Theory Comput Syst (2009) 44: 561-589
DOI 10.1007/s00224-008-9151-9

Axiomatizing the Logical Core of XPath 2.0

Balder ten Cate - Maarten Marx

Published online: 25 October 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract The first aim of this paper is to present the logical core of XPath 2.0: a
logically clean, decidable fragment, which includes most navigational features of
XPath 2.0 (complex counting conditions and data joins are not supported, as they
lead to undecidability). The second aim is to provide a list of equations completely
axiomatizing query equivalence in this language (i.e., all other query equivalences
can be derived from these).

Keywords XML - XPath - Axiomatization - Query rewriting

1 Introduction

The introduction of Core XPath, the navigational core of XPath 1.0 [11], has been a
very fruitful move. It has given rise to many new results enhancing our understanding
of XPath. The full language of XPath 1.0 is too rich for a rigorous logical analysis,
and Core XPath is a concise and well defined sublanguage, for which a detailed analy-
sis is feasible (e.g., concerning its expressive power and complexity). Many of these
results were established by relating Core XPath to other, more familiar logical lan-
guages on trees such as first-order logic or monadic second-order logic, and applying
known results and techniques for the latter.

A preliminary version of this paper was published in the proceedings of ICDT 2007.

‘We would like to thank Jan Hidders for pointing us to the interesting question of stronger forms
of completeness (cf. Sect. 4.3). We would also like to thank the anonymous reviewers for their
extensive comments, which have greatly improved the quality of the paper.

The first author is supported by NWO grant 639.021.508.

B. ten Cate () - M. Marx

ISLA-Informatics Institute, Universiteit van Amsterdam, Kruislaan 403, 1098SJ Amsterdam,
The Netherlands

e-mail: balder.tencate @uva.nl

M. Marx
e-mail: marx @science.uva.nl

@ Springer

mailto:balder.tencate@uva.nl
mailto:marx@science.uva.nl

562 Theory Comput Syst (2009) 44: 561-589

XPath 2.0, the successor of XPath 1.0, has received less attention in the theoretical
literature. In particular, no concrete proposal for its logical core has been made. One
feature of XPath 2.0 is that it is expressively complete for first-order logic (in fact, it
was designed to be). This does not mean that there are no interesting and challenging
open problems for this language! In this paper we address one interesting problem,
concerning query equivalence.

We identify the logical core of XPath 2.0, which we call Core XPath 2.0, and we
present a complete axiomatization of query equivalence for this language, as well
as for its variable free fragment, in the form of a finite list of remarkably simple
algebraic equations. Our results might serve as a step towards improved query opti-
mization methods for XPath 2.0 and XQuery (note that XQuery contains XPath 2.0
as a sublanguage).

Our axiomatization builds on a number of other results, including (i) a known
complete axiomatization of Tarski’s algebra of binary relations [20, 24], which can
be seen as a sublanguage of Core XPath 2.0, and (ii) an axiomatization of the first-
order theory of finite trees, cf. [2, 9].

To summarize, the main contributions are:

1. the definition of the logical core of XPath 2.0, together with an analysis of the
redundancies in the language

2. afinite list of equations axiomatizing query equivalence, both for Core XPath 2.0
and for its variable free fragment.

Related Work 1In [4], an axiomatization was already given for a fragment of
XPath 1.0 without node tests and with only the downward axes. Reference [22] con-
tains axiomatizations of Core XPath and the child-only and descendant-only frag-
ments of Core XPath. It is worth noting that, in relational database theory, complete
axiomatizations of query equivalence are rather scarce. SQL and Datalog both have
undecidable query equivalence problems, and hence query equivalence is not recur-
sively axiomatizable for these languages (on finite structures). Entailment relations
between different types of constraints have been successfully axiomatized [1].

From a more technical point of view, the axiomatic-completeness-via-expressive-
completeness approach we follow was also employed in [25, 27] in the context of
temporal logics over well-ordered flows of time, as was pointed out to us by Tadeusz
Litak (personal communication) while we were preparing the final version of this

paper.

Organization of the Paper Section 2 defines Core XPath 2.0 and establishes some
simple equivalences. We also show undecidability of query equivalence for some
modest extensions of Core XPath 2.0. In Sect. 3, we discuss some important con-
nections between Core XPath 2.0, first-order logic, and Tarski’s relation algebra,
which are used in our proofs later on. Section 4 contains the axiomatizations for
Core XPath 2.0 and its variable free fragment. We conclude in Sect. 5. The appendix
contains a quick completeness proof for an axiomatization of the first-order theory of
finite trees.

@ Springer

Theory Comput Syst (2009) 44: 561-589 563

2 A Decidable Logical Core of XPath 2.0

In this section, we define the syntax and semantics of the logical core of XPath 2.0,
and we discuss some basic properties of this language, as well as how it relates to
other languages (viz. first-order logic and relation algebra).

2.1 Design Choices

The following two criteria guided our choice of XPath 2.0 operators to be included in
the navigational core: (i) expressions should manipulate sets of nodes, just as in Core
XPath. This leads to a simple set theoretic semantics; (ii) the query equivalence prob-
lem should be decidable. Undecidability would imply non-axiomatizability, because
the models we are concerned with are finite.

These criteria have the following repercussions:

1. In Core XPath 2.0, all expressions manipulate sets of nodes. More precisely, the
meaning of each path expression is a function that, given a node (the “context
node’) returns a set of nodes (the “answer set”). In contrast, in XPath 2.0, path
expressions return sequences of elements, of various types. In particular, the for
construct returns unsorted sequences, possibly containing duplicates. In our logic,
we treat for $i in R return S asequivalentto (for $i in R re-
turn §) /., which always returns a document-order sorted list of nodes without
duplicates.

2. In order to keep the logic decidable, we excluded the positional and aggregate
functions position(), last () and count () and value comparison opera-
tors. Section 2.4 presents undecidability results in the presence of these functions.

The crucial differences with Core XPath are that besides union, also Boolean intersec-
tion and complementation can be applied to path expressions, and that the language
contains variables, node comparison tests, and the for-loop.

2.2 Syntax and Semantics of Core XPath 2.0

We are ready to define the Navigational Core of XPath 2.0. The grammar of Core
XPath 2.0 is given in Fig. 1. Just like in Core XPath, it has productions for path
expressions PathExpr and filter expressions TestExpr. In addition, there is the node
comparison expression CompTest. By the variable free fragment of Core XPath 2.0
we will mean the fragment without variables, for, and node comparison tests.

The semantics is provided in Fig. 2, where ‘dom’ stands for the set of all nodes
of the tree. Expressions are evaluated on finite unranked node-labeled and sibling-
ordered trees as usual. If no confusion arises, we just call them trees.

Trees are defined as follows: A tree domain N is a finite set of finite sequences
of natural numbers closed under taking initial segments, and for any sequence s, if
s -k € N, then either k =0 or s - k — 1 € N. A node labeled, sibling ordered tree
consists of a tree domain and a function labeling each node with a set of primitive
symbols from some alphabet. Node labeled, sibling ordered trees can be queried in
a first order language in an appropriate signature. The signature consists of two bi-
nary relation symbols, < and <, denoting the descendant and the following sibling

@ Springer

564 Theory Comput Syst (2009) 44: 561-589

Axis := self | child | parent | descendant | ancestor
| following sibling | preceding sibling

NameTest := QName | =

Step := Axis::NameTest

NodeRef := . | $i

PathExpr := Step | NodeRef | ()

| PathExpr/PathExpr

PathExpr union PathExpr

PathExpr intersect PathExpr
PathExpr except PathExpr
PathExpr[TestExpr]

for $i in PathExprreturn PathExpr

TestExpr := PathExpr | CompTest | not TestExpr
| TestExpr and TestExpr | TestExpr or TestExpr

CompTest := NodeRef is NodeRef

Fig. 1 Syntax of Core XPath 2.0

[Axis::NameTest]? = {(z,y) € dom? | z(Axis)y and y satisfies NameTest}
[.1° = [self ::x]Y

[$i]° = {(z,y) € dom® | g($i) = y}

[01° =0

[R/S]’ = [R]?o[S)’

[R union S|’ = [RJ°U[S]¢

[R intersect S]¢ = [R]® n[S])¢

[R except S|’ = [R]°\[S]?

[[[H]l] = {(ZE y) € HRH(] | Yy € |I]]Test s
[for$iinRreturnS]? = {(z,y) € dom®|3z. (z,2) € [R]’ and (z,y) € [S]* }
[PathExpr] ¥, = {x € dom | Jy. (z,y) € [PathExpr]’}

HnOt TﬂTest = dOIn\ HT]]Test

[[Tl and T2]]Test = [[Tl]]Test HT2]]Test

[[Tl or TQ]]Test = [[Tl]]Test HT2]]Test

la is b]%e = {z € dom]| [a]9* = [b]9*}.

