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Abstract We prove several results relating injective one-way functions, time-
bounded conditional Kolmogorov complexity, and time-bounded conditional entropy.

First we establish a connection between injective, strong and weak one-way func-
tions and the expected value of the polynomial time-bounded Kolmogorov complex-
ity, denoted here by E(Kt(x|f (x))). These results are in both directions. More pre-
cisely, conditions on E(Kt(x|f (x))) that imply that f is a weak one-way function,
and properties of E(Kt(x|f (x))) that are implied by the fact that f is a strong one-
way function. In particular, we prove a separation result: based on the concept of
time-bounded Kolmogorov complexity, we find an interval in which every function f

is a necessarily weak but not a strong one-way function.
Then we propose an individual approach to injective one-way functions based on

Kolmogorov complexity, defining Kolmogorov one-way functions and prove some
relationships between the new proposal and the classical definition of one-way func-
tions, showing that a Kolmogorov one-way function is also a deterministic one-way
function. A relationship between Kolmogorov one-way functions and the conjecture
of polynomial time symmetry of information is also proved.

Finally, we relate E(Kt(x|f (x))) and two forms of time-bounded entropy, the
unpredictable entropy H unp, in which “one-wayness” of a function can be easily
expressed, and the Yao+ entropy, a measure based on compression/decompression
schema in which only the decompressor is restricted to be time-bounded.

Keywords Kolmogorov complexity · One-way functions · Symmetry of
information · Yao entropy

1 Introduction

Intuitively, a one-way function is a function that is easy to evaluate but hard to in-
vert. The existence of these functions is an open question which implies P �= NP. It
is well known that the existence of one-way functions is necessary for the existence
of pseudo-random generators, digital signatures, identification schemes, and public-
key encryption. On the other hand, it is also known [2, 7, 9, 10, 20] that one-way
functions are sufficient for the creation of a pseudo-random generator and that trap-
door one-way functions are sufficient for the construction of public-key encryption
and signature schemes. Given the importance of one-way functions and the impact
of their application, we analyze them at an individual level using Kolmogorov com-
plexity.

Classically, there are several definitions of one-way functions, namely: strong,
weak and deterministic. Informally, f is a strong one-way function if all efficient in-
verting probabilistic algorithms succeed with negligible probability; f is a weak one-
way function if all efficient inverting probabilistic algorithms fail with non-negligible
probability; in the case of deterministic one-way functions, the function only needs to
be resistant to deterministic algorithms that try to invert it. An interesting fact about
strong and weak one-way functions is that, although their definitions are not equiva-
lent, weak one-way functions exist if and only if strong one-way functions exist (see
[6] for details).
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The Kolmogorov complexity, K(x), ([12, 21] and [4]) of an object x is the length
of the shortest program producing x in a universal Turing machine. The time-bounded
version of Kolmogorov complexity, Kt(x), is the length of the shortest program pro-
ducing x within time t (|x|).

In this work, we take a fresh look at injective one-way functions using Kolmogorov
complexity. Namely, we start by studying the expected value of time-bounded Kol-
mogorov complexity of an object x ∈ Σn given f (x), where f is the description of
the function, given by an oracle. Let E denote the expression E(Kt

f (x|f (x), n)). We
show that if E > c for any positive constant c, then f is a weak one-way function
(Theorem 4); on the other hand, we show that if f is a strong one-way function,
then E > c logn for every constant c (Theorem 5). Based on these results, we intro-
duce a new definition of one-way functions relying on security of individual instances
(Definition 11) and relate it with the classical notion of weak one-way functions
(Corollary 1) and with strong one-way functions (Theorem 7); we also give a def-
inition of one-way functions based on time-bounded Kolmogorov complexity of the
individual instances (Definition 12) and a relationship with deterministic one-way
functions is studied (Theorem 8). For the individual approach, time-bounded Kol-
mogorov complexity is suitable to study in more detail one-way functions, avoiding
few instances that are not secure and giving a more precise measure of security to the
other instances. The intuition is that, if x and f are given, then we can compute f (x)

in polynomial time; however the converse does not hold, i.e., for the vast majority
of x’s, given f (x) we cannot compute, in polynomial time, any useful information
about x. In fact, we conjecture that the length of a shortest program computing x

given f (x), |x|, and f should be approximately equal to the length of a shortest
program computing x without any auxiliary input.

We define a (t, ε, δ)-secure Kolmogorov one-way function as a function such that
the difference between the length of a shortest program computing x, in time t , given
f (x) and the length of a shortest program computing x, in time t , without any aux-
iliary input is smaller than δ with probability greater than ε. We show that for some
parameters (t, ε, δ) this new definition is more restrictive than weak one-way func-
tions (Corollary 1) and that (t (n),0, c logn)-secure Kolmogorov one-way functions
(called Kolmogorov one-way functions) are also more restrictive than deterministic
one-way functions (Theorem 8).

