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Abstract. We consider the important problem of energy balanced data
propagation in wireless sensor networks and we extend and generalize
previous works by allowing adaptive energy assignment. We consider the
data gathering problem where data are generated by the sensors and
must be routed toward a unique sink. Sensors route data by either send-
ing the data directly to the sink or in a multi-hop fashion by delivering
the data to a neighbouring sensor. Direct and neighbouring transmis-
sions require different levels of energy consumption. Basically, the pro-
tocols balance the energy consumption among the sensors by computing
the adequate ratios of direct and neighbouring transmissions. An ab-
stract model of energy dissipation as a random walk is proposed, along
with rigorous performance analysis techniques. Two efficient distributed
algorithms are presented and analysed, by both rigorous means and sim-
ulation. The first one is easy to implement and fast to execute. The
protocol assumes that sensors know a-priori the rate of data they gen-
erate. The sink collects and processes all these information in order to
compute the relevant value of the protocol parameter. This value is trans-
mitted to the sensors which individually compute their optimal ratios of
direct and neighbouring transmissions. The second protocol avoids the
necessary a-priori knowledge of the data rate generated by sensors by in-
ferring the relevant information from the observation of the data paths.
Furthermore, this algorithm is based on stochastic estimation methods
and is adaptive to environmental changes.

1 Introduction

Load balancing is a common important problem in many areas of distributed
systems. A typical example is that of shared resources such as a set of processors,
where it is of interest to assign tasks to resources without overusing any of them.
A related but different aspect of load balancing appears in the context of sensor
networks, where tiny smart sensors are usually battery powered: an important
goal of data processing is to balance the total energy consumed among the
entire set of sensors. However, limited local knowledge of the network, frequent
changes in the topology of the network and the specifications of sensors, among



others, make load balancing in sensors nets significantly different of classical load
balancing in distributed systems.

To our knowledge, these considerations were first pointed out in the field of
sensor networks in [18]. In this paper the authors deal with the problem of de-
vising energy balanced sorting algorithms. In a subsequent paper [4] the authors
deal with the problem of energy balanced data propagation in sensor networks.
They propose a randomised data propagation protocol and provide recursive and
closed form solutions for the appropriate parameters of the protocol.

Before describing our contributions we present the problem previously stated
in [4]. Formal definitions are deferred to the next section. An important area of
application of sensor networks is the monitoring of a given region. Tiny smart
sensors are scattered in a given region in order to detect and monitor some
phenomena. Once a sensor detects the occurrence of an event it is responsible
to inform (through wireless transmissions) a particular station (representing the
end users of the network), called sink, about the occurrence of this event. Since
the energy necessary to transmit a data through radio waves is proportional
to some power of the distance of transmission (usually square power), sensors
located far away from the sink are prone (if they would transmit directly to the
sink) to run out of their available energy before sensors located closer to the sink.
This leads to the idea that the data traffic has to be handled by the network
with multiple hops to the sink, allowing only short distance communication.
However, this strategy tends to overuse sensors located close to the sink since
these sensors have to handle the entire set of events. There is then a trade-off
between long and short distance communication to forward a data to the sink in
order to make the life time of the whole network longer. A possible probabilistic
protocol divides the set of sensors into slices or ring sectors [4]. The first slice is
composed of sensors at unit distance from the sink, the second slice of sensors at
distance 2, and so on. Here the distance is the maximal number of hops necessary
to send a data to the sink. Sensors may communicate directly to the sink with
probability (1 — p;). In this case the consumed energy is proportional to i with
1 is the slice number the sensor belongs to. In order to save energy, a sensor
can probabilistically decide with probability p; to transmit its data to a sensor
belonging to the next slice to the sink (slice ¢ — slice ¢ — 1). In this case the
amount of consumed energy is proportional to a constant which is assumed to
be 1 for convenience. This is illustrated in Figure 1 where the two first slices are
represented and in Figure 3 for the slice number i. The problem is to determine
with which probability p; a sensor located in slice ¢ has to transmit to the next
slice (or to directly transmit to the sink with probability 1 — p;) in order to
balance the consumed energy among all the sensors.

2 Related works

In the literature, probabilistic data propagation protocols are proposed, in [3]
(LTP, a local optimisation protocol) and [2] (PFR, a limited flooding protocol).



Fig. 1. The sink (S) with the first two slices of sensors

Both protocols are energy efficient and fault-tolerant, but tend to strain close to
the sink sensors.