Fig. 2 Semantics of the Navigational Core of XPath 2.0

relation, respectively; unary predicate symbols corresponding to the node labels; and
equality. For n,n" € N, n < n’ holds iff n is a proper prefix of n’; n < n’ holds iff
n=s-k,n" =s-1and k <I; P(n) holds iff n is labeled by the symbol P.

Because of the variables in the language we need an assignment function g map-
ping variables to nodes. For g an assignment, $i a variable and x a node, gjfi denotes
the assignment which is just like g except that g5*($1) = x. The value of a NodeRef
expression a relative to an assignment g and a node x, denoted by [a]8*,is x ifa = .,
or g(a) if a is a variable.

Given a tree and an assignment g, the meaning [R]|® of a PathExpr R is always a
binary relation. Of course this is just another way of specifying a function from the
set of nodes to the powerset of the set of nodes (the answer-set semantics).

@ Springer

Theory Comput Syst (2009) 44: 561-589 565

For example, the path expression
for $i in descendant::author return $i/child: :name

when evaluated in a node x, returns for each descendant node with tag author,
all children with tag name. Hence, it defines the binary relation containing all pairs
(x, y) with y aname-node whose parent is an authoxr-node that is a descedant of x.

The meaning of a TestExpr expression is given by the function [-]]'gresv which
always yields a set of nodes: x € [[TestExpr]]1g-est if and only if TestExpr evaluates to
true at node x.

If an expression has no free variables (i.e., if all occurrences of variables are in
the scope of corresponding for-operators), the assignment is irrelevant, and we will
write [R]] instead of [[R]|8. In particular, this applies to all expressions in the variable
free fragment.

It is straightforward to check that the given semantics extends the semantics of
Core XPath given in e.g. [11], and agrees with the official XPath 2.0 semantics as
presented in e.g., [16], provided sequences are treated as nodesets.

Definition 1 Two path expressions R, S are said to be equivalent if for every tree, for
every assignment g, [R]|® = [ST%.

Remark We excluded the attribute axis because it only adds expressivity in the
presence of data value comparisons. Because we focus on relative path equiva-
lence, we also excluded the absolute path expression /R. This is term definable as
(ancestor::xunion self : x)[not ancestor : x]/R.

2.3 Syntactic Sugar

XPath 2.0 contains a number of extra axes, operations and functions that, when re-
stricted to the navigational fragment, are just syntactic sugar. They are listed in Fig. 3.
As indicated, all these connectives can be term-defined in terms of the connectives
of Fig. 1. With the exception of the 1 f-then-else construct, all definitions are
linear.

We will be making use of a slightly more compact notation in the following sec-
tions. We will use |, |7, 1, T, —, =T, <, < and . as shorthands for the respec-
tive axes child: : *, descendant: : *, parent: :*, ancestor::*, (fol-
lowing_sibling::* except following_sibling::*/following_
sibling::*),following sibling::*, (preceding_sibling: :*ex-
cept preceding_sibling::*/preceding_sibling::*), preced-
ing_sibling::*, and self::*. We will use T as shorthand for the universal
relation (1% union .)/({* union .) and L as shorthand for (). We will use
« to denote the document order (depth-first left-to-right) relation in a tree, as de-
fined by |* union (4* union .)/ =7 /(T union .). Finally, we will use
the function ()™, which, when applied to a path expression, yields its converse:

@ Springer

566 Theory Comput Syst (2009) 44: 561-589

Definable path expressions:
descendant_or_self :: NameTest
= descendant :: NameTest union self :: NameTest

ancestor_or_self :: NameTest
= ancestor :: NameTest union self :: NameTest

following:: NameTest = (ancestor :: x union self :: x)/following sibling :: %/
(descendant :: NameTest union self :: NameTest)
preceding:: NameTest = (ancestor : * union self :: x)/preceding sibling :: %/

(descendant :: NameTest union self :: NameTest)

if TthenRelseS .[T]/R union .[not T]/S

Definable node expressions:

some $i inRsatisfiesT for $i inRreturn.[T]
every$iinRsatisfiesT = not (for$i inRreturn.[not (T)])

true() = .
false() = ()
exists(R) =R
empty(R) = not (R)

Fig. 3 Definable XPath 2.0 operations

(Axis ::NameTest) =self: NameTest/Axis™ %

$i~ =.[.is$i]/T

O = ()

(R/T)~ =T"/R~

(Runion T)~ =R union T~

(R intersect T)~ =R~ intersect T~
(R except T)~ =R except T~
(RIX1)™ =.[X]/R™

where Ax1s™ is the converse of Axis (i.e.,, child™ = parent, etc.). The reader
may verify that R~ indeed defines the converse of R, i.e., (x, y) € [R]® iff (y,x) €
[[RTS.

2.4 Undecidable Extensions

Because we want to axiomatize query equivalence on finite models it is necessary that
query equivalence is decidable. Here we show how value comparisons and functions
asposition(), last (), and count () can lead to undecidability.

Positional Information XPath supports reference to positional information in
predicates, via the functions position (), last (), and count (). For exam-
ple, child: :* [position()=1] and child::*[position()=1last ()]
(commonly abbreviated as child::*[1] and child::*[last ()], respec-
tively) return the first and last child of the context node, in document order. For
the formal semantics of these predicates, see [11].

The simplest type of positional predicates, of the form R [position()=k] or
R[position()=1last()-k1, (“return the k-th, respectively, k-but-last, node in

@ Springer

Theory Comput Syst (2009) 44: 561-589 567

document order that can be reached from the context node via R”) is quite harm-
less. It can be eliminated at the cost of an exponential blowup, using the following
equivalences:

R[position()=1] =R except (R/K)
R[position()=k+1]= (R intersect (R[k]/K)) [position()=1]

and symmetrically for R[last () -k]. These equivalences could in principle be
added to the axiomatization we will give below in order to obtain completeness
w.r.t. this enrichment of the language.!

More advanced use of positional or counting information quickly makes the logic
undecidable:

Theorem 2 Core XPath extended with expressions of any of the following forms is
undecidable for query equivalence:

e R[count (R') =count (R")],or
e R[position() =1last()/2],or
e R[position() =count(R’)].

Proof We sketch a reduction to the undecidable halting problem for two-register ma-
chines (2RM) [7]. We follow the definition given in [3]. 2RMs are similar to Turing
machines but instead of a tape they have two registers ri, rp. Each register contains
a natural number. A 2RM is programmed by a numbered sequence Iy, I, ..., I; of
instructions. It indicates that M is to execute instruction /; with registers r; and r;
containing m and n, respectively. Each instruction /; is either an addition or a sub-
traction. An addition has the form (rg, j), with rg a register number and j </ an
instruction number. Its semantics is: add one to register rg and move to instuction 1;.
A subtraction has the form (rg, j, k) with rg a register number and j, k </ instruc-
tion numbers. Its semantics is: if content of register rg is zero then move to instruc-
tion Ij, otherwise subtract one from register rg and move to instruction I. Each
2RM has also a designated starting instruction, which we may assume to be I, and
final instruction /¢ (f <!). An instantaneous description (ID) of a 2RM M is a triple
(i,m,n), where i </ is an instruction number and m,n > 0 are natural numbers
representing the content of registers r| and ro. The halting problem for 2RMs is to
determine for a given 2RM whether there is a run of the machine starting in the ID
(0, 0, 0) and ending in the ID (£, 0, 0). This problem is known to be undecidable.
Following [3], we represent runs of 2RMs as XML documents. Our representation,
depicted in Fig. 4, is based on the representation used in the proof of [3, Theorem 7.9].
Each node on the left most branch (i.e., satisfying —=(1* / <)) represents an ID
(i, j, k) of the machine. The node tag s; encodes the instruction number i, while the
register contents j and k are represented by the number of descendants of the ry
and ry child, respectively. For each 2RM M, we can create a node expression ¢y
that is satisfied precisely in the roots of those XML documents that encode runs of M

INote, however, that certain axiom schemes that are valid in the language without positional predicates,
such as (R/S)[X]= R/(S[X]), would no longer be valid in the extended language.

@ Springer

568 Theory Comput Syst (2009) 44: 561-589

Fig. 4 XML encoding of a

two-register machine run \\
/ P

A
BN

1

/

sy
o—0---0—0
e—0---0—o

starting in (0, 0, 0) and ending in (f, 0,0). Hence, M halts iff ¢, is not equivalent
to ().

The predicates in the theorem are used to express that, in going from one ID to the
next, the content of the registers is appropriately related. For example, the following
node expressions, evaluated in a node on the left most branch, test that the content of
register r; is the same in the current ID and in the next one:

e count (}[r1]/{) =count ({neu/IIr11/47), or
(next U)/Ir11/4T) [position() =last()/21) [—{]1,0r

(I[r11/1") [position() =count (1/{next/Llr11/4T) 1) [=]

where | next 1S shorthand for | [— <«]). Similarly, we can test that the value of a
register is incremented or decremented using such predicates. O

Comparison Operators XPath 2.0 has three sets of operators to compare nodes.
Here we just discuss the three types of equality: =, eq and is. Each takes two path
expressions as input. The operators = and eqg compare the data values of input nodes
(in XPath terminology, the atomization of the input), while 1s compares node iden-
tity. a eqgb is true if the nodes a and b have the same data value, and a is b is true if a
and b are the same node. = can be defined in terms of eq: R = S iff some $r in
R satisfies some S$s in § satisfies Sr eq Ss (recall from Fig. 3
that some can be expressed in terms of for). Node equality is term definable in
XPath 2.0 using intersection (see axiom Eql in Fig. 9). Data value equality quickly
leads to undecidability: already in the context of Core XPath [10]; or in first or-
der logic with three variables having only the child relation interpreted on unary
trees [6]. Both proofs use Post’s correspondence problem.

