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On rationality of verbal subsets in a group

A. Myasnikov, V. Roman’kov

March 22, 2011

Abstract

Let F be a free non-abelian group. We show that for any group word w

the set w[F ] of all values of w in F is rational in F if and only if w[F ] = 1
or w[F ] = F . We generalize this to a wide class of free products of groups.
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1 Introduction

In this paper we study the structure and complexity of the verbal sets in free
groups and free products of groups. The main result of the paper shows that
proper verbal subsets of free non-abelian groups are not rational. We generalize
this to a wide class of free products of groups and other groups which have such
free products as their quotients. In particular, the result holds for arbitrary
finitely generated non-abelian residually free groups, pure braid groups, or non-
abelian right angled Artin groups.

Following Gilman [8] we define for a given group G the set Rat(G) of all
rational subsets of G as the closure of the set of all finite subsets of G under the
rational operations: union, product, and generation of a submonoid (Kleene’s
star operation). Sometimes, according to the standard practice, we refer to
the rational subsets of a finitely generated free monoid as regular subsets. It is
known (see [8]) that a subset L of a group G is rational in G if and only if L is
accepted by a finite automaton over G (see definitions in Section 2).
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Let F (X) be a free group with a basis X and W ⊆ F (X) a subset of F (X).
An element g in a group G is called a W -element if g is the image in G of some
word w ∈ W under some homomorphism F (X) → G. By W [G] we denote
the set of all W -elements in G. The set W [G] generates the verbal subgroup
W (G). The verbal subgroups of groups were intensely studied in group theory
especially with respect to relatively free groups and varieties of groups. We refer
to the books [15], [21] for the general facts in this area.

W -width (orW -length) is one of the key notions concerning verbal subgroups
W (G) of a group G. The W -length lW (g) of an element g ∈ W (G) is the the
minimal natural number n such that g is a product of n W -elements in G or their
inverses. The W -width of the verbal subgroup W (G) is sup{lW (g) | g ∈ W (g)}.
It is usually assumed that the set W is finite. In this case the set W [G] is
just a verbal set w(G) for a suitable single word w. Furthermore, for a finite
W if the verbal subgroup W (G) is of finite W -width then it is equal to w[G]
for some single word w (not necessary from W ). In particular, the length of
W (G) depends on the set W . From now on we will always assume that W
is just a singleton W = {w} and refer to the related verbal set and the W -
length as w[G] and w-length. Usually, it is very hard to compute the w-length
of a verbal subgroup w(G) or the w-length of an element g ∈ w(G). The
first question of this type goes back to the Ore’s paper [16] where he asked
whether the commutator length (i.e., the [x, y]-length) of every element in a
non-abelian finite simple group is equal to 1 (Ore Conjecture). Only recently
the conjecture was established by Liebeck, O’Brian, Shalev and Tiep [12]. For
recent spectacular results on the w-length in finite simple groups we refer to the
papers [11, 22] and a book [21].

Sometimes, for example in the presence of negative curvature, it is convenient
to replace the unruly standard W -length with a more smooth stable W -length,

which is defined for an element g ∈ G as the limit limn→∞

lW (g)
n

(which always
exists). In some sense the stable commutator length relates to an L1 filling norm
with Q coefficients, introduced by Gromov in [9], see also Gersten’s paper [7].
In [10] Gromov studied stable commutator length and its relation with bounded
cohomology. We refer to a book [5] by Calegary on stable length of elements in
groups.

On the other hand, Calegari showed in [6] that if a group G satisfies a non-
trivial law then the stable commutator length is equal to 0 for every element
from [G,G]. In particular, in solvable groups the stable commutator length is
not very helpful, instead, the standard W -length was studied intensely. We
refer to papers [23], [19], [20], and a book [21] on the standard width of verbal
subgroups in groups.

Properties of verbal sets W [G] themselves play an important part in group
theory. For example, the Membership Problem (MP) to the set W [G] in G is
equivalent of solving in G the homogeneous equations of the type w(X) = g,
where w ∈ W and g ∈ G. The Endomorphism Problem in G, which asks to
decide for given elements g, h ∈ G if there is an endomorphism φ ∈ End(G) such
that φ(g) = h, is just a particular case of such a problem. Since the Diophantine
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Problem (of solving arbitrary equations) is decidable in a free group F [14], MP
to the verbal sets in F is also decidable. However, Razborov showed in [17] that
the solution sets of quadratic homogeneous equations of the type Πn

i=1[xi, yi] = g
may have a very complex structure.

