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Abstract We study the online strip packing problem and derive an improved lower
bound of ρ ≥ 2.589 . . . for the competitive ratio of this problem. The construction is
based on modified “Brown-Baker-Katseff sequences” (Brown et al. in Acta Inform.
18:207–225, 1982) using only two types of rectangles. In addition, we present an
online algorithm with competitive ratio (3+√

5)/2 = 2.618 . . . for packing instances
of this type.

Keywords Strip packing · Rectangle packing · Online algorithms · Lower bounds

1 Introduction

In the two-dimensional strip packing problem a number of rectangles have to be
packed without rotation or overlap into a strip such that the height of the strip used
is minimal. The width of the rectangles is bounded by 1 and the strip has width 1
and infinite height. Baker, Coffman and Rivest [2] show that this problem is NP-
hard, while Kenyon and Remila [3] present an approximation scheme for solving this
problem.

We study the online version of this packing problem. In the online version the
rectangles are given to the online algorithm one by one from a list, and the next rect-
angle is given as soon as the current rectangle is irrevocably placed into the strip.
To evaluate the performance of an online algorithm we employ competitive analysis.

R. Harren
Max-Planck-Institut für Informatik (MPII), Campus E1 4, 66123 Saarbrücken, Germany
e-mail: rharren@mpi-inf.mpg.de

W. Kern (B)
Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede,
The Netherlands
e-mail: w.kern@utwente.nl

mailto:rharren@mpi-inf.mpg.de
mailto:w.kern@utwente.nl


42 Theory Comput Syst (2015) 56:41–72

For a list of rectangles L, the height of a strip used by online algorithm ALG and by
the optimal solution are denoted by ALG(L) and OPT(L), respectively. The optimal
solution is not restricted in any way by the ordering of the rectangles in the list. Com-
petitive analysis measures the absolute worst-case performance of online algorithm
ALG by its competitive ratio

ρALG = sup
L

{
ALG(L)

OPT(L)

}
.

Known Results Regarding the upper bound on the competitive ratio for online strip
packing, recent advances have been made by Ye, Han and Zhang [4] and Hurink and
Paulus [5]. Independently they showed that a modification of the well-known shelf
algorithm yields an online algorithm with competitive ratio 7/2 + √

10 ≈ 6.6623,
improving an earlier “shelf type algorithm” by Baker and Schwarz [6]. Another line
of research deals with the so-called asymptotic competitive ratio, cf. [6–8].

In the early 80’s, Brown, Baker and Katseff [1] derived a lower bound ρ ≥ 2
on the competitive ratio of any online algorithm by constructing certain (adversary)
sequences in a fairly straightforward way—see Sect. 2. These sequences, that we
call BBK sequences in the sequel, were further studied by Johannes [9] and Hurink
and Paulus [10], who derived improved lower bounds of 2.25 and 2.43, respectively.
(Both results are computer aided and presented in terms of online parallel machine
scheduling, a closely related problem.) The paper of Hurink and Paulus [10] also
presents an upper bound of ρ ≤ 2.5 for packing BBK sequences. Kern and Paulus
[11] finally settled the question of how well the BBK sequences can be packed by
providing matching upper and lower bounds of ρBBK = 3/2 + √

33/6 ≈ 2.457.

Our Contribution Using modified BBK sequences we show an improved lower
bound of 2.589 . . . on the absolute competitive ratio of this problem. The modified
sequences that we use consist solely of two types of items, namely, thin items that
have negligible width (and thus can all be packed in parallel) and blocking items that
have width 1. The advantage of these sequences is that the structure of the optimal
packing is simple, i.e., the optimal packing height is the sum of the heights of the
blocking items plus the maximal height of the thin items. Therefore, we call such
sequences primitive. We like to stress that all instances used so far to derive lower
bounds are primitive.

On the positive side, we present an online algorithm for packing primitive se-
quences with competitive ratio (3 + √

5)/2 = 2.618 . . . . This result shows that our
lower bound analysis of modified BBK sequences is fairly tight and, secondly, that in
order to derive new lower bounds for strip packing that are larger than 2.618 . . . (and
thus to significantly reduce the gap to the general upper bound of 6.6623), instances
with a more complex structure (not just thin and blocking items) must be analyzed.
In this sense, the upper bound result can thus be taken as a hint to future research
directions, possibly leading to improved lower bounds.

The present paper is a journal version of an extended abstract that was earlier
published (without proof) in the proceedings of WAOA 2011 [12].
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Organization We start our presentation with a description of the Brown-Baker-
Katseff sequences and their modification in Sect. 2. In Sect. 3 we present our lower
bound based on these modifications and in Sect. 4 we describe our algorithm for
packing primitive sequences. A detailed proof of the main result (lower bound) is
presented in Sect. 5.

2 Sequence Construction

In this paper we denote the thin items by pi and the blocking items by qi (adopting
the notation from [11]). As already mentioned in the introduction, we assume that the
width of the thin items is negligible and thus all thin items can be packed next to each
other. Moreover, the width of the blocking items qi is always 1, so that no item can
be packed next to any blocking item in parallel. Therefore, all items are characterized
by their heights and we refer to their heights by pi and qi as well. By definition, for
any list L = q1, q2, . . . , qk,p1,p1, . . . , p� consisting of thin and blocking items we
have

OPT(L) =
k∑

i=1

qi + max
i=1,...,�

pi .

To prove the desired lower bound we assume the existence of a ρ-competitive al-
gorithm ALG for some ρ < 2.589 . . . (the exact value of this bound is specified later)
and construct an adversary sequence depending on the packing that ALG generates.

To motivate the construction, let us first consider the GREEDY algorithm for on-
line strip packing, which packs every item as low as possible—see Fig. 1(a). This
algorithm is not competitive (i.e., has unbounded competitive ratio): Indeed, consider
the list Ln = p0, q1,p1, q2,p2, . . . , qn,pn of items with

p0 := 1,

qi := ε for 1 ≤ i ≤ n,

pi := pi−1 + ε for 1 ≤ i ≤ n

for some ε > 0. GREEDY would pack each item on top of the preceding ones and thus
generate a packing of height GREEDY(Ln) = ∑n

i=0 pi +∑n
i=1 qi = n+ 1 +Ω(n2ε),

whereas the optimum clearly has height 1 + 2nε.
The GREEDY algorithm illustrates that any competitive online algorithm needs to

create gaps in the packing. These gaps work as a buffer to accommodate small block-
ing items—or, viewed another way, force the adversary to release larger blocking
items.

BBK Sequences The idea of Brown, Baker and Katseff [1] was to try to cheat an ar-
bitrary (non-greedy) online packing algorithm ALG in a similar way by constructing
an alternating sequence p0, q1,p1, . . . of thin and blocking items. The heights pi , re-
spectively qi are determined so as to force the online algorithm ALG to put each item
above the previous ones—see Fig. 1(b) for an illustration. To describe the heights of
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Fig. 1 Online and optimal packings

the items formally, we consider the gaps that ALG creates between the items. We
distinguish two types of gaps, namely gaps below and gaps above a blocking item,
and refer to theses gaps as α- and β-gaps, respectively. These gaps also play an im-
portant role in our analysis of the modified BBK sequences. We describe the height
of the gaps around the blocking item qi relative to the thin item pi . Thus, we de-
note the height of the α-gap below qi by αipi and the height of the β-gap above qi

by βipi . Using this notation, we are ready to formally describe the BBK sequences
L = p0, q1,p1, q2, . . . with

p0 := 1,

q1 := β0p0 + ε,

pi := βi−1pi−1 + pi−1 + αipi + ε for i ≥ 1,

qi := max(αi−1pi−1, βi−1pi−1, qi−1) + ε for i ≥ 2.

In other words, each qi is chosen such that it is just too high to fit into one of
the preceding gaps. This is equivalent to saying that qi exceeds the preceding α- and
β-gaps as well as qi−1 (which in turn exceeds all previous gaps). Similarly, each
pi (except the first p0) is chosen just too large to fit into one of the gaps between
two consecutive blocking items. As mentioned in the introduction, Brown, Baker
and Katseff [1] used these sequences to derive a lower bound of 2 before Kern and
Paulus [11] recently showed that the competitive ratio for packing them is ρBBK =
3/2 + √

33/6 ≈ 2.457.
The optimal online algorithm for BBK sequences that Kern and Paulus [11] de-

scribe generates packings with striking properties: No α- and β-gaps are created ex-
cept the first possible gap β0 = ρBBK − 1 and the second α-gap α2 = 1/(ρBBK − 1),
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which are chosen as large as possible while remaining ρBKK-competitive. Observ-
ing this behavior of the optimal algorithm led us to the modification of the BBK
sequences.

Modified BBK Sequences By definition, the decisions of the online algorithm, in
particular, the gaps it creates, influence the sequence (construction): Creating large
α- or β-gaps “forces” the adversary to provide large blocking items in the next step.
When packing BBK sequences, a good online algorithm should be eager to “enforce”
blocking items of relatively large size (as each blocking item of size q increases the
optimal packing by q as well). Thus a good online algorithm should seek to create
large gaps.

Modified BBK sequences are designed to counter this strategy: Each time the
online algorithm places a blocking item qi , the adversary, rather than immediately
releasing a thin item pi+1 (of height defined as in standard BBK sequences) that
does not fit in between the last two blocking items, generates a whole sequence of
slowly growing thin items, which “continuously” grow from pi to pi+1. Packing this
subsequence causes additional problems for the online algorithm: If the algorithm fits
the whole subsequence into the last interval between qi−1 and qi , it would fill out the
whole interval and create an α-gap of 0 below qi . More generally, if the algorithm
fits a large part of the subsequence into the last interval between qi−1 and qi , it would
create a rather small α-gap below qi . On the other extreme, if ALG would pack a
thin item of height slightly larger than pi above qi , then the (relative) β-gap it can
generate is much less compared to what it could have achieved with a thin item of
larger height pi+1 (assuming that the p-items are packed as high as possible, subject
to ρ-competitiveness). Thus letting thin items grow continuously from pi to pi+1
forces the online algorithm to either create smaller α- or smaller β-gaps. The next
blocking item qi+1 will be released as soon as the sequence of thin items has grown
from pi to pi+1.

