
ar
X

iv
:1

00
9.

61
05

v1
 [

cs
.C

C
]

 3
0

Se
p

20
10

The Baire partial quasi-metric space: A

mathematical tool for asymptotic complexity

analysis in Computer Science

M.A. Cerdà-Uguet1, M.P. Schellekens2, O. Valero1∗

1Departamento de Ciencias Matemáticas e Informática,

Universidad de las Islas Baleares, 07122, Baleares, Spain
e-mails: macerda2@educacio.caib.es, o.valero@uib.es

2Center of Efficiency-Oriented Languages, Department of
Computer Science, University College Cork, Western Road,

Cork, Ireland
e-mail: m.schellekens@cs.ucc.ie

Abstract

In 1994, S.G. Matthews introduced the notion of partial metric
space in order to obtain a suitable mathematical tool for program
verification [Ann. New York Acad. Sci. 728 (1994), 183-197]. He
gave an application of this new structure to parallel computing by
means of a partial metric version of the celebrated Banach fixed point
theorem [Theoret. Comput. Sci. 151 (1995), 195-205]. Later on,
M.P. Schellekens introduced the theory of complexity (quasi-metric)
spaces as a part of the development of a topological foundation for
the asymptotic complexity analysis of programs and algorithms [Elec-
tronic Notes in Theoret. Comput. Sci. 1 (1995), 211-232]. The
applicability of this theory to the asymptotic complexity analysis of
Divide and Conquer algorithms was also illustrated by Schellekens. In

∗Corresponding author e-mail, telephone and fax numbers: o.valero@uib.es, +34 971
259817, +34 971 173003

1

http://arxiv.org/abs/1009.6105v1

particular, he gave a new proof, based on the use of the aforenamed
Banach fixed point theorem, of the well-known fact that Mergesort al-
gorithm has optimal asymptotic average running time of computing.
In this paper, motivated by the utility of partial metrics in Computer
Science, we discuss whether the Matthews fixed point theorem is a
suitable tool to analyze the asymptotic complexity of algorithms in the
spirit of Schellekens. Specifically, we show that a slight modification
of the well-known Baire partial metric on the set of all words over an
alphabet constitutes an appropriate tool to carry out the asymptotic
complexity analysis of algorithms via fixed point methods without the
need for assuming the convergence condition inherent to the defini-
tion of the complexity space in the Shellekens framework. Finally, in
order to illustrate and to validate the developed theory we apply our
results to analyze the asymptotic complexity of Quicksort, Mergesort
and Largesort algorithms.

2010 AMS Classification: 47H10, 54E50, 54F05, 68Q25, 68W40.

Keywords: asymptotic complexity analysis, recurrence equation, quasi-
metric, partial metric, Baire partial metric, Baire partial quasi-metric,
running time of computing, fixed point.

1 Introduction and preliminaries

Throughout this paper the letters R
+, N and ω will denote the set of non-

negative real numbers, the set of positive integer numbers and the set of
nonnegative integer numbers, respectively.

In Computer Science the complexity analysis of an algorithm is based on
determining mathematically the quantity of resources needed by the algo-
rithm in order to solve the problem for which it has been designed. A typical
resource, playing a central role in complexity analysis, is the execution time
or running time of computing. Since there are often many algorithms to solve
the same problem, one objective of the complexity analysis is to assess which
of them is faster when large inputs are considered. To this end, it is neces-
sary to compare their running time of computing. This is usually done by
means of the asymptotic analysis in which the running time of an algorithm
is denoted by a function T : N → (0,∞] in such a way that T (n) represents
the time taken by the algorithm to solve the problem under consideration
when the input of the algorithm is of size n. Let us denote by RT the set

2

formed by all functions from N into (0,∞]. Of course the running time of an
algorithm does not only depend on the input size n, but it depends also on
the particular input of the size n (and the distribution of the data). Thus
the running time of an algorithm is different when the algorithm processes
certain instances of input data of the same size n. As a consequence, for
the purpose of size-based comparisons, it is necessary to distinguish three
possible behaviours in the complexity analysis of algorithms. These are the
so-called best case, the worst case and the average case. The best case and
the worst case for an input of size n are defined by the minimum and the
maximum running time of computing over all inputs of the size n, respec-
tively. The average case for an input of size n is defined by the expected
value or average over all inputs of the size n.

In general, to determine exactly the function which describes the running
time of computing of an algorithm is an arduous task. However, in most sit-
uations is sufficient to know the running time of computing of an algorithm
in an “approximate” way rather than in an exact one. For this reason the
asymptotic complexity analysis of algorithms, based on the O-notation, is
focused on obtaining the “approximate” running time of computing of an
algorithm. Indeed, if g ∈ RT denotes the running time of computing of an
algorithm then the statement g ∈ O(f), where f ∈ RT , means that there ex-
ists n0 ∈ N and c ∈ R

+ such that g(n) ≤ cf(n) for all n ∈ N such that n ≥ n0

(≤ stands for the usual order on R
+). So the function f gives an asymptotic

upper bound of the running time g and, thus, an “approximate” information
of the running time of the algorithm. The set O(f) is called the asymptotic
complexity class of f. Hence, from an asymptotic complexity analysis view-
point, determining the running time of an algorithm consists of obtaining its
asymptotic complexity class. For a fuller treatment of complexity analysis of
algorithms we refer the reader to [1, 3].

In 1995, M.P. Schellekens introduced the theory of complexity spaces as
a part of the development of a topological foundation for the asymptotic
complexity analysis of algorithms ([14]). This theory is based on the notion
of quasi-metric space.

Let us recall that, following [8], a quasi-metric on a nonempty set X is a
function d : X ×X → R

+ such that for all x, y, z ∈ X :

(i) d(x, y) = d(y, x) = 0 ⇔ x = y;
(ii) d(x, y) ≤ d(x, z) + d(z, y).

A quasi-metric space is a pair (X, d) such that X is a nonempty set and

3

d is a quasi-metric on X.
Each quasi-metric d on X generates a T0-topology T (d) on X which

has as a base the family of open d-balls {Bd(x, ε) : x ∈ X, ε > 0}, where
Bd(x, ε) = {y ∈ X : d(x, y) < ε} for all x ∈ X and ε > 0.

Given a quasi-metric d on X , the function ds defined on X × X by
ds(x, y) = max (d(x, y), d(y, x)) is a metric on X .

