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Abstract

The problem MaxLin2 can be stated as follows. We are given a system S ofm
equations in variables x1, . . . , xn, where each equation

∑
i∈Ij

xi = bj is assigned

a positive integral weight wj and bj ∈ F2, Ij ⊆ {1, 2, . . . , n} for j = 1, . . . ,m.
We are required to find an assignment of values in F2 to the variables in order
to maximize the total weight of the satisfied equations.

Let W be the total weight of all equations in S. We consider the follow-
ing parameterized version of MaxLin2: decide whether there is an assignment
satisfying equations of total weight at least W − k, where k is a nonnegative
parameter. We prove that this parameterized problem is W[1]-hard even if each
equation of S has exactly three variables and every variable appears in exactly
three equations and, moreover, each weight wj equals 1 and no two equations
have the same left-hand side. We show the tightness of this result by proving
that if each equation has at most two variables then the parameterized problem
is fixed-parameter tractable. We also prove that if no variable appears in more
than two equations then we can maximize the total weight of satisfied equations
in polynomial time.

1 Introduction

While MaxSat and its special case Max-r-Sat have been widely studied in the
literature on algorithms and complexity for many years, MaxLin2 and its special
case Max-r-Lin2 are less well known, but H̊astad [10] succinctly summarized the
importance of these two problems by saying that they are “in many respects as basic
as satisfiability.” These problems provide important tools for the study of constraint
satisfaction problems such as MaxSat and Max-r-Sat since constraint satisfaction
problems can often be reduced to MaxLin2 or Max-r-Lin2, see, e.g., [1, 2, 3, 10, 11].
Accordingly, in the last decade, MaxLin2 and Max-r-Lin2 have attracted significant
attention in algorithmics.
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The problem MaxLin2 can be stated as follows. We are given a system S of m
equations in variables x1, . . . , xn, where each equation

∑
i∈Ij

xi = bj is assigned a

positive integral weight wj and bj ∈ F2, Ij ⊆ {1, 2, . . . , n} for j = 1, . . . ,m. We are
required to find an assignment of values in F2 to the variables in order to maximize
the total weight of the satisfied equations. For a fixed positive integer r, Max-r-Lin2
is the special case of MaxLin2 where no equation has more than r variables.

Let W be the total weight of all equations in S. If we assign values to the variables
randomly and uniformly, the expected (average) weight of satisfied equation will be
W/2. (Indeed, each equations has probability 1/2 of being satisfied.) Using the
derandomization method of conditional expectations, it is easy to obtain a polynomial
deterministic algorithm for finding an assignment satisfying equations of total weight
at least W/2. This is a 2-approximation to MaxLin2. In his celebrated result, H̊astad
[10] showed that essentially no better approximation is possible: unless P=NP, for
each ε > 0 there is no polynomial time algorithm for distinguishing instances of
Max-3-Lin in which at least (1− ε)m equations can be simultaneously satisfied from
instances in which less than (1/2 + ε)m equations can be simultaneously satisfied.

Mahajan et al. [14] initiated the study of parameterized complexity of MaxLin2
by asking the parameterized complexity of the following problem MaxLin2-AA1:
decide whether there is an assignment satisfying equations of total weight at least
W/2 + k, where k is the parameter. Using a probabilistic approach, Gutin et al.
[9] proved that Max-r-Lin2-AA admits a kernel with a quadratic number O(k2) of
variables and equations and, thus, is fixed-parameter tractable. With respect to the
number of variables, this result was improved by Crowston et al. [4] to O(k log k) and
by Kim and Williams [11] to O(k). The parameterized complexity of MaxLin2-AA
was established in a series of two papers [4, 3], where it was proved, using a combi-
nation of algorithmic and linear-algebraic techniques, that MaxLin2-AA admits a
kernel with at most O(k2 log k) variables2 and, thus, MaxLin2-AA is fixed-parameter
tractable.