@ Springer

Theory Comput Syst (2009) 44: 561-589 569

QT1. Veyz(z <yAy < z—x < 2) < is transitive
QT2. —Jz(z < z) < is irreflexive
QT3. Vey(z <y — 32(x <imm 2 A 2 < Y)) immediate children
QT4. IVy—(y < x) there is a root
QT5. Veyz(z < zAy<z—ax<yVy<zx) linearly ordered ancestors
QT6. Veyz(z < yANy <z —x < 2) < is transitive
QT7. —Jz(z <) < is irreflexive
QTS. Vey(x <y — 32(T <imm 2 A2 2 Y)) immediately next sibling
QT9. Vedy(y =z A —=3z(z < y)) there is a least sibling
QT10. Vey((z < yVy <z) <

(Fz(z <imm TN 2 <imm Y) AT £ Y)) < linearly orders siblings

QT11. Vey(zr=yVa<yVy<zV
'y (2 <z Ay <yA(2 <y Vy <2'))) connectedness
QT-Ind. Vz(Vy(z<<y — ¢(y)) — é(x)) — Vz.¢(z) induction scheme

where

X <imm ¥ 18 shortland for x < y—3z(x <z Az <Y),
X <imm Yy 18 shortland for x < y—=3z (x <z Az <y), and
x K yisshortlandforx <y vIx'y'(x’ <x Ay <yAx' <y

Fig. 5 Axioms of the FO theory of finite trees

3 Relations with other Languages

We discuss the relation of Core XPath 2.0 with first order logic and with Tarski’s
relation algebras. The connections between these formalisms will be exploited in our
proofs later on.

3.1 First Order Logic

XPath 2.0 was designed to be expressively complete for first-order queries [16]. More
precisely, we mean here first-order logic in the signature with binary relation sym-
bols < and < denoting the descendant and following sibling relations, and arbitrarily
many unary predicates for the node tags. The expression x < y means that y is a de-
scendant of x, and x < y means that y is a following sibling of x. It is easy to see that
there are linear translations between this first-order language and Core XPath 2.0.
The for-loop and the variables are not even needed for expressive completeness:
even just Core XPath 1.0 extended with the except operator is already expressively
complete for this first-order language [19]. Whether this holds in the presence of data
value comparisons depends on a longstanding open problem in finite model theory,
namely whether FO has a finite variable property on finite ordered structures [8].

An axiomatization of the first-order theory of finite node-labeled sibling ordered
trees (in the signature described above) was given in [2], together with a rather in-
volved completeness proof. In Appendix we provide a short alternative completeness
proof for the axiomatization given in Fig. 5. First of all, note that these axioms define,
among all finite structures, those that are trees:

@ Springer

570 Theory Comput Syst (2009) 44: 561-589

Theorem 3 A finite structure M = (dom, <, <, Py, ..., P,) satisfies all axioms in
Fig. 5 iff it is isomorphic to a finite node-labeled sibling ordered tree.

The proof is left as an exercise to the reader.

Note that a structure satisfying the axioms in Fig. 5 is not necessarily a finite tree,
as it may be infinite. Still, the axioms in Fig. 5 completely axiomatize the theory of
finite trees:

Theorem 4 The FO theory of finite node-labeled sibling ordered trees is completely
axiomatized by the axioms and axiom scheme in Fig. 5.

The proof is given in Appendix.
Next, we give a more precise statement of the first-order expressive completeness
of Core XPath 2.0, as we will need to refer to it later on.

Theorem 5

1. For every FO formula ¢ (x,y) in two free variables there is a variable-free Core
XPath 2.0 PathExpr R such that the two define the same binary relation in each
tree.

2. For every FO formula ¢ (x) in one free variable there is a variable-free Core
XPath 2.0 TestExpr X such that the two define the same set of nodes in each tree.

In fact, the above hold not only for trees, but even on the more general class of struc-
tures defined by the FO axioms QTI1-QTI1 in Fig. 5.

Proof The first item was proved in [19, Corollary 3.5], whose proof spans Sect. 4
of [19]. Although the result was stated for finite trees only, a careful reading of Sect. 4
of [19] shows that it holds on the more general class of structures defined by the
axioms QT1-QT11. Indeed, finiteness or well-foundedness is not used in the proof
in any crucial way. The arguments do use the fact that every two nodes have a least
common ancestor but this follows from the given axioms (in particular, the axiom
QT11).

The second item follows directly from the first (cf. also the proof of Corollary 3.3
in [19]): given ¢ (x), let R be the variable-free Core XPath 2.0 PathExpr that defines
the same binary relation as ¢ (x) A y = y. Then R—taken as a TestExpr—defines the
same set of nodes as ¢ (x). O

3.2 Relation Algebra

The variable free fragment of Core XPath 2.0 (which, as we mentioned earlier, al-
ready has the full expressive power of Core XPath 2.0) is closely related to Tarski’s
algebra of binary relations (“Relation Algebra”) [20] cf., also [12, 14]. This elegant
and purely algebraic language consists of

e aset RVAR of atomic expressions denoting binary relations (over some set)
e constants T, L and ., denoting the total relation, the empty relation and the identity
relation, respectively

@ Springer

Theory Comput Syst (2009) 44: 561-589 571

Fig. 6 Valid equivalences of o
rel%nion algebr';1];j; gj/s)/T z f;/(S/T)
RA3. (RUS)/T = (R/T)uU(S/T)
RA4. (RUS)™ = R-US-
RA5. (R/S)~ = S/R-
RA7. S/(—(ST/R)) € -R

e operators for taking union (U), intersection (N), complement (—), composition (/)
and converse (-7).

In addition, we use diff as a shorthand for —(.), i.e., the inequality relation.

As the reader can observe, the main syntactic differences between the variable
free fragment of Core XPath and Relation Algebra are (i) Relation Algebra has a
converse operator, while in Core XPath 2.0 each individual expression has a defin-
able converse, (ii) Relation Algebra uses a unary complementation operator, whereas
Core XPath 2.0 uses relative complementation, (iii) Relation Algebra includes a con-
stant T denoting the universal relation, whereas in Core XPath 2.0 the universal
relation is defined by (ancestor::* union self::*)/(descendant: :*
union self::*), (iv) Core XPath 2.0 features predicates, which are not present
in Relation Algebras.

These differences in syntax are mostly cosmetic. The most important difference
between Relation Algebra and Core XPath 2.0 lies in the semantics: Core XPath 2.0
is interpreted on finite trees whereas Relation Algebra is traditionally concerned with
arbitrary structures consisting of a domain and an interpretation for each atomic bi-
nary relation symbol. Still, in this paper, we will make important use of known results
about Relation Algebra.

A list of valid equivalences of relation algebra is given in Fig. 6. Each of these
equivalences expresses that on every structure, all pairs of elements in the domain
of the structure standing in the first relation also stand in the second relation and
vice versa. We use o C 8 as a shorthand for the equivalence 8 = 8 U «. Tarski [20]
originally proposed these equivalences as axioms, and conjectured that, combined
with any complete set of axioms of Boolean algebra (for N, U, —, T), they would
constitute a complete axiomatization of the equational theory of relation algebra.
However, this turned out not to be the case, a result of Lyndon [17, 18]. A finite
non-representable algebras satisfying the axioms was found by McKenzie, see [21].
A large body of subsequent work studied axiomatizations and axiomatizability for
relation algebra, an overview of which can be found in [15]. For us, the following
positive result will be of particular relevance (cf. [24, Sect. 3.5.3], and also [26, 28]
for related results).

Theorem 6 (Venema) Fix a countably infinite set of relational variables RVAR. Two
relation algebra expressions «, B over RVAR are equivalent iff their equivalence is
provable from the axioms in Fig. 6 and the axioms of Boolean algebra using the stan-
dard rules of equational logic and the following non-standard inference rule (Ven):

If (RN —((diff/R/T)U (T /R/diff))) S, for R € RVAR not occurring in o,

@ Springer

572 Theory Comput Syst (2009) 44: 561-589

thena=T.

Here, by the standard rules of equational logic, we mean the reflexivity rule (for
every expression «, o = «), the symmetry rule (if « = 8 then 8 = «), the transitivity
rule (if « = B and B = y then « = y) and the rule of substituting equals by equals
(if « = B and ¢ is obtained from y by replacing some occurrences of @ by S, then
y =96).