In this paper we focus on the complexity of verbal sets in free groups from the
formal language theory view point. The goal is to determine the proper place
of various verbal sets of a free group F (and some other ”free-like” groups) in
the hierarchy of formal languages. Since proper verbal subsets of F are not
rational in F , they are not regular in F , so they sit in some higher levels of the
hierarchy of formal languages. What these levels are precisely is an interesting
open problem.

The paper is organized as follows. Section 2 contains necessary definitions
and facts about rational subsets in groups. In Section 3 we discuss Rhemtulla’s
gap theorem , which is the main technical tool of our approach to verbal sets
in free groups and free products of groups. In Section 4 we establish some key
lemmas on general properties of rational verbal subsets, while in Section 5 we
prove the main results of the paper.

2 Preliminaries

Let F = F (X) be a free group with basis X = {x1, . . . , xn, . . .}, viewed as
the set of reduced words in X ∪ X−1 with the standard multiplication. Fix
w = w(x1, x2, ..., xn) ∈ F (X). An element g of a group G is called a w-element
if g = w(g1, g2, ..., gn) for some g1, . . . , gn ∈ G. We denote the set of all w-
elements of G by w[G]. A subset M ⊆ G is a verbal subset of G if M = w[G] for
some word w ∈ F (X). The subgroup w(G) generated by w[G] is the w-verbal
subgroup of G, and a subgroup of G is called verbal if it is equal to w(G) for
some w.

A word w is said to be proper if there exist groups G and H such that
w[G] 6= 1 and w[H ] 6= H , in fact, in this case 1 6= w[G ×H ] 6= G×H .

Any element w = w(x1, . . . , xn) ∈ F (X) can be written as a product

w = xt1
1 xt2

2 ...xtn
n w′,

where w′ = w′(x1, . . . , xn) ∈ [F, F ]. Since the exponents t1, t2, ..., tn depend
only on the element w the number e(w) = gcd(t1, t2, ..., tn) is well-defined (here
we put e(w) = 0 if t1 = . . . = tn = 0). If e(w) = 0 then we refer to w as
a commutator word. A non-trivial commutator word is obviously proper. If
e(w) > 0 then there exist integers r1, r2, ..., rn such that

∑n

i=1 riti = e, so for
an arbitrary group G and an element g ∈ G one has w(gr1 , gr2, ..., grn) = ge.
In particular, e(w) = 1 implies that w[G] = G for every group G, so w is not
proper. If e(w) > 1 then w is proper, which can be seen in an infinite cyclic
group. In other words, a non-trivial word w is proper if and only if e(w) 6= 1.

Let M be a monoid. For L ⊆ M by L∗ we denote the submonoid of M
generated by L. The set Rat(M) ⊆ 2M , of all rational subsets of M , is defined
as the smallest (with respect to inclusion) subset which contains all finite subsets
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of M and closed under the following operations (here L1, L2, L are subsets of
M):

• Union: (L1, L2) → L1 ∪ L2.

• Product: (L1, L2) → L1L2 = {ab | a ∈ L1, b ∈ L2}.

• Submonoid generation: L → L∗.

It follows from the definition above that every rational set L ∈ Rat(M) in a
monoid M can be presented in a form

L = ∪k
i=1ai1E

∗

i1...aitiE
∗

iti
ai,ti+1 (1)

where all coefficients aij are in M and each Eij is a rational subset of M.
We define a complexity function c : Rat(M) → N as follows. Put c(L) = 0

if and only if L is finite. Suppose now that rational sets L ∈ Rat(M) with
c(L) ≤ n − 1 are defined. Then for a set L ∈ Rat(M) we put c(L) = n if and
only if c(L) 6≤ n− 1, but either L = L1 ∪L2, or L = L1L2, or L = L⋆

1, for some
Li ∈ Rat(M) with c(Li) ≤ n− 1, i = 1, 2.

It is easy to see that if G is a group then for any element g ∈ G and a set
L ∈ Rat(G) one has

c(g−1Lg) = c(L). (2)

A finite M−automaton is a tuple A = (Q, δ, q0, F ) where

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of terminating states,

• δ ⊆ Q×M ×Q is a finite relation, termed the transition relation.

One can view an automaton A = (Q, δ, q0, F ) as a directed M -labelled graph
(possibly with multiple edges), with the set of vertices Q and where two vertices
u, v are connected by an edge u → v labelled by m ∈ M if and only if (u,m, v) ∈
δ. As usual, a path p in A from a vertex u to a vertex v is a sequence of edges

(u0,m1, u1), (u1,m2, u2), . . . , (uk−1,mk, uk)

such that u = u0 and v = uk. The label λ(p) of p is the product m1 . . .mk ∈ M .
A successful path is a path from q0 to a vertex in F .

