Skip to main content
Log in

On the Automatizability of Polynomial Calculus

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We prove that Polynomial Calculus and Polynomial Calculus with Resolution are not automatizable, unless W[P]-hard problems are fixed parameter tractable by one-side error randomized algorithms. This extends to Polynomial Calculus the analogous result obtained for Resolution by Alekhnovich and Razborov (SIAM J. Comput. 38(4):1347–1363, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alekhnovich, M., Razborov, A.A.: Lower bounds for polynomial calculus: Non-binomial case. In: 42nd Annual Symposium on Foundations of Computer Science, pp. 190–199 (2001)

  2. Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W[P] is tractable. SIAM J. Comput. 38(4), 1347–1363 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon, N.: Tools from higher algebra. In: Handbook of Combinatorics, vol. 2, pp. 1749–1783. MIT Press, Cambridge (1995)

    Google Scholar 

  4. Atserias, A., Bonet, M.L.: On the automatizability of resolution and related propositional proof systems. Inf. Comput. 189(2), 182–201 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In: 37th Annual Symposium on Foundations of Computer Science, pp. 274–282. IEEE Press, New York (1996)

    Google Scholar 

  6. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 517–526 (1999)

  7. Bonet, M.L., Domingo, C., Gavaldà, R., Maciel, A., Pitassi, T.: Non-automatizability of bounded-depth frege proofs. Comput. Complex. 13(1–2), 47–68 (2004)

    Article  MATH  Google Scholar 

  8. Bonet, M.L., Pitassi, T., Raz, R.: On interpolation and automatization for frege systems. SIAM J. Comput. 29(6), 1939–1967 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pp. 174–183 (1996)

  10. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd edn. Springer, New York (2007)

    MATH  Google Scholar 

  11. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)

    Google Scholar 

  12. Galesi, N., Lauria, M.: Degree lower bounds for a graph ordering principle. Submitted. See http://www.dsi.uniroma1.it/~galesi/publications.html

  13. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Impagliazzo, R., Pudlák, P., Sgall, J.: Lower bounds for the polynomial calculus and the Gröbner basis algorithm. Comput. Complex. 8(2), 127–144 (1999)

    Article  MATH  Google Scholar 

  15. Jukna, S.: Extremal Combinatorics: with Applications in Computer Science. Springer, New York (2001)

    MATH  Google Scholar 

  16. Krajícek, J.: Interpolation and approximate semantic derivations. Math. Log. Q. 48(4), 602–606 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Krajícek, J., Pudlák, P.: Some consequences of cryptographical conjectures for S 12 and ef. In: Leivant, D. (ed.) LCC. Lecture Notes in Computer Science, vol. 960, pp. 210–220. Springer, Berlin (1994)

    Google Scholar 

  18. Pitassi, T.: Algebraic propositional proof systems. In: Immerman, N., Kolaitis, P.G. (eds.) Descriptive Complexity and Finite Models. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 31, pp. 215–244. Am. Math. Soc., Providence (1996)

    Google Scholar 

  19. Pudlák, P.: On reducibility and symmetry of disjoint np-pairs. Theor. Comput. Sci. 295, 626–638 (2003)

    Article  Google Scholar 

  20. Pudlák, P., Sgall, J.: Algebraic models of computation and interpolation for algebraic proof systems. DIMACS Ser. Theor. Comput. Sci. 39, 279–296 (1998)

    Google Scholar 

  21. Razborov, A.A.: Lower bounds for the polynomial calculus. Comput. Complex. 7(4), 291–324 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. van Lint, J.H.: Introduction to Coding Theory, 3rd edn. Graduate Texts in Mathematics. Springer, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Lauria.

Additional information

Research of N. Galesi was supported by La Sapienza research projects: (1) “Algoritmi efficienti su modelli avanzati di comunicazione e di calcolo” and (2) “Limiti di compressione in combinatoria e complessit computazionale”.

Research of M. Lauria was partially founded by the grant #13393 of Templeton Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galesi, N., Lauria, M. On the Automatizability of Polynomial Calculus. Theory Comput Syst 47, 491–506 (2010). https://doi.org/10.1007/s00224-009-9195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-009-9195-5

Keywords

Navigation