In [14] and [15], the authors relate the existence of one-way functions and the
conjecture of polynomial time symmetry of information. For the unbounded version
of Kolmogorov complexity, symmetry of information was first proved by Levin (as
suggested in [23]), but the proof is not valid when polynomial time-bound restrictions
are imposed. The conjecture of polynomial time symmetry of information has close
connections to several complexity theoretic questions, similar to the connections con-
cerning the existence of one-way functions. In this work, we relate this conjecture
with the existence of Kolmogorov one-way functions, by proving that the polynomial
time symmetry of information fails if Kolmogorov one-way functions exist (Theo-
rems 9 and 10).

Various concepts of time-bounded entropy have been used in the literature [3, 8,
11, 19, 22]. They are either based on computational indistinguishability or on effi-
cient compress/decompress schema. In Sect. 5, we study the relationship between:
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unpredictable entropy and strong one-way functions (Theorem 11), unpredictable
entropy and Yao+ (Theorem 12) and Yao+ and the time-bounded Kolmogorov com-
plexity (Theorem 13).

2 Preliminaries

All strings used are elements of Σ∗ = {0,1}∗ and we denote them by x, y, z. The
function log denotes the function log2 and |.| represents the length of a string. The
number of elements of a set A is denoted by #A. It is assumed that any time-
bound t (n) is constructible and larger than n. We say that f (n) ∈ O(g(n)) iff ∃k > 0,
∃n0 ∀n > n0|f (n)| ≤ k · |g(n)| and that f (n) ∈ ω(g(n)) iff limn→+∞(|f (n)|/
|g(n)|) = +∞.

2.1 One-Way Functions

We present the basic definitions and the results necessary for the rest of this paper.

Definition 1 A function f is honest if |f (x)| and |x| are polynomially related, i.e.,
for some k > 0 and for every x ∈ Σ�,

(∣∣f (x)
∣∣ ≤ |x|k + k

) ∧ (|x| ≤ ∣∣f (x)
∣∣k + k

)
.

In all definitions presented in this paper we assume that f is honest.

Definition 2 (Deterministic one-way function) A function f : Σ∗ → Σ∗ is a deter-
ministic one-way function if the following two conditions hold:

1. Easy to compute: there is a (deterministic) polynomial time algorithm A such that
on every input x, the algorithm A outputs f (x) (i.e., A(x) = f (x)).

2. Slightly hard to invert: for any deterministic polynomial time algorithm B , for
some polynomial q(·), for every sufficiently large n,

prx∈Σn

[
f

(
B

(
f (x), n

)) �= f (x)
]
>

1

q(n)
.

Definition 3 (Weak one-way function) A function f : Σ∗ → Σ∗ is a weak one-way
function if the following two conditions hold:

1. Easy to compute: there is a (deterministic) polynomial time algorithm A such that
on every input x, the algorithm A outputs f (x) (i.e., A(x) = f (x)).

2. Slightly hard to invert: for any polynomial t (·), there is a polynomial q(·) such
that for every probabilistic t-time-bounded algorithm B and for every sufficiently
large n,

pr(x,r)∈Σn×Σt(n)

[
f

(
B

(
f (x), r, n

)) �= f (x)
]
>

1

q(n)
.
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Definition 4 (Strong one-way function) A function f : Σ∗ → Σ∗ is a strong one-
way function if the following two conditions hold:

1. Easy to compute: there is a (deterministic) polynomial time algorithm A such that
on every input x, the algorithm A outputs f (x) (i.e., A(x) = f (x)).

2. Hard to invert: for any polynomial t (·), for every probabilistic t-time-bounded
algorithm B , for every positive polynomial q(·), and for every sufficiently large n,

pr(x,r)∈Σn×Σt(n)

[
f

(
B

(
f (x), r, n

)) = f (x)
]
<

1

q(n)
.

In the previous definitions, r denotes the randomness used by the algorithm B and
its length is bounded by its running time.

It is easy to see that any weak one-way function is a deterministic one-way func-
tion and that any strong one-way function is a weak one-way function.

2.2 Kolmogorov Complexity

Further details on Kolmogorov complexity can be found, for instance, in the com-
prehensive textbook [13]. We will use the prefix-free definition of Kolmogorov com-
plexity. A set of strings A is prefix-free if there are not two strings x and y in A such
that x is a proper prefix of y.