The subset L(A) ⊆ M (the set of all elements in M accepted by A) is defined
as

L(A) = {λ(p) | p is a successful path in A}.

It was shown in [8] that for any monoid M and any subset L ⊆ M the
following equivalence holds:

L ∈ Rat(M) ⇐⇒ L = L(A) for some automaton A over M.
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Gilman showed in [8] that any rational subset L of a group G generates in
G a finitely generated (and so rational) subgroup. Hence if a verbal set w[G] is
rational then the verbal subgroup w(G) is finitely generated. In the case when
G is a free non-abelian group, or more generally, a non-trivial free product
G = A∗B, every normal subgroup of infinite index is not finitely generated (see
[13] and [3]), and so it is not rational. Hence the case when the verbal subgroup
w(G) has finite index in G becomes the most interesting in our study.

3 Free products and Rhemtulla’s criterion

Let G = A ∗ B be a free product of non-trivial groups A and B. Each element
u 6= 1 of G can be uniquely written in its reduced form u = u1u2...um, where
ui ∈ A ∪B \ {1} (i = 1, 2, ...,m); and for every i the elements ui, ui+1 are from
different groups A and B. The number m is the syllable length of u, denoted by
|u|. Put supp(u) = {u1, . . . , um}. Furthermore, the reduced form of a non-trivial
element u ∈ G can be uniquely written as

u = r−1
t ...r−1

1 v1...vkr1...rt,

where either k = 1, or k > 1 and v1vk 6= 1. We refer to v1...vk as the core of u
and denote it by ū.

As usual one can define a cyclically reduced form u0 of an element u ∈
G. Namely, let the core ū of u is given in the reduced form ū = u1u2...um.
Then if u1, um are from the different factors then u0 = u. Otherwise, u0 =
(u2 . . . um−1, (umu1)).

In [18] A.H. Rhemtulla introduced a useful technique of gap functions for
G = A ∗B. To explain, suppose one of the groups, say B, has an element b ∈ B
such that b 6= b−1. Let u = u1u2...um be a non-trivial element in G given in
its reduced form. A subsequence ui, ui+1, . . . , ui+2k of the reduced form of u
is called a b−gap in u of length 2k − 1 if ui = ui+2k = b and uj 6= b for any
i < j < i+ 2k.

For k = 1, 2, . . . denote by δb,k(u) the number of b−gaps of length 2k − 1 in
u. For a positive integer e put γb,e(u) to be the number of values k such that
δb,k(u) 6= δb−1,k(u)(mode).

Rhemtulla’s criterion [18]. Let G = A ∗B and b ∈ B as above. Then for
any word w(x1, . . . , xn) with e = e(w) > 1 the function γb,e is bounded on the
set w[G].

4 Positive elements

A sign function on a group G is a function ρ : G → {−1, 1} such that:

• ρ(1) = 1;

• for any f, g ∈ G if ρ(f) = 1, ρ(g) = 1 then ρ(fg) = 1.
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The set of positive elements Pos(G) = {g ∈ G | ρ(g) = 1} forms a submonoid
in G. Conversely, a group G with a distinguished submonoid M ⊆ G admits a
sign function ρM such that ρM (g) = 1 if and only if g ∈ M . We refer to groups
with sign functions as s-groups. Elements from M are called positive, all others
- negative. The following examples are important in our context.

Example 4.1. Let C = 〈a〉 be an infinite cyclic group generated by a. Then
ρ(an) = 1, if n ≥ 0, and ρ(an) = −1 if n < 0 is a sign function.

Generalizing the example above, we get the following

Example 4.2. Let G be a group with a generating set X. Then the submonoid
mon(X) = X∗ generated by X gives a sign function ρX on G.

Example 4.3. Let G = A ∗ B be a free product of two non-trivial s−groups
A,B. The function ρ : G → {−1, 1} such that ρ(g) = 1 if and only if all factors
in the reduced form of g ∈ A ∗ B are positive, is a sign function on G, termed
the standard free product sign function.

When applied to a free group F with basis X the examples above give the
standard notion of a positive word in F .

Notice, that there might be ”zero divisors” in G relative to Pos(G), i.e., some
elements x, y ∈ G, not both positive, such that xy ∈ Pos(G). For example, if
u ∈ G is negative then uu−1 is positive. To separate the natural cases like
uu−1 above (which is easy to deal with) from the harder ones we introduce the
following notion. We say that a sign function ρ on G is reduced if it has the
following property:

• for any two subsets of elements S, T of G if ST ⊆ Pos(G) then here exists
an element u ∈ G such that Su−1 ⊆ Pos(G) and uT ⊆ Pos(G).