This general concept of modified BBK sequences applies after the first blocking
item q1 is released. Since subsequences of thin items and single blocking items are
released alternatingly from this point on, we refer to this phase as the alternating
phase. Before that, we have a starting phase in which the algorithm is confronted
with a “continuously” increasing sequence of thin items. The starting phase ends
with the release of the first blocking item q1. The purpose of the starting phase is to
prevent the online algorithm from introducing a large gap in the first step (when the
first thin item arrives). Indeed, the optimal online algorithm by Kern and Paulus [11]
generates an initial gap β0 of maximal size to enforce a large first blocking item q1.
Since the first item has height 1, it must be “scheduled” at height β0 = ρBBK − 1 in
order to not exceed the optimal ratio ρBBK already in the first step. In the starting
phase, we seek to prevent the algorithm from creating a large β0-gap as described in
more detail in the next section.

Summarizing, a modified BBK sequence simply consists of a sequence of thin
items, continuously growing in height, interleaved with blocking items which (by
definition of their height) must be packed above all preceding items, and are released
as described above, i.e., when the thin item size has grown up to the largest gap
between two blocking items, cf. Sects. 3 and 5 for more details.

We will use modified BBK sequences to prove
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Theorem 1 There exists no algorithm for online strip packing with competitive ratio

ρ < ρ̂ = 17

12
+ 1

48
3
√

22 976 − 768
√

78 + 1

12
3
√

359 + 12
√

78 ≈ 2.589 . . . .

3 Lower Bound

For the sake of contradiction, assume there exists an online algorithm ALG that is
ρ-competitive for online strip packing with ρ < ρ̂. Let δ = ρ̂ − ρ > 0. W.l.o.g. we
assume that δ is sufficiently small. We feed ALG with a sequence r1, r2, . . . of thin
items, interleaved with blocking items arriving at certain times as described in the
following. The initial subsequence of thin items r1, r2, . . . , ri that precedes the first
blocking item defines the starting phase. The basic idea is to prevent ALG from
creating a large β- gap in the first step. So if ALG packs the first thin item r1 “too
high”, we release a slightly larger thin item r2. The best ALG can do in this case is to
bottom-align r2 with r1, yielding a slight decrease in the (relative!) β-gap. Continuing
this way with an increasing sequence r3, r4, . . . , ALG will eventually reduce its β-
gap to almost 0 or decide to “jump”, i.e., pack some rj on top of the current packing,
leaving a new gap in between rj−1 and rj of reasonable size. In case this is (still) too
large compared to the current height of the packing, we continue with rj+1 etc.

Thus in the starting phase we seek to decrease the maximal size (relative to the
current packing height) of a gap. More specifically, let

h(maxgapALG(ri))

ALG(ri)

be the max-gap-to-height ratio after packing ri , where h(maxgapALG(ri)) denotes
the height of the maximal gap that algorithm ALG created up to item ri and ALG(ri)

denotes the height algorithm ALG consumed up to item ri . We say ALG is (ρ, c)-
competitive in the starting phase if ALG is ρ-competitive (i.e., ALG(ri) ≤ ρOPT(ri))
and retains a max-gap-to-height ratio of c (i.e., h(maxgapALG(ri))/ALG(ri) ≥ c for
i ≥ 1) for all lists L = r1, r2, . . . of thin items.

In the analysis of the starting phase in Sect. 5.1 we show that an increasing se-
quence of thin items (the starting phase) forces any ρ-competitive algorithm to reach
a state with max-gap-to-height ratio less than

ĉ = ρ̂ − 2
√

ρ̂ − 1

ρ̂ − 1
.

Thus there must be a first item ri that ALG packs, causing a max-gap-to-height
ratio of less than ĉ. The starting phase ends with the release of the first blocking item
q1 of height ĉ · ALG(ri) and we enter the second phase which we call the alternating
phase. (For ρ̂ as in Theorem 1 this yields a rather small value of ĉ = 0.04275 . . . .
This means that ALG might equally well pack the first item r1 of size r1 = 1, say,
at height ĉ = 0.04275 . . . , very close to the bottom of the strip—in which case we
would enter the alternating phase immediately.)
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In Sect. 5.2 we analyze the alternating phase, more precisely, we investigate, how
the competitiveness of ALG in the alternating phase is influenced by its max-gap-to-
height ratio in the starting phase. We show that an algorithm with max-gap-to-height
ratio of ĉ in the starting phase cannot retain ρ-competitiveness in the alternating phase
for ρ < ρ̂ in case

ĉ = 1 − √
4ρ̂2 − 12ρ̂ + 5

2(ρ̂ − 1)
.

Thus our two phases fit together for

ĉ = ρ̂ − 2
√

ρ̂ − 1

ρ̂ − 1
= 1 − √

4ρ̂2 − 12ρ̂ + 5

2(ρ̂ − 1)
,

which is satisfied for

ρ̂ = 17

12
+ 1

48
3
√

22 976 − 768
√

78 + 1

12
3
√

359 + 12
√

78 ≈ 2.589 . . . .

We present the proof of Theorem 1 in Sect. 5. We end this section by observing
that modified BBK sequences show a completely different behavior as compared to
“ordinary” BBK sequences. The optimal online algorithm dealing with ordinary BBK
sequences is such that the sequence becomes stationary after a few steps (cf. [11]),
whereas modified BBK sequences continuously grow to infinity.

4 Upper Bound

In this section we present the online algorithm ONL for packing instances that consist
solely of thin and blocking items. We prove that the competitive ratio of ONL is
ρ = (3 + √

5)/2 ≈ 2.618. We distinguish two kinds of packings according to the
item on top: If the item on top of the packing is a blocking item, we have a blocked
packing, otherwise we have an open packing. Initially, we have a blocked packing
(consider the bottom of the strip as a blocking item of height 0 “on top of” the initial
empty packing).

The general idea of the algorithm ONL is pretty straightforward: First note that
we might assume that the thin items are increasing in height (a thin item that has
smaller size than a previous one can always be packed in parallel to the larger one). If
a thin item arrives at a blocked packing and the item does not fit into one of the gaps
between two blocking items—we say that a “jump is unavoidable” in this case—then
we pack it on top of the current closed packing, leaving a β-gap of relative height
ρ − 2 (i.e., (ρ − 2) times the height of the thin item) between the newly placed
thin item and the preceding blocking item. Note that placing a thin item on top of a
blocked packing results in an open packing. The relative size (β = ρ − 2) of the gap
induced by this new “top” item is determined so as to ensure a competitive ratio of ρ

in the long run (cf. the proof of Theorem 2 below. Subsequent thin items are placed
bottom-aligned with the thin “top” item causing the jump, so as to not deliberately
diminish the current β-gap. Any arriving blocking item is packed as low as possible,
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i.e., in case it fits into one of the gaps, we pack it there, otherwise it is put on top
of the current packing, resulting in a closed packing. The fact that we pack blocking
items as low as possible amounts to saying that we work with α-gaps equal to 0.
Summarizing, we apply the following algorithm.

Online Algorithm ONL for primitive sequences

Initially the packing is considered to be blocked.
WHILE a rectangle rj is released

IF rj is a blocking item, pack rj at the lowest possible height
ELSIF rj is a thin item

IF the packing is open, pack rj bottom-aligned with the top thin item
ELSIF the packing is blocked, try to pack rj below the top item.

If this is not possible, pack rj at distance (ρ − 2)rj above the packing.
ENDWHILE

The above algorithm does not even try to cope with a “starting phase” in any
respect. Nonetheless, it turns out to yield a rather good competitive ratio:

Theorem 2 ONL is a ρ-competitive algorithm for packing primitive sequences for

ρ = 3 + √
5

2
≈ 2.618.

Proof We show that ONL is ρ-competitive for ρ = (3 + √
5)/2 by induction on the

number of items. As to the inductive step, observe that whenever we pack a blocking
item of height, say q , then the current height of the ONL-packing increases by at most
q , whereas the optimum packing height increases by exactly q . Further, whenever we
pack a thin item into one of the gaps, the ONL-packing height does not increase at
all, so the algorithm stays trivially ρ-competitive in this case. Summarizing, the only
critical case occurs when we pack a thin item rj at distance βrj with β = ρ − 2
above the current closed packing, i.e., when a new top item rj is placed due to an
“unavoidable jump”.

We denote the thin items that are packed when generating a new gap by si for the
i-th jump. Let s′

i be the highest thin item that is bottom-aligned with si . Note that the
blocking item that blocks the packing after the i-th jump is packed directly above s′

i .
See Fig. 2 for an illustration. We may assume w.l.o.g. that the sequence starts with a
thin item (otherwise, a blocking item is put on the bottom of the strip in the first step,
increasing the height of both ONL as well as OPT without any further consequences).
So s1 is the first item and this is packed at distance (ρ − 2)s1 from the bottom line,
so the competitive ratio after the first step is ρ − 1 < ρ.