Definition 5 Let U be a fixed universal Turing machine with a prefix-free domain.
For any strings x, y ∈ Σ∗, the Kolmogorov complexity of x given y with oracle access
to f is:

Kf (x|y) = min
p

{|p| : Uf (p,y) = x
}
.

For any time constructible t , the t-time-bounded Kolmogorov complexity of x given
y with oracle access to f is:

Kt
f (x|y) = min

p

{|p| : Uf (p,y) = x in at most t (|x|) steps
}
.

The default value for y, the auxiliary input for the program p, is the empty string
ε and for oracle f is the null function. In order to avoid overloaded notation, in those
cases we typically drop these arguments in the notation. Kolmogorov complexity is
machine independent in the sense that we can fix a universal Turing machine U whose
program size is at most a constant additive term worse than in any other machine,
and the running time is, at most, a logarithmic multiplicative factor slower than in
any other machine. One important result in Kolmogorov complexity is the following
(see [13]).

Theorem 1 (Incompressibility Theorem)

1. For every integer n and for every x ∈ Σn, K(x) ≤ n + O(logn).
2. For every integer n and for every x ∈ Σn, K(x|n) ≤ n + O(1).
3. For each r , the set {x ∈ Σn : K(x) ≤ n + K(n) − r} has at most 2n−r+O(1) ele-

ments.
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In Information Theory, one useful result is the symmetry of information which
states that, given two distributions X and Y , I (X|Y) = I (Y |X), where I (·) is the
mutual information (see [5]). In [23], it is shown that in the resource unbounded case,
the symmetry of information concerning the Kolmogorov complexity also holds up
to logarithmic term:

Theorem 2 (Symmetry of information) For all strings x and y in Σn,
∣∣K(x,y) − K(x) − K(y|x)

∣∣ ∈ O(logn).

We will be interested in relating the existence of Kolmogorov one-way functions
(Definition 12) with polynomial time-bounded symmetry of information.

Hypothesis 3 (Polynomial time-bounded symmetry of information) Let t (·) be a
polynomial. For all strings x, y ∈ Σn,

∣∣Kt(x, y) − Kt(x) − Kt(y|x)
∣∣ ∈ O(logn).

This conjecture is unknown to hold unconditionally, but in [14] and in [15], it is
shown that:

– If P = NP then polynomial time symmetry of information holds [15].
– If deterministic one-way functions exist, then the polynomial time symmetry of

information conjecture is false [14, 15].

2.3 Time-Bounded Entropies

There are two forms for each of the following definitions of entropy: parametrized
on n, and “global”; in the latter, the probability distributions are defined over all
words of Σ�. It should be clear from the context which version of the definition is
being used.

Definition 6 (Statistical distance) The statistical distance between two distributions
X and Y , denoted by dist(X,Y ), is

max
A

∣∣pr
[
A(X) = 1

] − pr
[
A(Y) = 1

]∣∣,

where A is any statistical test (Boolean function). The computational distance with
respect to algorithms running in polynomial time t , denoted by cdistt (X,Y ), limits A

to be any algorithm that runs in time t .

In the following definitions, we assume that ε is non-negligible and t is bounded
by a polynomial in n. For the significance of these parameters, the reader can con-
sult [16] and the references in its bibliography.

Definition 7 (Yao entropy, [1]) For a distribution X, we say that X has Yao en-
tropy at least k(n), denoted by HYao

ε(n),t (n)(X) ≥ k(n), if for every pair of algorithms
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(c, d) (respectively “compressor” and “decompressor”) running in at most polyno-
mial time t (n),

prx∈X

[
d
(
c(x)

) = x
] ≤ 2l−k(n) + ε(n),

where l = |c(x)|.

Definition 8 (Conditional Yao entropy, [16]) For a distribution (X,Z), we say that X

has Yao entropy at least k(n), conditioned on Z, denoted by HYao
ε(n),t (n)(X|Z) ≥ k(n),

if for every pair of algorithms (c, d) (respectively “compressor” and “decompressor”)
running in at most polynomial time t (n),

pr(x,z)∈(X,Z)

[
d
(
c(x, z), z

) = x
] ≤ 2l−k(n) + ε(n),

where l = |c(x, z)|.

Definition 9 (Yao+ entropy, [18]) It is a variant of Yao entropy, where only d needs
to run in polynomial time t (n).

Definition 10 (Conditional Yao+ entropy) It is a variant of Conditional Yao entropy,
where only d needs to run in polynomial time t (n).

There is another definition of entropy, the “unpredictable entropy” which will be
presented in Sect. 5, see Definition 14.

3 One-Way Functions and Kolmogorov Complexity

We present two approaches to define one-way functions using Kolmogorov complex-
ity.