In particular, if uT ⊆ Pos(G) then there is an element u0 such that uu−1
0 ∈

Pos(G) and u0T ⊆ Pos(G).
Notice also, that if ρ is reduced then for a fixed set S there is a single u that

works for all subsets T as above; a similar claim holds for a fixed set T .
We say that a sign function ρ on G is strongly reduced if it is reduced and

has the following property:

• any product of two negative elements is negative.

Remark 4.4. The sign function on the infinite cyclic group from Example 4.1
is strongly reduced.

Lemma 4.5. The standard sign function (see Example 4.3) on a free product
G = A ∗ B of two non-trivial s−groups with reduced sign functions is reduced.
In particular, the standard sign function on a free group is reduced.

Proof. Let S, T be non-empty subsets of G such that ST ⊆ Pos(G). For an
element u ∈ S \Pos(G) written in its reduced form u = u1u2 . . . ui . . . uk denote
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by i = i(u) such an index that ui is negative, but all the factors u1, . . . , ui−1 are
positive. Similarly, for an element v = v1v2...vj ...vl ∈ T \ Pos(G) written in its
reduced form let j = j(v) be the index such that vj is negative but all the factors
vj+1, . . . , vl are positive. Notice, that the sets I = I(S) = {|u| − i(u) + 1 | u ∈
S \ Pos(G)} and J = J(T ) = {j(v) | v ∈ T \ Pos(G)} are bounded even if the
sets S, T are infinite. Indeed, if, say, J is unbounded then for a given u ∈ S there
exists v′ ∈ T with |u| < j(v′), in which case uv′ is not positive, - contradicting
the hypotheses of the lemma. Put max(∅) = 0, and i0 = max(I), j0 = max(J).
The case S, T ⊆ Pos(G) when I = J = ∅ and i0 = j0 = 0 is obvious. Assume
that i0 ≤ j0 (the other case can be treated similarly). Let ṽ ∈ T \Pos(G) be an
element with j0 = j(v). Write ṽ in the reduced form ṽ = v1 . . . vj0−1vj0 . . . vl,
and assume that vj0 lies, say, in B. Denote c = v1 . . . vj0−1. Then for every
element u ∈ S the factor vj0−1 cancels out in the reduced form of uv (otherwise
a negative factor vj0 occurs in the reduced form of uv). Hence the reduced form
of each u ∈ S is of the type u = u1 . . . ur(u)c

−1 for a suitable index r(u) and
ur(u) ∈ B. Consider now two cases.

Case 1. i0 = j0. Let ũ ∈ S \ Pos(G) be an element with i0 = i(u).
In this case ũ = ũ1 . . . ũr(ũ)c

−1, where ũr(ũ) ∈ B is negative. The argument
above shows that every element v ∈ T can be written in the reduced form
v = cvj0 . . . vm, where vj0 ∈ B. It follows that for any u ∈ S, v ∈ T one
has uv = u1 . . . (ur(u)vj0) . . . vm, where all the factors, including (ur(u)vj0), are
positive. Since the sign function in B is reduced there is an element b ∈ B such
that the elements ur(u)b

−1, bvj0 are positive in B for any u ∈ S, v ∈ T . Hence,
Scb−1 ⊆ Pos(G) and bc−1T ⊆ Pos(G), as required.

Case 2. i0 < j0. In this case the reduced form of each u ∈ S is of the type
u = u1 . . . ur(u)c

−1, ur(u) ∈ B, and furthermore, ur(u) ∈ Pos(B). Observe that
for every v ∈ T since uv ∈ Pos(G) then in the product c−1v either c−1 cancels
out completely or c−1v ∈ Pos(G). In the former case v = cv′ and the reduced
form of v′ is of the type v′1 . . . v

′

m; in this event put y(v) = v′1. In the latter
case, put y(v) = 1. By construction the sets SB = {ur(u) | u ∈ S} ⊆ B and
T = {y(v) | v ∈ T } ⊆ B are such that SBTB ⊆ Pos(B). Hence there is b ∈ B
with SBb

−1 ⊆ Pos(B), bTB ⊆ Pos(B). It follows that Scb−1 ∈ Post(G) and
bc−1T ⊆ Pos(G) as claimed.

