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Abstract

Brattka, Miller and Nies [5] showed that some major algorithmic ran-
domness notions are characterized via differentiability. The main goal of
this paper is to characterize Kurtz randomness by a differentiation theo-
rem on a computable metric space. The proof shows that integral tests
play an essential part and shows that how randomness and differentiation
are connected.

1 Introduction

This work is a continuation of Brattka, Miller and Nies [5], which showed that
some major algorithmic randomness notions are characterized via differentiabil-
ity.

1.1 Differentiation of integrals

Lebesgue [15] showed that, if f is integrable on the real line, the derivative of
F (x) =

∫ x

−∞
f(t)dt exists and is equal to f(x) almost everywhere. The points

for which this equality holds are called Lebesgue points. This theorem was
generalized to the Lebesgue measure on Rn in Lebesgue [16] and the generalized
theorem is called Lebesgue Differentiation Theorem. The theorem was further
generalized to any locally finite Borel measure on Rn by Besicovitch [1] and this
theorem is called the differentiation theorem.

1.2 Characterization via differentiability

Algorithmic randomness defines random points on the unit interval as the points
that avoid some kind of effectively null sets. For example, Martin-Löf random-
ness is defined as follows. A Martin-Löf test is a sequence {Un} of uniformly
c.e. open sets with µ(Un) ≤ 2−n where µ is a computable measure on the space
such as Lebesgue measure on the unit interval. A point x is Martin-Löf ran-
dom if it passes the all tests, that is, x 6∈

⋂

n Un. Other randomness notions
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are Schnorr randomness, computable randomness, Kurtz randomness and weak
2-randomness. See [7] and [18] for details.

It is natural to ask whether a function in a class is always differentiable at an
algorithmic random point. Demuth [6] showed that a real is Martin-Löf random
if and only if every computable function of bounded variation is differentiable at
the point. Then “only if” direction is an effective form of Lebesgue’s theorem.
Furthermore, Brattka, Miller and Nies [5] gave characterizations via differentia-
bility of computable randomness, weak 2-randomness and Martin-Löf random-
ness (recast). A version of Schnorr randomness was given by Pathak, Rojas
and Simpson [19] and independently by Jason Rute. Another characterization
of Schnorr randomness via differentiability was showed by Freer, Kjos-Hanssen
and Nies [8].

Note that differentiability is weaker than the differentiation theorem. Differ-
entiability requires only the existence of the limit but the differentiation theorem
says that the limit exists and is equal to the value of the original function. Fur-
thermore, the differentiation theorem has potential to be generalized to more
general spaces. A goal of this paper is to give a characterization of Kurtz
randomness by a differentiation theorem. In the proof integral tests play an
essential part.

We need to give a remark here. The infinitely dimensional version of the
differentiation theorem does not hold in general: there is a Gaussian measure
µ together with an integrable function f on a separable Hilbert space H such
that

lim
s→0

inf

{

1

µB(x, r)

∫

B(x,r)

fdµ : x ∈ H, 0 < r < s

}

= +∞.

See Tiser [21] for the detail. This means that the differentiation theorem on a
metric space with a Borel measure does not hold in general. So if one expects
some positive results on a general space, one needs some restriction. One suffi-
cient condition is continuity because, if a function is continuous, then all points
are Lebesgue points for the function. Thus, all points are Lebesgue points for a
computable function. We will propose a little larger class of almost everywhere
computable functions so that the set of Lebesgue points for every function in
the class is equivalent to the set of Kurtz random points.

1.3 Randomness on a computable metric space

Algorithmic randomness is usually studied on the Cantor space or the unit
interval. Computable analysis [23, 24] generalized computability to a more
general space. Algorithmic randomness on a computable metric space was also
studied in some literature [9, 13, 11, 12, 10]. The studied randomness notions
are usually Martin-Löf Randomness or Schnorr randomness while Hoyrup and
Rojas [13, Lemma 6.2.1] essentially showed that Martin-Löf random points are
contained in Kurtz random points on a computable metric space. This result
also follows from our characterization of Kurtz randomness.
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1.4 Overview of this paper

In Section 2 we recall some results from computable analysis. In Section 3 we
give some characterizations by integral tests of Kurtz randomness and give a
characterization by a differentiation theorem. In Section 4 we introduce almost
everywhere computability and remove non-negativeness and extendedness in the
characterization. In Section 5 we discuss when two functions are equal on Kurtz
points.

2 Preliminaries

We recall some notions from computable analysis. See [23, 3, 4, 24] for details.
We use “iff” to mean “if and only if”.

2.1 Computable analysis

Let Σ be a finite alphabet such that 0, 1 ∈ Σ. By Σ∗ we denote the set of finite
words over Σ and by Σω the set of infinite sequences over Σ. A notation of a
set X is a surjective partial function ν :⊆ Σ∗ → X , and a representation is a
surjective partial function δ :⊆ Σω → X . A naming system is a notation or a
representation. Let Y1, Y2 ∈ {Σ∗,Σω}. Let γi ⊆ Yi → Xi be naming systems.
A point x ∈ X1 is γ-computable if it has a computable γ-name. A function
h :⊆ Y1 → Y2 realizes a partial function f :⊆ X1 → X2 iff γ2 ◦h(y1) = f ◦γ1(y1)
whenever y1 ∈ dom(γ1) and γ1(y1) ∈ dom(f). The function f is (γ1, γ2)-
computable iff it has a computable realization.

Definition 2.1 (computable metric space). A computable metric space is a
3-tuple X = (X, d, α) such that

(i) (X, d) is a metric space,

(ii) α :⊆ Σ∗ → A is a notation of a dense subset A of X with a computable
domain,

(iii) d restricted to A×A is (α, α, ρ)-computable.