A quasi-metric space (X, d) is called bicomplete if the metric space (X, ds)
is complete.

A well-known example of a bicomplete quasi-metric space is the pair
((0,∞], u−1), where

u−1(x, y) = max

(

1

y
−

1

x
, 0

)

for all x, y ∈ (0,∞].
The quasi-metric space ((0,∞], u−1) plays a central role in the Schellekens

theory. Indeed, let us recall that the complexity space is the pair (C, dC),
where

C = {f ∈ RT :

∞
∑

n=1

2−n 1

f(n)
< ∞}

and dC is the quasi-metric on C defined by

dC(f, g) =

∞
∑

n=1

2−nmax

(

1

g(n)
−

1

f(n)
, 0

)

.

Obviously we adopt the convention that 1
∞

= 0.
According to [14], from a complexity analysis point of view, it is possible

to associate a function of C with each algorithm in such a way that such a
function represents, as a function of the size of the input data, the running
time of computing of the algorithm. Because of this, the elements of C are
called complexity functions. Moreover, given two functions f, g ∈ C, the
numerical value dC(f, g) (the complexity distance from f to g) can be inter-
preted as the relative progress made in lowering the complexity by replacing
any program P with complexity function f by any program Q with complex-
ity function g. Therefore, if f 6= g, the condition dC(f, g) = 0 can be read as
f is “at least as efficient” as g on all inputs (i.e. dC(f, g) = 0 ⇔ f(n) ≤ g(n)
for all n ∈ N). Thus we can encode the natural order relation on the set C,

4

induced by the pointwise order ≤, through the quasi-metric dC. In particular
the fact that dC(f, g) = 0 implies that f ∈ O(g).

The applicability of this theory to the asymptotic complexity analysis
of Divide and Conquer algorithms was illustrated by Schellekens in [14].
In particular, he gave a new proof of the well-known fact that Mergesort
algorithm has optimal asymptotic average running time of computing. To do
this he introduced a method, based on a fixed point theorem for functionals
defined on the complexity space into itself, to analyze the general class of
Divide and Conquer algorithms. Let us recall the aforenamed method.

A Divide and Conquer algorithm solves a problem of size n (n ∈ N) split-
ting it into a subproblems of size n

b
, for some constants a, b with a, b ∈ N and

a, b > 1, and solving them separately by the same algorithm. After obtain-
ing the solution of the subproblems, the algorithm combines all subproblem
solutions to give a global solution to the original problem. The recursive
structure of a Divide and Conquer algorithm leads to a recurrence equation
for the running time of computing. In many cases the running time of a
Divide and Conquer algorithm is the solution to a recurrence equation of the
form

T (n) =

{

c if n = 1
aT (n

b
) + h(n) if n ∈ ωb

, (1)

where ωb = {bk : k ∈ N}, c ∈ R
+ (c > 0) denotes the complexity on the base

case (i.e. the problem size is small enough and the solution takes constant
time), h(n) represents the time taken by the algorithm in order to divide
the original problem into a subproblems and to combine all subproblems
solutions into a unique one (h ∈ RT and 0 < h(n) < ∞ for all n ∈ N).

Notice that for Divide and Conquer algorithms, it is typically sufficient
to obtain the complexity on inputs of size n where n ranges over the set ωb

([1, 3, 14]).
Typical examples of algorithms whose running time of computing can

be obtained by means of the recurrence (1) are Quicksort (in the best case
behaviour) and Mergesort.

In order to compute the running time of computing of a Divide and
Conquer algorithm satisfying the recurrence equation (1), it is necessary
to show that such a recurrence equation has a unique solution and, later,
to obtain the asymptotic complexity class of such a solution. The method
introduced by Schellekens to show that the equation (1) has a unique solution,
and to obtain the asymptotic complexity class of the solution is outlined

5

below:
Denote by Cb,c the subset of C given by

Cb,c = {f ∈ C : f(1) = c and f(n) = ∞ for all n /∈ ωb with n > 1}.

Since the quasi-metric space (C, dC) is bicomplete (see Theorem 3 and
Remark in page 317 of [13]) and the set Cb,c is closed in (C, dsC), we have that
the quasi-metric space (Cb,c, dC|Cb,c) is bicomplete.

Next we associate a functional ΦT : Cb,c → Cb,c with the recurrence equa-
tion (1) of a Divide and Conquer algorithm defined as follows:

ΦT (f)(n) =







c if n = 1
∞ if n /∈ ωb and n > 1
af(n

b
) + h(n) otherwise

. (2)

Of course a complexity function in Cb,c is a solution to the recurrence equation
(1) if and only if it is a fixed point of the functional ΦT . It was proved in [14]
that

dC|Cb,c(ΦT (f),ΦT (g)) ≤
1

a
dC|Cb,c(f, g) (3)

for all f, g ∈ Cb,c. So by Banach’s fixed point theorem for metric spaces we
deduce that the functional ΦT : Cb,c → Cb,c has a unique fixed point and,
thus, the recurrence equation (1) has a unique solution.

In order to obtain the asymptotic complexity class of the solution to the
recurrence equation (1), Schellekens introduced a special class of functionals
known as improvers.

Let C ⊆ RT , a functional Φ : C → C is called an improver with respect
to a function f ∈ C provided that Φn+1(f) ≤ Φn(f) for all n ∈ ω. Of course
Φ0(f) = f .

Observe that an improver is a functional which corresponds to a trans-
formation on programs in such a way that the iterative applications of the
transformation yield an improved, from a complexity point of view, program
at each step of the iteration.

Note that when Φ is monotone, to show that Φ is an improver with respect
to f ∈ C, it suffices to verify that Φ(f) ≤ f.

Under these conditions the following result was stated in [14]:

Theorem 1. A Divide and Conquer recurrence of the form (1) has a unique
solution fT in Cb,c. Moreover, if the monotone functional ΦT associated to
(1), and given by (2), is an improver with respect to some function g ∈ Cb,c,
then the solution to the recurrence equation satisfies that fT ∈ O(g).