3.1 An Expected Value Approach

We first show how one-way functions are related with the expected value of polyno-
mial time-bounded Kolmogorov complexity over Σn. In particular, we show that if
the expectation is at least larger than any constant, we have a weak one-way func-
tion. On the other hand, we show that if f is a strong one-way function, then the
expectation must be larger than logarithmic.

Theorem 4 Let f be an injective and polynomial time computable function.
If for every polynomial t (·) and for every constant c, the expected value of
K

t log t

f (x|f (x), r, n), over pairs (x, r) ∈ Σn × Σt(n), is larger than c for every suffi-
ciently large n, then f is a weak one-way function.

Proof Assume that f is not a weak one-way function. Then, there are a polynomial
t (·) and a probabilistic polynomial time algorithm B running in time-bounded by t (n)
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such that for every polynomial q(·), the algorithm B cannot invert f (x) with negligi-
ble probability. In particular, for q(n) = n2, we have pr(x,r)∈Σn×Σt(n) (B(f (x), r, n) �=
x) ≤ 1/n2 for infinitely many integers n.

Let t ′(·) be a polynomial such that t ′(n) ≥ t (n) log(t (n))1. This time is enough
to simulate the algorithm B on the universal Turing machine U (see [13], Theo-
rem 7.1.1, p. 532). Consider the pairs (x, r) ∈ Σn × Σt(n) that belong to the set
I = {(x, r) : B(f (x), r, n) = x}.

If (x, r) ∈ I then Kt ′
f (x|f (x), r, n) ≤ |B| + O(1). Thus, for infinitely many n′s:

E
(
Kt ′

f

(
x|f (x), r, n

))

=
∑

(x,r)∈Σn×Σt(n)

pr(x, r) · Kt ′
f

(
x|f (x), r, n

)

=
∑

(x,r)∈I

pr(x, r) · Kt ′
f

(
x|f (x), r, n

) +
∑

(x,r)/∈I

pr(x, r) · Kt ′
f

(
x|f (x), r, n

)

≤ pr
[
(x, r) ∈ I

] · (|B| + O(1)
) +

∑

(x,r)/∈I

pr(x, r) · (n + O(1)
)

< |B| + O(1) + 1

n2

(
n + O(1)

)
.

Notice that the last line is upper bounded by a constant independent of x. Thus,
if E(Kt ′

f (x|f (x), r, n)) > c is satisfied for all constants c and for every sufficiently
large n, then f is a weak one-way function. �

We now present a result that gives some intuition about the expectation of the
Kolmogorov complexity of a strong one-way function.

Theorem 5 Let f be an injective and polynomial time computable function. If f is
a strong one-way function, then for every constant c and for every polynomial t (·),
the expected value of Kt

f (x|f (x), r, n), over pairs (x, r) ∈ Σn ×Σt(n), is larger than
c logn for every sufficiently large n.

Proof Assume, for a contradiction, that for some constant c and some polynomial
t (·), we have E(Kt

f (x|f (x), r, n)) ≤ c logn infinitely often. Using Markov’s inequal-
ity we get:

pr(x,r)∈Σn×Σt(n)

[
Kt

f

(
x|f (x), r, n

) ≤ 2c logn
]
> 1 − c logn

2c logn
= 1

2
. (1)

We define an algorithm Q that on input (f (x), r) tries to invert f (x), and succeeds
for the cases where Kt

f (x|f (x), r, n) ≤ 2c logn. This algorithm runs all programs of
size up to 2c logn for at most t steps, using the random string r with input f (x). For
each such program, Q tests if the output is an inverse of f (x), and if it is, outputs

1We are implicitly using the Linear Speedup Theorem, see [17].
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that inverse. If, for the pair (x, r) it happens that Kt
f (x|f (x), r, n) ≤ 2c logn, then Q

will find a suitable shortest program and output the correct x. Therefore, its success
probability is the condition 1.

Since there are at most 22c logn+1 = 2n2c programs of length at most 2c logn and
each of them runs for a polynomial number of steps, then Q runs in polynomial time.
By construction, we know that for infinitely many n′s,

pr(x,r)∈Σn×Σt(n)

[
Q

(
f (x), r, n

) = x
]
>

1

2
.

Thus, f is not a strong one-way function. �

Notice that Theorems 4 and 5 define an interval based on an average value of
a polynomial time-bounded Kolmogorov complexity in which every function f is
necessarily weak but not strong one-way function.

3.2 An Individual Approach

The approach to one-way functions proposed in the previous section does not give a
satisfactory insight about the security of individual instances of a particular one-way
function. In fact, to have an individual instance analysis of security we must have
a precise control on the quantity of information that each particular instance may
leak. In this section, we give a notion of one-way functions based on Kolmogorov
complexity of particular instances.

