Skip to main content
Log in

The Computational Complexity of Weak Saddles

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We study the computational aspects of weak saddles, an ordinal set-valued solution concept proposed by Shapley. F. Brandt et al. recently gave a polynomial-time algorithm for computing weak saddles in a subclass of matrix games, and showed that certain problems associated with weak saddles of bimatrix games are NP-hard. The important question of whether weak saddles can be found efficiently was left open. We answer this question in the negative by showing that finding weak saddles of bimatrix games is NP-hard, under polynomial-time Turing reductions. We moreover prove that recognizing weak saddles is coNP-complete, and that deciding whether a given action is contained in some weak saddle is hard for parallel access to NP and thus not even in NP unless the polynomial hierarchy collapses. Most of our hardness results are shown to carry over to a natural weakening of weak saddles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basu, K., Weibull, J.: Strategy subsets closed under rational behavior. Econ. Lett. 36, 141–146 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baumeister, D., Brandt, F., Fischer, F., Hoffmann, J., Rothe, J.: The complexity of computing minimal unidirectional covering sets. In: Proceedings of the 7th International Conference on Algorithms and Complexity (CIAC). Lecture Notes in Computer Science (LNCS), vol. 6078, pp. 299–310. Springer, Berlin (2010)

    Google Scholar 

  3. Bernheim, B.: Rationalizable strategic behavior. Econometrica 52(4), 1007–1028 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brandt, F., Fischer, F.: Computing the minimal covering set. Math. Soc. Sci. 56(2), 254–268 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandt, F., Brill, M., Fischer, F., Harrenstein, P.: Computational aspects of Shapley’s saddles. In: Proceedings of the 8th International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 209–216 (2009)

    Google Scholar 

  6. Brandt, F., Brill, M., Fischer, F., Harrenstein, P.: On the complexity of iterated weak dominance in constant-sum games. Theory Comput. Syst. (2010). doi:10.1007/s00224-010-9282-7

    Google Scholar 

  7. Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player Nash equilibria. J. ACM 56(3) (2009)

  8. Conitzer, V., Sandholm, T.: Complexity of (iterated) dominance. In: Proceedings of the 6th ACM Conference on Electronic Commerce (ACM-EC), pp. 88–97. ACM Press, New York (2005)

    Chapter  Google Scholar 

  9. Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duggan, J., Le Breton, M.: Dutta’s minimal covering set and Shapley’s saddles. J. Econ. Theory 70, 257–265 (1996)

    Article  MATH  Google Scholar 

  11. Dutta, B.: Covering sets and a new Condorcet choice correspondence. J. Econ. Theory 44, 63–80 (1988)

    Article  MATH  Google Scholar 

  12. Gilboa, I., Kalai, E., Zemel, E.: The complexity of eliminating dominated strategies. Math. Oper. Res. 18(3), 553–565 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Exact analysis of Dodgson elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. J. ACM 44(6), 806–825 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luce, R.D., Raiffa, H.: Games and Decisions: Introduction and Critical Survey. Wiley, New York (1957)

    MATH  Google Scholar 

  15. McKelvey, R.D., Ordeshook, P.C.: Symmetric spatial games without majority rule equilibria. Am. Polit. Sci. Rev. 70(4), 1172–1184 (1976)

    Article  Google Scholar 

  16. Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press, Harvard (1991)

    MATH  Google Scholar 

  17. Nash, J.F.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  18. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  19. Pearce, D.: Rationalizable strategic behavior and the problem of perfection. Econometrica 52(4), 1029–1050 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Samuelson, L.: Dominated strategies and common knowledge. Games Econ. Behav. 4, 284–313 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shapley, L.: Order matrices, I. Technical Report RM-1142, The RAND Corporation (1953a)

  22. Shapley, L.: Order matrices, II. Technical Report RM-1145, The RAND Corporation (1953b)

  23. Shapley, L.: Some topics in two-person games. In: Dresher, M., Shapley, L.S., Tucker, A.W. (eds.) Advances in Game Theory. Annals of Mathematics Studies, vol. 52, pp. 1–29. Princeton University Press, Princeton (1964)

    Google Scholar 

  24. von Neumann, J.: Zur Theorie der Gesellschaftspiele. Math. Ann. 100, 295–320 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  25. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  26. Wagner, K.: More complicated questions about maxima and minima, and some closures of NP. Theor. Comput. Sci. 51, 53–80 (1987)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Brandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, F., Brill, M., Fischer, F. et al. The Computational Complexity of Weak Saddles. Theory Comput Syst 49, 139–161 (2011). https://doi.org/10.1007/s00224-010-9298-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-010-9298-z

Keywords

Navigation