6

In [14] Schellekens discussed the complexity class of Mergesort in order
to illustrate the utility of Theorem 1. In the particular case of Mergesort the
recurrence equation (1) in the average case behaviour is exactly

T (n) =

{

c if n = 1
2T (n

2
) + n

2
if n ∈ ω2

. (4)

Of course Theorem 1 provides that the recurrence equation (4) has a
unique solution fT ∈ C2,c. In addition, Schellekens proved in [14] that the
functional ΦT induced by the recurrence equation (4) is an improver with re-
spect to a complexity function gk ∈ Cb,c, with k ∈ R

+ and gk(n) = kn log2(n)
for all n ∈ ω2, if and only if 1

2
≤ k. Therefore, by Theorem 1, we conclude

that f ∈ O(g 1

2

), i.e. Theorem 1 provides a formal proof of the well-known
fact that the running time of computing of Mergesort in the average case
behaviour is in the asymptotic complexity class of n log2(n).

When a program uses a recursion process to find the solution to a problem,
such a process is characterized by obtaining in each step of the computation
an approximation to the aforementioned solution which is better than the
approximations obtained in the preceding steps and, in addition, by obtain-
ing always the final approximation to the problem solution as the “limit” of
the computing process. A mathematical model to this sort of situations was
developed by D.S. Scott which is based on ideas from order theory and topol-
ogy (see, for instance, [15], [16] and [5]). In particular, the order represents
some notion of information in such a way that each step of the computation
is identified with an element of the mathematical model which is greater than
(or equal to) the other ones associated with the preceding steps, since each
approximation gives more information about the final solution than those
computed before. The final output of the computational process is seen as
the limit of the successive approximations. Thus the recursion processes are
modeled as increasing sequences of elements of the ordered set which converge
to its least upper bound with respect to the given topology. From an Infor-
mation Theory point of view the Scott model needs to distinguish two kind
of elements: the so-called totally defined objects and the partially defined
objects. The former represent elements of the model whose information con-
tent can not be stored in a computer and, therefore, must be approximated.
The partially defined objects match with those elements of the model that
can be stored in the computer and that approximate the total ones.

In 1994 S.G. Matthews introduce the notion of partial metric as a math-
ematical tool to model computational processes in the spirit of Scott where

7

a quantitative degree of the information content of the involved elements is
needed.

Let us recall some notions related to partial metrics in order to explain
the importance of this new metric concept.

According to [9], a partial metric on a nonempty set X is a function
p : X ×X → R

+ such that for all x, y, z ∈ X :

(i) p(x, x) = p(x, y) = p(y, y) ⇔ x = y;
(ii) p(x, x) ≤ p(x, y);
(iii) p(x, y) = p(y, x);
(iv) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and
p is a partial metric on X.

Each partial metric p on X generates a T0 topology T (p) on X which
has as a base the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where
Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0. From
this fact it immediately follows that a sequence (xn)n∈N in a partial metric
space (X, p) converges to a point x ∈ X with respect to T (p) ⇔ p(x, x) =
limn→∞ p(x, xn).

As usual ([5]) an order on a (nonempty) setX is a reflexive, antisymmetric
and transitive binary relation ≤ on X , and a set equipped with an order is
said to be an ordered set.

The success of partial metrics lies in that every partial metric p induces
an order ≤p on X (x ≤p y ⇔ p(x, y) = p(x, x)) in such a way that increasing
sequences of elements with respect to ≤p converge to its least upper bound
with respect the partial metric topology T (p). Moreover, partial metrics
can be used to distinguish between objects with totally defined information
content and objects with partially defined information content in Scott’s
models. Specifically if (X, p) is a partial metric space, then the numerical
value p(x, x) allows us to quantify the amount of information contained in
an object x. In particular the smaller p(x, x) the more defined x is, being x
totally defined if p(x, x) = 0.

Motivated by the usefulness of partial metric spaces in Computer Science,
it seems natural to wonder if these kind of metric spaces are also useful in
complexity analysis in the spirit of Schellekens. However we show in the
following that the preceding question has at first a negative answer. To this
end, let us recall some additional and useful concepts about partial metrics.

Following [9], a sequence (xn)n∈N in a partial metric space (X, p) is called

8

a Cauchy sequence if limn,m→∞ p(xn, xm) exists. A partial metric space (X, p)
is said to be complete if every Cauchy sequence (xn)n∈N in X converges, with
respect to T (p), to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

Inspired, in part, by the applications to program verification Matthews
extends Banach’s fixed point theorem to the framework of partial metric
spaces, and he used it to formulate a suitable test for lazy data flow deadlock
in Khan’s model of parallel computation ([10]). The aforementioned new
theorem can be stated as follows:

Theorem 2. Let f be a mapping of a complete partial metric space (X, p)
into itself such that there is s ∈ R

+ with 0 ≤ s < 1, satisfying

p(f(x), f(y)) ≤ sp(x, y),

for all x, y ∈ X. Then f has a unique fixed point. Moreover if x ∈ X is the
fixed point of f, then p(x, x) = 0.

According to [9] and [11] some correspondences between quasi-metric and
partial metric spaces can be stated.

Proposition 3. If (X, p) is a partial metric space, then the following state-
ments hold:

(i) The function dp : X ×X → R
+ defined by dp(x, y) = p(x, y)− p(x, x)

is a quasi-metric on X such that T (p) = T (dp).

(ii) The below assertions are equivalent:

(1) (X, p) is complete

(2) (X, dp) is bicomplete.

Following [11] the set C can be endowed with a partial metric pC defined
for all f, g ∈ C by

pC(f, g) =

∞
∑

n=1

2−nmax

(

1

f(n)
,

1

g(n)

)

.

Moreover it is not hard to see that the partial metric pC induces, by Proposi-
tion 3, the quasi-metric dC. So Proposition 3 guarantees that the partial met-
ric space (C, pC) is complete. Also (Cb,c, pC|Cb,c) is complete, since (Cb,c, dC|Cb,c)
is bicomplete.

9

Now suppose that there exists s ∈ R
+ with 0 ≤ s < 1 such that

pC|Cb,c(ΦT (f),ΦT (g)) ≤ spC|Cb,c(f, g).

for all f, g ∈ Cb,c.
We only consider the case of 0 < s < 1, because it is evident that the

case s = 0 gives a contradiction.
Take f, g ∈ Cb,c defined by f(n) = 2c and g(n) = 2(c + 1) for all n ∈ ωb.

It is clear that

pC|Cb,c(ΦT (f),ΦT (g)) =
1

2c
+

∞
∑

n=2

2−bn max

(

1

2ac+ h(bn)
,

1

2a(c+ 1) + h(bn)

)

.