The parameterized complexity of Max-r-Sat-AA has also been studied. In this
problem, given a CNF formula F with m clauses such that the number of literals
ri in a clause i is at most r, decide whether one can satisfy at least A + k clauses,
where k is the parameter and A =

∑m
i=1

(1− 2−ri) is the expected (average) number
of satisfied clauses when a truth assignment is chosen randomly and uniformly. (As
with MaxLin2-AA, it takes a polynomial time to find an assignment which satisfies
at least A clauses.) Alon et al. [1] proved that if r is a constant, then Max-r-Sat-
AA is fixed-parameter tractable. Crowston et al. [5] showed that Max-r-Sat-AA is
NP-complete if k = 2 and r = ⌈logn⌉, where n is the number of variables in F .

A very interesting and useful parameterization of Max-r-Sat is the one below
m: decide whether one can satisfy at least m− k clauses, where k is the parameter.
For r ≥ 3, the problem is NP-complete already for k = 0, but the important case of
r = 2 was proved to be fixed-parameter tractable by Razgon and O’Sullivan [17]. The
runtime of the algorithm in [17] was improved by Raman et al. [16], Cygan et al. [6],
and most recently by Lokshtanov et al. [13].

In view of the above-mentioned results on MaxLin2-AA and Max-r-Sat, Arash

1AA stands for Above Average.
2For the number of equations only an exponential upper bound was obtained and the existence

of a polynomial upper bound remains an open problem [3].
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Rafiey [15] asked to determine the parameterized complexity of the following problem,
which we denote byMaxLin2-B[W ]: decide whether there is an assignment satisfying
equations of total weight at least W − k, where k is the parameter. In this paper,
we prove that MaxLin2-B[W ] is W[1]-hard. This hardness result prompts us to
investigate the complexity of MaxLin2-B[W ] in more detail by considering special
cases of this problem.

Let Max-(≤ r,≤ s)-Lin2 (Max-(= r,= s)-Lin2, respectively) denote the prob-
lem MaxLin2 restricted to instances, which have at most (exactly, respectively) r
variables in each equation and at most (exactly) s appearances of any variable in
all equations. In the special case when each equation has weight 1 and there are
no two equations with the same left-hand side, MaxLin2-B[W ] will be denoted by
MaxLin2-B[m]. We will prove that MaxLin2-B[W ] remains hard even after sig-
nificant restrictions are imposed on it, namely, even Max-(= 3,= 3)-Lin2-B[m] is
W[1]-hard. This is proved in Section 2.

No further improvement of this result is possible unless FPT=W[1] as we will
prove that Max-(≤ 2,*)-Lin2-B[W ] is fixed-parameter tractable, where symbol *
indicates that no restriction is imposed on the number of appearances of a variable
in the equations. Moreover, we will show that the nonparameterized problem Max-
(*,≤ 2)-Lin2 is polynomial time solvable, where symbol * indicates that no restriction
is imposed on the number of variables in any equation. These two results are shown
in Section 3.

We complete the paper by a short discussion in Section 4.

2 Hardness Results

In the problemOdd Set, given a set V = {1, 2, . . . , n} distinct sets e1, e2, . . . , em ⊆ V
and a nonnegative integer k, we are to decide whether we can pick a set R of at most
k elements in V such that R intersects all sets ei in an odd number of elements.
Downey et al. [7] showed the problem is W [1]-hard by a reduction from Perfect
Code.

We prove that Max-(= 3,= 3)-Lin2-B[m] is W [1]-hard in two parts. First, we
give a reduction from Odd Set to show Max-(≤ 3,*)-Lin2-B[W ] is W [1]-hard.
Then, we give a reduction from Max-(≤ 3,*)-Lin2-B[W ] to Max-(= 3,= 3)-Lin2-
B[m].

Lemma 1. The problem Max-(≤ 3,*)-Lin2-B[W ] is W [1]-hard.

Proof. Consider an instance of Odd Set with elements 1, 2, . . . , n and distinct sets
e1, e2, . . . , em, with parameter k.