For the induction step we assume ONL(si) ≤ ρ OPT(si). Before a jump can
become unavoidable, new blocking items of total height greater than β si (where
β = ρ − 2) need to arrive as otherwise the gap below si could accommodate all of
them. Let h′ be the height of the blocking items that are packed into the β-gap below
si and let h′′ be the total height of blocking items that arrive between si and si+1 and
are packed above si . See Fig. 2. We have h′ ≤ (ρ − 2)si and h′ + h′′ > (ρ − 2)si as
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Fig. 2 Packing after jump
i + 1. Blocking items released
after si shown in darker shade.
By definition, si+1 is the first
thin item that does not fit into a
gap. Thus, in particular,
si+1 > s′

i
+ β si − h′

otherwise no blocking item would be packed on top. As further blocking items could
be packed even below s′

i−1 we get

OPT(si+1) ≥ OPT(si) + h′ + h′′ + si+1 − si ,

ONL(si+1) = ONL(si) + s′
i − si + h′′ + βsi+1 + si+1.

And thus we have

ONL(si+1) ≤ ρOPT(si+1)

⇐ ONL(si) + s′
i − si + h′′ + βsi+1 + si+1

≤ ρ
(
OPT(si) + h′ + h′′ + si+1 − si

)
⇐ (ρ − 1)si + s′

i − ρh′ − (ρ − 1)h′′ ≤ (ρ − 1 − β)si+1.

As ρ − 1 − β = 1 and si+1 > s′
i + (ρ − 2)si − h′ this is satisfied if

(ρ − 1)si + s′
i − ρh′ − (ρ − 1)h′′ ≤ s′

i + (ρ − 2)si − h′

⇔ si ≤ (ρ − 1)
(
h′ + h′′)

⇐ si ≤ (ρ − 1)(ρ − 2)si = si .

The last equality holds since ρ = (3 + √
5)/2 and thus (ρ − 1)(ρ − 2) = 1. �

So the true best possible competitive ratio for packing primitive sequences is
somewhere in between the two values specified by Theorems 1 and 2. We have rea-
sons to believe that it is strictly in between these two. But perhaps an even more
challenging question is whether or not (or to what extent) primitive sequences pro-
vide worst case instances for online packing in general. So far, all lower bounds for
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online strip packing are based on primitive sequences. Theorem 2 states that this ap-
proach is limited. In order to achieve significant further improvements (towards the
upper bound of 6.6623), suitable non-primitive sequences have to be designed.

5 Detailed Proof of Theorem 1

5.1 The Starting Phase

In this section we describe the lower bound for the starting phase. As we explained
before, the key parameter of this phase is the max-gap-to-height ratio. We will show
that for ρ < ρ̂, any ρ-competitive algorithm can be forced into a state with max-gap-
to-height ratio less than ĉ. In this section we use the definition

ĉ = ρ̂ − 2
√

ρ̂ − 1

ρ̂ − 1
.

The starting phase ends as soon as a state is reached with a max-gap-to-height ratio
less than ĉ. To derive a contradiction, we assume that the ρ-competitive algorithm
ALG is (ρ, ĉ)-competitive, i.e., retains a max-gap-to-height ratio of ĉ.

Let η > 0 be some very small constant and consider the adversary list Lstart =
r1, r2, . . . consisting of thin items

r1 = 1 and

ri = ri−1 + η for i ≥ 2.

Recall that we denote the thin items by ri instead of pi here to be able to designate
certain items that correspond to the thin items pi from the BBK sequence in the
analysis of the alternating phase

The sole function of the positive term η is to gradually increase the height of
items (we substituted ε from the BBK sequences by η because we use ε later in our
analysis). To simplify the calculations, however, we assume that η is chosen small
enough such that single instances of η can be omitted from the analysis. (The careful
reader might want to check that the bounds we derive for the competitive ratio are
actually continuous functions of η and therefore we are well allowed to take the limit
(η → 0).)

In the following analysis we consider the phases between the creation of new gaps.
See Fig. 3(a) for an illustration of the following notations. We refer to the first items
in each phase as the jump items s1, s2, . . . and we denote the last item in each phase
by s′

1, s
′
2, . . . . As we argued above, we assume si+1 = s′

i . Furthermore, we denote the
gaps that ALG creates by g1, g2, . . . and refer to the maximal gap after ALG packs
an item ri by maxgapALG(ri). Note that the height of the gaps might change when
further items are packed (in case ALG packs them such that they reach into the gap
from above or below). We denote the initial height of gap gi by λisi and the gap
height directly before the next jump, i.e., in the moment s′

i is packed, by λ′
i si . Note

that the height of gap gi is always given relative to the corresponding jump item si .
Finally, we denote the packing height up to gap gi by μisi , again relative to si . We
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Fig. 3 Starting phase. Lemma 1 shows that the gap sizes are increasing with each jump and Lemma 2
shows that ALG needs to pack s′

i
next to si

have ALG(si) = μisi + λisi + si and μisi ≥ ALG(s′
i−1) as s′

i−1 is packed below gi

but other items might even reach higher than s′
i−1.

Since OPT(si) = si and ALG(si) = (μi + λi + 1)si we directly have

(μi + λi + 1)si ≤ ρsi for all i ≥ 1 and thus

μi + λi ≤ ρ − 1 for all i ≥ 1.
(1)

Before we are ready to prove that ALG is forced to reach a state with max-gap-to-
height ratio less than ĉ, we have to show some assumptions that we can make on the
algorithm ALG. First, we show that we can assume that ALG generates a packing
where the gap preceding si is the maximal gap until si+1 is packed for all i ≥ 1. Or,
in other words, ALG generates a packing with increasing gap sizes.

Lemma 1 We can assume that ALG generates a packing that satisfies

maxgapALG(rj ) = gi for rj ∈ {
si , . . . , s

′
i

}
.

Proof The intuition of this proof is simple: A new gap gi that is not maximal (as long
as it is the current gap) is unnecessary and can therefore be omitted. We do this by
bottom-aligning all items from si to rj with the top of the previous gap.

More formally, let maxgapALG(rj ) = gk �= gi be the first violation of the condition
for rj ∈ {si, . . . , s′

i}. The modified algorithm ALG′ simulates ALG with the exception
that it bottom-aligns those items from {si , . . . , rj } that were previously packed above
gk with the top of gk .
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As items have only been moved downwards, ALG′ remains ρ-competitive. More-
over, for the altered algorithm we have

maxgapALG′(r�) = maxgapALG(rj ) = gk for r� ∈ {si , . . . , rj } and

hr�(gk) ≥ hrj (gk) ≥ ĉALG(rj ) ≥ ĉALG′(r�) for r� ∈ {si , . . . , rj },
where hr�(gk) denotes the height of gap gk in the moment r� is packed. The second
inequality is due to our assumption that ALGis (ρ, ĉ)-competitive, so the height of the
max-gap at any time is at least ĉ-times the current packing height. The last inequality
shows that also the modified algorithm retains a max-gap-to-height ratio of ĉ. So
(ρ, ĉ)-competitiveness is not violated.

In total, the altered algorithm ALG′ potentially even saves packing height in com-
parison with the original algorithm ALG. We can apply this method to all violations
of maxgapALG(rj ) = gi by induction. �

Now we show that the space below a jump item si is not large enough to accom-
modate s′

i before ALG makes the next jump. The implication of this statement is that
any (ρ, ĉ)-competitive algorithm needs to place new items next to the current jump
item.

Lemma 2 ALG cannot generate a gap with an item si+1 when the last item s′
i is

packed completely below the previous jump item si .

Proof For the sake of contradiction assume that ALG generates such a gap with item
si+1 while the last item s′

i was packed completely below the previous jump item si—
see Fig. 3(b). As we will see, the proof of this lemma does not require to consider
that ALG retains a max-gap-to-height ratio of ĉ.

By inequality (1) we have s′
i ≤ (μi + λi)si ≤ (ρ − 1)si as s′

i is packed below si .
Thus si ≥ s′

i/(ρ − 1). With our assumption s′
i = si+1 we have

ALG(si+1) ≥ s′
i + si + si+1 ≥

(
2 + 1

ρ − 1

)
si+1.

The contradiction follows with ρ < 2.618 . . . as

1 > (ρ − 2)(ρ − 1)

⇔
(

2 + 1

ρ − 1

)
si+1 > ρsi+1

⇒ ALG(si+1) > ρOPT(si+1). �

Lemmas 1 and 2 state that each jump is larger than the previous jump and that
w.l.o.g. ALG bottom-aligns the items next to the current jump item until a subse-
quent jump is carried out. This gives us sufficient information about the structure
of the online packing to derive a contradiction. More specifically, the next two lem-
mas show that the relative gap height λi is decreasing by a constant in every step,
which contradicts the trivial lower bound of λi ≥ ĉ/(1 − ĉ) · (μi + 1) ≥ ĉ/(1 − ĉ) as
λisi ≥ ĉ(μisi + λisi + si).
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Lemma 3 λ1 ≤ ρ − 1 and for any i ≥ 1

λi+1 ≤ ρ − 2 − ĉ(ρ − 1)

λi − ĉ(ρ − 1)
.

Proof The first part, λ1 ≤ ρ − 1, follows directly from the ρ-competitiveness.
By Lemma 1 we know that maxgapALG(s′

i ) = gi . Since ALG preserves a max-
gap-to-height ratio of at least ĉ, we have λ′

i si ≥ ĉ ALG(s′
i ). Moreover, by Lemma 2

we have ALG(s′
i ) ≥ μisi + λ′

i si + s′
i and thus

λ′
i si ≥ ĉALG

(
s′
i

) ≥ ĉ
((

μi + λ′
i

)
si + s′

i

)

⇒ si+1 = s′
i ≤ λ′

i si − ĉ(μi + λ′
i )si

ĉ
. (2)

Now we consider the packing height μi+1si+1. We have μi+1si+1 ≥ ALG(s′
i ) ≥

(μi + λ′
i )si + s′

i and thus

μi+1 ≥ (
μi + λ′

i

) si

si+1
+ s′

i

si+1

≥ ĉ(μi + λ′
i )

λ′
i − ĉ(μi + λ′

i )
+ 1 by inequality (2)

≥ ĉ(ρ − 1)

λi − ĉ(ρ − 1)
+ 1.

