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Abstract. We attack the problem of deciding whether a finite collection
of finite languages is a code, that is, possesses the unique decipherability
property in the monoid of finite languages. We investigate a few subcases
where the theory of rational relations can be employed to solve the prob-
lem. The case of unary languages is one of them and as a consequence, we
show how to decide for two given finite subsets of nonnegative integers,
whether they are the n-th root of a common set, for some n > 1. We also
show that it is decidable whether a finite collection of finite languages is
a Parikh code, in the sense that whenever two products of these sets are
commutatively equivalent, so are the sequences defining these products.
Finally, we consider a nonunary special case where all finite sets consist
of words containing exactly one occurrence of the specific letter.
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1 Introduction

The question whether or not a given morphism A : X* — A* is injective, that is,
whether or not the encoded message can be uniquely decoded, is fundamental
in the theory of message transmission. More precisely, the problem asks whether
or not the given set of code words possesses the unique decipherability property.
The issue for finite sets X was already affirmatively answered in 1950 with the
so-called Sardinas and Patterson algorithm, see [19]. Later, it was extended, via
syntactic monoids, to all rational sets, see [3] and its complexity was analyzed
in [7].

A particularly illustrative way of solving this problem is to construct a finite
two-tape automaton for all double representations (factorizations) of message
sequences and to reduce the testing to the emptiness problem for rational re-
lations. In [5] the same approach was used to show how to decide whether or
not, given two finite sets X and Y, the two monoids X* and Y* they generate
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are isomorphic. This, however, works for finite sets only and the general case of
rational sets is still open.

The unique decipherability problem can be formulated for any associative
algebra. It has been studied, e.g., in the theory of trees, [15], or in the case
of multivalued encodings, [18]. In the case of the monoid of finite languages,
amagzingly, little seems to be known, a splendid exception being the fact that the
set of prefix languages under the operation of concatenation product is free, that
is, any collection of finite prefix sets is a code, see [17]. A partial explanation to
the lack of such results was revealed recently when it was shown in a number
of papers, how powerful or difficult language equations are. To mention a few
examples, it is shown in [12] that even the question whether or not, for given
finite sets A, B,C, D, E, F, the equation AB*C = DE'F holds for all i > 0, is
recursively undecidable, see also [14]; the maximal set commuting with a given
finite set A need not be recursive, see [13]; or the fact that two given finite sets
A and B are conjugate, i.e., that there exists a set Z such that AZ = ZB holds,
is known to be decidable only in the case of bifix sets, see [4].

Nonetheless, there are two related research topics which have been studied
in the literature. Research on decomposition of rational languages was initiated
already in Conway’s book, see [8]. Later, this research was pursued in, e.g., [11],
where also prime decompositions are defined. In another direction, unambiguous
products of languages were studied in [1] and [16]. As we shall see, it is this, or
more precisely its negation, the ambiguity, which makes our problems difficult.

As already hinted, our goal is to tackle the unique decipherability decision
problem for a finite collection of finite languages. More precisely, we want to
apply the theory of rational relations to solve a few special cases, even if the
general problem seems to be very much beyond the reach of our tools.

The structure of our presentation is as follows. In section 2, we fix the termi-
nology, recall the basic tools we are using and prove a simple case of our problem
to be decidable, namely we show how to decide, given two finite sets of integers,
whether or not some of their nonnegative powers (actually subset sums since we
are working in the additive structure) coincide. The problem can be formulated
as a natural decision question in additive number theory: decide whether or not
two finite sets of numbers are the (additive) roots of some common set.

In section 3 we extend the above proof to the unique decipherability property
for unary languages, and later in section 4 a further extension is introduced
where so-called Parikh codes are considered. We say that a collection of finite
languages is a Parikh code, in the sense that whenever two products of these sets
are commutatively equivalent, so are the two sequences defining these products.
Being a Parikh code is necessary but not sufficient for a set of finite languages
to be a code. Finally, in section 5, another approach of using rational languages
is introduced. It allows us to consider the case when all words of all sets of the
collection contain one and only one occurrence of a fixed letter. In this case, we
can decide, given two such sets, whether or not some of their powers coincide;
we also outline methods of deciding whether a given collection of special finite
languages is uniquely decipherable, that is a code.
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2 Preliminaries and an example

In this section we fix the terminology, recall basic results and give a simple
example. For a general reference to the field, we suggest [2] and [3].