[9] inspired our work here since it proposes some stochastic models (Markov
chains, dynamic systems) for dynamic sensor networks. Indeed, our approach to
the energy-balance data propagtion problem is to model the dynamics of energy
consumption of sensors as a random Walk. This formulation provides us the
tool to compute the optimal parameters of the protocol and support for the
online statistical analysis of the data traffic. The later is useful if the protocol
implementer does not know in advance the rate of data generated by the sensors
which is inferred from the traffic observations.

There are in the litterature papers investigating energy-balance mechanisms
and using a similar slice model of the network as we use in this paper. In [6,
10] the authors define for sensors belonging to a same slice two period of time:
during the first period the sensors send the data directly to the sink while during
the second period sensors forward the data to sensors belonging to the next
slice. The ratios between the two periods of time are computed in order to
balance the energy consumption between sensors. The computations are based
on the simulation of the process. The work presented in this paper is actually
an extension of [4]. The framework introduced in [4] assumes that sensors are
randomly and uniformly distributed in a circular or a sector of a circular region,
see Figure 2. Sensors generate data that are collected by the sink located in
the center of the circular region. All the sensors generate the same amount of
data. The circular region is divided in rings of equal width R. The width of the
rings equals the minimum transmission distance of sensors in such a way that
sensors belonging to a particular ring can transmit data to sensors belonging to
the next ring closer to the sink. In order to balance the energy consumption,
sensors can transmit data directly to the sink. Such long range transmissions are
energy costly for the transmitter but unburden sensors located closer to the sink.



Balancing the energy consumption amounts to computing the appropriate ratio
of long and short transmission. We first extend the work in [4] by considering
that the amount of data generated in the rings are parameters of the model.
Then, we show that these parameters need not be known in advance and can be
inferred from data traffic statistics. We also mention [20] which is very close in
spirit to [10,4]. In [20], the problem is reformulated as an transmission allocation
problem and the authors compute the optimal number of rings to maximize the
network lifetime. [8] establishes a link between the energy-balance mechanism we
investigate in this paper and the flow of data in network. The routing protocol
we consider in this paper routes data through neighboring links between sensors
located to adjacent rings and direct links from the sensors to the sink, see Figure
3. Actually, it is proved in [8] that among energy-balance routing strategy the
one we consider maximizes the flow of data in the network. Considering more
links in the network may only reduce the data flow in the network. This result
supports the investigation contained in this paper since it shows that the energy-
balance mechanism optimizes the flow of data in the network. A similar result
is proved independently in [5] using linear programming tools.

Sink

Fig. 2. Rings model of the sensor network with a sink and ring width R

Intuitively, balancing the energy consumption between sensors make the life-
time of the network longer. This is formally stated in [16]. Moreover, the paper
adresses the existence of optimal solution when balancing the energy is not re-
alistic and the variability of the energy consumption of sensors belonging to the
same slice. [15] adresses the problem of maximizing the network lifetime from
the point of view of network design. The conclusion of the paper support the
relevance of the approach devlopped in this paper. For instance, it is formally
proved that to reduce the energy consumption of conveying data from a sensor
to the sink, the transmission power must be the same for all sensors. Notice that
the strategy investigated in [15] to balance the energy consumption among rings
is to design networks with rings of varying width. An algorithm to compute the
optimal ring widths is provided.



Different techniques are investigated to increase the lifetime of the network.
Clustering techniques are investigated in [7,14]. Basically, the cluster head is
responsible for the establishing the communications, the energy consumption is
balanced by changing the cluster head with time. The mobility of the sink is
also an alternative [11,13,12,19].

sink

Fig. 3. The communication flow of slice %

3 Our contributions

In this section, we generalise the energy balanced data propagation problem
by allowing unrestricted realistic energy assignment and we propose two new
probabilistic protocols, one of which is adaptive. Our analysis is based on the
modelisation of the process of energy consumption as a random walk in R™.
The first algorithm we propose is relatively similar to the one suggested in [4]
and corresponds to offline computation of the probabilities p; of transmission
to the next slice. Although very easy to implement and fast in execution it
suffers from an important weakness; namely the probability of occurrence of
the events per slice, i.e. the probability \; have to be known. This particularity
allows very efficient computations of the probabilities p;. However, this property
is not realistic or at least we gain in flexibility and adaptability to devise an
algorithm able to solve the problem without any assumption concerning these
probabilities. The analysis of the problem is new and leads to a formal definition
of the problem of energy balanced data propagation.