The last step holds since

∂

∂λ′
i

(
ĉ(μi + λ′

i )

λ′
i − ĉ(μi + λ′

i )

)
= ĉ(λ′

i − ĉ(μi + λ′
i )) − ĉ(μi + λ′

i )(1 − ĉ)

(λ′
i − ĉ(μi + λ′

i ))
2

= −ĉ μi

(λ′
i − ĉ(μi + λ′

i ))
2

< 0 as μi > 0

and thus
ĉ(μi+λ′

i )

λ′
i−ĉ(μi+λ′

i )
is minimal for λ′

i maximal, which is λ′
i = λi = ρ − 1 − μi by

inequality (1).
Using this lower bound for μi+1 we get

λi+1 ≤ ρ − 1 − μi+1 by inequality (1) for i + 1

≤ ρ − 2 − ĉ(ρ − 1)

λi − ĉ(ρ − 1)
. �

Using this upper bound for the relative gap height λi+1 we will show that no (ρ, ĉ)-
competitive algorithm exists. We already gave the lower bound of λi ≥ ĉ/(1 − ĉ). On
the other hand, the following lemma shows that the relative gap heights are gradually
decreasing over time. This gives a contradiction to the assumption that ALG can
retain a max-gap-to-height ratio of ĉ. Thus ALG is either not ρ-competitive or we
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reach a state with a max-gap-to-height ratio of less than ĉ, which ends the starting
phase.

Lemma 4 λi+1 ≤ λi − ε for some fixed ε > 0.

Proof Let ε = ε(ρ) = 2
√

ĉ(ρ − 1)−ρ + 2 + ĉ(ρ − 1). By Lemma 3 we have λi+1 ≤
λi − ε since

ρ − 2 − ĉ(ρ − 1)

λi − ĉ(ρ − 1)
≤ λi − 2

√
ĉ(ρ − 1) + ρ − 2 − ĉ(ρ − 1)

⇔ − ĉ(ρ − 1)

λi − ĉ(ρ − 1)
≤ λi − 2

√
ĉ(ρ − 1) − ĉ(ρ − 1)

⇔ λ2
i − (

2
√

ĉ(ρ − 1) + ĉ(ρ − 1)
)
λi

≥ −ĉ(ρ − 1) − 2
√

ĉ(ρ − 1)ĉ(ρ − 1) − ĉ2(ρ − 1)2

⇐ λ2
i − (

2
√

ĉ(ρ − 1) + 2ĉ(ρ − 1)
)
λi

≥ −ĉ(ρ − 1) − 2
√

ĉ(ρ − 1)ĉ(ρ − 1) − ĉ2(ρ − 1)2

⇔ (
λi − (√

ĉ(ρ − 1) + ĉ(ρ − 1)
))2

≥ (√
ĉ(ρ − 1) + ĉ(ρ − 1)

)2 − ĉ(ρ − 1)

− 2
√

ĉ(ρ − 1)ĉ(ρ − 1) − ĉ2(ρ − 1)2

= 0.

Thus it only remains to show that ε(ρ) > 0.

With ĉ = ρ̂−2
√

ρ̂−1
ρ̂−1 we have ε(ρ̂) = 0 since

ε(ρ̂) = 2
√

ĉ(ρ̂ − 1) − ρ̂ + 2 + ĉ(ρ̂ − 1)

= 2
√

ρ̂ − 2
√

ρ̂ − 1 − ρ̂ + 2 + ρ̂ − 2
√

ρ̂ − 1

and

2
√

ρ̂ − 2
√

ρ̂ − 1 − ρ̂ + 2 + ρ̂ − 2
√

ρ̂ − 1 = 0

⇔ 2
√

ρ̂ − 2
√

ρ̂ − 1 = 2
√

ρ̂ − 1 − 2

⇐ 4
(
ρ̂ − 2

√
ρ̂ − 1

) = 4(ρ̂ − 1) − 8
√

ρ̂ − 1 + 4.

Note that this calculation actually defines the lower bound of
ρ̂−2

√
ρ̂−1

ρ̂−1 for ĉ. Now

observe that ĉ = ρ̂−2
√

ρ̂−1
ρ̂−1 does not depend on ρ and thus we have

∂

∂ρ

(
2
√

ĉ(ρ − 1) − ρ + 2 + ĉ(ρ − 1)
) = ĉ√

ĉ(ρ − 1)
− 1 + ĉ.
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This derivative is negative as

ĉ√
ĉ(ρ − 1)

< 1 − ĉ

⇐ ĉ

ρ − 1
< (1 − ĉ)2

⇔ ρ̂ − 2
√

ρ̂ − 1

(ρ − 1)(ρ̂ − 1)
<

(ρ̂ − 1 − ρ̂ + 2
√

ρ̂ − 1)2

(ρ̂ − 1)2
by definition of ĉ

⇔ ρ̂ − 2
√

ρ̂ − 1 < (2
√

ρ̂ − 1 − 1)2 · ρ − 1

ρ̂ − 1

⇐ ρ̂ − 2
√

ρ̂ − 1 <
4(ρ̂ − 1) − 4

√
ρ̂ − 1 + 1

2
as

ρ − 1

ρ̂ − 1
>

1

2
for ρ ≥ 2

⇔ 3

2
< ρ̂.

Thus ε(ρ) is strictly decreasing with respect to ρ and ε(ρ̂) = 0. Hence ε(ρ) > 0 for
ρ < ρ̂ and the lemma follows. �

Thus the λi decrease by a fixed amount in each step, contradicting the lower bound
λi ≥ ĉ/(1− ĉ) for any i ≥ 1. Thus our original assumption that /ALG/ cannot be true.
In other words, we have proved

Lemma 5 Any ρ-competitive algorithm ALG can be forced to reach a state where
the max-gap-to-height ratio is less than

ĉ = ρ̂ − 2
√

ρ̂ − 1

ρ̂ − 1
.

5.2 The Alternating Phase

In this section we describe the lower bound in the alternating phase. In this phase we
use that by Lemma 5, any ρ-competitive algorithm ALG is forced to reach a state

where the max-gap-to-height ratio is less than ĉ = ρ̂−2
√

ρ̂−1
ρ̂−1 . As explained earlier

in Sect. 3, we seek to analyze how ĉ and ρ̂ must be related so that an algorithm
that finishes the starting phase with a max-gap-to-height-ratio of ĉ cannot stay ρ-
competitive for ρ < ρ̂ in the alternating phase. The outcome will be that the two
values must be related by the equation

ĉ = 1 − √
4ρ̂2 − 12ρ̂ + 5

2(ρ̂ − 1)
.

Thus, if ĉ satisfies both equations above, then no ρ-competitive algorithm can exist
for ρ < ρ̂. Solving the two equations above yields ρ̂ ≈ 2.589 . . . and ĉ ≈ 0.04275 . . . .
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Fig. 4 Order of the released items. (1) Thin items up to p∗
i−1; (2) blocking item qi ; (3) and (4) thin items

up to p∗
i

(including the jump item pi ); (5) blocking item qi+1 and (6) further thin items up to p′
i

Our adversary sequence in the alternating phase starts with the first blocking item
q1 and then continues with the list of thin items of gradually increasing height from
the starting phase interleaved with further blocking items. Let η > 0 be some very
small constant and let rk be the last item that was released in the starting phase. Then
we continue with the list Lalternating = q1, rk+1, rk+2, . . . where

q1 = ĉ · ALG(rk) and

ri = ri−1 + η for i ≥ k + 1.

To understand when the blocking items are inserted, let us first introduce the no-
tations in this phase—see Fig. 4(a).

Similar to the starting phase, we consider the jump items, i.e., the thin items that
are the first to be packed above a blocking item qi , and denote them by pi . The
thin item directly before the jump item is denoted by p′

i−1 (we will later see that we
can actually assume that p′

i−1 is the last item that is packed below qi ). We denote
the interval between the blocking items qi−1 and qi by Ii . As in the standard BBK
sequences, the thin item whose height exceeds the height of the previous interval
plays an important role. We denote the first item that exceeds the height of Ii−1 by
p∗

i and describe all further heights relative to these designated items.
As described in the introduction, we distinguish α-gaps (directly below blocking

items) and β-gaps (directly above blocking items). As the gap heights can change
during the packing (as further thin items are packed into the same interval) we have
to be specific about the moment in which we consider these heights. Let α∗

i p∗
i be the
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height of the α-gap below qi in the moment qi is packed and let α′
ip

∗
i be the final

height of the α-gap below qi , i.e., the height in the moment p∗
i is packed (as after-

wards no further item can be packed into Ii−1). The notation is due to our assumption
that p′

i−1 is the last item that is packed into Ii−1 (which we show later). Regarding
the β-gap we get along with a single definition: Let β∗

i p∗
i be the height of the β-gap

above qi in the moment p∗
i is packed.

The blocking item qi+1 is released directly after p∗
i . This ensures that the online

algorithm jumps before a new blocking item is released (as the height of p∗
i exceeds

the height of the previous interval). We set the height of the blocking items to

q1 := ĉ · ALG(rk) as already mentioned above and

qi := max
(
α′

i−1p
∗
i−1, β

∗
i−1p

∗
i−1, qi−1

) + η for i ≥ 2.