We give some examples of computable metric spaces.

Example 2.2. (i) (unit interval) Let I = (I, d, α) be such that I = [0, 1], α is
a canonical notation of Q ∩ I and d(p, q) = |p− q|.

(ii) (real line) Let R = (R, d, α) be such that α is a canonical notation of Q
and d(p, q) = |p− q|.

(iii) (extended real line) R = (R, d, α) be such that R = R ∪ {±∞}, α is
a canonical notation of Q ∪ {±∞} and d(x, y) = |f(x) − f(y)| where
f(x) = x

1+|x| , f(∞) = 1 and f(−∞) = −1.
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The canonical notations of the natural and the rational numbers are denoted
by νN and νQ, respectively. The representation ρ< :⊆ Σω → R is defined by

ρ<(p) = x ⇐⇒ p enumerates all q ∈ Q with q < x.

We use ρ< for the representation of points in R ∪ {∞}. The representation
ρ :⊆ Σω → R is defined by

ρ(p) = x ⇐⇒ p encodes a sequence {qn} of rationals such that |x−qn| ≤ 2−n.

A fast Cauchy sequence on a metric space is a sequence {xn} of points in
the space such that d(xn, xn−1) ≤ 2−n. The representation δ :⊆ Σω → X of
points in a computable metric space is defined by

δ(p) = x ⇐⇒ p encodes a fast Cauchy sequence {xn} that converges to x.

A basic open ball is denoted by B(u, r) = {x : d(u, x) < r} and a basic
closed ball is denoted by B(u, r) = {x : d(u, x) ≤ r}. The representation
θ :⊆ Σω → τ of open sets is defined by

θ(p) = W ⇐⇒

p encodes a sequence {Bi} of basic open balls such that W =
⋃

i

Bi.

For simplicity we use the following terminology. A point is computable if it
is δ-computable. A open set is c.e. if it is θ-computable. A closed set is co-c.e.
if its complement is c.e. A total function f : X1 → X2 is computable if it is
(δ1, δ2)-computable. A total function f : X → R is lower semi-computable if it
is (δ, ρ<)-computable. A total function f : X → R is extended computable if it
is (δ, ρ)-computable where ρ is the representation δ of points in R.

By Definition 28 and Theorem 29 in Weihrauch and Grubba [24], we have
the following characterization of a computable function.

Proposition 2.3. Let Xi = (Xi, τi, βi, νi) be computable topological spaces for
i = 1, 2. For a total function f : X1 → X2, the following are equivalent:

(i) f is (δ1, δ2)-computable,

(ii) f−1 : τ2 → τ1 is (θ2, θ1)-computable,

(iii) f−1(ν2(u)) is θ1-computable uniformly in u.

2.2 Computable measures

For computability of measures on a computable metric space, see [20, 2, 13]. For
simplicity we only consider a probabilistic computable measure. In this paper
we use the following as the definition of a computable measure.

Definition 2.4 (computable measure). A probabilistic measure µ on a com-
putable metric space is computable if µ|τ : τ → I is (θ, ρ<)-computable (or
lower semi-computable).
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See MC in Schröder [20], ϑM< of Definition 2.10 in Bosserhoff [2] and The-
orem 4.2.1 in Hoyrup and Rojas [13].

Proposition 2.5 ([20, Proposition 3.6], [13, Corollary 4.3.1]). Let µ be a com-
putable measure and f : X → R be a non-negative lower semi-computable func-
tion. Then

∫

fdµ is lower semi-computable.

Proposition 2.6 ([13, Corollary 4.3.2]). Let µ be a computable measure, U
be a c.e. open set with a computable measure and f : X → R be a bounded
computable function. Then

∫

U
fdµ is computable.

We denote
∫

X
fdµ by µ(f).

3 Characterization by integral tests

In this section we give some characterizations of Kurtz randomness by integral
tests and by a differentiation theorem.

Kurtz randomness or weak randomness is usually defined on Cantor space
but it is easily generalized to a computable metric space with a computable
measure on it.

Let (X, d, α) be a computable metric space and µ be a computable measure
on it.

Definition 3.1 (essentially due to Kurtz [14]). A Kurtz test is a c.e. open set
with measure 1. A point x ∈ X passes a Kurtz test U if x ∈ U . A point is Kurtz
random if the point passes all Kurtz tests.

We use most of this section to prove the following theorem.

Theorem 3.2. For a point z ∈ X, the following are equivalent.

(i) z is Kurtz random.

(ii) f(z) < ∞ for each non-negative extended computable function f : X → R

such that f(x) < ∞ almost everywhere.

(iii) f(z) < ∞ for each non-negative extended computable function f : X → R

with µ(f) < ∞.

(iv) f(z) < ∞ for each non-negative extended computable function f : X → R

such that µ(f) is a computable real.

Recall that a point z is Martin-Löf random iff f(z) < ∞ for each non-
negative lower semicomputable function f : X → R such that µ(f) < ∞ [22, 17].
One can see that extended computable functions are used for Kurtz randomness
while lower semicomputable functions for Martin-Löf randomness.

Note that (ii)⇒(iii)⇒(iv) is immediate.
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3.1 The implication (i)⇒(ii)

Proof of (i)⇒(ii) of Theorem 3.2. Let f ∈ K. Then the set Un = {x ∈ X :
f(x) < n} is a c.e. open set for each n by 2.3. It follows that U = {x ∈ X :
f(x) < ∞} =

⋃

n Un is also a c.e. open set. Since µ(U) = 1, U is a Kurtz test.
If f(x) = ∞, then x 6∈ U and does not pass the test. Hence x is not Kurtz

random.