The second algorithm is adaptive and based on stochastic approximation
methods. The algorithm does not assume that the probabilities of occurrence of
the events are known and infers their values from the observation of the events.
We refer to such an algorithm as blind algorithm for energy balanced data prop-
agation to stress the fact that there is no a priori knowledge on the statistics
concerning the localisation of the events. The algorithm can be accordingly im-
plemented on any given network and run on the fly, allowing online adaptation of
the parameters of the network. This characteristic is important if the parameters
of the network are prone to change (this appears frequently in sensor networks).
This algorithm is an important contribution of this section. Generally, adaptive
algorithms, like the one proposed here, are most appropriate for wireless sen-
sor networks because of their evolving nature due to dynamic properties of the



networks such as sensors failures, obstacles, etc., leading to topology changes.
We also formally define in a broader sense the problem of energy balanced data
propagation and show formally under which conditions the problem is well for-
mulated.

The protocol suggested in [4] requires that the probabilities p; are computed
offline, the implementation of the computations is fast and straightforward. How-
ever, the analysis of the performance of the blind protocol describes in section 6
is rather involved. The most important factor is certainly the convergence time
which is the period needed for the sensors to compute the exact value of the
probabilities p;. Unfortunately, the stochastic estimation method used for infer-
ring the statistics of data traffic are relatively slow to convergence. The rate of
convergence is O(1/+/t) where t is the discrete time and corresponds to the num-
ber of data messages routed to the sink. However, such methods are known to
provide more quickly relevant values. This means that even if the values inferred
from the data trafic are not exact, their values are quickly sufficiently close to
the exact values to be meaningful. This point is dicussed in the section devoted
to the numerical validation of the protocol, see section 7.

We emphasise that the protocol does not need any overhead time before
running. Data are routed toward the sink as the protocol parameters are refined.
The protocol does not necessitate any transmission from the sensors. The base
station sends periodically information to the sensors which is used to refined
the parameters of the protocol. The only energy overhead is due to the energy
required to receive this information.

4 Framework and Formal Definition of the Problem

In this section we state formally the framework and notations and state the
problem of energy balanced data propagation in wireless sensor networks. Notice
that as a result of the analysis of the problem, that is presented in the next
section, we show that the problem as stated in this section is well formulated.

The number of slices is denoted by m. The main assumption we need in
this section is that the energy consumed per sensor to handle the data to the
sink is the same among sensors belonging to a particular slice. This means that
sensors belonging to the same slice exhaust their available energy more or less
simultaneously. Both following assumptions give sufficient conditions validating
this assumption. Notice that these assumptions are based on a probabilistic
selection of a sensor belonging to a slice for data transmission. Different protocols
can then be proposed.

We assume that the probability that an event is detected by a given sensor
depends uniquely on the slice the sensor belongs to. This means that we can
define and estimate A1, X2,..., An, (D°; A; = 1) where ); is the probability that
an event occurs in slice number i. For example, this property is satisfied if the
events are uniformly randomly distributed on the monitored region. Indeed, in
this particular situation, the probabilities A; are proportional to the area covered
by the i-th slice. Moreover, when a data is transmitted from slice i to slice i — 1



the selected sensor belonging to the slice ¢ — 1 is uniformly selected among the
whole set.

The probability p;, ¢ = 1,...,n denotes the probability that a sensor belong-
ing to the slice 7 sends a data to a sensor belonging to the “next” slice ¢ — 1. The
complementary probability 1 — p; denotes the probability that the sensor sends
the data directly to the sink. Then, when a data is handled by a sensor belonging
to the i-th slice the amount of consumed energy is a constant (assumed to be 1
for convenience) with probability p; and i? with probability 1 — p;. By definition
we have p; = 1 because sensors belonging to the first slice can do nothing else
than transmitting to the sink.

The number of sensors belonging to the i-th slice is denoted by S;. It might
be the case that there is a strong relationship between S;, A; but this is not
essential.

The total energy available at the i-th slice is denoted by E;, thus e; = E;/S;
is the available energy per sensor. The energy can be seen as a given amount of
energy available at the start or as a rate of consumable energy.

An important aspect of our analysis is to model the energy consumption for
handling a given event as a random walk in R™. We group the available scaled
energy of each slice as a vector

En/Sn
Enfl/Snfl (1)

E. /S

To start, consider an event generated in the n—th slice and consider the complete
process of handling the data generated by the event to the sink. We have different
possibilities for the scaled energy consumed in the different slices corresponding
to the different paths of the data. The data is directly transmitted to the sink
with probability (1 —p,,). The corresponding consumed energy vector per sensor
is

n%/S,
0

0
The data can alternatively be transmitted to the next (n — 1)—th slice from

which it is directly transmitted to the sink with probability p,(1 — pp,—1) . The
corresponding consumed energy vector in this situation is

1/8.,
(n—1)/Sn-1
0



Repeating this enumerative process, we describe all possible events with their
probability and the corresponding vector of energy consumed.