Definition 11 Let t (·) be some polynomial, f : Σn → Σm an injective and polyno-
mial time computable function and δ(·) a positive function. We say that an instance x

of length n is (t, δ)-secure relatively to a random string r ∈ Σt(n) and to the function
f if

Kt
f (x|r, n) − Kt

f

(
x|f (x), r, n

) ≤ δ(n).

Let ε(·) be a function. We say that f is a (t, ε, δ)-secure Kolmogorov one-way func-
tion if for sufficiently large n,

pr(x,r)∈Σn×Σt(n)

[
x is not (t, δ)-secure for r

] ≤ ε(n).

Theorem 6 If f is (t (n), ε(n), δ(n))-secure Kolmogorov one-way function, then

E
(
Kt

f

(
x|f (x), r, n

)) ≥ (
1 − ε(n)

) · (n − logn − δ(n)
) − 2.

Proof Let t (·) be any polynomial and consider the following sets:

R− = {
(x, r) ∈ Σn × Σt(n) : (Kt

f (x|r, n) ≤ n − logn
)

∨ (
Kt

f

(
x|r, f (x), n

) ≤ Kt
f (x|r, n) − δ(n)

)}
,

R+ = Σn × Σt(n) \ R−.
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Using a counting argument, given r , there are less than 2n−logn+1 strings x such
that Kt

f (x|r, n) ≤ n − logn. Thus, there are at most 2n−logn+1 × 2t (n) pairs (x, r) ∈
Σn × Σt(n) such that Kt

f (x|r, n) ≤ n − logn.
By the assumption of f being a (t (n), ε(n), δ(n))-secure Kolmogorov one-way

function, there are at most ε(n) × 2n+t (n) pairs (x, r) ∈ Σn × Σt(n) such that
Kt

f (x|r, f (x), n) ≤ Kt
f (x|r, n) − δ(n).

Thus,

#R− ≤ 2t (n) · (2n−logn+1) + ε(n) · 2n+t (n)

= 2n+t (n)
(
2− logn+1 + ε(n)

)

= 2n+t (n)

(
ε(n) + 2

n

)
.

The number of pairs in R+ is at least (1 − ε(n) − 2
n
)2n+t (n). Thus,

E
(
Kt

f

(
x|f (x), r, n

)) =
∑

(x,r)∈Σn×Σt(n)

pr(x, r) · Kt
f

(
x|f (x), r, n

)

≥
∑

(x,r)∈R+
pr(x, r) · Kt

f

(
x|f (x), r, n

)

≥
(

1 − ε(n) − 2

n

)
· (n − logn − δ(n)

)

≥ (
1 − ε(n)

) · (n − logn − δ(n)
) − 2. �

Corollary 1 Let t (·) be a polynomial. If f is (t (n), ε(n), δ(n))-secure Kolmogorov
one-way function with ε(n) and δ(n) such that

lim
n→+∞

((
1 − ε(n)

) · (n − logn − δ(n)
) − 2

) = +∞,

then f is a weak one-way function. In particular, a (t (n),1 − ω( 1
n
),0.9n)-secure

Kolmogorov one-way function is a weak one-way function. 2

Theorem 7 Assume that f is an injective strong one-way function. Then, for every
constant c and for every polynomial t (·), f is (t (n),1 − 1/n,n − c logn)-secure
Kolmogorov one-way function.

Proof If f is not (t (n),1 − 1/n,n − c logn)-secure Kolmogorov one-way function
we have that, for infinitely many n′s,

pr(x,r)∈Σn×Σt(n)

(
Kt

f (x|r, n) − Kt
f

(
x|f (x), r, n

) ≥ n − c logn
) ≥ 1 − 1/n

2When we say that ε(n) is 1 − ω( 1
n ), we mean that (1 − ε(n)) ∈ ω( 1

n ).
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which is equivalent to

pr(x,r)∈Σn×Σt(n)

(
Kt

f

(
x|f (x), r, n

) ≤ Kt
f (x|r, n) − n + c logn

) ≥ 1 − 1/n.

Consider the following set:

I = {
(x, r) ∈ Σn × Σt(n) : Kt

f

(
x|f (x), r, n

) ≤ Kt
f (x|r, n) − n + c logn

}
.