3.2 Some notations

In the following we use many symbols to denote some classes of sets and func-
tions. Most uncommon symbols are defined here or Section 4.1

Let (X, d, α) be a computable metric space and µ be a computable measure
on it. Let A be the range of α. Then A is a countable dense subset of X .

Let {ui} be a computable enumeration of A. By Lemma 2.15 in [2] or
Lemma 5.11 in [13] there exists a computable sequence {rj} of reals such that
µ(B(ui, rj)\B(ui, rj)) = 0 and {B(ui, rj)}i,j form a base of the topology. We
fix the notion B〈i,j〉 to mean B(ui, rj).

We call B(ui, rj) a basic set for each i and j. A co-basic set is the complement

of a closed ball B
c
(un, rn) where B(un, rn) is a basic set. Note that a co-basic

set is open. Let I be the set of all finite intersections of basic sets and co-basic
sets.

Let K(U) be the set of non-negative extended computable functions f : X →
R such that f(x) < ∞ ⇐⇒ x ∈ U . Let K be the set of non-negative extended
computable functions f : X → R such that f(x) < ∞ almost everywhere. Then
f ∈ K iff f ∈ K(U) for a Kurtz test U .

Let Kfin(U) and Kfin be the subset of K(U) and K restricted to the functions
such that

∫

U
fdµ < ∞ and µ(f) < ∞ respectively. Similarly let Kcomp(U) and

Kcomp be the subset of K(U) and K restricted to the functions such that
∫

U fdµ
is computable and µ(f) is computable respectively.

3.3 Proof for the unit interval with Lebesgue measure

In the next subsection we prove (iv)⇒(i) of Theorem 3.2 for computable metric
spaces. In order to make the proof more accessible, we first provide the proof for
the special case of the unit interval with Lebesgue measure in this subsection.

Let I = (I, d, α) be the computable metric space of the unit interval in
Example 2.2. Let µ be the Lebesgue measure on I. Note that µ is computable.

The proof idea is as follows. From a Kurtz test U , we construct a function
from I to R. First we divide U into a pairwise disjoint sequence {Un} of uni-
formly c.e. open sets with µ(Un) = 2−n by ignoring a set of rationals, that is,
U\

⋃

n Un is a set of rationals. Let Vn = I\
⋃n

k=1 Uk. Then µ(Vn) = 2−n. Then
x passes U ⇐⇒ x 6∈

⋂

n Vn if x is not a rational. Hence the least n satisfying
x 6∈ Vn can be called randomness deficiency of x for {Vn}.

Roughly speaking, we construct a function f by which each point approxi-
mately maps to the randomness deficiency. Then let f0 be such that f0(x) = n if
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x ∈ Un, and f0(x) = ∞ otherwise. Then f0 is non-negative and µ(f) = 1 < ∞.
However f0 is neither continuous nor computable on some rational points and
U c.

To make the function computable at these points, we modify f0. Recall that
each open set Un is a union of pairwise disjoint open intervals with two rational
endpoints. For each interval (p, q), we construct a polygonal function f ≥ f0
with limx→p+ f(x) = limx→q− f(x) = ∞. Intuitively, if the point x is very close
to p or q, then f(x) is large. Such a function f will satisfy the desired property.

Before giving the proof, we prepare a lemma.

Lemma 3.3. For p, q ∈ I ∩Q, there exists a function g〈p,q〉 such that

(i) g〈p,q〉 : (p, q) → R is non-negative and computable uniformly in p and q,

(ii)
∫

(p,q)
g〈p,q〉dµ is computable.

Proof. Let g : I → R be a polygonal function satisfying the following:

(i) the set of endpoints is {1− 2−n : n ≥ 0},

(ii) g(1− 2−n) = n,

(iii) g(1) = ∞.

Note that g is non-negative and extended computable. Furthermore the inte-
gration

∫

I

gdµ =
∞
∑

n=1

((n− 1) + n) · 2−n · 1/2 =
∞
∑

n=1

(2n− 1) · 2−n−1

exists and is computable. Let G =
∫

I
gdµ.

Let g〈p,q〉 : (p, q) → R be such that

g〈p,q〉(x) =















g
(

(p+q)/2−x
(p+q)/2−p

)

if x ∈
(

p, p+q
2

)

,

0 if x = p+q
2 ,

g
(

x−(p+q)/2
q−(p+q)/2

)

if x ∈
(

p+q
2 , q

)

.

Then g is non-negative and computable. Note that
∫

(p,q) g〈p,q〉dµ = (q−p)G.

Recall that f ∈ Kcomp on the unit interval if f : I → R is non-negative and
extended computable such that µ(f) is computable.

In the following we often split an interval (p, q) into disjoint two intervals
(p, r) and (r, q) where p, q, r ∈ I∩Q. Indeed we need not pay much attention to
rationals because a rational is not Kurtz random and, for each q ∈ I ∩Q, there
exists a function f ∈ Kcomp such that f(q) = ∞. For q = 0 or 1, consider

f(x) =

{

g〈0,1〉(x) if x ∈ (0, 1)

∞ if x = 0, 1.
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Then f ∈ Kcomp and f(q) = ∞. For q ∈ (0, 1), consider

f(x) =











g〈0,q〉(x) if x ∈ (0, q),

g〈q,1〉(x) if x ∈ (q, 1),

∞ if x = 0, q, 1

.

Then f ∈ Kcomp and f(q) = ∞.
Using the function g〈p,q〉, we prove the existence of f ∈ Kcomp for a general

Kurtz test.