Formally, we denote the U = {Uy, Us,...} the set of vectors describing the
relative energy consumption for handling an event, or equivalently to convey the
data toward the sink. By relative energy consumption, we mean that the vectors
U; denote the energy consumption due to the transmission of the data in the
different slices divided by the total number of sensors in the slices. Denoting by (2
the set of possible events we obtain a random variable 2 — U which describes
the energy consumed for handling an event. If we associate to each event its
probability we have our probability space (£2,P(£2), P).

For exemple, if we assume that we have three slices, n = 3, the set of events
is 2 = {1,2,3}3. The occurence of event i indicates that data are generated in
the slice number i. The probability of such an event is P(w = i) = A;. Let us
assume that a realisation of the random variable 2 is the occurence of an event
in slice number 3, this occurs with probability A3. The different paths that the
data are allowed to follow toward the sink are:

— The sensor in slice 3 transmits the data directly to the sink, this occurs with
probability (1 — p3) and leads to a vector of energy consumption

9
0
0

— The sensor in slice 3 transmits the data to a sensor belonging to the slice
number 2 that transmits the data directly to the sink. This event occurs
with probability ps(1 — p2) and leads to a vector of energy consumption

1
4
0

— The data are transmitted from the sensor in slice 3 to a sensor belonging
to the slice number 2 and finally to a sensor belonging to the slice number
1. This event occurs with probability pspspi, we remember that p; = 1 by
convention. This event leads to a vector of energy consumption

1
1
1

Since we are interested with the total energy available in the different slices,
we divide the entries of the vectors of energy consumption displayed in the
previous exemple with the corresponding total number of sensors belonging to

3 Formally we should say that the event is an application £2 — {1, 2,3}, we simplify
the exposition at this stage since no confusion is possible. We proceed accordingly
with the random variables {2 — U that we denote simply U.



the slices. The vectors describing the relative energy consumption of the different
paths considered above are then

9/5s 1/Ss 1/Ss
o |, 4/, [1/8:],
0 0 1/5

and are possible realisations of the random variables U;.

The process of energy consumption is described as a random walk in R"™ with
the energy consumed for handling m events in the form X7+ Xo+ X3+...+ Xy,
where X; are independent random realisations of the random variable U;. The
law of large numbers implies that X7 + X2+ ...+ X,,, — mE(X) thus, to ensure
energy balanced data propagation we must have

Enfl/Snfl
E(X) =\ ,

El/Sl

Indeed, equation (4) means that the mean energy consumption of sensors
are proportionnal to the available energy, i.e. ¢; = % is the energy available to
sensors belonging to the ith slice. This condition ensures that sensors (in the

mean) run out simultaneously of energy.

Intuitively, if the expected consumed energy does not satisfy (2) then there is
a slice in which sensors will run out the available energy, described by (1), before
the sensors belonging to others slices. The network stops working prematurely.
Moreover, if (1) describes the rate of consumable energy requirement (2) amounts
to preserving the ratio of consumed energy per slice. An energy assignment vector
is a vector of the form (1) meaning that the ratio of energy consumed in slice i
with respect to slice j should be E;/E;.

We later prove that that the set of admissible energy assignment vectors is
{veR":v; >0,] v |= constant} and to each such vector there is a unique
assignment of the probabilities p;. Besides this existential result, we propose two
new protocols for calculating the optimal probabilities in an efficient manner.
The first protocol assumes a certain amount of local knowledge, while the second
one implicitly estimates the statistics of the events and is able to appropriately
adapt to changes in the network parameters.

For the sake of clarity we complete the small case example discussed above.
The number of slices n = 3 and the probabilities of occurrences of the events in
the different slices are Ay = 1/9, Ay = 1/3, A3 = 5/9 with respectively S; = 1,
S9 =3, S5 = 5. The optimal probabilities (as calculated in [4]) are ps = 0.5815



and ps = 0.5735. With these values, the expectation is

0 0 0
A0 +Xa(1—pa2) [ 4/3 ) +Xap2 [ 1/3 ) +
1 0 1
9/5 1/5 1/5 0.4902
A3(L=p3) | O | +Aspa(1—p2) [4/3 ] + Aspap2 | 1/3 | = | 0.4902
0 0 1 0.4902

This corresponds to our formulation of the problem with A = 0.4902 and where
all sensors consume the same amount of energy.