Lemma 4.6. Let A,B be non-trivial groups with strongly reduced sign func-
tions and G = A ∗ B equipped with the standard free product sign func-
tion. If L ∈ Rat(G) and for some elements u, v ∈ G uLv ⊆ Pos(G) then
uLv ∈ Rat(Pos(G)).

Proof. We use induction on c(L). If c(L) = 0 then L is finite and the claim is
obvious. Now consider the following cases.

Case 1) If L = L1 ∪ L2 and c(Li) < c(L) for i = 1, 2 the result follows by
induction.

Case 2) Suppose L = L1L2 and c(Li) < c(L) for i = 1, 2. Then uLv
is a product of two rational sets uL1 and L2v. Since the standard free prod-
uct sign function on A ∗ B is reduced there is an element w ∈ G for which



On rationality of verbal subsets • March 16, 2011 8

uL1w
−1, wL2v ⊆ Pos(G). Then uL1w

−1, wL2v ∈ Rat(Pos(G)) by induction,
hence uLv = uL1w

−1 · wL2v ∈ Rat(Pos(G)).
Case 3) Suppose L = L∗

1, where c(L1) < c(L). Then uLv = uL∗

1v =
uv(v−1L1v)

∗, and w = uv ∈ Pos(G) since 1 ∈ L∗

1. Denote L2 = v−1L1v,
so uLv = wL∗

2 and c(L2) = c(v−1L1v) = c(L1) < c(L).
If L2 ⊆ Pos(G) then the result follows by induction. Otherwise, there is

an element l ∈ L2 r Pos(G). If l = l1...lili+1...lt is the reduced form of l then
there exists i such that li is negative and all the factors li+1, . . . , lt are positive.
Suppose that the reduce form of l is written in the form

l = r−1
t ...r−1

1 u1...ukr1...rt,

where either k = 1, or k > 1 and u1uk 6= 1.
Claim 1. In the notation above the factor li of l is among the first t + 1

factors r−1
t , . . . , r−1

1 , u1, i.e., i ≤ t+ 1.
Indeed, the reduced form of every element d ∈ wL∗

2 must have the product
l−1
i−1...l

−1
1 at the end, otherwise the element dl ∈ wL∗

2 would not be positive.
If i > |l|/2 then for every d ∈ wL∗

2 more then half of l cancels out in dl, so
|dl| < |d|. This implies that wL∗

2 does not have an element of minimal length,
i.e., wL∗

2 = ∅, which contradicts the fact that w ∈ wL∗

2.
Assume now that i ≤ |l|/2, but i > t + 1. It follows that k ≥ 2. In this

case for any natural number p one has lp ∈ L∗

2 and the rightmost occurrence
of the negative factor li of l does not cancel in lp (since it is in the core l̄ of
l). Therefore, for sufficiently large p the rightmost occurrence of the factor li
does not cancel in wlp, so the element wlp is negative, which contradicts the
condition wL∗

2 ⊆ Pos(G). Hence i ≤ t+ 1 and the claimed follows.
Let’s take l ∈ L2 r Pos(G) such that i = i(l) be the maximal possible such

index among all elements l in L2 rPos(G) (such i exists since wL∗

2 ⊆ Pos(G)).
We can also assume that li = b ∈ B. It follows that the reduced form of w is
equal to w′b(w)l−1

i−1...l
−1
1 , where b(w) ∈ B and b(w)b ∈ Pos(B).

Claim 2. The reduced form of any element d ∈ L2 can be written as d =
d′b(d)l−1

i−1...l
−1
1 , where b(d) ∈ B and b(d)b ∈ Pos(B).

Indeed, suppose m ∈ L2 does not have l−1
i−1...l

−1
1 at the end. Then m =

m1...msl
−1
q ...l−1

1 , where 0 ≤ q < i − 1 (we assume m = m1...ms for q = 0)
and mslq+1 6= 1 (notice that ms and lq+1 are in the same factor). Since wml
is positive the negative factor li of l cancels out in wml, so m1...ms−1(mslq+1)
must cancel out in wm. The element w ends on l−1

i−1...l
−1
1 . If s > q then m =

l1...lqmq+1...msl
−1
q ...l−1

1 , and mq+1 = lq+1. On the other hand mslq+1 6= 1,
which shows that mq+1...ms is the core of m. If s 6= q + 1 then the length of
the core of m is greater than 1, so for sufficiently large integer p the element
wmpl ∈ wL∗

2 is negative - contradiction. If s = q+1 then m = l1...lqlq+1l
−1
q ...l−1

1

and wml = w′l−1
q+1lq+1lq+1lq+2 . . . lt, whose reduced form is w′lq+1lq+2 . . . lt, so

it contains li - contradiction. The case s ≤ q can be done similarly. This proves
the claim.