Then,

E
(
Kt

f

(
x|f (x), r, n

)) =
∑

(x,r)∈Σn×Σt(n)

pr(x, r)Kt
f

(
x|f (x), r, n

)

=
∑

(x,r)∈I

pr(x, r)Kt
f

(
x|f (x), r, n

)

+
∑

(x,r)/∈I

pr(x, r)Kt
f

(
x|f (x), r, n

)

≤
∑

(x,r)∈I

pr(x, r)Kt
f

(
x|f (x), r, n

) +
∑

(x,r)/∈I

pr(x, r)
(
n + O(1)

)

≤
∑

(x,r)∈I

pr(x, r)Kt
f

(
x|f (x), r, n

) + 1

n

(
n + O(1)

)

≤
∑

(x,r)∈I

pr(x, r)
(
c′ logn

) + n + O(1)

n

≤ 1 · (c′ logn
) + 1 + o(n) ≤ (

c′ + 2
)

logn.

Thus, E(Kt
f (x|f (x), r, n)) ≤ (c′ + 2) logn and by Theorem 5, we conclude that f is

not a strong one-way function. �

In order to avoid dealing with probabilities we can think of a different approach
based on Definition 11.

Definition 12 Let f : Σ� → Σ� be an injective and polynomial time computable
function such that |f (x)| = m(n) ∀x ∈ Σn, where m is some polynomial. We say
that f is Kolmogorov one-way function if for every polynomial t (·), for every positive
integer c, for every sufficiently large n and for every x of length n,

Kt
f (x|n) − Kt

f

(
x|f (x), n

) ≤ c logn.

Theorem 8 If f is a Kolmogorov one-way function then f is a deterministic one-way
function.

Proof We prove this theorem by contraposition. Assume that f is not a deterministic
one-way function. Thus, there is a deterministic polynomial time algorithm B such



Theory Comput Syst (2013) 52:162–178 173

that for every polynomial q(·) and for every n0, there is an n ≥ n0, for which,

#
{
x ∈ Σn : B(

f (x), n
) = x

} ≥ 2n − 2n

q(n)
.

Thus, for an infinity of n′s, B inverts at least one x such that |x| = n, Kt
f (x|n) >

√
n.

For these x, we have that Kt
f (x|n) >

√
n and Kt

f (x|f (x), n) ≤ c′, where c′ is a
constant that includes the description of B . Taking those x of sufficiently large n

such that for every c,
√

n > c logn + c′, we have that:

Kt
f (x|n) − Kt

f

(
x|f (x), n

)
>

√
n − c′

> c logn + c′ − c′

= c logn. �

It is unknown whether the existence of Kolmogorov one-way functions defined as
in Definition 12 implies the existence of strong or even weak one-way functions.

4 On the Kolmogorov Complexity One-Way Functions and the Polynomial
Time Symmetry of Information

Longpré and Mocas in [14] and Longpré and Watanabe in [15] have studied the rela-
tionship between classical one-way functions and polynomial time-bounded symme-
try of information conjecture.

Similarly, in this section, we explore the connection between the existence of Kol-
mogorov one-way functions and the polynomial time-bounded symmetry of informa-
tion. We begin by observing the following:

Theorem 9 If there is a Kolmogorov one-way function with respect to Definition 12,
then the polynomial time-bounded symmetry of information conjecture does not hold.

Proof In Theorem 8, we proved that if a Kolmogorov one-way function with respect
to Definition 12 exists, then a deterministic one-way function also exists. But from
[14] and [15], it is known that if deterministic one-way functions exist then the con-
jecture of polynomial time-bounded symmetry of information conjecture does not
hold. �

Now we introduce the concept of a time function which is used below.

Definition 13 τ(n) is the smallest function such that:

∃c,∀x ∈ Σn, Kτ (x|n) ≤ n + c.

A function t (n) is a time function if t (n) ≥ τ(n).

Notice that τ(n) exists due to second item of Theorem 1 and that Kt(x) is non-
monotone in t .
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Lemma 1 Let t (·) be a time function, k ∈ N and let f : Σn → Σm be an injective
total function such that |f (x)| = m(n) ∀x ∈ Σn, where m is some polynomial. Then,
there is a positive constant c such that for all, except a fraction 1/nk of strings x of
length n, we have that,

n + c − Kt
f

(
f (x)|m) ∈ O(logn).

Proof As f is injective, a counting argument shows that, for any time function t (n),
(more than) 1 − 1/nk of the 2n strings f (x) have Kolmogorov complexity satisfying
Kt

f (f (x)) ≥ n − k logn; this holds for any time function t (n). As f is honest, for

every x with length n, we have m = |f (x)| ≤ ni + i for some constant integer i.
Thus, m cannot “contain” more than logm = i logn + O(1) bits of information and
we get Kt

f (f (x)|m) ≥ n − O(logn) for at least (1 − 1/nk) of the strings x with
length n. For those strings x, for every time function t (n), and for some positive
constant c, we have

0 ≤ n + c − Kt
f

(
f (x)|m) ≤ (n + c) − (

n − O(logn)
) ∈ O(logn). �

Notice that this result is also valid for unbounded version of Kolmogorov com-
plexity. As a consequence of this result, we conclude the following.