We denote by X a finite alphabet, and by X* the free monoid it generates.
Elements and subsets of X* are called words and languages, respectively. Other
monoids considered here are submonoids of the additive monoid of nonnegative
integers N, and Cartesian products of these and of X*. Our main concern is on
finite languages and finite subsets of N and N, and basic tools to deal with those
rely on properties of rational, i.e., semilinear sets. We recall that a rational subset
of a monoid is a subset obtained from finite subsets by applying finitely many
times the operations of set union, product and Kleene iteration, also known as
the star-operation. The result of applying the Kleene operation to the subset X
is denoted by X*. We shall also use the notation Xt = XX* = X*X. A linear
set, in turn, is a set of the form

{a+XMbr+--Aby | N €N, fori=1,...,p}

where p > 0 and a,b; € Nffor 1 <i< p. A semilinear set, is a finite union of
linear sets.

We recall that a subset of X* (resp. the Cartesian product X* x A*) is
rational if and only if it is recognized by some finite one-tape (resp. two-tape)
automaton.

It is quite straightforward to check that the family of rational sets of N* is
identical to the family of semilinear sets. A fundamental, nontrivial property due
to Ginsburg and Spanier is that this family is closed under complement. More
precisely, we have, see [10], also [9]

Theorem 1. The family of semilinear sets is an effective Boolean algebra.

This means that not only the family is closed under the Boolean operations, but
that from a specification of two semilinear sets we can compute a specification
for the complement and the intersection. This theorem plays a crucial role in our

considerations, as well as some other closure properties of semilinear sets such
as the closure under morphic images and projections.

Now we state our basic problems. Let M be an associative algebra, that is
an algebra with a single associative operation. A subset X C M is uniquely
decipherable in M if | whenever

Ty Tp=Y1-Yg, With i, y; € X
holds, then necessarily we have
p=q andx; =y;, fori=1,...,p.

This leads to the following decision issue: the UNIQUE DECIPHERABILITY PROB-
LEM for M, (UD-problem for short) asks to decide whether or not a given finite
subset of M can be uniquely deciphered.
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Two related simpler problems are:

The POWER EQUALITY PROBLEM for M (PE for short) asks whether or not, for
two given finite subsets X and Y of M, some of their powers coincide, that is
whether or not X™ = Y™ holds for some n,m > 1.

The CoMMON ROOT PROBLEM for M (CR for short) asks whether or not for
two given finite subsets X and Y of M, they are distinct n-th powers of a set
for a certain n, that is, whether or not X™ = Y™ holds for some n > 1.

We conclude this section by illustrating our techniques with a simple exam-
ple, which, we believe, is a natural problem in additive theory of numbers. By
convention, we keep using the multiplicative notation though we work with the
additive structure of the integers. In particular if X and Y are two subsets of
integers, then XY stands for all the sums of the form =z + y with z € X and

n times
y € Y and the notation X™ stands for the expression X + --- 4+ X. E.g., with
X ={0,1,2} we have X2 = X + X ={0,1,2,3,4}.

Theorem 2. Given two finite subsets X,Y C N, it is recursively decidable
whether or not the equality X™ = Y™ holds for some integers n,m > 1.

Proof. We define a subset of N3
Z=Nx(Xx1)T\(1IxY)txN. (1)

If 15 is the projection of N* onto N? defined by 71 3(z,y,2) = (z, 2), then we
claim that the following holds

(n,m) € m 3(Z) if and only if X" Y™ .

Indeed, this follows from the construction: if (n,m) € m; 3(Z) then there exist
elements z1,...,x, € Y™, that is X™ € Y™ and conversely. Consequently,

(n,m) & m 3(Z) if and only if X" C Y™ . (2)

It follows that the set of pairs (n,m) satisfying the condition (2), which defines
a rational relation on N2, characterizes the pairs of integers for which X™ C Y™
holds. Similarly, the relation characterizing the set of pairs for which X™ O Y™
holds, is rational. As the intersection is again rational and effective, the equality
X™ =Y™ holds for some integers n and m if and only if this rational relation is
nonempty. O

Theorem 2, rather its proof, has the following immediate consequences
Corollary 1. The common root problem of finite subsets for N is decidable.