Moreover,

pC|Cb,c(f, g) =
∞
∑

n=1

2−bn max

(

1

f(bn)
,

1

g(bn)

)

≤
∞
∑

n=1

2−nmax

(

1

2c
,

1

2(c+ 1)

)

=
1

2c
.

Applying the hypothesis we obtain that

1

2c
≤ pC|Cb,c(ΦT (f),ΦT (g)) ≤ spC|Cb,c(f, g) ≤ s

1

2c
.

As a result we deduce that 1 ≤ s < 1, which is a contradiction.
Consequently Theorem 2 can not be used to analyze the complexity of

the algorithms whose running time of computing is associated to a recur-
rence equation (1) when the partial metric pC, instead the quasi-metric dC,
is employed as a complexity distance.

In the light of the preceding conclusion our purpose in this paper is to
demonstrate that partial metric spaces, and in particular the partial metric
fixed point theorem, can be used satisfactorily for the asymptotic complexity
analysis of algorithms in the spirit of Schellekens’ approach based on im-
provers. To achieve this goal we focus our attention on a slight modification,
that we have called Baire partial quasi-metric, of the well-known Baire partial
metric on the set of all words over an alphabet. We show that such a partial
metric tool constitutes an appropriate implement to carry out formally the
asymptotic complexity analysis of algorithms whose running time of comput-
ing leads to various types of recurrences equations (not only the Divide and

10

Conquer ones). In particular, we validate the usefulness of our new results
by means of applying them to analyze the well-known asymptotic complexity
of several illustrative algorithms such as Quicksort, Mergesort and Largetwo.

The remainder of the paper is organized as follows: Section 2 is devoted
to introduce the noted Baire partial metric and, in addition, to prove that
it allows to show the existence of solution to recurrence equations that arise
in a natural way in complexity analysis of algorithms. However, in the same
section we show that the Baire partial metric can not be employed, in general,
to obtain an asymptotic upper bound, and thus the complexity class, of the
running time of computing of an algorithm. Inspired by the last fact, we
introduce in Section 3 a new Baire partial metric framework whose basis
resides in the partial quasi-metric approach introduced recently in [7]. We
show that this new partial metric approach presents a relevant advantage
with respect to the Schellekens one. More specifically, it is suitable to carry
out the asymptotic complexity analysis of algorithms via fixed point methods
without the need for assuming the convergence condition inherent to the
definition of the complexity space in the Shellekens framework. Finally, the
discussion of the running time of the celebrated Quicksort, Mergesort and
Largetwo allows us, on one hand, to validate our new results and, on the
other hand, to show the potential applicability of the developed theory to
complexity analysis in Computer Science.

2 The Baire partial metric space and the asymp-

totic complexity analysis of algorithms

With the aim of applying partial metric spaces to complexity analysis of
algorithms we recall the well-known Baire partial metric space which was
used by Matthews to model Kahn’s parallel computation processes ([6, 10]).

Let Σ be a nonempty set (an alphabet). Denote by Σ∞ the set of all finite
and infinite sequences (words) over Σ.

For each x ∈ Σ∞ we denote by l(x) the length of x. Hence l(x) ∈ [1,∞].
From now on, if x ∈ Σ∞ with l(x) = ∞ we will write x := x1x2 . . . , and

if x ∈ Σ∞ with l(x) = n < ∞ we will write x := x1x2 . . . xn.
Given x, y ∈ Σ∞, denote by l(x, y) the length of the longest common

prefix of x and y, i.e. l(x, y) = sup{n ∈ N : xk = yk whenever k ≤ n} if x
and y have a common prefix, and l(x, y) = 0 otherwise.

11

As usual the set Σ∞ is equipped with the prefix order ⊑, which is defined
by x ⊑ y ⇔ x is a prefix of y.

Define on Σ∞ × Σ∞ the nonnegative real valued function pB by

pB(x, y) = 2−l(x,y)

for all x, y ∈ Σ∞. Of course it is adopted the convention that 2−∞ = 0. It
is not hard to see that the pair (Σ∞, pB) is a complete partial metric space
([11]), which is known as the Baire partial metric space.

The partial metric pB can be used to distinguish between infinite words
(objects with totally defined information content) and finite words (objects
with partially defined information content) because pB(x, x) = 0 for some
x ∈ Σ∞ ⇔ l(x) = ∞. The fact that the value pB(x, x) allows to assign
a degree of information content plays a crucial role in Information Theory
and, in addition, presents an advantage with respect to the role played by
the classical metrics extensively used before, as for instance the well-known
Baire metric (for a fuller treatment of the classical Baire metric we refer the
reader to [2, 12]).

The Baire partial metric space (Σ∞, pB) induces, by Proposition 3, the
quasi-metric dpB : Σ∞ × Σ∞ → R

+ given by

dpB(x, y) = 2−l(x,y) − 2−l(x)

for all x, y ∈ Σ∞. Note that, similarly to the case of complexity space (see
Section 1), we have dpB(x, y) = 0 ⇔ x ⊑ y.

The next result provides that the Baire partial metric space is suitable to
show that the recurrence (1) has a unique solution.

Theorem 4. Let Σ = (0,∞] and a, b ∈ N with a, b > 1. Fix z ∈ Σ∞ with
l(z) = ∞ and zk 6= ∞ for all k ∈ ωb and k ≥ 2. Let Σ∞

b,c be the subset
of Σ∞ given by Σ∞

b,c := {y ∈ Σ∞ : 2 ≤ l(y) and y1 = c, yk = ∞ for all
k /∈ ωb with 2 ≤ k ≤ l(y)}. Then the mapping Θz

a,b : Σ
∞
b,c → Σ∞

b,c defined by
Θz

a,b(x) = xΘz
a,b
, where

(xΘz
a,b
)k :=







c if k = 1
∞ if k /∈ ωb and 2 ≤ k ≤ l(x) + 1
a · xk

b
+ zk if k ∈ ωb and

k
b
≤ l(x)

has a unique fixed point v ∈ Σ∞
b,c with l(v) = ∞.

12

Proof. It is easy to check that the set Σ∞
b,c is closed in (Σ∞, dspB).

Hence (Σ∞
b,c, d

s
pB
|Σ∞

b,c
) is complete. By Proposition 3 the partial metric space

(Σ∞
b,c, pB|Σ∞

b
) is complete.