Venema’s proof is based on a Henkin-style model construction. Recall that, in
a standard Henkin-style completeness proof for first-order logic, a structure is con-
structed out of equivalence classes of constants. In the case of relation algebra, the
structure is constructed out of special relation algebra expressions which we will call
nominals. Intuitively, a nominal is a relation algebra expression denoting a binary
relation consisting of at most one pair, and (Ven) allows us to assume the existence
of such nominals. Formally, let ¥ be any set of equivalances between relation alge-
bra expressions. We say that an equivalence « = f follows from X, also denoted by
Y F o = B, if it can be obtained from X plus the axioms using the standard rules of
equational logic. We say that a relation algebra expression « is a X-nominal if

Y Fa C —((diff /o T) U (T Jou/diff)).

The intuition is that the binary relation denoted by « consists of at most one pair. In
particular, note that the expression R N —((diff/R/T) U (T /R/diff)) from the Ven-
rule is a nominal. Thus we can understand the Ven-rule (in contraposition) as saying
that if o = T, then either « = L or there exists a nominal § such that 8 C —a.

We say that ¥ provides Henkin witnesses (with respect to a given set of relational
variables RVAR) if for every RVAR-relation algebra expression o there is a RVAR-
relation algebra expression § such that

1. Bisa X-nominal
2. TFBCa
3.2+-T/a/T=T/B/T.

Intuitively, the third item says that if o defines a non-empty relation, B does too.
Venema’s proof of Theorem 6 centers around the following two lemmas.

Lemma 7 Fix a countably infinite set of relational variables RVAR. For any two
relation algebra expressions o, B over RVAR, if o« = B is not provable from the axioms
in Fig. 6 and the axioms of Boolean algebra using the rules of equational logic and
(Ven), then there is a set of equivalences ¥ over RVAR providing Henkin witnesses
w.r.t. RVAR and such that ¥ t/ o = B.

Lemma 8 Let RVAR be any set of relational variables and ¥ a set of equivalences
over RVAR. If ¥ provides Henkin witnesses w.r.t. RVAR, then for any relation algebra
expressions o, B over RVAR, X o = B iff « and B are equivalent on structures
satisfying all equivalences in X.

Theorem 6 directly follows from these two lemmas. The second lemma will play
a crucial role in our completeness proofs for Core XPath 2.0.

@ Springer

Theory Comput Syst (2009) 44: 561-589 573

4 A Complete Equational Calculus

In this section, we will give a complete equational axiomatization of equivalence in
Core XPath 2.0. First, we axiomatize the variable free fragment, and then we show
how the axiomatization can be extended to the full language of Core XPath 2.0. We
will make use of the shorthand notations introduced in Sect. 2.3.

We do not enforce that, as in real XML document trees, each node is labeled by
exactly one node label, as this can always be enforced: if R, S are path expressions
containing node labels p1, ..., p,,and R, S’ are obtained from R, S by uniformly re-
placing each node label p; by p; A /\;; =p;, then R" and S’ are equivalent on XML
documents with multiple node labels iff R and S are equivalent on XML documents
in which each node has a single label.

We reiterate the chosen signature from Sect. 2.3. The atomic symbols are all Step
productions from Fig. 1. Those of the form axis :: % are abbreviated by arrows. In
the axioms, the inductively defined converse function ()™ is used. At the base level,
it relates the arrows (({ 7)™~ =41 and (1)~ =] T, etc.).

4.1 The Variable Free Fragment

Recall that the variable free fragment of Core XPath 2.0 is the fragment without vari-
ables, for and node comparison tests. As we saw in Sect. 3.2, it is closely related
to Tarski’s Relation Algebra [13, 20].> The calculus we will present essentially ex-
tends a known complete axiomatization of Relation Algebra with axioms that capture
the special properties of finite node-labeled sibling-ordered trees (“finite trees”, for
short).

Our axioms are given in Fig. 7. In this table, and in what follows, R, S, T range
over (variable free) path expressions, and X, Y range over (variable free) test ex-
pressions (thus, most of the “axioms” are actually schemes that have infintely many
instantiations). We use R C S as shorthand for S = S U R. A few words about the
axioms. They are divided into four groups. The Boolean axioms BA1-BA11 are stan-
dard. From Tarski’s axioms RA1-RA7 we could remove RA4-RAG6 because they are
about the converse operator and that is a defined operator with us, cf. Lemma 10.
The axioms for the predicates show that predicates are just syntactic sugar. Axioms
Tr1-Tr11 and Ind are direct translations of the first-order axioms in Fig. 5. In partic-
ular, the Ind axiom captures the fact that, whenever there is a R-path from a node d
to a node e, then there is a last node ¢’ in document order for which it is the cases

2We will use algebraic results from [13] in our proofs, so we relate the notation used there with our XPath
notation. According to [13] Def. 5.3.1, a relation algebra (RA) is an algebra (A, +,-,—,0,1,;,™, 1,
with (A, 4, -, —, 0, 1) a Boolean Algebra, ; a binary operation on A, ~ a unary operation on A and 1" € A.
These operators are related to our XPath operators as follows: 4 and - denote union and intersect,re-
spectively. — is complementation with respect to A. Thus x except y=x-—y,and —y =T except y.
0 and 1 denote the Boolean constants false and true, respectively, in our notation L and T. “;” denotes
the composition operator for which XPath uses the symbol *“/”. The operator ()~ denotes inverse in both
systems. The identity contant 1" is denoted by the period “.” in XPath.

3The induction axiom Ind in Fig. 7 is different from axiom we used in the earlier version of this paper that
was published in the ICDT 2007 conference proceedings. The old version contained a mistake, and the
corrected version of the axiom we use here is also more easy to read.

@ Springer

574 Theory Comput Syst (2009) 44: 561-589

Axioms of Boolean Algebra and Relation Algebra

BAl. R union (S union T

BA2. R intersect (S intersect T)
BA3. R union S

BA4. R intersect S

BA5. R union (S intersect T)
BAG6. R intersect (S union T)

(R union S) union T
(R intersect S) intersect T
S union R
S intersect R
(R union S) intersect (R union T
(R intersect S) union
(R intersect 7))

BA7. R union (R intersect S) = R
BAS8. R intersect (R union S) = R
BA9. R union (T except R) = T
BA10. R intersect (T except R) = 1
BA1l. R intersect (T except S) = R except S
RAl. (R/S)/T = R/(S/T)
RA2. R/. = R
RA3. (R union S)/T = (R/T) union (S/T)
RA7. (S/(T except (S—/R))) C T except R
Axioms for eliminating predicates
Predl. R[X and Y] = R[X][Y]
Pred2. R[X or Y] = R[X] union R[Y]
Pred3. Rnot(X)] = R except R[X]
Pred4. R[S] = R/((S/T) intersect .)
Axioms for finite trees:
Tl [t/ c I+
Tr2. |T intersect |t = 1
Tr3a. |* = | union (| /|T)
Tr3b. | = |T except (T /|T)
e []) = 1* [nos(1)]
Tr5. [T /1T = |T[|] union .[|] union .[|]/ 1T
6. —t) -t c o+
Tr7. —7T intersect T = 1
Tr8a. —™T = — union (— /—T)

Tr8b. — = —7T except (=1 /—T)

Tr9. [« = [« [not(«)]]

Tr10. —7T union «7*

Trll. .union T union |* union
(1*/=%/1*)wnion (1*/<F/1*) = T

Ind. .[R]

(1/ 1) except .

.[R except R/>>]

Axioms for tag-names:

Tagl. Axis::NameTest Axis::x/self::NameTest

Tag2. self::NameTest

N

Fig. 7 Axioms for Core XPath 2.0 query equivalence

@ Springer

Theory Comput Syst (2009) 44: 561-589 575

that there is an R-path from d to ¢’. It holds by virtue of the finiteness of the XML
document trees, and is analogous to the induction axiom in arithmetic, which states
(in one of its equivalent formulations) that every non-empty set of natural numbers
has a smallest element.* The axioms in the last group handle the particular type of
atomic symbols in XPath.

Keep in mind that these axioms describe relative path equivalence (as opposed
to equivalence when evaluated at the root). We leave it to the reader to check that
axioms in Fig. 7 are indeed sound.

We say that R is provably equivalent to S in our calculus (notation: R =* §), if
the equivalence of R and S can be proved from substitution instances of the axioms
using the transitivity, symmetry and reflexivity of = and replacement of equals by
equals (if R = S and T’ is obtained from T by replacing some occurrences of R
by §, then T = T"). Likewise, we use C* for provable containment. We will usually
abstract away from Boolean reasoning: since our axiomatization includes a complete
set of axioms for Boolean Algebra, we know that all valid Boolean equivalences are
derivable, and hence we will use them at liberty in the proofs.

Theorem 9 (Completeness) For any two equivalent variable-free expressions R and
S,R=*S.

In the remainder of this section, we prove Theorem 9. We first establish two use-
ful Boolean facts and three preliminary lemmas showing that certain equalities are
derivable. Then we can smoothly prove completeness.