Create an instance ofMax-(≤ 3,*)-Lin2-B[W ] with parameter k as follows. Start
with the variables x1, x2, . . . , xn and equations x1 = 0, x2 = 0, . . . , xn = 0 (each of
weight 1). For every set ei = {j1, j2, j3, . . . , jni

} do the following. Add the variables
yi1, . . . , y

i
ni−1 and the following set Ei of equations, each of weight k + 1.
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yi1 + xj1 = 0
yi1 + yi2 + xj2 = 0
yi2 + yi3 + xj3 = 0
. . .
yini−2 + yini−1 + xjni−1

= 0

yini−1 + xjni
= 1

Observe that the number of variables and equations is polynomial in nm. It
remains to show that this instance of Max-(≤ 3,*)-Lin2-B[W ] is a Yes-instance if
and only if the instance of Odd Set is a Yes-instance.

Suppose first that we can satisfy simultaneously equations of total weight at least
W − k. Consider the set Ei of equations. Since the equations have weight k + 1,
they must all be satisfied. By summing them up, we obtain

∑ni

a=1
xja = 1 over F2.

Therefore an odd number of the values of xj1 , xj2 , . . . , xjni
are 1. Note that at most

k equations of the type xi = 0 are not satisfied. The above implies that if R is the
set of elements, j, for which the corresponding variable, xj is equal to 1, then the size
of R is at most k and for each set ei the intersection of R and ei is odd. Therefore R
has the desired property.

Conversely, suppose R is a set of at most k elements such that for each set ei the
intersection of R and ei is odd. Then observe that by setting xj = 1 if and only if j is
in R, setting yi1 = xj1 , and setting yir+1 = yir + xjr+1

for 1 ≤ r < ni − 1, it is possible
to satisfy all equations in Ei for every i and thus to satisfy simultaneously equations
of total weight at least W − k.

Theorem 1. The problem Max-(= 3,= 3)-Lin2-B[m] is W [1]-hard.

Proof. Observe that in the system obtained in the proof of Lemma 1 no two equations
have the same left-hand side. Consider an instance of Max-(≤ 3,*)-Lin2-B[W ] in
which no two equations have the same left-hand side. Hereafter, we view a single
equation of weight w as w identical equations of weight 1. This means we do have
equations with the same left-hand side (for k ≥ 1), but note that these equations have
also the same right-hand side.

For each of the reductions that follow, we show that the optimal assignment will
falsify the same number of equations in the original instance as in the reduced instance.
This implies that the original instance is a Yes instance if and only if the reduced
instance is a Yes-instance.

For each variable x, let d(x) denote the total number of equations containing x.
We first apply the following two reduction rules until d(x) ≤ 3 for every variable x.

If d(x) = 4, replace x with four new variables, x1, x2, x3, x4. For each equation
containing x, replace the occurrence of x with one of x1, x2, x3, x4, so that each
new variable appears once. Furthermore, add equations x1 + x2 = 0, x2 + x3 = 0,
x3 + x4 = 0, x4 + x1 = 0.

If d(x) ≥ 5, replace x with six new variables, x1, x2, x3, x4, x5, x6. For each
equation containing x, replace the occurrence of x with one of x1, x2, x3, x4, x5, x6,
distributing the new xi evenly among the equations, so that

⌊d(x)/6⌋ ≤ d(x1) ≤ d(x2) ≤ d(x3) ≤ d(x4) ≤ d(x5) ≤ d(x6) ≤ ⌈d(x)/6⌉.

Furthermore, add ⌈(d(x)−2)/6⌉ copies of each of the equations x1+x2 = 0, x2+x3 = 0,
x3+x4 = 0, x4+x5 = 0, x5+x6 = 0, x6+x1 = 0, x1+x4 = 0, x2+x5 = 0, x3+x6 = 0.
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Observe that each rule replaces a variable with a set of variables, each of which
appears in fewer equations than the original variable. Therefore after enough applica-
tions, each variable will appear in at most three equations. To see that only a polyno-
mial number of applications are needed, observe that at each iteration maxi d(xi) ≤
8d(x)/9. Therefore we may view the applications of reduction rules as a branching
tree for each variable, where the depth of the tree for a variable x is bounded by
log9/8 d(x) and the tree branches at most six ways each time.

We now show that each rule is valid.

For the d(x) = 4 case, suppose that the optimal assignment is one in which
x1, x2, x3, x4 are not all the same. Then at least two of the equations x1 + x2 = 0,
x2 + x3 = 0, x3 + x4 = 0, x4 + x1 = 0 will be falsified, but then we can satisfy all
of them by falsifying at most two other equations. Hence, there exists an optimal
assignment in which x1, x2, x3, x4 all have the same value.