In the notation above, since the sign function on B is strongly reduced there
is a positive element b0 ∈ B for which b0b, b(w)b

−1
0 and b(d)b−1

0 are positive



On rationality of verbal subsets • March 16, 2011 9

for all d ∈ L2. Denote r = b0l
−1
i−1...l

−1
1 . Notice, that r is positive. It follows

from Claim 2 that every element d ∈ L2 can be written in the reduced form as
d = d′(b(d)b−1

0 )r. Let
L3 = {d′(b(d)b−1

0 ) | d ∈ L2}

Claim 3. The language rL3 is positive.
Indeed, it follows from the argument above.
Notice that rL3 = rL2r

−1 so rL3 is rational and c(rL3) = c(L2) < c(L).
Hence by induction rL3 ∈ Rat(Pos(G)). Now

wL∗

2 = w′r{L2}
∗ = w′{rL3}

∗r, (3)

where all factors in product on the right are positive. Hence uLv = wL∗

2 ∈
Rat(Pos(G)), which proves the lemma.

Lemma 4.7. Let A,B be non-trivial groups with strongly reduced sign functions
and G = A ∗ B equipped with the standard sign function. If L ∈ Rat(G) and
L ⊆ Pos(G) then L ∈ Rat(Pos(G)).

Proof. We use induction on complexity c(L) of L. If c(L) = 0 then L is finite
and the claim is obvious. Consider the following cases.

Case 1) If L = L1 ∪ L2 or L = L∗

1 with c(Li) < c(L), i = 1, 2, then L1, L2 ⊆
Pos(G) and the result follows by induction.

Case 2) Suppose L = L1L2. By Lemma 4.5 the standard free prod-
uct sign function on G is reduced. Therefore there is u ∈ G such that
L1u, u

−1L2 ⊆ Pos(G). By Lemma 4.6 L1u, u
−1L2 ⊆ Rat(Pos(G)). Hence

L = (L1u)(u
−1)L2 ⊆ Rat(Pos(G)), as claimed.

Lemma 4.8. Let A,B be two non-trivial groups with strongly reduced sign func-
tions and such that the sets Rat(A), Rat(B) are closed under intersections and
complements (form Boolean algebras) and G = A∗B. If the submonoid Pos(G)
relative to the standard sign function on G is rational then for any L̄ ∈ Rat(G)
the intersection L = L̄ ∩ Pos(G) is rational in the monoid Pos(G).

Proof. Observe, that under the premises of the theorem Rat(G) is a Boolean
algebra by G.A. Bazhenova’s result [1], which states that class of groups with
Boolean algebras of rational subsets is closed under free products. Hence L is
rational in G. Then L ∈ Rat(Pos(G)) by Lemma 4.7.

Corollary 4.9. Let F2 = F (X2) be a free non-abelian group of rank 2 with
basis X2 = {x1, x2}. Denote by X∗

2 the free submonoid of F2 generated by X2.
If L̄ ∈ Rat(F2) then L = L̄ ∩X∗

2 ∈ Rat(X∗

2 ).

Proof. Follows from Lemma 4.8.
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5 Free groups and free products

Let F = F (X) be a free non-abelian group with basis X = {x1, x2, ...}. Put
X2 = {x1, x2} and consider the free group F2 = F (X2) with basis X2 as the
distinguished subgroup of F (X) generated by X2. By X∗

2 we denote the free
submonoid of F2 generated by X2.

Lemma 5.1. Let G = A ∗B be a free product of two non-trivial groups A and
B. If w is a proper word such that the verbal subgroup w(G) has infinite index
in G then the set w[G] is not rational in G.

Proof. Observe that for such w the verbal subgroup w(G) is a non-trivial normal
subgroup of infinite index in G. By B. Baumslag’s result [3] the subgroup w(G)
is not finitely generated. Since a subgroup generated in a group by a rational
subset has to be finitely generated (see [8], Theorem 4.2), the generating set
w[G] of w(G) is not rational in G.

Corollary 5.2. Let G = A ∗ B be a free product of non-trivial groups A
and B with infinite abelianization Gab = G/[G,G]. Then for any non-trivial
commutator word w the set w[G] is not rational in G.

Corollary 5.3. Let F be a free non-abelian group. Then for any non-trivial
commutator word w the set w[F ] is not rational in F.