Proof of (iv)⇒(i) of Theorem 3.2 on the unit interval. Let U be a Kurtz test.
Then there exists a computable sequence {(pn, qn)} of pairwise disjoint base sets
such that U\

⋃

n(pn, qn) is a set of rationals where pn, qn ∈ Q ∩ I and n ≥ 1.
Let Un =

⋃n
k=1(pk, qk) and Un ↑ U∞. We can further assume that there exists

a computable sequence {am} of natural numbers such that µ(Uam
) = 1− 2−m

and a0 = 0.
Let f : I → R be such that

f(x) =

{

m− 1 + g〈pn,qn〉(x) if x ∈ (pn, qn) and am−1 < n ≤ am,

∞ otherwise.

If x 6∈ U then f(x) = ∞.
We prove f ∈ Kcomp. The function f is non-negative.
We prove that f is extended computable. By Proposition 2.3 it suffices to

show that f−1([0, q)), f−1((p, q)) and f−1((p,∞]) are uniformly c.e. open. Note
that {x : f(x) < ∞} = U∞ and f is computable on U∞. Hence f−1([0, q))
and f−1((p, q)) are c.e. open. To prove that f−1((p,∞]) is c.e. open, we show
that f−1([0, p]) is co-c.e. closed. Note that f(I) = [0,∞]. Then

f−1([0, p]) ={x : f(x) ≤ p}

=
⋃

n

{x ∈ (pn, qn) : f(x) ≤ q}.

Note that {x ∈ (pn, qn) : f(x) ≤ q} is co-c.e. closed. Let N be the minimum
natural number such that N > am−1 and m − 1 > q. Then f(x) ≥ m− 1 > q
for all x ∈ (pn, qn) and n ≥ N . Hence f−1([0, p]) is the finite union of co-c.e.
closed sets and it is co-c.e. closed.

Since m depends on n, we write mn. The integral µ(f) is

∞
∑

n=1

∫

(pn,qn)

(mn − 1 + g〈pn,qn〉)dµ =

∞
∑

n=1

(qn − pn)(mn − 1) +

∞
∑

n=1

(qn − pn)G.

The second term in the right-hand side is equal to G because µ(U) = µ(U∞) = 1
and µ(

⋃∞
n=1(pn, qn)) = 1. Note that

∑

n

{(qn − pn) : mn = k} = 2−k.
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Thus
∞
∑

n=1

(qn − pn)(mn − 1) =
∞
∑

k=1

(k − 1)2−k.

Hence µ(f) is computable.

3.4 Proof for computable metric spaces

In this subsection we prove Theorem 3.2 for a computable metric space with a
computable measure on it. The idea is similar to the case of the unit interval.

Definition 3.4 (inner approximation). A sequence {Vn} of subsets of X is an
inner approximation for a set U ⊆ X if

(i) Vn is uniformly computable elements in I,

(ii) {Vn} is pairwise disjoint,

(iii)
⋃

n Vn ⊆ U ,

(iv) µ(U\
⋃

n Vn) = 0.

Lemma 3.5. From a c.e. open set U , one can uniformly construct an inner
approximation {Vn}.

Proof. Since U is a c.e. open set, there exists a computable sequence {B(vn, sn)}
of basic sets such that U =

⋃

n B(vn, sn). Let

Un =

n
⋃

k=1

B(vk, sk) and Dn = Un\Un−1

where U0 = ∅. Let

Vn = Un ∩
n−1
⋂

k=1

B
c
(vk, sk).

Then Vn ∈ I for each n. Then

x ∈
n−1
⋂

k=1

B
c
(vk, sk) ⇒ x 6∈ Un−1.

Hence Vn ⊆ Dn and
⋃

n Vn ⊆ U . Since {Dn} is pairwise disjoint, {Vn} is
pairwise disjoint. Furthermore

µ(U\
⋃

n

Vn) =

∞
∑

n=1

µ(Dn\Vn) = 0.
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Note that the union
⋃

n Vn of an inner approximation {Vn} for a Kurtz test
is a Kurtz test. We will finally construct a function f ∈ Kcomp(

⋃

n Vn). In the
following we construct a partial computable function in Kcomp(Vn) and combine
them later.

On the unit interval we constructed a function g〈p,q〉 for each basic set (p, q).
Similarly we construct a function f for each basic set B(u, r).

Lemma 3.6. Let {xn} be a sequence of uniformly computable positive reals. If
there exists a uniformly computable sequence {yn} such that xn ≤ yn for all n
and

∑

n yn is computable, then
∑

n xn is also computable.

Proof. Let {an} be a computable sequence such that
∑∞

k=an+1 yk < 2−n. Since

xn ≤ yn for all n,
∑∞

k=an+1 xn < 2−n. It follows that

|
∞
∑

k=1

xk −
an
∑

k=1

xk| < 2−n.

Since
∑an

k=1 xk is computable,
∑

n xn is also computable.

Lemma 3.7. One can uniformly construct a function f ∈ Kcomp(D) from a
basic set D = B(u, r) = B〈i,j〉.

Proof. Let V = µ(D). One can construct a computable sequence {sn}n ⊆ {rn}n
of reals such that

(i) s0 = 0,

(ii) sn−1 < sn < r,

(iii) µ(B(u, sn)) ≥ (1− 2−n)V for all n and

(iv) sn → r as n → ∞.

Let Dn = B(u, sn)\B(u, sn−1) for all n ≥ 1. Then

µ(
n
⋃

k=1

Dk) = µ(B(u, sn)) ≥ (1− 2−n)µ(D).

Then

V = µ(
n−1
⋃

k=1

Dk) + µ(Dn) + µ(
∞
⋃

k=n+1

Dk) ≥ µ(
n−1
⋃

k=1

Dk) + µ(Dn).