For the d(x) ≥ 5 case, suppose that the optimal assignment is one in which
x1, x2, x3, x4, x5, x6 are not all the same. Consider the set of nine equations x1+x2 =
0, x2 + x3 = 0, x3 + x4 = 0, x4 + x5 = 0, x5 + x6 = 0, x6 + x1 = 0, x1 + x4 = 0,
x2+x5 = 0, x3+x6 = 0. If the value of exactly one xi is different from the values of the
rest of the variables, at least three of the nine equations will be falsified. Changing
the value of this variable will falsify at most d(x6) ≤ ⌈d(x)/6⌉ ≤ 3⌈(d(x) − 2)/6⌉
equations. If the values of exactly two variables xi are different from the values of
the rest of the variables, at least four of the nine equations will be falsified. Changing
the value of the two variables will falsify at most d(x5) + d(x6) ≤ 4⌈(d(x) − 2)/6⌉
equations. If three variables xi are assigned one, and three are assigned zero, at least
five of the nine equations will be falsified. Assigning zero to all variables xi will falsify
at most d(x4) + d(x5) + d(x6) ≤ 5⌈(d(x)− 2)/6⌉ equations. (For example, if d(x) = 8
then d(x4) = 1, d(x5) = d(x6) = 2 and ⌈(d(x) − 2)/6⌉ = 5.) Therefore, there exists
an optimal assignment in which x1, x2, x3, x4, x5, x6 all have the same value.

Thus, for each rule the new instance has an optimal assignment in which all the
new equations are satisfied, and all the new variables have the same value. By setting
x to this value, we have an optimal assignment to the original instance that falsifies
the same number of equations.

We now have an instance in which each equation contains at most three variables
and each variable appears in at most three equations. Next, we observe that we may
map this to an instance where each equation contains exactly three variables.

First consider equations containing one variable. If an equation is of the form x =
0, this may be replaced with equations a+b+x = 0, u+v+a = 0, u+v+b = 0, where
a, b, u, v are new variables. For x = 1, we replace it with the equations a+ b+ x = 1,
u+ v + a = 0, u+ v + b = 0.

For equations containing two variables, if an equation is of the form x + y = 0,
this may be replaced with equations u + v + x = 0 and u + v + y = 0, where u, v
are new variables. A similar mapping may be done for x+ y = 1 by replacing y with
y + 1.

Observe that for each reduction, if an assignment to the original instance satisfies
the original equation, it can be extended to one that satisfies all the new equations,
and if it does not, an optimal extension will satisfy all but one of the new equations.
Thus an optimal assignment to the original instance falsifies the same number of
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equations as an optimal assignment to the reduced instance.

We now have that every equation contains exactly three variables and each variable
is in at most three equations. We now map this to an instance where every variable
is in exactly three equations.

If a variable x only appears in one equation, then we may assume that this equation
is satisfied, and remove it from the system. Since each equation contains exactly 3
variables, the number of variables x with d(x) = 2 must be a multiple of 3. Thus, we
may partition the variables x with d(x) = 2 into triplets.

Consider each triplet x1, x2, x3 such that d(x1) = d(x2) = d(x3) = 2. Add
variables z1, z2, z3, u1, . . . , u6, and equations x1 + x2 + u1 = 0, u1 + u2 + z1 = 0,
u2 + u3 + z1 = 0 (two copies), u3 + u1 + z2 = 0, x3 + u4 + z2 = 0, u4 + u5 + z2 = 0,
u5 + u6 + z3 = 0 (two copies), u6 + u4 + z3 = 0.

Observe that for any assignment to x1, x2, x3, it is possible to satisfy all these
equations by setting z1 = z2 = z3 = 0, u1 = u2 = u3 = x1+x2 and u4 = u5 = u6 = x3.
Thus an optimal assignment to the original instance extends to an optimal assignment
to the reduced instance that falsifies the same number of equations.