For the rest of the paper we fix a proper non-commutator word w. Observe,
that e = e(w) ≥ 2. To apply Rhemtulla’s criterion we view the free group F2

as a free product F2 = 〈x1〉 ∗ 〈x2〉 = A ∗ B, equipped with the standard sign
function given by the submonoid X∗

2 . This sign function is strongly reduced.

Lemma 5.4. Let p, q ∈ X∗

2 and E ⊆ X∗

2 be such that pE∗q ⊆ w[F2]. Then one
of the following hold:

1) |u| ≥ 2 for every u ∈ E∗. In this case supp(pE∗q) is finite.

2) |u| = 1 for every u ∈ E∗. In this case either E∗ ⊆ x∗

1 or E∗ ⊆ x∗

2.

Proof. Let u, v ∈ E∗. Since E ⊆ X∗

2 the elements u, v are positive, so they are
equal to their cores u = ū, v = v̄. Assume that ū, v̄ are given in the reduced
forms

ū = u1u2...uk, v̄ = v1v2...vl.

We prove first that if k, l ≥ 2 then supp(u0) = supp(v0). Notice, that either
supp(u0) = {u1, u2, ..., uk} for even k, or supp(u0) = {u2, u3, ..., (uku1)} for odd
k.

Since
puu{v}∗uuq ⊆ X∗

2 ∩ w[F2] (4)

the Rhemtulla’s criterion shows that supp(u0) ⊆ supp(v0). Indeed, |v̄| ≥ 2
implies that the length of vn strictly grows with n, so if b is a factor in supp(u0)
but not in supp(v0) then for infinitely many k there is a number n = n(k) such
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that the word puuvnuuq contains precisely one b-gap of length k. So the gap
function δb,k(u) is equal to 1 for infinitely many k on puu{v}∗uuq. Notice that
δb−1,k(puuv

nuuq) = 0 since the words are positive. Hence the function γb,e is
unbounded on w[F2] - contradicting the Remtulla’s criterion. Similarly, we show
that supp(v0) ⊆ supp(u0). Hence supp(u0) = supp(v0) as claimed.

Observe now that if there are elements u, v ∈ E such that |u| ≥ 2 and |v| = 1
then for sufficiently large n one has |u|, |uvn| ≥ 2 and supp(u0) 6= supp((uvn)0)
- contradicting the statement above.

The argument above shows that either all elements in E∗ are of syllable
length greater then 1, or all of them have length 1. This proves 2) and the first
part of 1). To finish the proof observe that for any u = u1 . . . uk ∈ E∗ one
has u2, . . . , uk−1, uku1 ∈ supp(v0). Since u1, uk, u1uk are positive there are only
finitely many choices for u1 and uk as divisors of uku1. This proves that there
is a finite set K ⊆ X∗

2 such that for any u ∈ E∗ supp(u) ⊆ K. It follows that
supp(pE∗q) is finite as claimed.

Corollary 5.5. Let L ∈ Rat(X∗

2 )∩w[F2]. Then there is a finite setKL ⊆ x∗

1∪x
∗

2

and a natural number n = n(L) such that every element u ∈ L can be presented
as a product of the following type:

u = s1t1s2 . . . sntn,

where supp(si) ⊆ KL and ti ∈ x∗

1 ∪ x∗

2.

Proof. Since L ∈ Rat(X∗

2 ) it can be presented in the form

L = ai1E
∗

i1 . . . aijE
∗

ijaij+1 . . . E
∗

iti
aiti+1

For Eij as above, put E = Eij and denote p = ai1 . . . aij , q = aij+1 . . . aiti+1 ∈
X∗

2 . Since each Eil contain 1 we have pE∗q ⊆ Rat(X∗

2 ) ∩w[F2]. Now the result
follows from Lemma 5.4.

Theorem 5.6. Let F be a free non-abelian group and w be a proper word. Then
the set w[F ] is not rational in F.

Proof. Let w be a proper word such that w[F ] is rational in F . Notice that
e = e(w) ≥ 2 since w is proper. By Corollary 5.3 the word w is not a commutator
word. Observe that L̄ = w[F ] ∩ F2 = w[F2] is rational in F2 as a homomorphic
image of a rational set under standard homomorphism F → F2. By Corollary
4.9 the set L = L̄ ∩X∗

2 is rational in X∗

2 . By Corollary 5.5 there is a finite set
KL ⊆ x∗

1 ∪ x∗

2 and a natural number n = n(L) such that every element u ∈ L
can be presented as a product of the following type:

u = s1t1s2 . . . sntn, (5)

where supp(si) ⊆ KL and ti ∈ x∗

1 ∪ x∗

2. Chose t ∈ N large enough so xt
1 6∈ KL.

Chose l ∈ N such that l > n(L). Then the word u = (xt
1x2)

le belongs to
w[F2], hence it belongs to L. However, u cannot be presented in the form (5) -
contradiction, which proves the theorem.
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Theorem 5.6 can be generalized into free products as follows.