Note that we use the final height α′
ip

∗
i of the α-gap in this definition. This definition

ensures that the blocking items are always packed above all previous items.
Again the function of the positive term η is to gradually increase the height of

thin items and to ensure that the blocking items are always packed above all previous
items. As before, we make the assumption that η is chosen small enough to be omitted
from the analysis. Thus we assume that qi = max(α′

i−1p
∗
i−1, β

∗
i−1p

∗
i−1, qi−1) and that

the height of p∗
i equals the height of the previous interval Ii−1 throughout this section.

(Again, this is justified by taking the limit (η → 0).)
We use succ(ri) and prec(ri) to denote the thin item that succeeds and that pre-

cedes ri , respectively. Using this notations we can rephrase the input list including
the blocking items to

Lalternating = q1, rk+1, . . . , p
∗
1, q1, succ

(
p∗

1

)
, . . . , p∗

2, q2, succ
(
p∗

2

)
, . . . .

We also refer to Fig. 4 for an illustration of the order in which the items are released.

5.2.1 Overview

We prove by contradiction that no ρ-competitive algorithm exists for ρ < ρ̂. Thus
we assume to the contrary that a ρ-competitive algorithm ALG exists. By the anal-
ysis of the starting phase we already know that we can force ALG to reach a state
with a max-gap-to-height ratio less than ĉ. In accordance with the notation given
above we introduce the parameter γ ∗

i to measure how much ALG improves upon the
ρ-competitiveness. Let γ ∗

i be defined through

ALG
(
p∗

i

) + γ ∗
i p∗

i = ρ OPT
(
p∗

i

)
.

Using this value, we introduce the potential function

Φi = γ ∗
i + β∗

i .

Note that moving p∗
i (together with all other thin items packed on top of qi ) up or

down will increase resp. decrease the value of β∗
i and, at the same time, decrease

resp. increase the value of γ ∗
i by the same amount. Thus, such a move would not
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affect the potential Φi . (This phenomenon seems to be a characteristic feature of
suitable potentials, cf. also, e.g., [11] or [13].) Yet, of course, the online algorithm’s
decision on where to pack the thin items above qi determines the current β-gap and
influences subsequent items and potential values.

Obviously, any ρ-competitive algorithm needs to keep Φi non-negative over time.
We aim at deriving a contradiction by showing that Φi decreases by a constant
amount in every step. Unfortunately, there is one possible exception to this rule, mak-
ing the proof substantially more involved: Φi might increase exactly once. We will
show that even in this case, Φi is properly bounded from above and cannot increase
a second time.

We start our analysis with some preliminary results (Lemmas 6–11) on the struc-
ture of a packing generated by ALG. The general theme is that if a ρ-competitive
algorithm exists, then there also exists a ρ-competitive algorithm that generates pack-
ings with the assumed structure. In other words: If ALG does not generate such a
packing, we can alter the packing (or rather the algorithm) such that the conditions are
satisfied and ρ-competitiveness is not violated at any point. In addition, a few help-
ful estimates are derived, essentially lower and upper bounds for α-gaps: Lemma 7
states that for the online algorithm it is not wise to generate both a nonzero α and a
nonzero β-gap, as one large β-gap is more promising. Lemma 8 states that the online
algorithm should better not work with small nonzero α-gaps, as these could better be
replaced by β-gaps. Thus the size of nonzero α-gaps can be bounded from below and,
of course, also from above (Lemmas 9 and 10), as the online algorithm is assumed to
be ρ-competitive. The “preliminaries section” then concludes with Lemma 11, say-
ing how exactly Φi+1 depends on Φi and the parameters (gap- and item sizes) in
step i.

Then follows the subsection “induction” (Lemmas 12–16) where we prove that
the potential decreases by some fixed amount in each step (except possibly once).
The proof will be by induction as we need to upper-bound the potential—as well
as current q/p-values—in each step. Intuitively, a small potential indicates that the
online algorithm is in a bad position, as the potential upper bounds both the (rela-
tive) distance from the allowed packing height (ρ-times OPT ) and the current β-gap.
Lemma 12 states that the initial potential is small, due to the fact that the online
algorithm enters the alternating phase with a small max-gap-to-height-ratio. In Lem-
mas 13 to 16 we investigate the change in the potential depending on how q∗

i+1 is
defined (via the α- or β-gap or qi ). In each case we conclude that the potential de-
creases, assuming that it was low already. The only exception is when qi+1 = qi .
This has also been the critical case for standard BBK-sequences, where the optimal
online algorithm’s strategy would create a sequence that becomes stationary after a
few steps and items are packed without any gaps. This works only if (in the stationary
part) the blocking items q are sufficiently large compared to the thin items p. (In the
stationary part, OPT increases by q in each step, while the online height increases
with p + q , so that q + p ≤ ρq , i.e., q

p
≥ 1

ρ−1 is required.)
In the case of modified BBK-sequences that we consider here, we shall see that

such relatively large blocking items cannot be generated and therefore the optimum
online algorithm will never induce a stationary sequence. Indeed, the blocking items
stay small in size (relative to the corresponding thin items, cf. Lemmas 12–16 below).
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Even in the critical case where qi+1 = qi , the potential decreases in case the current
q/p ratio is small enough (Lemma 15) or—in case the q/p ratio is slightly larger—it
will get small enough in the next step (Lemma 16), so that, eventually, the potential
is shown to decrease in each except possibly one single step.

5.2.2 Preliminaries

The following lemmas (6–11) provide some simplifications, i.e., “w.l.o.g. assump-
tions” on the structure of the packing that ALG generates in this phase—see Fig. 4(b)
for an illustration.

Lemma 6 We can assume that ALG generates a packing such that

1. the items pi, . . . , p
∗
i , . . . , p

′
i lie in interval Ii ,

2. the items pi, . . . , p
∗
i are bottom-aligned,

3. the items succ(p∗
i ), . . . , p

′
i are bottom-aligned at the top of qi .

Proof By definition the items p∗
i , . . . , p

′
i are taller than the previous interval Ii−1

and thus all lie in interval Ii . Assume that an item from pi, . . . ,prec(p∗
i ) does not lie

in interval Ii and let rj be the tallest such item. Then we can move down the items
pi, . . . ,prec(rj ) and bottom-align them with rj . This redefines pi to succ(rj ) and
hereby satisfies condition 1. Observe that moving down the items pi, . . . ,proc(rj )
does not violate ρ-competitiveness and as α′

i and β∗
i are not changed, the further

packing remains unchanged.
If the items pi, . . . ,p

∗
i are not packed bottom-aligned, we move them downwards

until they are aligned with the lowest item of this list in order to satisfy condition 2.
And to satisfy condition 3 we move the items succ(p∗

i ), . . . , p
′
i down until they are

aligned with the top of qi if these items are not bottom-aligned at the top of qi . In
both cases the alteration is possible as the height of the interval Ii and thus the height
of p∗

i+1 remains unchanged. Moreover, the height of qi does not change (as β∗
i is not

changed). The values of α∗
i+1 and α′

i+1 can actually change, but only become larger.
But as the heights of Ii and p∗

i+1 remain unchanged, the parameter α′
i+1 only affects

qi+1 and the value of qi+1 contributes to the packing height of OPT and ALG to the
same extent. Thus increased values of α∗

i+1 and α′
i+1 cannot cause a violation of the

ρ-competitiveness. �

Recall that qi+1 = max(α′
ip

∗
i , β

∗
i p∗

i , qi). Depending on the way in which qi+1

is actually defined, we can assume that the other value(s) are zero as the following
lemma shows. (Intuitively, as a good online algorithm should seek to create large
gaps, it does not make sense to create both an α- and a β-gap.)

Lemma 7 We can assume that ALG generates a packing such that

1. if qi+1 = max(β∗
i p∗

i , qi), then we have α′
i = 0,

2. if qi+1 = max(α′
ip

∗
i , qi), then we have β∗

i = 0.
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Proof First, assume that qi+1 = max(β∗
i p∗

i , qi) and α′
i > 0. By construction of the

adversary sequence, the height of p∗
i does not depend on α′

i and is predetermined
at the moment qi is packed. Thus a reduction of α′

i , which corresponds to packing
further thin items into the previous interval, does not change qi+1 and p∗

i . So we can
alter ALG such that all items from succ(p′

i−1), . . . ,pre(p∗
i ), are packed into Ii−1.

This reduces α′
i to 0 and thus satisfies condition 1 without implying any change to

the packing after p∗
i .

Now assume that qi+1 = max(α′
ip

∗
i , qi) and β∗

i > 0. In this case a reduction
of β∗

i does not change qi+1 and p∗
i . So we can alter ALG to set β∗

i to 0, i.e.,
bottom-align the items pi, . . . , p

∗
i with the top of qi , without implying any change

to the packing after p∗
i and hereby satisfy condition 2. This alteration increases α∗

i+1
and might increase α′

i+1 as well—as we saw in Lemma 6, this does not violate ρ-
competitiveness. �

Observe that by Lemma 6 we have p∗
i+1 = β∗

i p∗
i + p∗

i + α∗
i+1p

∗
i+1 and thus

p∗
i+1 = 1 + β∗

i

1 − α∗
i+1

p∗
i . (3)

Using this equation, we are ready to show the following assumption.

Lemma 8 We can assume that ALG generates a packing such that if α′
i > 0, then we

have

α∗
i+1 >

(ρ − 1)α′
i

1 + (ρ − 1)α′
i

.