We now have that every equation has exactly three variables and every variable
appears in exactly three equations. It remains to show that we can map this to an
instance in which these properties hold and no two equations have the same left-hand
side. Since we started the proof of this theorem from a system where every pair of
equations with the same left-hand side had the same right-hand side, and since our
transformations above have not changed this property, it suffices to get rid of identical
equations.

Note that since d(x) = 3 for every variable x, there at most three copies of any
given equation in the system.

If there are three copies of the same equation, then none of the variables appearing
in that equation appear anywhere else. Therefore we may assume the equation is
satisfied, and remove the three copies from the system.

If there are two copies of the equation x + y + z = 0, replace them with the
following set of six equations: x + y + c1 = 0, a1 + b1 + c1 = 0, a1 + b1 + z = 0,
x+ y + c2 = 0, a2 + b2 + c2 = 0, a2 + b2 + z = 0, a1 + b2 + c1 = 0, a2 + b1 + c2 = 0,
where a1, b1, c1, a2, b2, c2 are new variables. Observe that if x+ y + z = 0 is satisfied
then by setting a1 = a2 = x, b1 = b2 = y, c1 = c2 = z, we can satisfy all of these
equations. If x+ y + z = 0 is falsified, then the first three equations (x+ y + c1 = 0,
a1+b1+c1 = 0, a1+b1+z = 0) are inconsistent, as are x+y+c2 = 0, a2+b2+c2 = 0,
a2+b2+z = 0, and hence at least two equations of the set of six equations are falsified.
Furthermore, by setting a1 = a2 = b1 = b2 = c1 = c2 = 0 we can satisfy all but two
equations in the set of six equations. Thus in either case, an optimal assignment to
the original instance extends to an optimal assignment to the reduced instance that
falsifies the same number of equations.

If there are two equations of the form x + y + z = 1, do the same as above but
change all the right-hand sides to 1.
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3 Algorithmic Results

In this section, we assume that all weights of the equations in MaxLin2-B[W ] belong
to the set {1, 2, . . . , k + 1}. Indeed, replacing any weight larger than k + 1 by k + 1
does not change the answer to MaxLin2-B[W ].

In the Edge Bipartization problem, given a graph G and a nonnegative integer
k, we are to decide whether we can make G bipartite by deleting at most k edges.
When k is the parameter, the problem is fixed-parameter tractable and can be solved
by an algorithm of running time O(2kM2) [8], where M is the number of edges in
G. We prove that Max-(≤ 2,*)-Lin2-B[W ] is fixed-parameter tractable by giving a
reduction to Edge Bipartization.

Theorem 2. The problem Max-(≤ 2,*)-Lin2-B[W ] can be solved in time O(2k(km)2).

Proof. Consider an instance S of Max-(≤ 2,*)-Lin2-B[W ] with m equations and
consider an assignment which minimizes the weight of falsified equations. Now replace
every equation, xi + xj = 0, which contains two variables in the left-hand side and
0 in the right-hand side, by two equations xi + y = 1 and xj + y = 1, where y is a
new variable; both equations have the same weight as xi + xj = 0. If the assignment
satisfies xi + xj = 0 then both new equations can be satisfied by extending the
assignment with y = 1 − xi. If the assignment falsifies xi + xj = 0 then exactly one
of the two new equations will be falsified by extending the assignment with y = 0.
Thus, the replacement preserves the minimum weight of falsified equations and can
be used to replace the instance by an equivalent one S′ in which every equation with
two variables has right-hand side equal 1.

Now assume that all equations of the system with two variables have right-hand
side equal 1 and construct the following weighted graph G. The vertices of G are the
variables of the system plus two extra vertices, v′ and v′′. For each equation x+y = 1
in S′, add to G edge xy. For every equation x = b of S′, add to G edge v′x if b = 0 and
xv′′ if b = 1. The weight of each edge coincides with the weight of the corresponding
equation of S′. Finally, add to G edge v′v′′ of weight k + 1.

