction does not hold as an example in Figure 5.

Nevertheless we can see that algorithm UNDIRECT(2n) outputs a feasible solution for

(m,n)-VRP.

PSfrag replacements

s

Figure 4: A solution to 4-ECMDS with b(v) = 4, v ∈ V , that is not feasible to (2, 2)-VRP

Theorem 9 Let b(s) = 2m, b(v) = 2n for each v ∈ V − s and k = 2n. Then algorithm

UNDIRECT(k) outputs a 2.5-approximate solution to (m,n)-VRP.

Proof: The solution given by algorithm UNDIRECT(k) consists of edge set M ′ and cycles

H ′
1, . . . ,H

′
n. In what follows, we see that this solution is feasible to (m,n)-VRP.

16



Let us consider the moment after Phase 1, and define E ′, M ′ and H ′
1, . . . ,H

′
k′ as in

Section 2. Since k = 2n is even, there exists no strict pair. Hence at least one end

vertex of each edge in M ′ is a non-excess vertex. Let v be such a vertex. Then b(v) =

d(v;GE′) > d(v;GH1∪···∪Hn) = 2n (Recall that each non-excess vertex is covered by all

of H1, . . . ,Hn). However, a vertex of degree more than 2n is only s since b(u) = 2n for

each u ∈ V − s. Hence we can see that (i) s is a non-excess vertex after Phase 1, and (ii)

one end vertex of each in M ′ is s. Condition (i) implies that each of H ′
1, . . . ,H

′
n covers

s. Condition (ii) indicates that edges between s and a vertex v ∈ V − s forms d(v;M ′)/2

cycles whose vertex sets are {s, v} because d(v;M ′) is even. Therefore, combining the fact

that d(v;GM ′∪H′

1
∪···∪H′

n
) = b(v) for all v ∈ V , these shows that UNDIRECT(k) outputs a

feasible solution to (m,n)-VRP. �

The approximation factor can be improved as follows.

Theorem 10 Problem (m,n)-VRP can be approximated within a factor of 1.5 + m−n
m .

Proof: Let b(s) = 2m, b(v) = 2n for each v ∈ V − s and k = 2n. Moreover, let E be an

optimal solution for (m,n)-VRP, and F be the set of edges contained by m − n cycles in

GE of least cost. Then it holds that d(s;GF ) = 2m− 2n and d(v;GF ) ≤ 2n for v ∈ V − s.

Besides this, we have c(F ) ≤ m−n
m c(E) by the definition of F .

Now we let V − s = {v1, . . . , v|V |−1} so that c(sv1) ≤ c(sv2) ≤ · · · ≤ c(sv|V |−1).

Moreover we define R as an edge set which consists of 2n edges svi for each i = 1, . . . , p

and 2m − 2n(p + 1) edges svp+1, where p = b(m − n)/nc. Then it is clear that R is

a minimum cost edge set such that d(s;GR) = 2np + 2m − 2n(p + 1) = 2m − 2n and

d(v;GR) ≤ 2n for all v ∈ V − s. This implies that c(R) ≤ c(F ) ≤ m−n
m c(E).

By using R instead of M in UNDIRECT(k), we can obtain a feasible solution to k-

ECMDS. As in Theorem 9, this solution is also feasible to (m,n)-VRP. Moreover the cost

of the solution is at most c(H1)+ · · ·+ c(Hk′)+ c(R) ≤ (1.5+ m−n
m )c(E), which completes

the proof. �

6 Concluding Remarks

We note that some cases of k-ECMDS/k-ACMDS remain open. One is 1-ECMDS with

b(v) = 1 for some v ∈ V . Our algorithm cannot deal with this case, because detaching

the vertices in a strict pair from the same Hamiltonian cycle in Phase 2 may lose the

connectivity. Also a key problem for approximating 1-ECMDS would be to find a minimum

cost spanning tree such that d(v) ≤ b(v), v ∈ V for a given b : V → Z+. However, no

constant factor approximation algorithm is known to this problem if b(v) = 1 for some

v ∈ V , although it can be approximated within a constant factor of 2 if b(v) ≥ 2 for

all v ∈ V [1]. Another interesting open problem is a generalization of k-ECMDS (resp.,

k-ACMDS) in which the k-edge-connectivity (resp., k-arc-connectivity) requirement is

replaced by a local-edge-connectivity requirement.

It is also valuable to characterize the feasible solutions to (m,n)-VRP. In Section 5, we

noted that specifying the edge-connectivity and the degree of each vertex is not enough for

this although our algorithm always outputs a feasible solution to (m,n)-VRP. Moreover, it

17



is interesting to study a further generalizatoin of (m,n)-VRP in which the number b(v)/2

of cycles containing each vertex v is not uniform.
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