It is sometimes easier to prove mutual containment of two expressions than equiv-
alence. Fortunately, the two are equivalent:

Fact 1 For all expressions R and S, R =" S iff both R C* S and S C* R.

Proof This follows from the fact that we have all axioms of Boolean Algebra.
However, to be complete we will also give a direct proof here. If R =* §, then,
by axiom BA7, R =* Runion (S intersect (Sunion S)), and hence, by
axiom BAS, R =" Runion S. Similarly, we can show that § =* Sunion R.
Conversely, if both inclusions are derivable, then § =* Sunion R and R =*
R union S, hence, by transitivity and axiom BA4, R =* §S. Il

In proofs of containment, the following fact can be very useful. Call a subexpres-
sion of an expression R positive (negative), if it occurs under the scope of an even
(odd) number of polarity switching operators. Here, by polarity switching operators
we mean not and except, and the latter is only counted as polarity switching with
respect to the second argument.

4 The relationship between Ind and the induction scheme Q7-Ind from Fig. 5 may be easier to see if
one takes the contraposition of the latter, after substituting —¢ (x) for ¥ (x), i.e., Ix. ¥y (x) — Ix. (Y (x) A
—3y.(x LKy AP ().

@ Springer

576 Theory Comput Syst (2009) 44: 561-589

RA4. (R union S)~

R~ union S~

RAS5. (R/S)~ = S /R~

RAG. (R—)~ = R

RAS. R/(S union T) = R/Sunion R/T
RA9. JR = R

RA10. R/L = 1

RAIL. T/T = T

RA12. .~ = .

RA13. 1~ = 1

RA14. T~ = T

RA15. (R intersect S)~ = R~ intersect S~
RA16. (R except S)~ = R~ except S~
RA17. (T except R/S)/S~ C (T except R)
RA18. (R intersect .)/(R intersect .) = (R intersect .)
RA19. (R intersect .)~ = (R intersect .)
RA20. ((R/T) intersect .)/T = R/T

Pred5. R/.[S] = R[Y]

Pred6. R/S = R[9]/S

Pred7. RI[S[T] = RI[S/T]

Pred8. (R[S])~ = [S]/R~

Pred9. TI[S]/R = T[R7/Y]
Pred10. R[S and not(T)] C RI(S except T')]
Predil. T[T[R]] = T/R/T

Fig. 8 Equivalences derivable from the axioms in Fig. 7

Fact 2 (Monotonicity ([13] Lemmas 5.3.3.(iv) and 5.3.5.(1))) Suppose R C* S, and
let T’ be obtained from T by replacing some positive occurrences of R by S, and/or
replacing some negative occurrences of S by R. Then T C* T'.

In the completeness proof we will use the derivable equivalences listed in Fig. 8.

Lemma 10 All equivalences and containments in Fig. 8 are derivable.

Proof RA4 and RA5 follow immediately from the definition of the function (-)™".
The same holds for RA6 if we consider expressions that do not contain predicates.
For expressions R containing predicates, it is not immediately obvious that RA6 is
derivable, since ((R[X])™)~ is not by definition identical to R[X]. However, by
Predl-4, R is provably equivalent to an expression R’ that contains no predicates,
and therefore (R™)~ =* ((R’)~)~ =* R’ =* R. For all RAn with n > 8, the proof
is in [13], with these correspondences:

RAS 5.3.3.3) RA13 5.3.3.(vi) RA17 5.3.3.(ix)
RA9 5.3.3.(ii) RA14 533.vi) RAI8 5.35.x)
RAI0 5.3.5.(v) RA15 533.viii) RAI9 5.3.5.(ix)

RAI1 5.3.3.(Gii) and Fact 2 RAI6 5.3.3.(viii) RA20 5.3.5.(xiii)
RAI2 5.3.3.3Gii).

@ Springer

Theory Comput Syst (2009) 44: 561-589 577

The remaining equivalences are proved below.
» Pred>5.

R/.[S]
=ty R/J(S/TIN
=y R/S/TIN

E(Pred4) R [S]

» Pred6. The proof proceeds in two steps. First,

R/S
E?RAZ) R/./S
E?‘Boolmn) R/(((S/T) intersect .)

union ((T except §/T) intersect .))/S
ETRA.?) R/((S/T) intersect .)/Sunion

R/((T except §/T) intersect .)/S

Next, we will show that the second half of the last expression is provably equiva-
lent to L, from which the result follows. By Boolean reasoning and monotonicity,

(RNS)/T C*(R/T)N (S/T). Hence,

R/((T except §/T) intersect .)/§

c* R/((T except §/T)/S intersect (./S))
< (Monotonicity, RA9) R/((T except §/87)/S intersect)
€ (ra17) R/((T except S) intersect S)

< (Bootean) R/L

S 1

The reverse inclusion, i.e., R[S]/S C* R/S, holds again by Boolean reasoning
and monotonicity.

» Pred7.
R[S[T]]
EZ‘PMM) R/((S/((T/T) intersect .)/T) intersect .)
E?RAZO) R/((S/T/T) intersect .)
E>(kPred4) R[S/ T]
» PredS.

R[ST™
=preayy (R/((§/T) intersect)~
ETRM) ((§/T) intersect)7 /R~
E?RA]Q) ((S/T) intersect .)/R~
=(ra9 -/((S/T)intersect .)/R~
E?PrecM) [S]/Rv

@ Springer

578 Theory Comput Syst (2009) 44: 561-589

» Pred9. We first show that T/R =* T[R]: In one direction,

T/R
E?RAZ) T/R/.
=(ra6) T/(R/)TT
=(ras) T/(7/RT)~
=ra12) T/(/RT)™
E>(kPred6) 7—/([RV]/RV)v
=(ra2) T/CIRT1//RT)™
E>(kRA5, a6, Preasy 1 /R/IRT]
§>(kMonotonicity) T/'[Rv]
ETPred{ RA2) T[R™]
In the other direction,
T[R™]
E?RAé) TIRTI™™
= (preds) ([R1/T)~
E’(kPmM) (./((R~/T) intersect .)/T)~
= (RA5. RA2, RAI4) T/((R~/T) intersect .)~7/.
=(ra2) T/((R~/T) intersect .)~
= (RAS, RAG, RAI4) T/((T/R) intersect .)
g;kBoolean, Monotonicity) T/T/R
=gall T/R
Now derive Pred9:
TIR™/S]
= prea) TIRT[S]]
= Ra6) TIHRTISD™]
fZT/R;*T[Rv]) I/(RV[S])V
= (Preds, RAG) /[S1/R
E?Pred5) TISI/R
» Predl0.
R[S and not(T)]
= {predl) R[S][not(T)]
= pred3) R[S] except R[T]
Ewalmm R[(S intersect T)union (S except T)]

except R[T]
S Monotonicity) R[(S intersect T)union (§ except T)]
except R[(S intersect T)]
= bredd, RA3, BAG, RAS) (R[(S intersect T)]Junion R[(S except T)])
except R[(S intersect T)]

g;kBoolean) R[(S except T)]

@ Springer

Theory Comput Syst (2009) 44: 561-589 579

» Predll. In one direction,

TITIR]]
= pred7) TLT/R]
=/ preds) T/(T/R/TYN)

< (Monotonicity, Ra11) 1 /R/T

In the other direction,

T/R/T
= preds) TIRI/R/T
= (Preas) TIR™/RI/T
g;kMonnmnicily) T [T/ R]/T
=(pred9, 14, RA11) T LT/RI
= pred7) TITLR]] O

To simplify things, we will restrict attention to a subset of the language. We call
a variable free path expression normalized if it contains no predicates (i.e., - [-]) and
it contains only steps Axis: :NameTest for which Axis is self or NameTest
is *. The following lemma shows that we can safely restrict attention to normalized
path expressions.

Lemma 11 Every variable free path expression R is provably equivalent to a vari-
able free normalized path expression.

Proof Predicates and steps of the form Axis: :NameTest with Axis # self
and NameTest # * can be eliminated by repeatedly applying the axioms Predl—
Pred4 and Tagl. O

Restricting attention to normalized variable free path expressions has the advan-
tage that we are in a purely relation algebraic setting (normalized path expressions
are just expressions of Tarski’s Relation Algebra, built from the atomic relations
<, =, N, <, =T, 47,17, and self: :QName) and hence the definitions and
results from Sect. 3.2 can be sensibly applied. Note that restricting ourselves to nor-
malized expressions in the statements of our Lemmas and Theorems does not pre-
clude us from using expressions with predicates inside the proofs.

We now proceed to prove completeness. We build on Venema’s results for
Tarski’s relation algebra that were described in Sect. 3.2. As a first step, we show
that the theory generated by the axioms in Fig. 7 provides Henkin witnesses. For
any path expression R, let us use last-pair(R) as a shorthand for R except (K
/R/T union R/ >), which denotes the subrelation of R consisting only of the
last pair in lexicographic document order. Also, let us use diff as a shorthand for
(T except .), which defines the inequality relation.