A straightforward computation shows that the mapping Θz
a,b satisfies the

inequality

pB|Σ∞
b
(xΘz

a,b
, yΘz

a,b
) ≤

1

2
pB|Σ∞

b
(x, y)

for all x, y ∈ Σ∞
b,c. Then, by Theorem 2, we deduce that the mapping Θz

a,b

has unique fixed point v ∈ Σ∞
b,c with pB|Σ∞

b,c
(v, v) = 0. Hence l(x) = ∞. �

Following the ideas introduced in Section 1 let us denote by RT b,c the
set

RT b,c = {f ∈ RT : f(1) = c and f(n) = ∞ for all n /∈ ωb with n > 1}.

Of course if we take z ∈ Σ∞ with zk = h(bk) for all k ∈ N in Theorem 4, where
h is given as in the recurrence equation (1), then the function fv ∈ RT b,c

defined by fv(n) = vn for all n ∈ N, where v is provided by Theorem 4, can be
identified with the solution to the Divide and Conquer recurrence equation
(1) and, thus, with the running time of computing of Divide and Conquer
algorithms. However, to make a complete asymptotic complexity analysis
we must give the complexity class of the running time of computing, i.e. the
complexity class of fv. Unfortunately the presented framework is not able to
allow us to get this objective. The reason is given by the fact that two words
x, y ∈ Σ∞ with l(x) = l(y) = ∞ satisfy x ⊑ y ⇔ x = y. So, according to
the above technique, if f, g represent the running time of computing of two
algorithms (f, g ∈ RT), and we identify in a natural way those functions
with the words xf , xg ∈ Σ∞ (Σ = (0,∞]) such that

xf
n = f(n) and xg

n = g(n) for all n ∈ N,

then we have that

xf ⊑ xg ⇔ f(n) = g(n) for all n ∈ N.

Therefore we can not obtain an asymptotic upper bound of the running time
of computing of an algorithm under analysis by means of the usual prefix
order defined on Σ∞. Note that in spite of the preceding disadvantage, the
Baire partial metric framework provides the basis to develop a mathematical
formalism for the complexity analysis of algorithms which does not rely on

13

the technical “convergence” assumption incorporated into the definition of
the complexity space C, that is

f ∈ C ⇔ f ∈ RT and
+∞
∑

n=1

2−n 1

f(n)
< +∞.

Of course, although every reasonable algorithm must hold the preceding con-
vergence condition, this one is a little artificial and has the unique purpose
of guaranteeing the finiteness of the value dC(f, g).

In the next subsection we propose, as a result of the preceding conclusion,
a slight modification of the Baire partial metric which will allow to develop
a suitable mathematical framework for asymptotic complexity analysis free
from the convergence assumption.

3 The Baire partial quasi-metric space and

the asymptotic complexity analysis of al-

gorithms

In the remainder of the paper we introduce a new metric tool on the set
Σ∞ of all words over an alphabet Σ in such a way that a slight modification
of Theorem 2 allows us to model satisfactorily the asymptotic complexity
analysis of algorithms via fixed point techniques in the spirit of Schellekens.

3.1 The Baire partial quasi-metric

For our proposal we recall a few pertinent concepts.
In [7] H.A. Künzi, H.A Pajooshesh and Schellekens have introduced and

studied the notion of partial quasi-metric. Roughly speaking a partial quasi-
metric is a partial metric which does not satisfy the symmetry property.
More specifically, a partial quasi-metric on a nonempty set X is a function
q : X ×X → R

+ such that for all x, y, z ∈ X :

(i) q(x, x) ≤ q(x, y);
(ii) q(x, x) ≤ q(y, x);
(iii) q(x, y) ≤ q(x, z) + q(z, y)− q(z, z);
(iv) q(x, x) = q(x, y) and q(y, y) = q(y, x) ⇔ x = y.

14

Observe that a partial metric on a setX is a partial quasi-metric satisfying
in addition the condition:

(v) q(x, y) = q(y, x)

for all x, y ∈ X.
A partial quasi-metric space is a pair (X, q) such that X is a nonempty

set and q is a partial quasi-metric on X.
Similarly to the case of partial metric spaces a partial quasi-metric q

generates a T0-topology T (q) on X which has as a base the family of open
q-balls {Bq(x, ε) : x ∈ X, ε > 0}, where Bq(x, ε) = {y ∈ X : q(x, y) <
q(x, x) + ε} for all x ∈ X and ε > 0.

If q is a partial quasi-metric on X , then the function dq : X ×X → R
+,

defined by
dq(x, y) = q(x, y)− q(x, x)

for all x, y ∈ X , is a quasi-metric.
On account of [7], a partial quasi-metric space (X, q) is said to be com-

plete provided that the associated quasi-metric space (X, dq) is bicomplete.
Moreover, in the same reference the Matthews fixed point theorem (Theo-
rem 2 in Section 1) has been extended to the context of partial quasi-metric
spaces in the following way:

Theorem 5. Let f be a mapping from a complete partial quasi-metric space
(X, q) into itself such that there is s ∈ R

+ with 0 ≤ s < 1, satisfying

q(f(x), f(y)) ≤ sq(x, y), (5)

for all x, y ∈ X. Then f has a unique fixed point. Moreover if x ∈ X is the
fixed point of f, then q(x, x) = 0.

The below result will be crucial in order to construct a partial quasi-metric
framework for the asymptotic complexity analysis.

Proposition 6. Under the conditions of Theorem 5, if there exists y ∈ X
such that dq(f(y), y) = 0 then dq(x, y) = 0.

Proof. Suppose for the purpose of contradiction that dq(x, y) 6= 0, where
x is the fixed point of f . Then q(x, y) > 0. Consequently the inequality (5)

15

yields

q(x, y) ≤ q(x, f(x)) + q(f(x), y)− q(f(x), f(x))

= q(f(x), y)

≤ q(f(x), f(y)) + q(f(y), y)− q(f(y), f(y))

= q(f(x), f(y)) + dq(f(y), y)

= q(f(x), f(y)) ≤ sq(x, y).