5 An aware strategy for balanced energy dissipation

To ensure energy balance we have to determine for each slice ¢ the probability
of transmitting a given data to the next slice p;, the data being transmitted
directly to the sink with probability (1—p;). This section deals with this problem
assuming an a-priori knowledge of the probabilities A; of the distribution of
occurrences of the events among different slices. The first slice, located just
before the sink, has only to transmit the data to the sink directly (p; = 1).
Hence, if n is the total number of slices we have n — 1 unknown probabilities
P2,...,pn- The other free parameter to be determined is the factor A appearing
in (4).

Consider a node in the i-th slice which has to transmit a data. The data has
to be transmitted because of an event occurring in the i-th slice with probability
Ai. The data can also be transmitted because it was previously generated by the
preceding (i + 1)—th slice. This occurs with probability A;y1 - pit+1. The event
can also be transmitted due to an event generated in the (i + 2)—th slice, this
occurs with probability Ait2 - pit2 - pi+1 and so on up to the n—th slice. Then,
a data is transmitted from the i-th slice with probability

Ai + Ait1Dit1 + NitoDitopiv1 + oo+ ApPrPr—1 .. Dit1. (3)
The mean dissipated energy per sensor on the i-th slice is of the form

7;2

1
pi§i+(1—pi)§i- (4)

Then the mean energy dissipated in the i-th slice is of the form

i2

Si) = /\ei, (5)

! +(1—pi)

(Ni + Aig1Pit1 + - - + AnPnPn—1 - Dit1) (p7§

where the equality is imposed to ensure energy balanced data propagation through
the network. With p,11 = A1 = 0 we define the x; value as

Ti = XN+ Aip1Pit1 + oo AaPpDn—1 - Pit1, (6)



which satisfies the recurrence relation

Ty = Pit1Tit1 —|-/\7;, 1=n,...,1, (7)
with the convention p,4+1 = 0. Solving (5) for p;, i =n,...,2 we get
P — Siei) 2 Siei
py = LHi T oAt ¢ i=n,...,2 (8)

(2 —1)z;  2—1 (2=1)z;
Since p; = 1 we solve (5) with ¢ = 1 for A and get

- 5161 . (9)

This last equation is actually a constraint on A. To investigate properties of this
constraint, we define a function (A, By, ..., E,) — X = f(\) by substituting A
by A in (9). A fixed point of this function, i.e. A = f()), determines through
(6) and (8) a solution of our problem. The recursive scheme described in Figure
4 calculates the value of the fixed point of this function. This algorithm is exe-
cuted by the sink based on the knowledge of the energy assignment vector, the
probabilities of occurrence of the events on the different slices and the number
of sensors per slices. This information may come directly from the sensors (both
at set-up or during protocol evolution) which know the slice they belong to.

Actually, there is a more efficient way of solving this problem, based on the
result of Proposition 1, as illustrated in Figure 5.

Proposition 1. The function f(\) defined through equations (6), (8) and (9) is
linear. Then, we can write

FON) =a+ b, (10)

with a and b real constants defined by

Siera =M1 + A2Cs + A3C3C5 + ... + X\, CL,Chrq ... Cs, (11)
51611) = — D2 — DgCQ — D40302 — ... DnCn_l . CQ, (12)
with )
7 Siei
i = 5, Di=—5—. 1
Ci 2 -1 2 -1 (13)

Proof. Let us fix a value of \. Computing f(A) amounts to recursively computing
the parameters z; for i = n,n —1,...,1 and then computing f(\) with (9). We
prove by induction that the x; values are all linear in \. For i = n, we get

Tn = An,

So, the assertion is true for ¢ = n Let us now assume it is true for i = n,n —
1,...,k+ 1. Using (7) and (8) we get

Ty = Pry1Zrs1 + A = Crp1Th41 — Dip1 A+ Ap,



which is linear in A establishing the first part of the assertion. Since the z; are
linear functions in A we introduce the notation

T, =a; +b;\, i=mn,...,1. (14)
The coefficients a; and b; are recursively determined by

a; =N + a;11Ci41, (15)
bi = bi11Ci41 — Diqa, (16)

with inital conditions a,, = A\,, and b,, = 0 (i.e. ,, = \,,). These equations prove
(11) (12). To get (15) and (16), we write again (8) as

D;
—A

(2

p; =C; —

which can be inserted into formula (7) to obtain
i = Ai +Zix1Ci41 — Dy A

Inserting (14) into this last equation leads to the recursive expression for a; and
b;.