Proof We assume that α′
i > 0 and α∗

i+1 ≤ (ρ − 1)α′
i/(1 + (ρ + 1)α′

i ). By Lemma 7
condition 2 we have β∗

i = 0 and thus p∗
i+1 = p∗

i /(1 − α∗
i+1). We can alter ALG to

save a packing height of α′
ip

∗
i without violating ρ-competitiveness by changing the

α-gap to a β-gap. To do that, we move down qi and all items that are released after
p′

i−1 with the exception of pi by α′
ip

∗
i . In other words, we close the α′

ip
∗
i gap between

p′
i−1 and qi by moving down qi and all items above qi . The only exception is the item

pi that we keep at its position to retain a β-gap at the moment this item is packed.
Hereby, we keep a gap of the original size α′

ip
∗
i above qi . See Fig. 5 for an illustration

of the altered packing.
Note that this alteration changes the adversary sequence: As there does not remain

any α′
i -gap, the item qi+1 is released directly after pi is packed—also redefining p∗

i

to pi . This is the only change in the adversary sequence since the size of qi+1 is
not changed and also the height of interval Ii stays constant. Since the optimal value
changed as qi+1 is released earlier than before, we have to check whether the altered
packing is actually feasible.

We denote the optimal algorithm for the altered instance by OPT′ and the al-
tered algorithm by ALG′. With α′

ip
∗
i we refer to the height before the alteration.

The height α∗
i+1p

∗
i+1 remains unchanged. We have OPT′(qi+1) = OPT(pi)+ qi+1 =

OPT(pi) + α′
ip

∗
i and ALG′(qi+1) = ALG(pi) + α∗

i+1p
∗
i+1 + qi+1 = ALG(pi) +
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Fig. 5 If
α∗

i+1 ≤ (ρ−1)α′
i
/(1+(ρ−1)α′

i
),

then we can move down qi and
all items that are released after
p′

i−1, with the exception of pi ,

by α′
i
p∗

i
. Hereby the α-gap

becomes a β-gap and pi

becomes the new p∗
i

as the
interval Ii−1 shrinks

α∗
i+1p

∗
i+1 + α′

ip
∗
i . Thus

ALG′(qi+1) ≤ ρ OPT′(qi+1)

⇔ α∗
i+1p

∗
i+1 ≤ ρ OPT(pi) − ALG(pi)︸ ︷︷ ︸

≥0

+(ρ − 1)α′
ip

∗
i

⇐ α∗
i+1p

∗
i+1 ≤ (ρ − 1)α′

ip
∗
i

⇔ α∗
i+1p

∗
i+1 ≤ (ρ − 1)α′

i

(
1 − α∗

i+1

)
p∗

i+1 by (3) with β∗
i = 0

⇔ α∗
i+1 ≤ (ρ − 1)α′

i

1 + (ρ − 1)α′
i

,

which we assumed to be true. Thus qi+1 can actually be packed by the altered algo-
rithm. The feasibility for all other items in the altered packing is obvious. �

On the other hand, it is not possible for ALG to create an arbitrarily large gap
when packing a blocking item qi+1. We capture this fact in the following lemma.

Lemma 9 We have

α∗
i+1 ≤

γ ∗
i + (ρ − 1)

qi+1
p∗

i

1 + β∗
i + γ ∗

i + (ρ − 1)
qi+1
p∗

i

.

Proof The value of α∗
i+1 can be bounded by observing the moment when qi+1 is

packed. We have

OPT(qi+1) = OPT
(
p∗

i

) + qi+1,

ALG(qi+1) = ALG
(
p∗

i

) + α∗
i+1p

∗
i+1 + qi+1.
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And since qi+1 needs to be packed ρ-competitively by ALG we get

ALG(qi+1) ≤ ρ OPT(qi+1)

⇔ α∗
i+1p

∗
i+1 ≤ γ ∗

i p∗
i + (ρ − 1)qi+1

⇔ α∗
i+1

1 − α∗
i+1

≤
γ ∗
i + (ρ − 1)

qi+1
p∗

i

1 + β∗
i

by (3)

⇔ α∗
i+1 ≤

γ ∗
i + (ρ − 1)

qi+1
p∗

i

1 + β∗
i + γ ∗

i + (ρ − 1)
qi+1
p∗

i

.
�

The parameter α′
i plays an important role in the analysis as the height of the pre-

ceding blocking item depends on it. With the next lemma we get an upper bound for
this parameter.

Lemma 10 We have (ρ − 1)α′
i ≤ γ ∗

i .

Proof The idea of the bound is that if ALG jumps early, i.e., with an α′
i > 0, then it

generates a packing where p∗
i = p′

i +α′
ip

∗
i . This additional height directly contributes

to the value of γ ∗
i with a factor of ρ − 1 (as ALG and OPT increase by the same

amount).
Formally, we have ALG(p∗

i ) = ALG(pi) + α′
ip

∗
i , OPT(p∗

i ) = OPT(pi) + α′
ip

∗
i

and ALG(p∗
i )+ γ ∗

i p∗
i = ρ OPT(p∗

i ). And since pi was feasible we have ALG(pi) ≤
ρ OPT(pi) and get (ρ − 1)αip

∗
i ≤ γ ∗

i p∗
i . �

Similar to Kern and Paulus [11] we get the following lemma that bounds the po-
tential function in terms of the parameters of the previous interval.

Lemma 11 We have

Φi+1 = γ ∗
i+1 + β∗

i+1 =
γ ∗
i + (ρ − 1)

qi+1
p∗

i
+ (ρ − 1)β∗

i − 1

1 + β∗
i

(
1 − α∗

i+1

)

+ (ρ − 2)α∗
i+1.

Proof See Fig. 6(a) for an illustration of the packing. We consider the change be-
tween p∗

i and p∗
i+1 and with p∗

i+1 = β∗
i p∗

i + p∗
i + α∗

i+1p
∗
i+1 from (3) we have

OPT
(
p∗

i+1

) = OPT
(
p∗

i

) + qi+1 + p∗
i+1 − p∗

i

= OPT
(
p∗

i

) + qi+1 + β∗
i p∗

i + α∗
i+1p

∗
i+1,

ALG
(
p∗

i+1

) = ALG
(
p∗

i

) + α∗
i+1p

∗
i+1 + qi+1 + β∗

i+1p
∗
i+1 + p∗

i+1

= ALG
(
p∗

i

) + α∗
i+1p

∗
i+1 + qi+1 + β∗

i+1p
∗
i+1 + β∗

i p∗
i + p∗

i + α∗
i+1p

∗
i+1.



Theory Comput Syst (2015) 56:41–72 63

Fig. 6 Illustrations for Lemmas 11 and 12

Thus with γ ∗
i p∗

i = ρ OPT(p∗
i ) − ALG(p∗

i ) we get

ALG
(
p∗

i+1

) + γ ∗
i+1p

∗
i+1 = ρOPT

(
p∗

i+1

)
⇔ γ ∗

i+1p
∗
i+1 + β∗

i+1p
∗
i+1 − (ρ − 2)α∗

i+1p
∗
i+1

= γ ∗
i p∗

i + (ρ − 1)qi+1 + (ρ − 1)β∗
i p∗

i − p∗
i .

By (3) we have (1 − α∗
i )p∗

i+1 = (β∗
i + 1)p∗

i and finally get

γ ∗
i+1 + β∗

i+1 − (ρ − 2)α∗
i+1

1 − α∗
i+1

=
γ ∗
i + (ρ − 1)

qi+1
p∗

i
+ (ρ − 1)β∗

i − 1

1 + β∗
i

. �

This completes our preparations for the induction that we show next.

5.2.3 The Induction

In this section we show the intended contradiction: Any ρ-competitive algorithm
needs to satisfy Φi ≥ 0, however the potential Φi decreases indefinitely.

We start the induction with the next lemma, giving a maximal initial value of
ρ − 2 + (ρ − 1)ĉ for the potential. Afterwards, we distinguish three cases according
to the definition of qi+1. If qi+1 = β∗

i p∗
i or qi+1 = α′

ip
∗
i we show Φi+1 ≤ Φi − ε for

some ε > 0. The case qi+1 = qi is more involved. Either we also get a decreasing
potential or the potential might actually rise, but is still lower than the initial value.
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Therefore, this rise can only happen once, as we finally show when we bring together
all parts.

In the following calculations (which are very technical) we basically derive a series
of upper bounds on the potential Φi+1. In detail, we get

Φi+1 ≤ 2(ρ − 1)Φi − 1

1 + Φi

in case qi+1 = β∗
i p∗

i (4)

and Φi+1 ≤ ρ(ρ − 1)Φi − 1

1 + ρΦi

in case qi+1 = β∗
i p∗

i

and Φi+1 ≤ 2(ρ − 1)Φi − 1

1 + 2Φi

in case qi+1 = α′
ip

∗
i

and Φi+1 <
ρ(ρ − 1)Φi + ρ2 − 3ρ + 1

ρΦi + 2ρ − 1
in case qi+1 = qi

and Φi+1 ≤ (Φi + (ρ − 1)ĉ − 1)(ρ − 1)

ρ(ρ − 2 + (ρ − 1)ĉ)
+ ρ − 2 in case qi+1 = qi.

All these conditions eventually imply Φi+1 ≤ Φi − ε for some ε > 0 and ρ < ρ̂.
Just for condition (4) we additionally require the induction hypothesis Φi ≤ ρ −
2 + (ρ − 1)ĉ. This is actually exactly the condition that gives us the value of ĉ =
1−

√
4ρ̂2−12ρ̂+5
2(ρ̂−1)

.
We now start with the induction hypothesis. Not only do we give an upper bound

for the initial potential Φ1, but also for the ratio q1/p
∗
1 . This is needed later when we

bring the different parts together.

Lemma 12 We have

Φ1 ≤ ρ − 2 + (ρ − 1)ĉ and

q1

p∗
1

<
1

ρ
.