Hence µ(Dn) ≤ V − (1− 2−n+1)V = 2−n+1V .
Define g : R+ → R by

g(x) =

{

n− 1 + x−sn−1

sn−sn−1

if sn−1 ≤ x < sn for n ≥ 1

∞ if x ≥ r.
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Then g is non-negative. Note that g is continuous at x = sn for each n. Then g
is continuous and a polygonal function. Hence g is extended computable. Note
that g(x) < ∞ iff x < r. Also note that g is increasing.

Define f : X → R by
f(x) = g(d(u, x)).

Then f is non-negative and extended computable. Note that

f(x) < ∞ ⇐⇒ g(d(u, x)) < ∞ ⇐⇒ d(u, x) < r ⇐⇒ x ∈ D.

We claim that
∫

D
fdµ is computable. Note that B(u, sn) has a computable

measure and f is a bounded computable function on B(u, sn) for each n. By
Proposition 2.6

∫

B(u,sn)
fdµ is computable uniformly in n. Then

∫

B(u,sn)

fdµ =

∫

B(u,sn−1)

fdµ+

∫

Dn

fdµ

=

∫

B(u,sn−1)

fdµ+

∫

B(u,sn)∩B
c
(u,sn−1)

fdµ.

The two integrations are lower semi-computable by Proposition 2.5. Since the
sum of them is computable, they are computable. Hence

∫

Dn
fdµ is uniformly

computable.
Furthermore

∫

Dn

fdµ ≤ nµ(Dn) ≤ n2−n+1V

and
∑∞

n=1 n2
−n+1V is computable. By Lemma 3.6

µ(f) =

∞
∑

n=1

∫

Dn

fdµ

is also computable.

Similarly such a function can be constructed for a co-basic set.

Lemma 3.8. One can uniformly construct a function f ∈ Kcomp(E) from a

co-basic set E = B
c
(u, r) = B

c

〈i,j〉.

Proof. We can assume that d(x, y) < 1 for all x, y ∈ X . Let V = µ(D) =
µ(B(u, r)). One can construct a computable sequence {tn}n ⊆ {rn}n of reals
such that

(i) t0 = 1,

(ii) r < tn < tn−1,

(iii) µ(B
c
(u, tn)) ≥ (1− 2−n)(1− V ) for all n and

(iv) tn → r as n → ∞.
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Define g : R+ → R by

g(x) =

{

n− 1 + tn−1−x
tn−1−tn

if tn ≤ x < tn−1 for n ≥ 1

∞ if x ≤ r.

Define f : X → R by f(x) = g(d(u, x)).
By an argument similar to the proof of Lemma 3.7, f is non-negative and

extended computable, f(x) < ∞ ⇐⇒ x ∈ E,
∫

E fdµ is computable.

Lemma 3.9. One can uniformly construct a function f ∈ Kcomp(U) from an
open set U ∈ I.

Proof. Since U ∈ I, U can be written as

U =
⋂

n≤N

B(vn, sn) ∩
⋂

m≤M

B
c
(wm, tm).

Let f i
n be a function for B(vn, sn) as in Lemma 3.7 and fo

m be a function for
B

c
(wm, tm) as in Lemma 3.8 uniformly in n and m. Define f : X → R by

f(x) =
∑

n≤N

f i
n(x) +

∑

m≤M

fo
m(x).

Then f is non-negative and extended computable.
We claim that f(x) < ∞ ⇐⇒ x ∈ U . This is because

f(x) < ∞ ⇐⇒ f i
n(x) < ∞ for all n ≤ N and f i

m(x) < ∞ for all m ≤ M

⇐⇒ x ∈
⋂

n≤N

B(vn, sn) ∩
⋂

m≤M

B
c
(wm, tm)

⇐⇒ x ∈ U.

We show that
∫

U
f i
ndµ and

∫

U
fo
mdµ are computable uniformly. Note that

∫

U

fdµ =
∑

n≤N

∫

U

f i
ndµ+

∑

m≤M

∫

U

fo
mdµ.

Then
∫

U fdµ is computable. Hence f ∈ Kcomp(U).
As an example, we show that

∫

U f i
1dµ is computable. We divide B(v1, s1)

into 2N+M−1 pairwise disjoints sets {Vk}. For k = 1, . . . , 2N+M−1, let

Vk = B(v1, s1) ∩
⋂

1<n≤N

Yn ∩
⋂

m≤M

Zm

where
Yn = B(vn, sn) or B

c
(vn, sn),

Zm = B(wm, tm) or B
c
(wm, tm).
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Note that there exists k such that Vk = U . Then
⋃

k Vk ⊆ B(v1, s1) and
µ(B(v1, s1)) = µ(

⋃

k Vk). For each k, the integration
∫

Vk
f i
1dµ is lower semi-

computable uniformly. The sum of them is equal to
∫

B(v1,s1)
f i
1dµ and is com-

putable by the definition of f i
1. Hence

∫

Vk
f i
1dµ is uniformly computable. In

particular
∫

U
f i
1dµ is computable.

Proof of (iv)⇒(i) of Theorem 3.2. Let {Vn} be an inner approximation for a
Kurtz test U . Let Un =

⋃n
k=1 Vk. Recall that µ(Vn) is uniformly computable.

Hence one can construct a strictly increasing computable sequence {am} of
natural numbers such that µ(Uam

) > 1− 2−m and a0 = 0.
Let fn ∈ Kcomp(Vn) be uniform by Lemma 3.9. We can further assume that

∫

Vn
fndµ = µ(Vn). Define f : X → R by

f(x) =

{

m− 1 + fn(x) if x ∈ Vn and am−1 < n ≤ am

∞ if x 6∈
⋃

n Vn

.