Initialise p2,...,pn and A
Initialise NbrLoop=1
while not convergence
z+—0
for counter = n to 2
Tr<— T+ Acounte'r
pcount&r — pcounter()\7pcounter+17 - ,pn) Wlth (8)
T < TPcounter
end for
T— T+ M
Compute Ainter with (9)
A — A+ (Minter — A)/nbrLoop
nbr Loop < NbrLoop + 1
end while

Fig. 4. Pseudo-code for iterative solution of (2)

In the preceding computations, the dependence of the function f(A) on the
total energy per slice (the E; parameters) was not stated clearly, neither was
the physical interpretation of this vector. The next results show that the entries
of this vector are not important by themselves. What is important is the ratio
E;/E; between the total mean energy available at the i-th slice with respect to
the j—th slice.



1. The Sink compute the fixed point of f(\) defined in Proposition 1
2. The Sink sends to every sensor the relevant A\ value
3. Each sensor computes its probability p;

Fig. 5. High-level description of the energy balanced data propagation protocol

Corollary 1. Consider two total energy assignment vectors which are linearly
dependent,

E, E!
En—l ;171

N 2
Ey E,

with v a real non-zero constant. Then, the fized points, X and X' of the functions

FOLE, ... E,) = A
FON EL ey =N

n

are related by
N = (17)

Proof. This follows from the result of Proposition 1. The value of the fixed point
are given respectively by

/

and X\ = a4

AT 1—v

Direct inspection of the expressions for the coefficients of both functions, using
S;e; = E; and Sle, = E! shows that ua = o’ and b = b’ which implies the result.

Proposition 2. Consider two total energy assignment vectors which are linearly
dependent,

Enfl ;z—l
. =N .
E; E!

Then, the corresponding probabilities p; and p} of transmitting directly to the
next slice are equal.

Proof. We know that the probabilities p; of transmitting directly to the next
slice depend only on the A and )\ values which are fixed points of the functions
FOLEy, ... Ey) = Xand f(N,EY,...,el,) = N. By hypothesis, we know that
pA = X'. However, in the equations determining the p’s values only the products
AE; and N E! are involved. Since these products are equal the result is proved.
For the sake of completeness, we mention that we can also prove by induction
that the values x; and z} values are the same.



The next result shows how the energy balanced data propagation problem can
be well formulated.

Proposition 3. Given an energy assignment vector belonging to the set {v €
R™ : v; > 0,]| v ||= constant} then there exist unique probabilities p;, i =
2,...,Pn to solve the energy balanced data propagation problem.

Proof. Probabilities p; are determined by the fixed point of the function defined
by proposition 1. This fixed point is unique because the function is linear. More-
over, with our hypothesis the parameters a and b, see (11) and (12), satisfy a > 0
and b < 0 implying the existence of a fixed point.

This result shows formally that the problem is well formulated and possesses a
unique solution if the energy assignment vector is restricted to belongs to the
set {v € R" :v; >0, || v ||= constant}.

The next results prove the convergence of the numerical scheme illustrated
by Figure 4 and provide convergence rate.

Proposition 4. If b < 1 with b defined in (10) and (11) then the recursive
scheme illustrated by Figure 4 does converge to the fized point A = f()\).

Proof. We are looking for a fixed point of the function f(\) = a + b, this fixed
point is unique and can be written as

a
A= .
1-5
The recursive algorithm defined in Figure 4 can be written again
A)—A —AN(1-b
/\l+1:)\l+M:)\l+al7()-

l l

Using this expression, we compute the difference of the values obtained by iter-
ating f(A) to the fixed point,

a a a—N1-0)

— =\ — 1
A= T =N T T I (18)
a 1-9b
=\ - 1-—). 1
(- -0 (19
Because b < 0 we have that for [ large enough
1-5
0 =——<1.

l

Moreover,
9l+9l+1+...+9l+k—>oo, when k — o0,

implying that
1-0)A—=041)...- (1 —011%) < e Oi——Ol+k 0,

and this implies the convergence of the algorithm.