Proof Consider the packing of ALG and the optimal packing after p∗
1 is released—

see Fig. 6(b). Recall that ALG(rk) is the packing height at the end of the starting
phase and that q1 = ĉ ALG(rk). As p∗

1 equals the height of the interval below q1 we
have

OPT
(
p∗

1

) = p∗
1 + q1 = p∗

1 + ĉ ALG(rk) and

ALG
(
p∗

1

) = p∗
1 + q1 + β∗

1 p∗
1 + p∗

1 = 2p∗
1 + ĉALG(rk) + β∗

1 p∗
1 .

Moreover, we have p∗
1 = ALG(rk) + α∗

1p∗
1 and thus p∗

1 = ALG(rk)
1−α∗

1
. We get

γ ∗
1 p∗

1 = ρOPT
(
p∗

1

) − ALG
(
p∗

1

)
= (ρ − 2)p∗

1 + (ρ − 1)ĉALG(rk) − β∗
1 p∗

1
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⇒ Φi = γ ∗
1 + β∗

1 = ρ − 2 + (ρ − 1)ĉ
(
1 − α∗

1

)
since p∗

1 = ALG(rk)

1 − α∗
1

≤ ρ − 2 + (ρ − 1)ĉ.

Finally, observe that

q1

p∗
1

≤ ĉ ALG(rk)

ALG(rk)
= ĉ <

1

ρ
. �

With the next two lemmas we show that the potential decreases if qi+1 = β∗
i p∗

i or
qi+1 = α′

ip
∗
i . At the same time we show that qi+1/p

∗
i+1 is bounded, which we need

in the last case qi+1 = qi .

Lemma 13 If Φi ≤ ρ − 2 + (ρ − 1)ĉ and qi+1 = β∗
i p∗

i , then

Φi+1 ≤ Φi − ε for some ε > 0 and

qi+1

p∗
i+1

≤ Φi+1

ρ − 1
or

qi+1

p∗
i+1

<
1

ρ
.

Proof By Lemma 7, condition 1 we can assume α′
i = 0. Thus Lemma 11 yields

Φi+1 = γ ∗
i + 2(ρ − 1)β∗

i − 1

1 + β∗
i

(
1 − α∗

i+1

) + (ρ − 2)α∗
i+1.

Note that this function is linear in α∗
i+1. Thus Φi+1 attains its maximum for maximal

or minimal α∗
i+1. We show for both cases that Φi+1 ≤ Φi − ε for some ε > 0.

If Φi+1 is non-increasing in α∗
i+1 we have

Φi+1 ≤ γ ∗
i + 2(ρ − 1)β∗

i − 1

1 + β∗
i

as α∗
i+1 ≥ 0

= Φi + (2ρ − 3)β∗
i − 1

1 + β∗
i

as γ ∗
i + β∗

i = Φi

≤ 2(ρ − 1)Φi − 1

1 + Φi

.

The last step holds as β∗
i ≤ Φi and the function is increasing with respect to β∗

i . With

ε = ε(ρ) = ĉ2(ρ−1)2−ĉ(ρ−1)−(ρ−1)(ρ−2)+1
(ρ−1)(1+ĉ)

we have Φi+1 ≤ Φi − ε since

2(ρ − 1)Φi − 1

1 + Φi

≤ Φi − ε

⇔ Φ2
i − (2ρ − 3 + ε)Φi ≥ ε − 1

⇐ (
ρ − 2 + (ρ − 1)ĉ

)2 − (2ρ − 3 + ε)
(
ρ − 2 + (ρ − 1)ĉ

) ≥ ε − 1

as Φi ≤ ρ − 2 + (ρ − 1)ĉ and 2Φi − 2ρ + 3 − ε ≤ 2(ρ − 1)ĉ − 1 < 0
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⇔ (ρ − 2 + (ρ − 1)ĉ)2 − (2ρ − 3)(ρ − 2 + (ρ − 1)ĉ) + 1

1 + ρ − 2 + (ρ − 1)ĉ
≥ ε

⇐ ĉ2(ρ − 1)2 − ĉ(ρ − 1) − (ρ − 1)(ρ − 2) + 1

(ρ − 1)(1 + ĉ)
= ε.

It remains to show ε = ε(ρ) > 0. We have ε(ρ̂) = 0 since

ĉ2(ρ̂ − 1)2 − ĉ(ρ̂ − 1) − (ρ̂ − 1)(ρ̂ − 2) + 1 = 0

for ĉ = 1−
√

4ρ̂2−12ρ̂+5
2(ρ̂−1)

. Now observe that ε is strictly decreasing with ρ since

∂

∂ρ

(
ε(ρ)

) = (ĉ2 − 1)(ρ − 1)2 − (ρ2 − 2ρ + 2)

(ρ − 1)2(1 + ĉ)
< 0

as ĉ2 − 1 < 0 and ρ2 − 2ρ + 2 > 0. Thus we have ε = ε(ρ) > ε(ρ̂) = 0 in this case.
Now, if Φi+1 is increasing in α∗

i+1, we use Lemma 9 to get

Φi+1 ≤ γ ∗
i + 2(ρ − 1)β∗

i − 1

1 + β∗
i

·
(

1 − γ ∗
i + (ρ − 1)β∗

i

1 + γ ∗
i + ρβ∗

i

)
+ (ρ − 2) · γ ∗

i + (ρ − 1)β∗
i

1 + γ ∗
i + ρβ∗

i

≤ γ ∗
i + 2(ρ − 1)β∗

i − 1

1 + β∗
i

· 1 + β∗
i

1 + γ ∗
i + ρβ∗

i

+ (ρ − 2) · γ ∗
i + (ρ − 1)β∗

i

1 + γ ∗
i + ρβ∗

i

= (ρ − 1)γ ∗
i + ρ(ρ − 1)β∗

i − 1

1 + γ ∗
i + ρβ∗

i

= (ρ − 1)Φi + (ρ − 1)2β∗
i − 1

1 + Φi + (ρ − 1)β∗
i

as γ ∗
i + β∗

i = Φi

≤ ρ(ρ − 1)Φi − 1

1 + ρΦi

.

Again, the last step holds as β∗
i ≤ Φi and the function is increasing with respect to β∗

i .
With ε = 3 − ρ − 1/ρ > 0 (for ρ < ρ̂) we have Φi+1 ≤ Φi − ε since

ρ(ρ − 1)Φi − 1

1 + ρΦi

≤ Φi − 3 + ρ + 1

ρ

⇔ ρ(ρ − 1)Φi − 1 ≤ Φi − 3 + ρ + 1

ρ
+ ρΦ2

i − 3ρΦi + ρ2Φi + Φi

⇔ Φ2
i +

(
2 − 2ρ

ρ

)
Φi ≥ 2 − ρ − 1

ρ

ρ

⇔
(

Φ2
i + 1 − ρ

ρ

)2

≥
(

1 − ρ

ρ

)2

+ 2 − ρ − 1
ρ

ρ
= 0.

Thus in both cases we have Φi+1 ≤ Φi − ε for some ε > 0.
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It remains to show

qi+1

p∗
i+1

≤ Φi+1

ρ − 1
or

qi+1

p∗
i+1

<
1

ρ
.

We have qi+1
p∗

i+1
= β∗

i

1+β∗
i
(1 − α∗

i+1) by (3). If β∗
i < 1

ρ−1 we have

qi+1

p∗
i+1

= β∗
i

1 + β∗
i

(
1 − α∗

i+1

) ≤ β∗
i

1 + β∗
i

<
1

ρ − 1
· 1

1 + 1
ρ−1

= 1

ρ − 1
· 1

ρ
ρ−1

= 1

ρ
.

Otherwise, we have β∗
i ≥ 1

ρ−1 and thus

qi+1

p∗
i+1

= β∗
i

1 + β∗
i

(
1 − α∗

i+1

) ≤ Φi+1

ρ − 1

⇔ (ρ − 1)β∗
i ≤ γ ∗

i + 2(ρ − 1)β∗
i − 1 + (ρ − 2)(1 + β∗

i )
α∗

i+1

1 − α∗
i+1︸ ︷︷ ︸

≥0

⇐ 1 ≤ γ ∗
i + (ρ − 1)β∗

i

⇐ β∗
i ≥ 1

ρ − 1
. �

Lemma 14 If Φi ≤ ρ − 2 + (ρ − 1)ĉ and qi+1 = α′
ip

∗
i then

Φi+1 ≤ Φi − ε for some ε > 0, and

qi+1

p∗
i+1

<
1

ρ
.

Proof In this case we can assume β∗
i = 0 (by Lemma 7, condition 2) and hereby have

Φi = γ ∗
i . Thus by Lemma 11 and with (ρ − 1)α′

i ≤ γ ∗
i = Φi by Lemma 10 we have

Φi+1 = (
Φi + (ρ − 1)α′

i − 1
)(

1 − α∗
i+1

) + (ρ − 2)α∗
i+1

≤ (2Φi − 1)
(
1 − α∗

i+1

) + (ρ − 2)α∗
i+1.

We consider the derivative with respect to α∗
i+1 and with Φi ≤ ρ − 2 + (ρ − 1)ĉ we

get

∂

∂α∗
i+1

(
(2Φi − 1)

(
1 − α∗

i+1

) + (ρ − 2)α∗
i+1

) = ρ − 1 − 2Φi

≥ 3 − ρ − 2(ρ − 1)ĉ > 0.