It follows that 1 ≤ s < 1, which is a contradiction. �

Now we are able to construct a new metric tool on the set Σ∞. Indeed, let
Σ be a nonempty alphabet endowed with an order �. Then, given x, y ∈ Σ∞,
we will say that x is a subprefix of y, denoted by x ⊑sp y, provided that there
exists n0 ∈ N with n0 ≤ l(x) such that xk � yk for all k ≤ n0. Obviously if
x ⊑ y, then x ⊑sp y.

Note that, contrary to the case of the prefix, the subprefix notion does
not induce an order relation on Σ∞.

Let us denote by l�(x, y) = sup{n ∈ N : xk � yk for all k ≤ n} whenever
x ⊑sp y, and l�(x, y) = 0 otherwise. Note that

l�(x, y) = ∞ ⇔ l(x) = l(y) = ∞ and xk � yk for all k ∈ N.

Clearly l�(x, y) = l(x, y) whenever x ⊑ y, and l�(x, x) = l(x) for all x ∈ Σ∞.
In the light of the preceding definitions we have the following result.

Proposition 7. Let Σ be an alphabet endowed with an order �. Then the
pair (Σ∞, qB) is a complete partial quasi-metric space, where qB : Σ∞×Σ∞ →
R

+ is defined by qB(x, y) = 2−l�(x,y) for all x, y ∈ Σ∞.

Proof. Since l�(x, y) ≤ l(x) and l�(y, x) ≤ l(x) for all x, y ∈ Σ∞ we
deduce immediately that qB(x, x) ≤ qB(x, y) and that qB(x, x) ≤ qB(y, x) for
all x, y ∈ Σ∞.

Next consider x, y ∈ Σ∞ such that qB(x, x) = qB(x, y) and qB(y, y) =
qB(y, x). Then l(x) = l�(x, y) and l(y) = l�(y, x). It follows that l(x) = l(y)
and that x = y.

Now we show that

qB(x, y) ≤ qB(x, z) + qB(z, y)− qB(z, z)

for all x, y, z ∈ Σ∞.

16

We assume that l�(x, z) > 0 and l�(z, y) > 0, because otherwise it is
clear that the preceding inequality holds. It follows that l�(x, y) > 0. Then
it suffices to consider that l�(x, y) ≤ min (l�(x, z), l�(z, y)) . But this clearly
forces that l�(x, y) = min (l�(x, z), l�(z, y)) . Consequently

qB(x, y) = 2−min(l�(x,z),l�(z,y)) ≤ 2−l�(x,z) + 2−l�(z,y) − qB(z, z)

= qB(x, z) + qB(z, y)− qB(z, z).

Therefore we have shown that qB is a partial quasi-metric on Σ∞.
Finally we show that the partial quasi-metric space (Σ∞, qB) is complete.

Indeed, let (xn)n∈N be a Cauchy sequence in (Σ∞, dsqB). Thus, given ε > 0,
there exists n0 ∈ N such that

max
(

2−l�(xn,xm) − 2−l(xn), 2−l�(xm,xn) − 2−l(xm)
)

< ε

for all n,m ≥ n0.
Since (xn)k = (xm)k for all k ≤ min (l�(xn, xm), l�(xm, xn)) we have that

pB(xn, xm) = 2−min(l�(xn,xm),l�(xm,xn)).

It follows that

dspB(xn, xm) ≤ 2 · 2−min(l�(xn,xm),l�(xm,xn)) − 2−l(xn) − 2−l(xm) < 3ε

for all m,n ≥ n0. Whence limn,m→∞ dspB(xn, xm) = 0. Thus (xn)n∈N is a
Cauchy sequence in (Σ∞, dspB). Since (Σ∞, pB) is a complete partial metric
space (see Section 2) we have that there exists x ∈ Σ∞ satisfying that

lim
n,m→∞

pB(xn, xm) = pB(x, x) = lim
n→∞

pB(x, xn).

Whence we obtain that limn→∞ dpB(x, xn) = limn→∞ dpB(xn, x) = 0. Thus

lim
n→∞

2−l�(x,xn) = 2−l(x),

since
0 ≤ 2−l�(x,xn) − 2−l(x) ≤ 2−l(x,xn) − 2−l(x) < ε

for all n ∈ N such that n ≥ n0.
Similar considerations apply to show that limn→∞ 2−l�(xn,x) = 2−l(x) from

the fact that limn→∞ dpB(xn, x) = 0. Hence limn→∞ dsqB(x, xn) = 0. Conse-
quently (Σ∞, dsqB) is a bicomplete quasi-metric space. Therefore (Σ∞, qB) is
a complete partial quasi-metric space. The proof is complete. �

17

From now on the pair (Σ∞, qB) will be called the Baire partial quasi-
metric space.

Notice that

qB(x, y) = 0 ⇔ l(x) = l(y) = ∞ and xk � yk for all k ∈ N.

So the Baire partial quasi-metric encodes, similarly to the case of the com-
plexity quasi-metric dC and the Baire partial metric pB, the order� on the set
Σ and the associated subprefix notion. Furthermore, we wish to emphasize
that the Baire partial quasi-metric space remains valid to model all those
processes which have been modeled by means of the Baire partial metric
space (as, for instance, in program verification or in denotational seman-
tics for programming languages). Nevertheless, the use of he Baire partial
quasi-metric presents an advantage with respect to use of the partial metric
one, and this advantage is given by its utility, contrarily to the Baire partial
metric space, in complexity analysis.

3.2 The asymptotic complexity analysis of algorithms

via the Baire partial quasi-metric: Three examples

We end the paper showing that the developed partial quasi-metric theory is
useful to analyze the asymptotic complexity of algorithms. Furthermore, we
validate our results retrieving as a particular case the well-known asymptotic
complexity of Mergesort, Quicksort and Largetwo. To this end, let us recall
that, as set out in Section 1, when discussing the running time of computing of
Divide and Conquer algorithms usually one has to solve recurrence equations
of the form

T (n) =

{

c if n = 1
aT (n

b
) + h(n) if n ∈ ωb

, (6)

where a, b ∈ N with a, b > 1, c ∈ R
+ with c > 0 and h ∈ RT such that

0 < h(n) < ∞ for all n ∈ N.
The asymptotic complexity of those algorithms whose running time of

computing is given by the solution of a recurrence equation (6) can be ana-
lyzed via the next result which is a Baire partial quasi-metric space version
of Theorem 1 in Section 1.