Then f is non-negative because fn is non-negative. If x 6∈ U , then f(x) = ∞.
We claim that f is extended computable. Note that f is computable on Vn

for each n. Hence it suffices to show that f−1((q,∞]) is uniformly c.e. open for
each q ∈ Q. For each n and m such that am−1 < n ≤ am,

V c
n ⊆ {x ∈ X : m− 1 + fn(x) > q}.

Then
{x ∈ X : m− 1 + fn(x) ≤ q} ⊆ Vn.

It follows that {x ∈ Vn : f(x) ≤ q} is co-c.e. closed. Note that the set
{x ∈ Vn : f(x) ≤ q} is empty for all but finitely many n. Hence

f−1([0, q]) =
⋃

n

{x ∈ Vn : f(x) ≤ q}.

is co-c.e. closed. Since f is surjective, f−1((q,∞]) is uniformly c.e. open.
We claim that µ(f) is computable. Note that
∫

Vn

fdµ = (m− 1)µ(Vn) +

∫

Vn

fndµ = (m− 1)µ(Vn) + µ(Vn) = m · µ(Vn)

is computable. Then

∑

am−1<n≤am

∫

Vn

fdµ = m(µ(Uam
)−µ(Uam−1

)) ≤ m(1−(1−2−m+1)) = m·2−m+1.

By Lemma 3.6

µ(f) =

∞
∑

m=1

∑

am−1<n≤am

∫

Vn

fndµ

is computable.
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3.5 Characterization by a differentiation theorem

We gave some characterizations of Kurtz randomness by integral tests in The-
orem 3.2. This theorem gives a characterization of Kurtz randomness by a
differentiation theorem.

Definition 3.10 (Lebesgue point). Let (X, d) be a metric space and f :⊆ X →
R be a function. A point x ∈ X is a Lebesgue point for f if

lim
r→0

1

µB(x, r)

∫

B(x,r)

fdµ = f(x),

and the both sides are defined and are finite. We write L(f) to mean the set of
Lebesgue points for f .

The differentiation theorem says that µ(L(f)) = 1 ifX = Rn. Note that each
point x ∈ X is a Lebesgue point for every continuous function f : X → R. Then
x ∈ X is a Lebesgue point for a non-negative extended computable function
f : X → R iff f(x) < ∞. Hence finiteness in Theorem 3.2 can be replaced with
being a Lebesgue point.

In particular we have the following on the unit interval.

Corollary 3.11. Let I be the unit interval in Example 2.2. A point z ∈ [0, 1]
is Kurtz random iff each computable function F : [0, 1] → R whose derivative is
non-negative and extended computable is differentiable at z.

Proof. Suppose that z is not Kurtz random. Then there exists a non-negative
extended computable function f : X → R such that µ(f) is a computable real
and f(z) = ∞. Let

F (x) =

∫ x

0

f(t)dt.

Then F is a computable function and the derivative of F is f . Furthermore F
is not differentiable at z.

Suppose that F is not differentiable at z for a computable function F whose
derivative is extended computable. Let f be the derivative of F . Then f is non-
negative and extended computable. Furthermore µ(f) = F (1) is computable.
Since F is not differentiable at z, f(z) = ∞. Then z is not Kurtz random.

4 Removing non-negativeness

4.1 Some notations

We define some other symbols used in the following. Recall that I is the set
of all finite intersections of basic sets and co-basic sets. Let U be the set of all
finite unions of elements in I. For a set E ∈ U , we define C(E) inductively as
follows.

(i) If E is a basic set B(u, r), then C(E) = B
c
(u, r).

14



(ii) If E is a co-basic set B
c
(u, r), then C(E) = B(u, r).

(iii) If E = E1 ∩ · · · ∩ En ∈ I where Ei is a basic set or a co-basic set, then
C(E) = C(E1) ∪ · · · ∪ C(En) ∈ U .

(iv) If E = E1∪· · ·∪En where Ei ∈ I, then C(E) = C(E1)∩· · ·∩C(En) ∈ U .

Then the following is easy to prove by induction.

Lemma 4.1. For each E ∈ U , E ∩ C(E) = ∅, µ(E ∪ C(E)) = 1 and µ(E) is
uniformly computable.

Let D be the set of two functions in K, that is, D = {f − g : f, g ∈ K}.
Here dom(f − g) = {x : f(x) < ∞ and g(x) < ∞}. Similarly Dfin and Dcomp

are defined. The symbols A, Afin and Acomp are defined just after Definition
4.3.

Definition 4.2 (Kurtz equivalence). Two functions f, g : X → R are Kurtz
equivalent on E ⊆ X if f(x) = g(x) for each Kurtz random point x ∈ E. If
E = X, then we omit “on X”.

4.2 Almost everywhere computability

We gave some characterizations of Kurtz randomness by the differentiation the-
orem. In the following, we will remove the non-negativeness and values ∞.

A naive way to do this is to take the difference of two functions. Recall that
K is the set of non-negative extended computable functions f : X → R such
that f(x) < ∞ almost everywhere. Then the following are equivalent.

(i) z is Kurtz random.

(ii) z is a Lebesgue point for each h ∈ D.

(iii) z is a Lebesgue point for each h ∈ Dfin.

(iv) z is a Lebesgue point for each h ∈ Dcomp.

The question is whether D, Dfin and Dcomp have other simple characterizations.
We give a partial answer.

Definition 4.3. We say that a function f :⊆ X → R is almost everywhere
computable (or a.e. computable) if it is computable and is defined almost ev-
erywhere.