Lemma 12 The axiomatization in Fig. 7 provides Henkin witnesses. More specifi-
cally, for each normalized variable free path expression R,

@ Springer

580 Theory Comput Syst (2009) 44: 561-589

1. last-pair(R) is a nominal, i.e.,

last-pair(R) C* T except ((T/last-pair(R)/diff) union
(diff/last-pair(R)/T))

2. last-pair(R) C* R
3. T/R/T =*T/last-pair(R)/T.

Proof

1. Consider
diff/last-pair(R)/ T union T /last-pair(R)/diff.

Repeated application of 7rl 1 (according to which T =* .union <« union >),
RA3, RA8 and Monotonicity shows that this expression is provably equivalent to
the union of the following four expressions:

(a) < /last-pair(R)/T

(b) > /last-pair(R)/T

(c) ./last-pair(R)/ K

(d) ./last-pair(R)/ >.

Each of these expressions is provably contained in (T except last-pair(R)):

(a)

&« /last-pair(R)/T
g;kMonomm'city) < /R/T

< Boolean) T except last-pair(R)
(b)
> /last-pair(R)/T
—(Monotomczt}) > /(T except (<< /R/T))/T
—(RA7) (T except R/T)/T
—(RA14) (T except R/T)/T™
—(RA17) T except R
—(Monotom(lt}) T except last-pair(R)
(©
./last-pair(R)/ <
—(RAQ) last-pair(R)/ <
—(Monotomczry) (T except R/ >>)/ <
—(RAI7) T except R
g;kMom)toniciz‘v) T except |aSt‘Pair(R)
(d)

./last-pair(R)/ >
_(RA9) last-pair(R)/ >
—(Monommuty) R/ >
T except last-pair(R)

= (Boolean)

@ Springer

Theory Comput Syst (2009) 44: 561-589 581

It follows by Boolean reasoning that

last-pair(R) C* T except ((T /last-pair(R)/diff) union
(diff/last-pair(R)/T))

2. By Boolean reasoning.

3. By (Predll), it suffices to show that, for any expression R, T[T[R]] =*
T[T [last-pair(R)]]. In one direction, containment follows from the monotonic-
ity lemma. For containment in the other direction, the derivation is as follows:

T

%
=(Ind, Pred5) T
=* T
—(Ind, Pred5)

TIRI

T[R except R/ >]]

T[R except R/>]except
R except R/>]/>]

[T[R except R/>]except
TIK [(R except R/>)]1I]

T
T

—%k
=(Pred7, Pred9)

=/ preas)y TLTIR except R/>]except T[KI[R]]]
=(preas, Ra11) LT[R except R/>]except T[K[R/TII
= predr) T[T[R except R/>]except T[K/R/T]]
g;kMonolonicity) T[T[R except R/>]except

T[R except R/>|[K/R/TI]
E;*Pmm TITI(R except R/>)][not(K/R/T)]]
= predl) TITI(R except R/>)and not(K/R/MII
Spredio) TITI(R except R/>) except (K/R/MII
E;kBoolean) T[T[IaSt'palr(R)]] O

We are now ready to proceed with the proof of Theorem 9.

Proof of Theorem 9 The proof essentially proceeds in two steps: first, we will prove
completeness with respect to arbitrary structures (i.e., possibly infinite, and in which
the atomic expressions | ™, — T, etc. can denote arbitrary binary relations) satisfying
all instances of the axioms, then we prove completeness with respect to actual finite
trees.

Let X be the collection of all instances of the axiom schemes in Fig. 7.

In what follows, we will restrict attention to normalized path expressions. This is
safe by Lemma 11. 0

Claim 1 For all normalized variable free path expressions R, S, if R £* S then
there is a structure (not necessarily a finite tree) satisfying ¥, and a pair (d, e)
of elements of the domain of the structure, such that (d,e) stands in the relation
(R except S)union (S except R).

Proof of Claim This follows from Lemma 8, by the fact that our axiomatization pro-
vides Henkin witnesses, cf. Lemma 12. Note that, by Lemma 10, the missing RA
axioms RA4—RAG6 are derivable. O

@ Springer

582 Theory Comput Syst (2009) 44: 561-589

Axioms enforcing that each variable denotes a constant function:

Varl. T/$i
Var2. $i/(T except .)

$
T except $i

Axiom for node-equality tests:
Eql. R[SisT] = RJS intersect T

Rule for eliminating variables in a derivation:
Name. From $i/R = $i/S derive R = S, provided $i does not occur in R, S

Axioms for for:
Forl. $z/for $y in R return S $z/R/(for $y in . return $z/S)
. _ 3
For2. $z/for $y in . return S = 8z/S;’
where Sgg is the result of replacing all free occurrences of $y by $z,
provided that this is a safe substitution.

Fig. 9 Additional axioms for variables and for

Claim 2 Let 9t = (M, (Ra)ae(y 4, — 1 +.4+, <+ ,—+) (Rse1f:: p) peoname) be any
structure satisfying X. Then (i) the relations (Rd)ae{im<—,—>,¢+,T+,<—+,—>+} are
all definable in terms of the relations R+ and R_,+, in the natural way, and
(Rse1£::p)peoname are subrelations of the identity relation over M, and (ii) the
structure (M, R¢+, R_,+, (Pp)peonane) satisfies all FO axioms in Fig. 5, where
Pp,={de M| d,d) € R} forall p € QName.

Proof of Claim The first half of the claim follows from the axioms Tr3b, Tr8b, the
derivable RA6, and axiom Tag2. For the second half of the claim, since the axioms
Tri-Trll all hold in 90, 901 satisfies the first-order properties defined by these ax-
ioms, which imply the first-order formulas QT7-QT11 of Fig. 5. For instance, the
axioms QT and Tr! both express that R+ is transitive. Similarly for the other ax-
ioms. Similarly, one can show that all instances of the Q7-Ind axiom hold in M:
let ¢ (x) be any FO formula in one free variable. By Theorem 5, there is a variable
free Core XPath 2.0 PathExpr R such that in any model of QT1-QT11, R denotes the
set of all pairs (x, y) with y satisfying ¢. We know (taking the appropriate instance of
the Ind axiom of Fig. 6) that .[R] and .[R except R/ >>] denote the same relation
in our model. But this means that if there is any node satisfying ¢ (x), then there is
a last one in document-order. This is precisely what the QT-Ind axiom of Fig. 4 says
(cf. footnote 4). Il

It follows by Theorem 4 that every first-order formula, and therefore also every
Core XPath 2.0 expression, satisfied in M is satisfied in some finite tree. In particular,
this holds for (R except §)union (S except R).

4.2 Adding Variables

We will now extend our axiomatization to the full language of Core XPath 2.0 with
variables and for-expressions, by adding a number of extra axioms, and an extra
rule of inference, listed in Fig. 9. Naturally, we now take the symbols R, S, ... and
X,Y,...in Figs. 7 and 9 to range over path expressions and test expressions, respec-
tively, that are not necessarily variable free.

@ Springer

Theory Comput Syst (2009) 44: 561-589 583

The For2 axiom deserves special attention, as it involves variable substitution.
As is customary for quantified logics such as first-order logic, we prohibit unsafe
substitution. For example, replacing the free occurrence of $; by $i in for $i in
J return $i[not (. is $j)] constitutes an unsafe substitution, because it has
the side-effect that the variable becomes bound by the for-quantifier.’

The inference rule Name allows us, when trying to prove equivalence of two ex-
pressions, to assign a variable to the current node. This sometimes makes it easier to
prove the equivalence.

At this point, it is worth discussing in some detail a distinction between two types
of axiomatizations. An orthodox axiomatization is one that uses only the standard
rules of inference from equational logic, i.e., reflexivity, transitivity and symmetry
of the equality relation, and the rule for replacement of equals by equals. A non-
orthodox axiomatization may use additional rules of inference. In particular, the ax-
iomatization for the variable free fragment of Core XPath 2.0 that we gave in the pre-
vious section was an orthodox axiomatization, while the axiomatization for the full
Core XPath 2.0 language that we introduce in the present section is non-orthodox,
as it involves the new inference rule Name. In general, orthodox axiomatizations are
preferable, as derivations in them can be represented as sequences of rewriting steps
starting with one expression and ending with another, where each rewriting step cor-
responds to replacing a sub-expression by another, equivalent, one. Unfortunately,
we have not been able to find an orthodox axiomatization for the full Core XPath 2.0
language. Still, we believe that the non-orthodox axiomatization we present here is
of value, because both the axioms and the inference rule are reasonably natural (un-
like an axiomatization that would be obtained, say, by taking a standard complete set
of axioms and inference rules for first-order logic and translating them directly into
Core XPath 2.0 equations).

We now proceed with the proof of completeness.

Lemma 13 (A variant of the Name rule) For all path expressions R and S, and for all
variables $i not occurring in R and S, if ($i/R/T union (T except (T/R/T))
C*Sthen S=*T.