Theorem 8. Let Σ = (0,∞] and a, b ∈ N with a, b > 1. Fix z ∈ Σ∞ with
l(z) = ∞ and zk 6= ∞ for all k ∈ ωb and k ≥ 2. Let Σ∞

b,c be the subset of

18

Σ∞ given by Σ∞
b,c := {y ∈ Σ∞ : 2 ≤ l(y) and y1 = c, yk = ∞ for all k /∈

ωb with 2 ≤ k ≤ l(y)}. Then the mapping Θz
a,b : Σ∞

∗,b → Σ∞
b,c defined by

Θz
a,b(x) = xΘz

a,b
, where

(xΘz
a,b
)k :=







c if k = 1
∞ if k /∈ ωb and 2 ≤ k ≤ l(x) + 1
a · xk

b
+ zk if k ∈ ωb and

k
b
≤ l(x)

has a unique fixed point v ∈ Σ∞
b,c with l(v) = ∞. Moreover if u ∈ Σ∞

b,c such
that Θz

a,b(u) ⊑sp u then v ⊑sp u.

Proof. First of all we note that the subset Σ∞
b,c is closed in (Σ∞, dsqB)

and, thus, the pair (Σ∞
b,c, qB|Σ∞

b,c
) is a complete partial quasi-metric space.

Moreover, the mapping Θz
a,b : Σ

∞
b,c → Σ∞

b,c holds the inequality (5) in Theorem

5 with s = 1
2
. So the aforesaid theorem guarantees that Θz

a,b has a unique
fixed point v ∈ Σ∞

b,c with qB(v, v) = 0. Hence l(v) = ∞.
Now assume the existence of u ∈ Σ∞

b,c such that Θz
a,b(u) ⊑sp u. It fol-

lows, by construction of Θz
a,b, that l(u) = ∞. Furthermore, it is clear that

dqB(Θ
z
a,b(u), u) = 0. Hence, by Proposition 6, we have that dqB(v, u) = 0.

Whence we deduce that v ⊑sp u. �

Similarly to Section 1, we denote by ΦT the mapping ΦT : RT b,c → RT b,c

given by

ΦT (f)(n) =







c if n = 1
∞ if n /∈ ωb and n > 1
af(n

b
) + h(n) otherwise

.

Corollary 9. A Divide and Conquer recurrence of the form (6) has a unique
solution fT ∈ RT b,c. Moreover if there exists g ∈ RT b,c such that ΦT is an
improver with respect to g, then fT ∈ O(g).

Proof. Let v ∈ Σ∞
b,c be the fixed point of the mapping Θz

a,b ensured by
Theorem 8. Define fv ∈ RT following the same arguments as in Section
2. We immediately obtain that fv ∈ RT b,c is the unique solution fT to
the recurrence equation (6). So fv can be identified with the running time
of computing of a Divide and Conquer algorithm. In addition if ΦT is an
improver with respect to g ∈ RT b,c, then we can identify such a complexity
function with a word yg ∈ Σ∞

b,c, defined by ygk = g(k) for all k ∈ ωb, such that

19

Θz
a,b(y

g) ⊑sp y
g. It follows, by Theorem 8, that v ⊑sp y

g, that is fv ∈ O(fyg).
Since fyg = g we have obtained that fv ∈ O(g). �

Typical examples of algorithms whose running time of computing is the
solution to a recurrence equation of kind (6) are Mergesort and (in the best
case behaviour).

In the case of Mergesort the recurrence equation (6) in the worst case
behaviour is the following:

T (n) =

{

c if n = 1
2T (n

2
) + n− 1 if n ∈ ω2

, (7)

and in the best and the average case behaviour is exactly the next one:

T (n) =

{

c if n = 1
2T (n

2
) + n

2
if n ∈ ω2

. (8)

When Quicksort is considered the recurrence equation (6) associated to
the running time of computing in the best case behaviour is exactly the
following one:

T (n) =

{

c if n = 1
2T (n

2
) + dn if n ∈ ω2

, (9)

where d ∈ R
+ wiht d > 0.

As an immediate consequence of Theorem 8 and Corollary 9 we obtain
the following well-known results which ratify, in part, the proposed theory.

Corollary 10. Let r ∈ R
+ with r > 0. Define the mapping grlog2 ∈ RT b,c by

grlog
2

(n) =







c n = 1
∞ n /∈ ω2 and n > 1
rn log2 n otherwise

.

Then the running time of computing of

1) Mergesort in the worst case behaviour is in the complexity class O(g1log2).

2) Mergesort in the best and the average case bahviour is in the complexity

class O(g
1

2

log2
).

20

3) Quicksort in the best case bahaviour is in the complexity class O(gdlog2).

Next we show that the techniques based on the Baire partial quasi-metric
space are applicable to a more general class of algorithms than those whose
running time of computing can be associated with a solution to the recurrence
equation (6).

In spite of seeming natural that the complexity analysis of Divide and
Conquer algorithms always leads to recurrence equations of type (6), some-
times these kind of recursive algorithms yield recurrence equations that dif-
fer from (6). A well-known example of this type of situation is provided by
Quicksort. In the worst case behaviour the recurrence equation obtained for
Quicksort is given exactly as follows:

T (n) =

{

c if n = 1
T (n− 1) + jn if n ≥ 2

, (10)

where j ∈ R
+ with j > 0. Observe that in this case it is not necessary to

restrict the input size of the data to the set ωb for some b ∈ N with b > 1.
Another example of algorithms, in this case a non recursive algorithm,

whose complexity analysis leads to a recurrence equation different from (6) is
the well-known Largetwo. This finds the two largest entries in one-dimensional
array of size n ∈ N with n > 1 (for a deeper discussion see [4]). The run-
ning time of computing of Largetwo in the average case behaviour can be
associated with the solution to the recurrence equation given as follows:

T (n) =

{

c if n = 1
T (n− 1) + 2− 1

n
if n ≥ 2

, (11)

where c is, again, the time taken by the algorithm in the base case, i.e. when
the input data is a one-diemensional array with only one element or the array
does not contain input data. Notice that Largetwo needs inputs data with
size at least 2.

Of course the recurrence equations that yield the running time of comput-
ing of the above aforesaid algorithms can be considered as particular cases
of the following general one:

T (n) =

{

c if n = 1
T (n− 1) + h(n) if n ≥ 2

, (12)

where c ∈ R
+ with c > 0 and h ∈ RT such that 0 < h(n) < ∞ for all n ∈ N.