Note that a function f is a.e. computable if and only if the two partial
functions f and −f are (δ, ρ<)-computable and they are defined almost every-
where, which is equivalent to that there are a lower semi-computable function
f : X → R and an upper semi-computable function f : X → R such that

(i) f(x) ≤ f(x) for all x ∈ X ,
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(ii) dom(f) = {x : f(x) = f(x)},

(iii) µ(dom(f)) = 1,

(iv) f(x) = f(x) for x ∈ dom(f).

Let A be the set of all a.e. computable functions. Let Afin and Acomp be
the subset of A restricted to the functions f such that µ(|f |) < ∞ and µ(|f |) is
computable respectively. Clearly

Acomp ⊆ Afin ⊆ A.

Note that
Dcomp ⊆ Acomp,Dfin ⊆ Afin, D ⊆ A.

The converses of the latter two hold in a weak form.

Proposition 4.4. Let h be an a.e. computable function. For each n ∈ N, there
exists a function g ∈ D such that |h(x) − g(x)| ≤ 2−n on Kurtz random points.
If h ∈ Afin, then g can satisfy g ∈ Dfin.

The goal of this subsection is to prove this proposition. We prepare defini-
tions and lemmas. Let Q = Q ∪ {±∞}.

Definition 4.5. A function h : X → R is computably simple if

(i) rng(h) is a finite subset of Q,

(ii) h−1((q,∞]) is a finite union of basic sets uniformly in q ∈ Q.

Lemma 4.6. A function h : X → R is lower semi-computable iff there exist
a sequence {hs} of uniformly computably simple functions such that hs(x) ≤
hs+1(x) and lims→∞ hs(x) = h(x) for all x.

We say hs is a computable approximation of h.

Proof. Let {qi} be a computable enumeration of elements in Q such that q0 =
−∞. Since h is lower semi-computable, h−1((qi,+∞]) is uniformly c.e. Hence
there exists an infinite sequence {U i

n} of basic sets such that h−1((qi,+∞]) =
⋃

n U
i
n. Here we allow U i

n = U i
m for n 6= m. Let

hs(x) = max{qi : x ∈ U i
n for i < s ∧ n < s}.

If the set is empty, hs(x) = −∞.
We claim that hs is computably simple. The range rng(hs) ⊆ {qi : i <

s} ⊆ Q. For each q ∈ Q,

h−1
s ((q,∞]) =

⋃

{U i
n : q < qi ∧ i < s ∧ n < s}.

Hence h−1
s ((q,∞]) is a finite union of basic sets. It follows that hs is computably

simple.
By the definition of hs, it is immediate that hs(x) ≤ hs+1(x) for all x.
We claim that lims→∞ hs(x) = h(x). Let x ∈ X and qi ∈ Q be such that

h(x) > qi. Then x ∈ h−1((qi,∞]). It follows that x ∈ U i
n for some n. Hence

hs(x) ≥ qi for s ≥ n. Therefore lims→∞ hs(x) = h(x).
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Definition 4.7. A function h : X → R is computably supersimple if

(i) rng(h) is a finite subset of Q,

(ii) {x : h(x) = q} ∈ U uniformly in q ∈ Q.

Recall that two functions f, g : X → R are Kurtz equivalent if f(x) = g(x)
for each Kurtz random point x ∈ X .

Lemma 4.8. Each computably simple function h is Kurtz equivalent to a com-
putably supersimple function g on dom(h).

Proof. Let {qi} be a computable enumeration of elements in Q such that q0 =
−∞. Let s ∈ N be such that

rng(h) ⊆ {qi : i < s}.

Let pi be the (i + 1)-st element in {qi : i < s} in increasing order. Then
p0 = −∞.

For i such that 0 < i < s let

Vi = {x : h(x) > pi−1} ∩ C({x : h(x) > pi}) ∈ U .

Let

g(x) =

{

h(x) if x ∈ Vi for some i

−∞ otherwise.

Then rng(g) ⊆ rng(h) and

{x : g(x) = pi} = Vi ∈ U

for 0 < i < s. Hence g is a computably supersimple function.
Note that

{x : h(x) = pi} = {x : h(x) > pi−1}\{x : h(x) > pi}.

Since µ(C({x : h(x) > pi}) ∪ {x : h(x) > pi}) = 1 by Lemma 4.1,

µ({x : h(x) = pi}) = µ(Vi).

Let V0 = C({x : h(x) > −∞}). Then

µ({x : h(x) = −∞}) = µ(V0).

Since µ(
⋃

i<s{x : h(x) = pi}) = µ(X) = 1, µ(
⋃

n Vn) = 1. Hence
⋃

n Vn is a
Kurtz test.

Let x ∈ dom(h) be a Kurtz random point. It follows that x ∈ Vi for some i.
Hence g(x) = h(x).
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Lemma 4.9. Let {qi} be a computable sequence of rational numbers and {Vi}
be an inner approximation for X. Define a function h :⊆ X → R as

h =
∑

i

qi1Vi
.

Then h ∈ D. If
∑

i |qi|µ(Vi) < ∞, then h ∈ Dfin.

Proof. Let f be the function constructed from {Vi} in the proof of the “if”
direction of Theorem 3.2. Define g1, g2 : X → R by

g1(x) =











qi + f(x) if x ∈ Vi and qi ≥ 0

f(x) if x ∈ Vi and qi < 0

∞ otherwise.

,

g2(x) =











f(x) if x ∈ Vi and qi ≥ 0

−qi + f(x) if x ∈ Vi and qi < 0

∞ otherwise.

.