Theorem 5.7. Let A and B be groups containing elements of infinite order
x1 ∈ A, x2 ∈ B, and G = A ∗ B. If the rational sets Rat(A) and Rat(B) are
Boolean algebras then for every proper word w with e(w) ≥ 2 the set w[G] is not
rational in G.

Proof. Notice first that by Bazhenova’s result [1] the set Rat(G) is a Boolean
algebra. Obviously, the subgroup generated by x1 and x2 in G is a free subgroup
F2 with basis {x1, x2}. If w[G] ∈ Rat(G) then L̄ = w[G] ∩ F2 is rational in G
by [1], hence by another Bazhenova’s result [2] L̄ is rational in F2. By Corollary
4.9 the set L = L̄ ∩X∗

2 is rational in X∗

2 = {x1, x2}
∗ and so has a presentation

of the form (1) in X∗

2 . Since w[F2] ⊆ w[G] and the free decompositions of F2

is induced from the free decomposition of G one can complete the proof by an
argument similar to the one from the proof of Theorem 5.6.

Corollary 5.8. Let A and B be groups containing elements of infinite order,
and G = A ∗ B. Let the abelianization Gab is infinite, and the rational sets
Rat(A) and Rat(B) are Boolean algebras. Then for every proper word w the
set w[G] is not rational in G.

Proof. Follows from Corollary 5.2 and Theorem 5.7.

Corollary 5.9. Let A and B be infinite finitely generated abelian groups and
G = A ∗B. Then for every proper word w the set w[G] is not rational in G.

Proof. Bazhenova showed in [2] that rational sets in finitely generated abelian
groups form Boolean algebras. Now the result follows from 5.8.

Theorem 5.7 and Corollaries 5.8 and 5.9 have far reaching generalizations.
To explain we need the following simple but useful result.

Lemma 5.10. Suppose that a group H admits a homomorphism onto a group
G in which every set w[G] for a proper word w is not rational. Then for every
proper word w the set w[H ] is not rational in H.

Proof. Suppose that ϕ is a homomorphism of H onto G. Since for every word
w we have w[G] = ϕ(w[H ]), and a homomorphic image of any rational set is
rational (see [8]) w[H ] ∈ Rat(H) implies that w[G] ∈ Rat(G) that contradicts
our assumption. Hence, w[H ] 6∈ Rat(H).

Corollary 5.11. Suppose that a group H admits a homomorphism onto a free
non-abelian group F . Then for every proper word w the set w[H ] is not rational
in H.

There are many classes of groups which have free non-abelian quotients. We
list some of them below.
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Corollary 5.12. In the following groups H for every proper word w the set
w[H ] is not rational:

1) Pure braid groups PBn for n ≥ 3.

2) Non-abelian right angled Artin groups.

3) Finitely generated non-abelian residually free groups.

Proof. To prove 1) observe that a pure braid group PBn, n ≥ 3, has the group
PB3 as its epimorphic quotient (see [4], for example), and the group PB3 is
isomorphic to F2 × Z, so PBn, n ≥ 3, has the free group F2 as its quotient.

To see 2) Let G = G(Γ) be a non-abelian partially commutative group
corresponding to a finite graph Γ. Then there are three vertices in Γ, say
v1, v2, v3 such that the complete subgraph Γ0 of Γ generated by these vertices
is not a triangle. In particular, a partially commutative group G0 = G(Γ0) is
either a free group F3 (no edges in Γ0), or (Z × Z) ∗ Z (only one edge in Γ0),
or F2 × Z (precisely two edges in Γ0). Notice that in all three cases the group
G(Γ0) has F2 as its epimorphic quotient. Now, it suffices to show that G(Γ0) is
an epimorphic quotient of G(Γ), which is obtained from G(Γ) by adding to the
standard presentation of G(Γ) all the relations of the type v = 1, where v is a
vertex of Γ different from v1, v2, v3. This shows that F2 is a quotient of G(Γ)

By definition every non-abelian residually free group has a free non-abelian
quotient, so 3) holds.

The following result shows that a wide class of free products of groups does
not have rational proper verbal subsets.

Corollary 5.13. Suppose that H = C ∗D, where the factors C,D are finitely
generated groups with infinite abelianizations. Then for every proper word w
the set w[H ] is not rational in H.
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