Proof Before we commence with the proof, let us first show that $i /$i =* $i. In one

direction, $i/$i Syomomiciry) /31 ={yy1) $i- In the other direction,

$i
E?vm) T/$i
={Bootean, Ra3) i/$i union (T except $i)/$i
E;"Vaﬁ) $i/$i union $i/(T except $i)/$i
g:{Mon()toru'cizjv) $l/$l union $1/T/$l
=Vurl) $i/$i union $i/$i
E?Boolean} $l/$l

5 Formally, substituting $y by $x in R is safe if no free occurrence of $y in R is in the scope of a for $x
operator, where an occurrence of $y is said to be free if it is not in the scope of a for $y operator. If a
substitution is not safe, one can always make it safe by renaming the bound variables in the expression.

@ Springer

584 Theory Comput Syst (2009) 44: 561-589

Now for the main proof. Assume ($i/R/T union (T except (T/R/T)) C*S.
We will show that both R/T C* § and T except (R/T) C* S, and therefore, by
Boolean reasoning, S =*T.

First, note that, by Boolean reasoning,

(1) $i/R/T C* S and
(2) (T except (T/R/T))C*S.

From (1), we obtain that $i /R/T C*$i/$i/R/T g?Monotonicity) $i/S, and there-
fore, by the Name rule, (R/T) C* S.

From (2), we obtain that (T except (R/T)) C* S, by the following derivation:

(T except (R/T))

E?RAQ) /(T except (R/T))
g>(’<M0notom'city) T/(T except (R/T))
g?RA7,RA14) S O

Theorem 14 (Completeness) For all equivalent expressions R, S, R =" S.

Proof The completeness proof proceeds as before, with two important differences: (i)
the language now contains variables and for-clauses. However, most of this proof, we
will treat these simply as atomic expressions (thus we treat expressions of the form
for $i in R return S as atomic, ignoring their internal structure). (ii) We
prove a variant of Lemma 7.

Claim 3 If R #£* S, then there is a set ¥ of equivalences, such that ¥t/ R = S,
and such that for every path expression T there is a variable $i such that T/T /T =
$i/T/T e X.

Proof of Claim Let T be short for T/((R except S)U (S except R))/T. Let
R1, Ry, ... be an enumeration of all (countably many) expressions of the language.

For each Ry (k € N) pick a variable $i distinct from $i1, ..., $ix_; and not occurring
in Ry, ..., Rg. (This can always be done with a countably infinite supply of variables.)
For £ > 0, let

e ={T =T} U{($ix/Rr/T) union
(T except T/Ri/T)|k<4£).

We claim that each X, is consistent (i.e., is such that no intersection of finitely
many expressions in the set implies _L). The proof is by induction on £. For £ =0,
3¢ = {S}, which is consistent by assumption. Next, suppose, for the sake of contra-
diction, that X, is consistent but X, is not. Then it follows by Boolean reasoning
that (($ig4+1/Re+1/T) union (T except T/Ry1+1/T)) =* (T except N Iy).
By Lemma 13, this implies that N3, =* L, a contradiction.

It follows that ¥ = Ue 3¢ is also consistent, and by construction it satisfies all
requirements. g

Next, we proceed as before: we construct a model M satisfying all instances of the
axioms and satisfying all equivalences in X but not satisfying the equivalence R = S.

@ Springer

Theory Comput Syst (2009) 44: 561-589 585

Recall that we treat variables and for-clauses as atomic expressions, interpreted by
the model. Now, the axioms Varl and Var2 ensure that each variable denotes a con-
stant function. As we will see next, the axioms Forl and For2 also force for-clauses
to have the correct denotation conform Fig. 2. A special feature of Venema’s [24]
model construction is that every element d of the domain of the constructed model M
is uniquely identified by some expression T, in the sense that [71M = {d,d)}. It
follows by the construction of the set X that d is also uniquely identified by a vari-
able $i, in the sense that rng([$i]) = {d}. It follows by the axioms Forl and For2 that
for-clauses are correctly interpreted in M.

Finally, we use again Theorem 4 to conclude that every first-order formula, and
therefore also every Core XPath 2.0 expression, satisfied in M is satisfied in some
finite tree. In particular, this holds for (R except §)union (S except R). U

4.3 Further Remarks on the Axiomatization

Minimality Our axiomatization was not intended to be a minimal list of axioms.
Rather than being concise, our aim was to formulate the axioms as naturally as pos-
sible. It is quite likely that some of the axioms can be derived from others.

Stronger Forms of Completeness Properly speaking, many of our axioms should
be called axiom schemes. For instance, BAI says that R union (S union T) is
equivalent to (R union S)union T for all path expressions R, S and T. This
leads to an interesting question: suppose we enrich the language by allowing “path
variables” R, S, ... as atomic variables, and let R and S be two path expressions
containing such path variables, such that R is equivalent to S under all substitutions
of path expressions for the path variables. Then can we derive R = S as a scheme in
our axiomatization? The answer is negative. In fact, no recursive axiomatization of
Core XPath 2.0 can be complete in this strong sense, for the following reason.

Theorem 15 Equivalence of Core XPath 2.0 path expressions containing a single
path variable is undecidable.

Proof (Sketch) It follows from results in [7, 20] that the equivalence problem for ex-
pressions of Tarski’s relation algebra in a single binary relation, over finite models is
undecidable. In terms of XPath, this means that equivalence of Core XPath 2.0 path
expressions containing a variable standing for an arbitrary binary relation is unde-
cidable. Since, within any given XML document, all binary relations are definable
in Core XPath 2.0, this problem coincides with the equivalence problem for Core
XPath 2.0 path expressions containing a variable standing for a Core XPath 2.0 path
expression. t

Sequence Semantics Versus Set Semantics The soundness of some of our axioms
(in particular, RA2 and Pred2—Pred4) depends on the set-theoretic semantics we pro-
vided for Core XPath 2.0. If, as in the official XPath 2.0 semantics, expressions are
taken to manipulate sequences rather than sets of nodes, these axioms no longer hold.
However, our results are still meaningful in this setting.

@ Springer

586 Theory Comput Syst (2009) 44: 561-589

First, observe that, if = is interpreted as equivalence up to sorting and duplicate
removal, henceforth =4, then all axioms remain sound. Secondly, all equivalences
derivable from the axioms remain sound as well, because =;,4 is an equivalence rela-
tion, and it admits replacement of equals by equals (e.g., if R =g4, R and S =4, S’
then for $i in R return S =g, for $i in R’ return §’). Thus all
derivable equivalences hold if equivalence is interpreted as equivalence up to sorting
and duplicate removal. In fact, it is not hard to see that both axiomatizations (the one
from Sect. 4.1 and the one from Sect. 4.2) are complete under this interpretation. In
particular, for any path expression R, R =* L iff R is unsatisfiable according to the
sequence semantics.

5 Conclusions

We have defined the navigational core of XPath 2.0, analogously to Core XPath, and
we gave an intuitive and rather simple axiomatization of the equivalence of relative
path expressions by combining three sets of algebraic axioms: Tarski’s axiom sys-
tem RA of relation algebras, a first order axiomatization of the theory of finite ordered
trees, and an axiomatization of the variable binder.

We have provided axiomatizations for the complete Core XPath 2.0 language and
its equally expressive fragment without the for-loop and variables. By the linear em-
bedding of first order logic, Core XPath 2.0 inherits its non-elementary space lower
bound for query equivalence. This holds even for the variable-free fragment [23].
Still, we hope that our axiomatizations will be useful for query optimization. The
connection with Tarski’s relation algebras might be fruitfully exploited by using re-
sults from the relation algebra theorem proving community [5].

Of particular practical importance seems to be the elimination of the for-loop
and the use of variables. Empirical tests have shown us that rewritings into the for-
free fragment can lead to speedups of up to 3 orders of magnitude with commercial
XQuery processors. We obtained these results with the following two queries:

(1) descendant : * [P]except(descendant :: #[not Q]/descendant :: x)
(2) for$startin.returndescendant :: x [P and (#)],
with (#) the test expression
every$iinancestor::*[ancestor:*[.is$start]]satisfies

$i[Q]

where P and Q are filter expressions of the form @attribute='value’. Both
express the relation (child:: *[Q])*/child:: * [P], with (-)* the transitive clo-
sure operation. By completeness, our axiom system can derive their equivalence. An
important issue is whether such query rewritings can be performed efficiently.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

@ Springer

Theory Comput Syst (2009) 44: 561-589 587

Appendix: The First-Order Theory of Finite Trees
In this appendix, we prove Theorem 4 from Sect. 3, which we repeat here.

Theorem 4 The FO theory of finite node-labeled sibling ordered trees is completely
axiomatized by the axioms and axiom scheme in Fig. 5.

One cannot hope to define the class of finite trees with first-order formulas. A sim-
ple compactness argument shows for instance that all first-order formulas valid on
finite trees have infinite, and in fact non-wellfounded, models. Instead, the FO theory
we will present defines a slightly larger class of structures, which we will call defin-
ably wellfounded quasi-trees. This will suffice, as we will show that a FO formula is
valid on such structures iff it is valid on “real” finite trees.