Corollary 2. It is recursively decidable whether or not two finite subsets X and
Y of N are ultimately equivalent, i.e., whether or not there exists an integer N
such that

X"=Y"
holds for n > N.
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Of course, in either of the above corollaries, in order to get the answer “yes”,
the maximal and minimal numbers of the two subsets must necessarily coincide.
This condition holds for the second largest and smallest elements as well. For
the others, the ambiguity comes into play, and makes the problem difficult to
analyse.

A simple example from [6] showing that a square root of a set may not be
unique is as follows: take X = {0,2,3,7,10,12,14,15} and Y = {0,2,3,7,12,13,
14,15}. Then X2 =Y?2 =[0,30] \ {1,8,11,23}.

3 The unary case

In this section we extend our considerations of the previous section to cover the
UD-problem for unary languages, that is we prove

Theorem 3. The unique decipherability problem is decidable for unary lan-
guages

Proof. Let 5 ={Xy,..., Xy} be a collection of finite unary languages. We have
to decide whether or not there exist two sequences i1, ...,%, and ji,..., j; such
that

X X :le...qu WithXia,XjﬁEEandi17...,ip7éj17...,jq

i1 vt ip

We fix some notations. For i = 1,...,k let m; : N¥ — N be the projection onto
the i-th component. Furthermore, let e; € N* be the vector having 1 in position
i and 0 everywhere else. We modify the expression (1) in the proof of Theorem
2 by setting

k k

+ +

Z =N x (|G %)\ (e x X;)7 x N

j=1 j=1

Then we have (z1,z,29) € Z with 21,22 € N¥ and z € N if and only if z €
k

X(21) \ X (22), where X(za) = [[X[¢*), for a = 1,2. The last part of the

i=1
proof mimics that of Theorem 2, the only additional feature being that at the
end we have to intersect with the following rational subset of N2*

{(z,y) e N* | 2,y e N* 2 #£ y}

4 Unique Parikh decipherability

Our method allows us to go still a step further. In the previous section we were
able to solve our problem for all unary languages. Here, we can solve the general
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problem at the price of substituting the condition of unique Parikh decipherabil-
ity to that of unique decipherability.

We say that a collection & = {X;,..., Xy} of finite languages possesses the
unique Parikh decipherabilty property if the condition

Xy Xip ~e Xy o X,

implies that

i1 9p ~eJ1--- g
holds, where ~ is used to denote the commutative equivalence of languages or
words, respectively. We can formulate

Theorem 4. The unique Parikh decipherability is recursively decidable for finite
collections of finite languages in X*.

Sketch of the proof This result is actually a generalization of Theorem 2.
Indeed, it can be shown that this latter theorem holds for subsets of N™ for
arbitrary m > 1, not only for subsets of N. Now, set X' = {aj,...,a;} and
consider the morphism ¢ : 2* — N™ which maps each word w € X* to the
m-tuple (|w|a,.--,|w|a,, ) where |wl|,, denotes the number of occurrences of the
letter a; in w. Then our problem reduces to the unique decipherability problem
for the finite collection ¢(X1),...,d(X) C N™.

O

It is worthwhile emphasizing that all our results reported so far are based on
strong closure properties of rational relations in the commutative case, in par-
ticular the closure under complement, and as a consequence under intersection.
This leads to the following comments. First, the complexity of our algorithms are
quite high, particularly due the the operation of complementation. Second, there
is no hope to extend our approach at least in a naive way, since rational relations
over free monoids with more than one generator are not closed under intersec-
tion. On the other hand, we do not see how to construct complicated examples
of collections of finite sets which would satisfy the unique Parikh decipherability,
but would not satisfy the unique decipherability property.

Two last observations. It can be readily shown as hinted in the proof of the
previous theorem, that Theorem 2 carries over from N to N™ for m > 1 and
actually also to Z™. Also, since the commutative image of a rational subset of a
free monoid is a semilinear set of N, Theorem 4 also holds for a finite collections
of rational, not only finite, languages of a free monoid.

5 A special nonunary case

In this section we consider the UD-problem, for languages over a general alpha-
bet, but in quite a restricted setting, namely we assume that the finite languages
are subsets of

(ZN\A{b})"b(XZ\ {b})* for some fixed letter b € X. (3)
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We show that the problem is decidable in this case. The solution is based on
classical closure properties of rational languages under the Boolean operations
and the substitutions.