Proposition 5. Given an initial value Ao, the number of steps the recursive
scheme should be iterated to ensure |\, — 79| < € is bounded by an expression

which is O(L). More precisely, we have

a a [(b—1)
)\l_m<)\0_1—b' T (20)
Proof. Using repeatedly (19) and the inequality (b < 0)
1-b b—1
1- — 2 < |2,
=<5

we get (20). Next, we use the bound for the factorial n! > v/27rn"e™" to get

N a_|_ _a 1. (1—"b)e l.
1-0 1—0b|v/2 pi l

So, with = [Ag — ﬁ|\/% the condition |A\; — %5| < € is implied by

(5) <5

Ao

or

From this last inequality and because ¢/u < (¢/p)1/) for e small enough, we
deduce that

1-9
(bl _ <
! %
is a sufficient condition. So we get,
1-0
> I ben

proving the result.

The convergence result shows that the important parameter is the slope b. Next
result gives us a bound on this parameter.

Proposition 6. The parameter b defined by (12) satisfies satisfies the inequality

Py
—b < 2max —~.
i Siep

Proof. We first notice that the inequalities C; < 1, inserting this into the defi-
nition of the b parameter (12) leads to

b< Sef 1 L . 1
— max .
S \22-1 321 121

But since ﬁ < ﬁ we get that the term contained in the parenthesis on
the left side of the preceding inequality is bounded by 2, leading to the result.



6 A blind strategy for balanced energy dissipation

In this section, we deal with the problem of the estimation of the probabilities p;
of transmitting a data directly to a sensor which belongs to the next slice being
blind to the probabilities A; of occurrence of events in a given slice. The blind-
ness assumption is more general and realistic and allows the design of adaptive
algorithms that appropriately adjust to the network parameters. However, we
do not estimate directly the A; probability but directly the values of z; (6). One
reason for this is that the x; values have probabilistic interpretation in terms of
the path of the data through the different slices of the networks.

Proposition 7. Consider an event occurring in slice i = 1, ..., n with probabil-
ity A\i. The event is handled by the network which conveys it to the sink. Define
A; the event : "The data passes through slice number ¢”, and 1; the indicator
function of event A;. Then

Prob(1; =1) = a;. (21)

Proof. To compute the probability that the data passes through slice 7 we can
pass in review the different scenarios leading to the realisation of the event A;.
A necessary condition is that the event is generated in slice 4, i +1 , ..., n. If
we denote G; the event : 7 The event is generated in slice i, we have

Prob(1; = 1) = » Prob(1; = 1|G)).

j=i

Because Prob(1; = 1|G;) = A\jpjpj—1 ... pi+1 if 7 > i and Prob(1; = 1|G;) = \;
the last equation leads to (21).

This result is useful for devising a blind strategy for balanced energy. Indeed,
from the sink point of view the realisation of the events A; can be observed if
we assume that each sensor handling an event appends to the data associated
to it the slice number the stations belongs to.

We describe the blind algorithm for energy data propagation. The algorithm
does not know about the probability A; of occurrences of the events in the
slices and indirectly estimates them. The algorithm is illustrated in Figure 6 in
pseudo-code like form. The sink starts to assign values Z; for the estimation of
the x; values and \. For convenience, and since there are not intrinsic differences
between A and x; we introduce the notation xyp = A. Each sensor is assigned
a x; value depending on the slice number it belongs to and then computes the
probability p; of transmitting directly to the next slice using formula (8). As
already mentioned, sensors add information to the propagated data to make
possible for the sink to determine the slices a given data passed through. Based
on these observations the sink recursively estimates the probability that the data
passes through a given slice i. This probability is given by (see equation (6))

Ti = XN+ Aip1Pit1 + oo AaPpDn—1 - Pit1-



Initialise Zo = A, ..., %n
Initialise NbrLoop=1
repeat forever
Send Z; values to the stations which compute their p; probability
wait for a data
process the data
for i=0 to n
if the data passed through slice i then
X 1
else
X <0
end if
Generate R a Z;-bernoulli random variable
i'i<—57i+m(X—R)
Increment NbrLoop by one.
end for
end repeat

Fig. 6. Pseudo-code for estimation of the x; value by the sink

Here, we used x; without tilde to refer to the real probability of the event A;
which is the observable event. Moreover, we have seen that they can be written
as (see equations (10)(14))
i =a; +bA, i=1,...,n,
and
A=x9=a+DbA\

This means that from the point of view of the sink an event A; occurs with
probability z; given above.

Proposition 8. The algorithm illustrated in Figure 6 converges in probability
to the solution of the energy balanced data propagation. Precisely this means that

Prob(()\n — z> e) — 0, when n — oo,

a
1-— b)
with a and b defined in Proposition 1 and X\, defined recursively by
1
)\n+1 = )\n + E(Xn - Rn)v

with X, a Bernoulli random variable with parameter a + bX, (the observable
event A1) and R, a Bernoulli random variable with parameter X\, (generated
internally by the sink).