We will consider structures of the form T = (N, <, <, V), where N is intended
to be the domain of a tree, < and < the (transitive) descendant and following-sibling
relations, and V a function assigning subsets of N to the node labels. Recall that
x < y is intended to mean that y is a descendant of x.

Definition 16 A quasi-tree is any structure (7, <, <, V) of the form described above,
satisfying the axioms QT1-QT11 of Fig. 5. A quasi-tree is definably wellfounded
if, in addition, it satisfies all instances of the induction scheme QT-Ind of Fig. 5
(where ¢ (x) ranges over FO formulas in one free variable).

It is not hard to see that every finite quasi-tree is indeed a finite tree. In the proof
of the following result, we use a technique developed by Kees Doets in his PhD
thesis [9]. Call two structures n-equivalent, for n € N, if they cannot be distinguished
by a FO formula of quantifier depth n.

Lemma 17 For all n € N, every definably wellfounded quasi-tree of finite signature
is n-equivalent to a finite tree. In particular, a FO formula is valid on definably well-
founded quasi-trees iff it is valid on finite trees.

Proof During this proof, it will be convenient to work with quasi-forests, i.e., ordered
sequences of quasi-trees (for instance, such as obtained by removing the root from
a quasi-tree). For any node a of a quasi-tree T, let T, be the quasi-forest consisting
of all the subtrees of T whose root is either a or a sibling to the right (an immediate
following-sibling) of a. Now, let X,, be the set of all nodes a of T for which it holds
that 7, is n-equivalent to a finite quasi-forest.

Claim 4 X, is invariant for n + 1-equivalence (i.e., (T,a) =,+1 (T, b) implies that
a € X, iff b € Xy,), and hence is defined by a first-order formula of quantifier depth
n+1.

Proof of Claim Suppose that (T, a) =,4+1 (T, b). We will show that T, =, T, and
hence, by the definition of X, a € X,, iff b € X,,. Let ¢ be any formula of quantifier
depth n, and let ¢'(x) be the ‘relativization’ of ¢ obtained by replacing each exis-
tential quantifier 3y by 3y (3z(R* xz A Rjzy) A ---) and replacing each universal

@ Springer

588 Theory Comput Syst (2009) 44: 561-589

quantifier Vy by Vy(Jz(R*, xz A Rl‘z y) — ---). Notice that ¢’ (x) expresses precisely
that ¢ holds within the subforest 7. Moreover, the quantifier depth of ¢ is at most
n+ 1. It follows that (T, a) = ¢’ (x) iff (T, b) = ¢’(x), and hence T, = ¢ iff T}, = ¢.

For the second part of the claim, note that there are only finitely many first-order
formulas of any given quantifier depth, as the vocabulary is finite. g

Claim 5 If all nodes following a in document order are in X,,, then a itself belongs
to X,.

Proof of Claim Let us consider the case where a has a descendant and a following
sibling (all other cases are simpler). Then, by axioms QT3, QT5, QTS8, QT9 and
QT10, a has a first child b, and an immediate following sibling c¢. Moreover, we
know that both b and c are in X,,. In other words, T} and T, are n-equivalent to finite
quasi-forests 7, and 7. Now, we construct a finite quasi-forest 7, by taking the
disjoint union of 7, and T and adding one more point, which is a common parent
of all roots of 7, and a left sibling of all roots of 7. It is not hard to see that 7, is
again a finite quasi-forest. Moreover, T, =, T, as can easily be shown by means of
Ehrenfeucht-Fraissé games (the winning strategies of Duplicator for the n-round EF
games between T}, and 7, and between T, and T, naturally combine into a winning
strategy for the game between 7, and 7). g

It follows from these two claims, by the induction scheme for definable properties,
that X, contains all nodes of the tree, including the root, and hence T is n-equivalent
to a finite quasi-tree. As we already noted earlier, every finite quasi-tree is in fact a
finite tree. For the second statement of the lemma, it suffices to note that every FO
formula has a finite vocabulary and a finite quantifier depth. g

Theorem 4 follows directly from this lemma.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)

2. Backofen, R., Rogers, J., Vijay-Shanker, K.: A first-order axiomatization of the theory of finite trees.
J. Logic Lang. Inf. 4(1), 5-39 (1995)

3. Benedikt, M., Fan, W., Geerts, F.: XPath satisfiability in the presence of DTDs. J. Assoc. Comput.
Mach. 55(2), (2008)

4. Benedikt, M., Fan, W., Kuper, G.: Structural properties of XPath fragments. Theor. Comput. Sci.
336(1), 3-31 (2005)

5. Berghammer, R., Schmidt, G., Winter, M.: RelView and Rath—two systems for dealing with relations.
In: Theory and Applications of Relational Structures as Knowledge Instruments. LNCS, vol. 2929,
pp. 1-16. Springer, Berlin (2003)

6. Bojanczyk, M., Muscholl, A., Schwentick, Th., Segoufin, L., David, C.: Two-variable logic on words
with data. In: Proceedings LICS’06, pp. 7-16 (2006)

7. Borger, E., Gridel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Berlin (1997)

8. Dawar, A.: How many first-order variables are needed on finite ordered structures? In: Artemov, S., et
al. (eds.) We will Show Them: Essays in Honour of Dov Gabbay, pp. 489-520. College Publications,
‘Woodend Vic. (2005)

9. Doets, H.C.: Completeness and definability: applications of the ehrenfeucht game in intensional and
second-order logic. Ph.D. Thesis, Department of Mathematics and Computer Science, University of
Amsterdam (1987)

@ Springer

Theory Comput Syst (2009) 44: 561-589 589

10.

11.

12.

13.
14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.
217.

28.

Geerts, F., Fan, W.: Satisfiability of XPath queries with sibling axes. In: Proceedings DBPL’05,
pp. 122-137 (2005)

Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath queries. In: VLDB’02,
pp- 95-106 (2002)

Gyssens, M., Paredaens, J., Van Gucht, D., Fletcher, G.: Structural characterizations of the semantics
of XPath as navigation tool on a document. In: Proceedings PODS’06, pp. 318-327 (2006)

Henkin, L., Monk, J.D., Tarski, A.: Cylindric Algebras, Part II. North-Holland, Amsterdam (1985)
Hidders, J.: Satisfiability of XPath expressions. In: Proceedings DBPL. LNCS, vol. 2921, pp. 21-36.
Springer, Berlin (2003)

Hirsch, R., Hodkinson, I.: Relation algebras by games. In: Studies in Logic and the Foundations of
Mathematics, vol. 147. North-Holland, Amsterdam (2002)

Kay, M.: XPath 2.0 Programmer’s Reference. Wrox (2004)

Lyndon, R.C.: The representation of relation algebras. Ann. Math. 51, 707-729 (1950)

Lyndon, R.C.: The representation of relation algebras, Part II. Ann. Math. 63, 294-307 (1956)

Marx, M.: Conditional XPath. ACM Trans. Database Syst. (TODS) 30(4), 929-959 (2005)

Tarski, A.: On the calculus of relations. J. Symb. Log. 6, 73-89 (1941)

Tarski, A., Givant, S.: A Formalization of Set Theory without Variables. AMS Colloquium Publica-
tions, vol. 41. Rhode Island, Providence (1987)

ten Cate, B., Litak, T., Marx, M.: Complete axiomatizations for XPath fragments. In: Proceedings
LID (Logic in Databases) Rome, Italy, 19-20 May 2008

ten Cate, B., Lutz, C.: The complexity of query containment in expressive fragments of XPath 2.0. In:
Proceedings PODS’07 (2007)

Venema, Y.: Many-dimensional modal logic. Ph.D. Thesis, Institute for Logic, Language and Com-
putation, University of Amsterdam (1992)

Venema, Y.: Completeness by completeness: since and until. In: de Rijke, M. (ed.) Diamonds and
Defaults, pp. 349-358. Kluwer Academic, Dordrecht (1993)

Venema, Y.: Derivation rules as anti-axioms in modal logic. J. Symb. Log. 58(3), 1003-1034 (1993)
Venema, Y.: Completeness through flatness. In: Gabbay, D., Ohlbach, H.J. (eds.) Temporal Logic,
First International Conference ICTL’94, pp. 149-164 (1994)

Venema, Y.: Cylindrical modal logic. J. Symb. Log. 60(2), 591-623 (1995)

@ Springer

	Axiomatizing the Logical Core of XPath 2.0
	Abstract
	Introduction
	Related Work
	Organization of the Paper

	A Decidable Logical Core of XPath 2.0
	Design Choices
	Syntax and Semantics of Core XPath 2.0
	Syntactic Sugar
	Undecidable Extensions
	Positional Information
	Comparison Operators

	Relations with other Languages
	First Order Logic
	Relation Algebra

	A Complete Equational Calculus
	The Variable Free Fragment
	Adding Variables
	Further Remarks on the Axiomatization
	Minimality
	Stronger Forms of Completeness
	Sequence Semantics Versus Set Semantics

	Conclusions
	Open Access
	Appendix: The First-Order Theory of Finite Trees
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