Theorem 5. The unique decipherability problem is decidable for any collection

of finite sets of the form (3).

Proof The proof is based on closure properties of rational languages.
We start by solving a different problem. Given I = {1,..., N} and two finite
collections of finite languages of type (3)

Xi ={zisls=1,...,s(9)}
and
Yi ={yi.|r=1,...,7(0)}

for ¢ € I, determine whether or not
Xo =Y, (4)
holds for some w = 4, - - - iy € I'". The notation X,, stands for the product

Xo=2Xi, X

ik
The idea is to determine the set of w € It such that
Xuw CYy

and to test whether or not its intersection with the set of w’s such that Y,, C X,
holds, is not empty. We show that these two languages are recognized by finite
automata, therefore that the test is effective.

It suffices to prove the claim for the set of words for which the inclusion
X CY, holds. We define an automaton A as follows. Its states are words over
X\ {b} and inverses (considering the free monoid as embedded in the free group),
the empty word 1 being both the initial and final state. Its alphabet is the set

J=A{G,s)]i=1,...,Nand s=1,...,s(¢)}
Intuitively, the word (i1, s1) - - - (i, s) takes the initial state to state o € J* if
Liy,s1 " Lig,sp = Yirry " Yig,rp @
holds for some ri,---,r; and to state 371, with 8 € J* if
Tiy sy Tiysp = Yiyry 0 Yiy B

holds for some 71, -, 7. Formally, the transitions are defined as follows: For
two states o and 3 and z; s € X, if

ax; s = yi 3, for some y; . € Y;,
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there is a transition

a5 (5)

Actually, there are four different possibilities depending on whether v and/or
are words, as above, or their formal inverses. These modifications are obvious.
Clearly, A is a well defined (due to the form of sets X; and Y;), finite, but
nondeterministic automaton. Intuitively, it checks those products of X-words
which can be decomposed into Y-words as well. Note that, again according to
the form of our words, such decompositions are of the same length.

Define the letter-to-letter substitution 7 : J* +— I* by posing 7 (i, s) = i. Let
L be the language recognized by the automaton and set P = 7~ 17(L). Then the
set of w’s such that X,, Z Y3, holds is equal to w(P\ L). Since all these operations
are effective and involve rational languages, the problem (4) is decidable.

We now turn to the proof of Theorem 5. It is obtained by modifying the
above construction. The noncode property, that is the existence of w # w’ such
that X,, = X, holds, is equivalent to the fact that the set

{(w,w)e (I xD)*|w#w, Xy, C Xy and Xy C X}

is nonempty. Set T = {(w,w') € (I x I)* | w # w', X, C Xy} and T’ =
{(w',w) | (w,w’) € T}. Then it suffices to verify that T'NT" # . It remains to
prove that T is a rational subset of the free monoid (I x I)* since in that case
T’ is clearly also rational as well as the intersection T N7T".

Equivalently, we prove that the set

{(w,w') € (Ix )" |w# ', Xy € Xu} (6)
= {(w,w) € (I x D)* [w#w'} 0 {(w,w) € (I x I)* | Xy € X}

is rational. The first term of the intersection is rational. Concerning the second
term, consider the automaton B whose alphabet is J x I, set of states, initial
and final states are identical to those of A and whose transitions are of the form

o ((i)s)ﬂ;/) ﬁ

if

WTis = Tit g0,
holds for some i' € {1,---,N} and r € {1,---,s(¢")} and of the three other
forms depending on whether or not the states are inverses of words in the free

monoid. Then the second term of expression 6 is the projection onto (I x I)* of
the language recognized by B which completes the proof. a

The first part of the previous proof can be reformulated as

Corollary 3. For two finite languages X, Y C (Z\{b})*b(X\{b})*, withb € X,
it is recursively decidable whether or not there exists an n such that X™ = Y™
holds true.
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The above deserves a few comments. It relies very much on the special form

of the X-sets, that is, on the fact that there is just one “marker” symbol in all
words of X sets. On the other hand, the marker need not be a symbol. That
is to say that X should satisfy the conditions that each word in X contains
exactly one occurence of a word u and each occurence of X2 contains exactly
two occurences of w.
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