Then g1 and g2 are non-negative and extended computable and gj(x) < ∞ ⇐⇒
x ∈

⋃

i Vi for j = 1, 2. Then g1, g2 ∈ K and g1 − g2 ∈ D. Also note that
h(x) = g1(x) − g2(x) for x ∈

⋃

i Vi.
Suppose that

∑

i |qi|µ(Vi) < ∞. Then

µ(gj) ≤
∑

i

|qi|µ(Vi) + µ(f) < ∞.

Then g1, g2 ∈ Kfin and h ∈ Dfin.

Proof of Proposition 4.4. Let h and h be functions for h as in Definition 4.3.
Note that −h and h are lower semi-computable. By Lemma 4.6 let −hs and hs

be computable approximations of −h and h respectively.
Let

Us = {x : hs(x) − hs(x) < 2−n}.

Then
Us =

⋃

q∈Q

({x : hs(x) < q} ∩ {x : hs(x) > q − 2−n}) ∈ U .

Let Vs = Us ∩ C(Us−1) ∈ U . Then {Vs} is pairwise disjoint and µ(
⋃

n Vs) = 1.
Let h′

s be a computably supersimple function that is Kurtz equivalent to hs

for each s by Lemma 4.8. Let

g(x) = h′
s(x) if x ∈ Vs.

Then
|h(x)− g(x)| = h(x) − h′

s(x) ≤ hs(x)− hs(x) < 2−n.

if x ∈ Vs and x is Kurtz random. Hence |h(x) − g(x)| < 2−n on Kurtz random
points.
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From an a.e. computable function h, construct a Let

Es
i = {x : h′

s(x) = qi} ∈ U

where {qi} is a computable enumeration of elements in Q. Then

hs =
∑

qi∈Q

qi1Es
i
.

Let
g =

∑

s

∑

qi∈Q

qi1Es
i
∩Vs

.

Note that hs(x) 6= −∞ for x ∈ Vs.
Since Es

i ∩ Vs is a c.e. open set, it has an inner approximation. Then there
exists a sequence Wi such that {W〈i,s,m〉}m is a inner approximation for Es

i ∩Vs.
Let p〈i,s,m〉 = qi. Then

g =
∑

j

pj1Wj
.

Now the proposition follows from Lemma 4.9.

4.3 The differentiation theorem

Proposition 4.10. For a point z ∈ X, the following are equivalent.

(i) z is Kurtz random.

(ii) f(z) is defined for each a.e. computable function f :⊆ X → R.

(iii) z is a Lebesgue point of each a.e. computable function f :⊆ X → R.

The equivalence between (i) and (ii) on the unit interval was given by Jason
Rute (personal communication). Here we give another proof in the general
setting of a computable metric space.

Proof. (iii)⇒(ii) If z is a Lebesgue point for a function f ∈ A, then f(z) is
defined.

(ii)⇒(i) Suppose z is not Kurtz random. Then there exists a function f ∈ K
such that f(z) = ∞. Let g = f − 0 where 0 is the constant function. Then
g ∈ D ⊆ A and g(z) is not defined.

(i)⇒(iii) Suppose z is Kurtz random and f be in A. By the proof of Proposition
4.4, for each n, there exists a computably supersimple function gn and an open
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set V ∈ U such that gn(x) = gn(y) for x, y ∈ V and |f(x) − gn(x)| ≤ 2−n for
x ∈ V . Then, for each r such that B(z, r) ⊆ V ,

∫

B(z,r)

|f(x) − f(z)|dµ

=

∫

B(z,r)

(|f(x)− gn(x)|+ |gn(x) − gn(z)|+ |gn(z)− f(z)|)dµ

≤2−n+1µB(z, r).

Since n is arbitrary,

lim
r→0

1

µB(z, r)

∫

B(z,r)

|f(x)− f(z)|dµ → 0.

Hence z is a Lebesgue point.

5 When two functions are Kurtz equivalent

The following is a classical result. For a function f : X → R,
∫

|f |dµ = 0 iff
f(x) = 0 almost everywhere. In this section we give an effectivization of this
result.

The first idea is to restrict f to be computable. Let f : X → R be a
computable function with

∫

|f |dµ = 0. Then f is continuous and f(x) = 0 for
all x ∈ X . Hence computability is too strong to characterize Kurtz randomness.

As a simple corollary of Proposition 4.10, we have the following.

Theorem 5.1. A point z is Kurtz random iff f(z) = 0 for each a.e. computable
function f with

∫

|f |dµ = 0.

Proof. Let z be a Kurtz random point and f be a function in A. By Proposition
4.10 z is a Lebesgue point. It follows that

f(z) = lim
r→0

1

µB(z, r)

∫

B(z,r)

f(x)dµ.

Here the right-hand side is 0 because
∫

|f |dµ = 0.
Suppose z is not Kurtz random. Then there exists a function f ∈ K such that

f(z) = ∞. Let g = f − f ∈ D ⊆ A. Then g(z) is not defined. Since f(x) < ∞
almost everywhere, g(x) is defined almost everywhere. Hence

∫

|g|dµ = 0.

The theorem above is rewritten as follows.

Theorem 5.2. Let f, g be a.e. computable functions. Then f, g are Kurtz equiv-
alent iff

∫

|f − g|dµ = 0.

Proof. Suppose that f, g ∈ A satisfy
∫

|f − g|dµ = 0. Since f − g ∈ A, (f −
g)(x) = 0 for each Kurtz random point x by Theorem 5.1. It follows that f and
g are Kurtz equivalent.

Suppose that f, g ∈ A are Kurtz equivalent. Then f(x) = g(x) almost
everywhere. It follows that

∫

|f − g|dµ = 0.
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