Theorem 10 For any time function t (·) and for every positive integer k, if
the polynomial time-bounded symmetry of information conjecture holds, then
(t (n), 1

nk ,O(logn))-secure Kolmogorov one-way functions computable in time less
than t (n) − τ(n) do not exist.

Proof Let f : Σn → Σm be an injective function computable in polynomial time
tf (n) ≤ t (n) − τ(n) (see Definition 13) and let x be a string in Σn. For each
r ∈ Σt(n),

1. Kt
f (f (x)x|r, n,m) ≤ Kt ′

f (x|r, n) + O(1) ≤ n + O(1), where t ′(n) is any time
function and t (n) is greater than t ′(n) + tf (n).

2. n+c−Kt
f (f (x)|r,m) ∈ O(logn) for all, except a fraction 1

nk of all instances (see
Lemma 1).

Thus, by polynomial time-bounded symmetry of information, for all, except a
fraction 1

nk of all instances, we have

Kt
f

(
f (x)|r,m) + Kt

f

(
x|f (x), r, n

) ≤ Kt
f

(
f (x)x|r, n,m

) + O(logn)

⇐⇒ Kt
f

(
x|f (x), r, n

) ≤ Kt
f

(
f (x)x|r, n,m

) − Kt
f

(
f (x)|r,m) + O(logn)

=⇒ Kt
f

(
x|f (x), r, n

) ≤ n + O(1) − Kt
f

(
f (x)|r,m) + O(logn), using 1

=⇒ Kt
f

(
x|f (x), r, n

) ≤ O(logn) + O(logn) ∈ O(logn), using 2.

Then, for all, except a fraction 1
nk of all instances and for some constant c,

Kt
f (x|r, n) − Kt

f

(
x|f (x), r, n

) ≥ Kt
f (x|r, n) − c logn.
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Averaging over the strings x with length n and over r , we have that f is not a
(t (n),1/nk,O(logn))-secure Kolmogorov one-way function, since except for a frac-
tion 1

nk of strings x, we have Kt
f (x|r, n) ≥ √

n and for those x,

Kt
f (x|r, n) − Kt

f

(
x|f (x), r, n

) ≥ √
n − c logn > c′ logn

for every c′ and for sufficiently large n. �

5 One-Way Functions and Time-Bounded Entropy

In terms of the resources available, the following three concepts, when applied to
one-way functions, are somewhat similar.

– The conditional unpredictability entropy H
unp
ε,t (X|f (X)), see Definition 14 and the

reference [16].
– The Yao+ entropy HYao+

ε,t (X|f (X)), see Definition 9 and the reference [18], in
which only the decoder algorithm is time-bounded by a polynomial.

– The polynomial time-bounded Kolmogorov [13] complexity Kt(x|y) in which,
again, the expansion time of a minimum program for x is bounded by a polynomial.

We see that, in each case, no time-bounds are imposed to the compressing phase, but
the decompressor has to run in polynomial time.

So, it is perhaps not surprising that these concepts are related: in this section, af-
ter defining “unpredictability entropy”, we present a relationship between one-way
functions and a parametrized version of the unpredictability entropy H unp(X|f (X)).
Theorem 12, which is based on a result of [16], compares the conditional unpre-
dictability entropy with Yao+ entropy. Theorem 13, which is similar to result already
published by one of the authors, relates the Yao+ entropy with the average case of
a certain time-bounded Kolmogorov complexity. Finally, as a corollary of the results
mentioned above we re-obtain a previous result, namely Theorem 5.

Definition 14 (Unpredictability entropy) For a distribution (X,Z), we say that X has
unpredictability entropy at least k conditioned on Z, denoted by H

unp
ε,t (X|Z) ≥ k, if

there is a collection of distributions Yz (giving rise to a joint distribution (Y,Z)) such
that cdistt ((X,Z), (Y,Z)) ≤ ε, and for all probabilistic algorithms running in time t ,

E
(
pr

[
A(z, r, n) = x

]) ≤ 2−k(n).

Let us now suppose that the success probability, as a function of n, decreases faster
than the inverse of any positive polynomial (it is called a negligible function), that is,
for every positive integer k and for sufficiently large n, prt (n) ≤ 1/nm, where prt (n)

is the success probability

prt (n) = E
(
pr

[
A(z, r, n) = x

])
.