21

Setting
RT c = {f ∈ RT : f(1) = c}

and defining ΓT : RT c → RT c by

ΓT (f)(n) =

{

c if n = 1
f(n− 1) + h(n) if n ≥ 2

, (13)

we have that similar considerations to those given in the proof of Theorem
8 apply to next one, which gives a method based on RT c (Corollary 12) to
describe the complexity of those algorithms whose running time of computing
satisfies the recurrence equation (12).

Theorem 11. Let Σ = (0,∞]. Fix z ∈ Σ∞ with l(z) = ∞ and zk 6= ∞ for
all k ∈ N and k ≥ 2. Let Σ∞

c be the subset of Σ∞ given by Σ∞
c := {y ∈

Σ∞ : 2 ≤ l(y) and y1 = c}. Then the mapping Ψz : Σ∞
c → Σ∞

c defined by
Ψz(x) = xΨz , where

(xΨz)k :=

{

c if k = 1
xk−1 + zk if 2 ≤ k ≤ l(x)

,

has a unique fixed point v ∈ Σ∞
c with l(v) = ∞. Moreover if u ∈ Σ∞

c such
that Ψz(u) ⊑sp u then v ⊑sp u.

Corollary 12. A recurrence of the form (12) has a unique solution fT ∈
RT c. Moreover if there exists g ∈ RT c such that ΓT is an improver with
respect to g, then fT ∈ O(g).

From Theorem 11 and Corollary 12 we immediately deduce the next well-
known results.

Corollary 13. Let d, r ∈ R
+ with d, r > 0. Then the following assertions

hold:

1) The running time of computing of Quicksort in the worst case behaviour
is in the the complexity class O(gk), where k = max

(

c
4
+ j

2
, 3j

5

)

and

gr(n) =

{

c if n = 1
rn2 if n ≥ 2

.

2) The running time of computing of the Largetwo in the average case
behaviour is in the the complexity class O(gk), where k = max

(

2c+3
2+2d

, 1
)

and

gr(n) =

{

c if n = 1
r(2(n− 1)− log2 n+ d) if n ≥ 2

22

4 Conclusions

Partial metric spaces play a distinguished role in Computer Science. Mo-
tivated by this fact we have discussed their usefulness for analyzing the
complexity of algorithms. In particular we have shown that the concept
of partial quasi-metric space, directly related to the partial metric one, is
appropriate to carry out, without convergence assumptions, the asymptotic
complexity analysis of algorithms in the spirit of Schellekens. In particular
we have constructed the Baire partial quasi-metric from a new prefix notion
between words over an alphabet, and we have applied the new partial metric
structure, via fixed point arguments, to discuss the asymptotic complexity
of algorithms whose running time of computing is typically given by a re-
currence equation. The running time of computing of Mergesort, Quicksort
and Largetwo has been analyzed as specific examples in order to validate the
developed theory.

5 Acknowledgements

The second author acknowledges the support of the Science Foundation Ire-
land, SFI Principal Investigator Grant 07/IN.1/I977, and wishes to thank
the Universidad de las Islas Baleares, where the paper was written during
his research visit in September (2009), for financial support and hospital-
ity. The third author acknowledges the support of the Spanish Ministry of
Science and Innovation, and FEDER, grant MTM2009-12872-C02-01.

References

[1] G. Brassard, P. Bratley, Algorithms: Theory and Practice, Prentice Hall,
New Jersey (1988).

[2] C.S. Calude, S. Marcus, L. Staiger, A topological characterization of
random sequences, Inform. Process. Lett. 88, 245-250 (2003).

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms,
MIT Press, New York (1990).

[4] P. Cull, M. Flahive, R. Robson, Difference equations: From rabbits to
chaos, Springer, New York (2005).

23

[5] B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, Cam-
bridge University Press, Cambridge (1990).

[6] G. Kahn, The semantics of a simple language for parallel processing.
In: Proc. of the IFIP Congress Stockholm, pp. 471-475. Elsevier and
North-Holland, Amsterdam (1974).

[7] H.P.A. Künzi, H. Pajooshesh, M.P. Schellekens, Partial quasi-metrics,
Theoret. Comput. Sci. 365, 237-246 (2006).

[8] H.P.A. Künzi, Nonsymmetric distances and their associated topologies:
About the origins of basic ideas in the area of asymmetric topology. In:
C.E. Aull and R. Lowen (eds.) Handbook of the History of General
Topology vol. 3, pp. 853-968. Kluwer, Dordrecht (2001).

[9] S.G. Matthews, Partial metric topology, Ann. New York Acad. Sci. 728,
183-197 (1994).

[10] S.G. Matthews, An extensional treatment of lazy data flow deadlock,
Theoret. Comput. Sci. 151, 195-205 (1995).

[11] S. Oltra, S. Romaguera, E.A. Sánchez-Pérez, Bicompleting weightable
quasi-metric spaces and partial metric spaces, Rend. Circolo Mat.
Palermo 51, 151-162 (2002).

[12] D. Perrin, J.E. Pin, Infinite words: Automata, Semigroups, Logic and
Games, Pure and Appl. Math. Series, vol. 141, Elsevier Acad. Press,
Amsterdam (2004).

[13] S. Romaguera, M.P. Schellekens, Quasi-metric properties of complexity
spaces, Topology Appl. 98, 311-322 (1999).

[14] M. Schellekens, The Smyth completion: a common foundation for de-
nonational semantics and complexity analysis, Electronic Notes in The-
oret. Comput. Sci. 1, 211-232 (1995).

[15] D. S. Scott, Outline of a mathematical theory of computation. In: Proc.
4th Annual Princeton Conference on Information Sciences and Systems,
pp. 169-176 (1970).

24

[16] D. Scott, Lattice theory, data types and semantics. In: Proc. Courant
Computer Science Symposium on Formal Semantic of Programming
Languages, pp. 66-106, Prentice-Hall, Englewood Cliffs (1972).

25

	1 Introduction and preliminaries
	2 The Baire partial metric space and the asymptotic complexity analysis of algorithms
	3 The Baire partial quasi-metric space and the asymptotic complexity analysis of algorithms
	3.1 The Baire partial quasi-metric
	3.2 The asymptotic complexity analysis of algorithms via the Baire partial quasi-metric: Three examples

	4 Conclusions
	5 Acknowledgements

