Skip to main content
Log in

Searching for Black Holes in Subways

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Current mobile agent algorithms for mapping faults in computer networks assume that the network is static. However, for large classes of highly dynamic networks (e.g., wireless mobile ad hoc networks, sensor networks, vehicular networks), the topology changes as a function of time. These networks, called delay-tolerant, challenged, opportunistic, etc., have never been investigated with regard to locating faults. We consider a subclass of these networks modeled on an urban subway system. We examine the problem of creating a map of such a subway. More precisely, we study the problem of a team of asynchronous computational entities (the mapping agents) determining the location of black holes in a highly dynamic graph, whose edges are defined by the asynchronous movements of mobile entities (the subway carriers). We determine necessary conditions for the problem to be solvable. We then present and analyze a solution protocol; we show that our algorithm solves the fault mapping problem in subway networks with the minimum number of agents possible, k=γ+1, where γ is the number of carrier stops at black holes. The number of carrier moves between stations required by the algorithm in the worst case is \(O(k \cdot n_{C}^{2}\cdot l_{R} + n_{C}\cdot l_{R}^{2})\), where n C is the number of subway trains, and l R is the length of the subway route with the most stops. We establish lower bounds showing that this bound is tight. Thus, our protocol is both agent-optimal and move-optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover time of a simple random walk on evolving graphs). In: ICALP 2008: Proceedings of the 35th International Colloquium Automata, Languages and Programming, pp. 121–132 (2008)

    Google Scholar 

  2. Balamohan, B., Flocchini, P., Miri, A., Santoro, N.: Time optimal algorithms for black hole search in rings. In: COCOA 2010: Proceedings of the 4th Annual International Conference on Combinatorial Optimization and Applications, pp. 58–71 (2010)

    Google Scholar 

  3. Bui Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267 (2003)

    Article  MathSciNet  Google Scholar 

  4. Burgess, J., Gallagher, B., Jensen, D., Levine, B.N.: MaxProp: routing for vehicle-based disruption-tolerant networks. In: INFOCOM 2006: Proceedings of the 25th IEEE International Conference on Computer Communications, pp. 1–11 (2006)

    Google Scholar 

  5. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Deterministic computations in time-varying graphs: broadcasting under unstructured mobility. In: TCS 2010: Proceedings of the 6th IFIP International Conference on Theoretical Computer Science, pp. 111–124 (2010)

    Google Scholar 

  6. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Measuring temporal lags in delay-tolerant networks. In: IPDPS 2011: Proceedings of the 25th IEEE International Parallel and Distributed Processing Symposium (2011)

    Google Scholar 

  7. Chaintreau, A., Mtibaa, A., Massoulie, L., Diot, C.: The diameter of opportunistic mobile networks. Commun. Surv. Tutor. 10(3), 74–88 (2008)

    Article  Google Scholar 

  8. Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs with faulty links. In: DISC 2007: Proceedings of the 21st International Symposium on Distributed Computing, pp. 108–122 (2007)

    Google Scholar 

  9. Cooper, C., Klasing, R., Radzik, T.: Searching for black-hole faults in a network using multiple agents. In: OPODIS 2006: Proceedings of the 10th International Conference on Principles of Distributed Systems, pp. 320–332 (2006)

    Google Scholar 

  10. Cooper, C., Klasing, R., Radzik, T.: Locating and repairing faults in a network with mobile agents. In: SIROCCO 2008: Proceedings of the 15th International Colloquium on Structural Information and Communication Complexity, pp. 20–32 (2008)

    Google Scholar 

  11. Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Complexity of searching for a black hole. Fundam. Inform. 71(2, 3), 229–242 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Searching for a black hole in synchronous tree networks. Comb. Probab. Comput. 16(4), 595–619 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dobrev, S., Flocchini, P., Kralovic, R., Ruzicka, P., Prencipe, G., Santoro, N.: Black hole search in common interconnection networks. Networks 47(2), 61–71 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in arbitrary networks: Optimal mobile agents protocols. Distrib. Comput. 19(1), 1–19 (2006)

    Article  MATH  Google Scholar 

  15. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole in an anonymous ring. Algorithmica 48(1), 67–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dobrev, S., Santoro, N., Shi, W.: Using scattered mobile agents to locate a black hole in an un-oriented ring with tokens. Int. J. Found. Comput. Sci. 19(6), 1355–1372 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: optimal black hole search with pure tokens. Algorithmica (to appear). An earlier version appeared in DISC 2008

  18. Flocchini, P., Kellett, M., Mason, P., Santoro, N.: Map construction and exploration by mobile agents scattered in a dangerous network. In: IPDPS 2009: Proceedings of the 23rd IEEE International Symposium on Parallel & Distributed Processing, pp. 1–10 (2009)

    Google Scholar 

  19. Flocchini, P., Mans, B., Santoro, N.: Exploration of periodically varying graphs. In: ISAAC 2009: Proceedings of the 20th International Symposium on Algorithms and Computation, pp. 534–543 (2009)

    Google Scholar 

  20. Glaus, P.: Locating a black hole without the knowledge of incoming links. In: ALGOSENSORS 2009: Proceedings of the 5th International Workshop on Algorithmic Aspects of Wireless Sensor Networks, pp. 128–138 (2009)

    Google Scholar 

  21. Jain, S., Fall, K., Patra, R.: Routing in a delay tolerant network. In: SIGCOMM 2004: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, pp. 145–158 (2004)

    Google Scholar 

  22. Jones, E.P.C., Li, L., Schmidtke, J.K., Ward, P.A.S.: Practical routing in delay-tolerant networks. IEEE Trans. Mob. Comput. 6(8), 943–959 (2007)

    Article  Google Scholar 

  23. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation results for black hole search in arbitrary networks. Theor. Comput. Sci. 384(2–3), 201–221 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Approximation bounds for black hole search problems. Networks 52(4), 216–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kosowski, A., Navarra, A., Pinotti, M.C.: Synchronization helps robots to detect black holes in directed graphs. In: OPODIS 2009: Proceedings of the 13th International Conference on the Principles of Distributed Systems, pp. 86–98 (2009)

    Google Scholar 

  26. Liu, C., Wu, J.: Scalable routing in cyclic mobile networks. IEEE Trans. Parallel Distrib. Syst. 20(9), 1325–1338 (2009)

    Article  Google Scholar 

  27. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs. In: DIALM-POMC ’05: Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing, pp. 104–110 (2005)

    Chapter  Google Scholar 

  28. Ramanathan, R., Basu, P., Krishnan, R.: Towards a formalism for routing in challenged networks. In: CHANTS 2007: Proceedings of the 2nd ACM Workshop on Challenged Networks, pp. 3–10 (2007)

    Google Scholar 

  29. Zhang, X., Kurose, J., Levine, B.N., Towsley, D., Zhang, H.: Study of a bus-based disruption-tolerant network: mobility modeling and impact on routing. In: MobiCom ’07: Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking, pp. 195–206 (2007)

    Chapter  Google Scholar 

  30. Zhang, Z.: Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: overview and challenges. IEEE Commun. Surv. Tutor. 8(1), 24–37 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Kellett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flocchini, P., Kellett, M., Mason, P.C. et al. Searching for Black Holes in Subways. Theory Comput Syst 50, 158–184 (2012). https://doi.org/10.1007/s00224-011-9341-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-011-9341-8

Keywords

Navigation