This “negligible” condition can be expressed as: for every positive integer m and for
sufficiently large n, 2−k(n) ≤ 1/nm, that is, k(n) ≥ m logn. In other words, k(n) ∈
ω(logn).
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Recall now the Definition 4 of strong one-way functions. Using Definition 14 with
the negligible success probability bound, we can easily see that

Theorem 11 A polynomial time computable function f : Σn → Σn is a strong one-
way function if the unpredictable entropy k(n) = H unp(x|f (x), n) ∈ ω(logn).

The Yao+ entropy is greater than or equal to the unpredictability entropy. This
is stated in the following theorem, whose proof, being analogous to the proof of
Lemma 8 in [16], is omitted.

Theorem 12 H
unp
ε,t (X|Z) ≥ k implies HYao+

ε,t (X|Z) ≥ k.

The following theorem is similar to a result in [18].

Theorem 13 Let X and Z be probabilistic ensembles, k(n) a function of n, i a pos-
itive integer and t (n) a polynomial. If HYao+

ε (X|Z) ≥ k(n) + i, then E(Kt(X|Z)) ≥
(1 − 2−i )k(n).

Proof Let c(x, z) be a function that, given z, returns the shortest program for x

that runs in time t (|x|) on the reference universal Turing machine (UTM); thus,
|c(x, z)| = Kt(x|z). Let d be the corresponding decoding function d(y, z), which
consists of executing (y, z) in UTM. Define Dz = {x ∈ X : |c(x, z)| < k(n)}.
Let c′(x, z) be a function similar to c(x, z), but whose output is padded on the
right with 0’s so that its length is exactly k(n) bits; in order to allow the recov-
ery of c(x, z) from c′(x, z), we are assuming that the UTM is such that minimum
programs always end with 1. The respective decoder function d ′(y, z) first recov-
ers c(x, z) from c′(y, z) and then executes d on the result c(x, z). We prove the con-
trapositive of the theorem statement. Suppose that E(Kt(X|Z)) < (1 − 2−i )k(n).
Then,

(
1 − 2−i

)
k(n) >

∑

x∈X

pr(x|z)Kt (x|z) ≥
∑

x∈X\Dz

pr(x|z)∣∣c(x, z)
∣∣ ≥ k(n)× pr[X /∈ Dz].

So,

pr[X ∈ Dz] > 2−i = 2k(n)−(k(n)+i).

The function d is efficient, because it only has to run a universal Turing machine for
a polynomial number of steps. Thus, d ′ is also efficient, which implies, together with
the expression above, that HYao+

ε (X|Z) < k(n) + i. �

It has already been observed in [18] that Theorem 13 implies the following in-
equality:

HYao+
ε (X|Z) ≤ 2E

(
Kt(X|Z)

)
. (2)

It follows from Theorems 11, 12 and (2) that



Theory Comput Syst (2013) 52:162–178 177

Theorem 14 If a polynomial time computable function f : Σn → Σn is a strong
one-way function, then E(Kt(x|f (x), r, n)) ∈ ω(logn).

In the proof of Theorem 14 a completely different approach is used in order to
establish a result equivalent to Theorem 5.

6 Conclusions

We used two approaches to relate one-way functions with time-bounded Kolmogorov
complexity. In the first, the expected value of Kt

f (x|f (x), r, n) over the strings x

with length n has been used as a measure of the difficulty of inverting f ; for sim-
plicity, let us denote here that average value by E(Kt

f (n)). We believe that The-
orem 4 is an interesting result, as it shows that a very weak condition, namely
limn→∞ E(Kt

f (n)) = +∞, is sufficient to guarantee that a function is a weak one-
way function. Together with Theorem 5 we obtain a separation result, by defining two
conditions in terms of E(Kt

f (n)) such that, any function satisfying both conditions is
necessarily a weak, but not a strong one-way function.

In the second approach, we have tried to individually characterize the “one-way
character” of a function. For that purpose, we have defined parametric secure Kol-
mogorov one-way functions and Kolmogorov one-way functions (Definitions 11
and 12, respectively). We would like to emphasize here Theorem 6, which establishes
a general relationship between parametric secure Kolmogorov one-way functions and
the expected value of Kt

f (x|f (x), r, n), the measure used in the first approach and,
thus, also related to the classical definitions of weak and strong one-way functions.
We have also related in Sect. 4 the conjecture of polynomial time symmetry of in-
formation with the non existence of certain parametric secure Kolmogorov one-way
functions.

Finally, in Sect. 5, two forms of conditional time-bounded entropy, namely the
Yao+ entropy and the unpredictability entropy were compared with Kt

f (x|f (x), r, n)

and, as a corollary, we obtained a very different proof of Theorem 5.
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