Let w∗ be a nonnegative integer such that w∗ ≤ k. Observe that there is an
assignment which falsifies equations of total weight w∗ if and only if there is a set
F of edges of G of total weight w∗ such that G − F is bipartite. Indeed, consider
an assignment which falsifies equations of total weight w∗. Initiate sets V ′ and V ′′

as follows: V ′ = {v′} and V ′′ = {v′′}. If an equation u + v = 1 is satisfied and
u = 1, v = 0, then u is added to V ′ and v to V ′′, and if an equation x = b is satisfied,
then x is added to V ′ if b = 1 and to V ′′ if b = 0. Note that the total weight of edges
whose both end-vertices are either in V ′ or in V ′′ equals w∗. Similarly, we can show
the other direction.

To get rid of the weights inG we replace each edge uv ofG of weightw with w paths
uypuvz

p
uvv, p ∈ {1, . . . , w}, where ypuv and zpuv are new vertices. This finally reduces the

instance of Max-(≤ 2,*)-Lin2-B[W ] into an instance of Edge Bipartization with
O(mk) edges. It remains to apply the Edge Bipartization algorithm mentioned
before the theorem.

Theorem 3. The problem Max-(*,≤ 2)-Lin2 is polynomial time solvable.
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Proof. Consider an instance of Max-(*,≤ 2)-Lin2 with system Ax = b in which each
equation has a weight. We start by applying the following reduction rule as long as
possible: if there is a variable which appears only in one equation, delete the equation
from the system. Since we can always satisfy an equation with a unique variable,
the reduction rule produces a new system A′x′ = b′ such that the minimum weight
of equations falsified by an assignment is the same in Ax = b as in A′x′ = b′. Now
construct a graph G whose vertices correspond to equations in A′x′ = b′ and a pair
of vertices is adjacent if the corresponding equations share a variable.

Consider a connected component H in G and the subsystem A′′x′′ = b′′ corre-
sponding to H . Let b′′ = (b′′1 , . . . , b

′′

m′′), where m′′ is the number of rows in A′′. Recall
that A′′x′′ = b′′ is a system over F2, and thus all summations and ranks of matrices
considered below are over F2. Since the sum of rows in A′′ is equal 0 and any subsum

of the sum is not equal 0, the rank of A′′ equals m′′ − 1. Observe that if
∑m′′

j=1
b′′ = 0

then the rank of the matrix [A′′b′′] equals the rank of A′′ and, thus, there is an as-

signment which satisfies all equations in A′′x′′ = b′′. However, if
∑m′′

j=1
b′′ = 1, the

rank of [A′′b′′] is m′′ but the rank of A′′ is m′′ − 1. Hence, the system A′′x′′ = b′′ is
no longer consistent and we can satisfy all equations but one. The falsified equation
can be chosen arbitrarily and to maximize the total weight of satisfied equations of
A′′x′′ = b′′ we have to choose an equation of minimum weight.

The above argument leads to a polynomial time algorithm to solve Max-(*,≤ 2)-
Lin2.

Remark 1. We can prove Theorem 3 using another approach, whose idea we will
briefly describe. Consider a pair of equations from the system Ax = b which share
a variable xi and consider an assignment which minimizes the weight of falsified
equations. Let w∗ be the smallest weight of the two equations. At least one of
the two equations is satisfied by the assignment and if one of the two equations is
falsified, its weight is w∗ (as otherwise we could change the value of xi, arriving at a
contradiction). Replace the two equations in Ax = b by the equation which is the sum
of these two equations and whose weight equals w∗. Observe that the replacement
does not change the minimum total weight of falsified equations. Theorem 3 can be
proved by repeatedly using this reduction.

4 Discussion

In this paper, we proved that Max-(= 3,= 3)-Lin2-B[m] is W[1]-hard, but Max-
(≤ 2,*)-Lin2-B[W ] is fixed-parameter tractable and Max-(*,≤ 2)-Lin2 is polyno-
mial time solvable. This gives a boundary between parameterized intractability and
tractability for MaxLin2-B[W ].

Recently, Kratsch and Wahlström [12] proved that Edge Bipartization admits
a randomized polynomial kernel (for details, see [12]). The reduction given in the
proof of Theorem 2, together with a straightforward reduction from Edge Biparti-
zation to Max-(≤ 2,*)-Lin2-B[W ], implies that Max-(≤ 2,*)-Lin2-B[W ] admits
a randomized polynomial kernel as well.
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