Proof. Since the values Z; for i = 1,...,n depend on the Ty = A value it is
enough that the algorithm converges for \,. First notice that

E(Xp — RolAn) = a+ (b— 1),



So, we get

a o b—1 a
2—— (M —
1—b)+ n ( 1-5

a 1
E(()‘nJrl_m)QP‘n) = (An— )2+ﬁE(Xn_Rn|>‘n)~

Taking expectation in both sides of this equality we get

(g1 — lfbﬁ) —E((\n lfb)2)+2b;1E((An 1ib)Q)
+ 5 B(Xo — RalAn)
=E((\ — m)Q) +2(b - 1)2 jE((/\J - %)2)

bounded

convergent

Since b < 0 and E((Apg1 — 1%5)%) > 0 the first sum on the right side of this
equation converges. Hence,

E((\ — %)2) — 0 when j — oo,

which implies the convergence in probability.

7 Numerical experiments and conclusion

Recursive stochastic estimation procedures are very useful for solving practical
problems and leads to adaptive protocols such that the one presented in Figure
6. The main drawback of these methods is the slow rate of convergence, typically
of order O(1/+/n) and the lack of a robust stopping criterion. Intuitively, this
is due to the fact that the procedure tracks the true value of the parameter to
be estimated with correction of order O(%) This implies that the procedure is
robust in the sense that every possible value of the parameter is reached, but
makes the estimate of the number of steps necessary very difficult.

Numerical experiments are then presented in order to validate the efficiency
of the blind protocol introduced in this section. The framework we choose for our
experiment is the same as the particular one described in [4]. This framework
is realistic and allows us to compare our numerical results. The probability that
an event occurs in slice number i = 1,...,n is proportional to the area of this
slice and is given by

2t —1

i
% TL2



We choose to deal with energy balanced data propagation and we have for the
energy assignment vector

E./S. 1

En—l /Sn—l 1

B(X) = : =]
E1/S 1

We simulate the algorithm executed by the sink and illustrated in Figure 6.
We start by arbitrarily fixing &3 = 0.5 for ¢ = 2,...,n and A = 1. This last
choice corresponding to the worst a priori estimation possible. We simulate the
occurrence of the events with respect to the known probability A;. Notice that
these probabilities are known from the simulation but are undirectly estimated
by the algorithm (the sink). The path of the data generated by the event are
simulated using the successive values of the probabilities p; for i = 2,...,n
which are computed on the basis of the Z; values using formula (8). Once the
path is simulated the sink updates the values of Z; and a new event is generated.
We proceed the simulations for 3, 10, 20 and 30 slices. These experiments are
reported in figure 7. We observe from the experiments that, as expected, we
quickly get a good estimation of the value of A\ but need many more iterations
to get high precision estimate due to the convergence of order O(1//n).

We discussed in this section the problem of balancing the consumed energy
per sensors for the process of data propagation thourgh wireless sensor net-
works. The main novelty contained in this section is related to the very realistic
hypothesis that no a priori knowledge on the probability of the region in which
the events occur is known. We show that stochastic approximation methods can
be applied and lead to protocols able to estimate these probabilities. Although
high precision estimate needs many iterations of the estimation process, good
estimations are provided by the algorithm prior to convergence.

An other important point to develop is to estimate the energy consumed
before convergence of the algorithm and whether energy are wasted during this
period of time or not.

A possible extension of this problem is not to consider slices of sensors but to
consider all the sensors individually. In this situation, all the sensors have their
own energy restriction and their own probability of observing an event. In this
situation, it seems important that the algorithm can be devised in a distributed
way. Indeed, if sensors are considered individually the process of broadcasting
the z; values from the sink to the sensors leads to an important traffic of data
and it is likely that in this situation the impact of collisions cannot be longer
ignored. Moreover, in the situation described in this section we ignore problems
related to the size of the data sent to the sink. Indeed, when sensors add some
information to the propagated data, such as the slice number, the size of the
data can become prohibitive with respect to small memory capacity of smart
sensors. In our situation it seems likely that the number of slice is of reasonable
order, but if the sensors are individualised, the situation can prove to be very
different.
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Fig. 7. Numerical experiment of algorithms (X in terms of number of loops) illustrated
in Figure 6 with 3, 10, 20, 30 slices from left to right and top to bottom
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