Thus Φi+1 increases with α∗
i+1 and since by Lemma 9

α∗
i+1 ≤ γ ∗

i + (ρ − 1)α′
i

1 + γ ∗
i + (ρ − 1)α′

i

≤ 2γ ∗
i

1 + 2γ ∗
i

= 2Φi

1 + 2Φi
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we get

Φi+1 ≤ (2Φi − 1)

(
1 − 2Φi

1 + 2Φi

)
+ (ρ − 2)

2Φi

1 + 2Φi

= 2(ρ − 1)Φi − 1

1 + 2Φi

.

With ε = √
2ρ − ρ + 1/2 > 0 (for ρ < ρ̂) we have Φi+1 ≤ Φi − ε since

2(ρ − 1)Φi − 1

1 + 2Φi

≤ Φi − √
2ρ + ρ − 1

2

⇔ 2Φ2
i + (

2 − 2
√

2ρ
)
Φi ≥ √

2ρ − ρ − 1

2

⇔
(

Φi + 1 − √
2ρ

2

)2

≥
(

1 − √
2ρ

2

)2

+
√

2ρ − ρ − 1
2

2
= 0.

Thus we proved the first part of the lemma.
It remains to show

qi+1

p∗
i+1

<
1

ρ
.

With β∗
i = 0 we have p∗

i+1 = p∗
i /(1 − α∗

i+1) by (3). Using α∗
i+1 ≥ (ρ−1)α′

i

1+(ρ−1)α′
i

by

Lemma 8 and α′
i ≤ α∗

i < 1 (by definition of α∗
i as a fraction of p∗

i ) we get

qi+1

p∗
i+1

= α′
ip

∗
i

p∗
i+1

= α′
i

(
1 − α∗

i+1

) ≤ α′
i

1 + (ρ − 1)α′
i

<
1

ρ
.

This finishes the proof of this lemma. �

Finally, we consider the case qi+1 = qi . First, we show that the potential definitely
decreases if qi/p

∗
i < 1/ρ.

Lemma 15 If Φi ≤ ρ − 2 + (ρ − 1)ĉ and qi

p∗
i

< 1
ρ

and qi+1 = qi then

Φi+1 ≤ Φi − ε for some ε > 0, and

qi+1

p∗
i+1

<
1

ρ
.

Proof The second part is trivial since qi+1 = qi , p∗
i+1 ≥ p∗

i and qi/p
∗
i < 1/ρ.

To show the first part we assume α′
i = 0 and β∗

i = 0 according to conditions 1
and 2 of Lemma 7. Thus we have Φi = γ ∗

i and with Lemma 11 we get

Φi+1 =
(

Φi + (ρ − 1)
qi

p∗
i

− 1

)(
1 − α∗

i+1

) + (ρ − 2)α∗
i+1.



Theory Comput Syst (2015) 56:41–72 69

We consider the derivative with respect to α∗
i+1 and get

∂

∂α∗
i+1

(Φi+1) = ρ − 1 − Φi − (ρ − 1)
qi

p∗
i

> 1 − (ρ − 1)ĉ − ρ − 1

ρ
> 0.

Thus Φi+1 increases with α∗
i+1 and since by Lemma 9

α∗
i+1 ≤

Φi + (ρ − 1)
qi

p∗
i

1 + Φi + (ρ − 1)
qi

p∗
i

we get

Φi+1 ≤
(ρ − 1)Φi + (ρ − 1)2 qi

p∗
i

− 1

1 + Φi + (ρ − 1)
qi

p∗
i

<
(ρ − 1)Φi + (ρ−1)2

ρ
− 1

Φi + 2ρ−1
ρ

as
qi

p∗
i

<
1

ρ

= ρ(ρ − 1)Φi + ρ2 − 3ρ + 1

ρΦi + 2ρ − 1
.

With

ε = 3ρ − ρ2 − 1

ρΦi + 2ρ − 1
≥ 3ρ − ρ2 − 1

ρ(ρ + (ρ − 1)ĉ) − 1
> 0,

as Φi ≤ ρ − 2 + (ρ − 1)ĉ and 3ρ − ρ2 − 1 > 0 for ρ < ρ̂, we have Φi+1 ≤ Φi − ε

since

ρ(ρ − 1)Φi + ρ2 − 3ρ + 1

ρΦi + 2ρ − 1
≤ Φi − 3ρ − ρ2 − 1

ρΦi + 2ρ − 1

⇔ ρ(ρ − 1)Φi + ρ2 − 3ρ + 1 ≤ ρΦ2
i + (2ρ − 1)Φi − 3ρ + ρ2 + 1

⇔ 0 ≤ ρΦ2
i + (

3ρ − ρ2 − 1
)
Φi

which is satisfied as 3ρ − ρ2 − 1 > 0 for ρ < ρ̂. �

If we do not have qi/p
∗
i < 1/ρ we can still assume that qi/p

∗
i ≤ (ρ − 2

+ (ρ − 1)ĉ)/(ρ − 1) by Lemmas 13 and 14 (as Φi ≤ ρ − 2 + (ρ − 1)ĉ and this
ratio does not increase in case qi+1 = qi ).

We use this bound to show that either the potential still decreases or we can bound
the potential by ρ − 2 and the qi+1/p

∗
i+1 ratio is less than 1/ρ. So from this point on

we remain in the case of the previous lemma and the potential decreases by a constant
in every step.
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Lemma 16 If Φi ≤ ρ −2+ (ρ −1)ĉ and qi

p∗
i

≤ ρ−2+(ρ−1)ĉ
ρ−1 and qi+1 = qi then either

Φi+1 < ρ − 2 and

qi+1

p∗
i+1

<
1

ρ
,

or

Φi+1 ≤ Φi − ε for some ε > 0, and

qi+1

p∗
i+1

≤ ρ − 2 + (ρ − 1)ĉ

ρ − 1
.

Proof As in Lemma 15 we have α′
i = 0, β∗

i = 0, Φi = γ ∗
i and

Φi+1 =
(

Φi + (ρ − 1)
qi

p∗
i

− 1

)(
1 − α∗

i+1

) + (ρ − 2)α∗
i+1.

Again, Φi+1 increases with α∗
i+1. We distinguish two cases according to the value of

α∗
i+1.

If α∗
i+1 > 1 − ρ−1

ρ(ρ−2+(ρ−1)ĉ)
then

qi+1

p∗
i+1

= qi

p∗
i

(
1 − α∗

i+1

)
<

ρ − 2 + (ρ − 1)ĉ

ρ − 1
· ρ − 1

ρ(ρ − 2 + (ρ − 1)ĉ)
= 1

ρ
.

As Φi+1 is increasing with α∗
i+1 we use Lemma 9 to get

Φi+1 ≤
(ρ − 1)Φi + (ρ − 1)2 qi

p∗
i

− 1

1 + Φi + (ρ − 1)
qi

p∗
i

≤ 2(ρ − 1)(ρ − 2 + (ρ − 1)ĉ) − 1

1 + 2(ρ − 2 + (ρ − 1)ĉ)

as Φi ≤ ρ − 2 + (ρ − 1)ĉ and qi

p∗
i

≤ ρ−2+(ρ−1)ĉ
ρ−1 . We have

2(ρ − 1)(ρ − 2 + (ρ − 1)ĉ) − 1

1 + 2(ρ − 2 + (ρ − 1)ĉ)
< ρ − 2

⇔ 2(ρ − 1)
(
ρ − 2 + (ρ − 1)ĉ

) − 1 < ρ − 2 + 2(ρ − 2)
(
ρ − 2 + (ρ − 1)ĉ

)
⇔ 2

(
ρ − 2 + (ρ − 1)ĉ

)
< ρ − 1

⇔ 2(ρ − 1)ĉ < 3 − ρ,

which holds for ρ < ρ̂. We showed that if α∗
i+1 > 1 − ρ−1

ρ(ρ−2+(ρ−1)ĉ)
, then we have

Φi+1 < ρ − 2 and qi+1/p
∗
i+1 < 1/ρ.



Theory Comput Syst (2015) 56:41–72 71

Otherwise, we have α∗
i+1 ≤ 1 − ρ−1

ρ(ρ−2+(ρ−1)ĉ)
and get

Φi+1 ≤
(Φi + (ρ − 1)

qi

p∗
i

− 1)(ρ − 1)

ρ(ρ − 2 + (ρ − 1)ĉ)
+ ρ − 2 − (ρ − 2)(ρ − 1)

ρ(ρ − 2 + (ρ − 1)ĉ)

≤ (Φi + (ρ − 1)ĉ − 1)(ρ − 1)

ρ(ρ − 2 + (ρ − 1)ĉ)
+ ρ − 2 as

qi

p∗
i

≤ ρ − 2 + (ρ − 1)ĉ

ρ − 1
.

With ε = Φi + (1−(ρ−1)ĉ−Φi)(ρ−1)

ρ(ρ−2+(ρ−1)ĉ)
− ρ + 2 we have Φi+1 ≤ Φi − ε since

(Φi + (ρ − 1)ĉ − 1)(ρ − 1)

ρ(ρ − 2 + (ρ − 1)ĉ)
+ ρ − 2

≤ Φi − Φi − (1 − (ρ − 1)ĉ − Φi)(ρ − 1)

ρ(ρ − 2 + (ρ − 1)ĉ)
+ ρ − 2.

It remains to show that ε > 0 . To see this, observe that ε is increasing with respect
to Φi as

∂

∂Φi

(
Φi + (1 − (ρ − 1)ĉ − Φi)(ρ − 1)

ρ(ρ − 2 + (ρ − 1)ĉ)
− ρ + 2

)
= 1 − ρ − 1

ρ(ρ − 2 + (ρ − 1)ĉ)
> 0

for 2.55 ≤ ρ < ρ̂ (here we assume δ = ρ̂ − ρ is sufficiently small). As Φi ≥ 0 we
have

ε ≥ (1 − (ρ − 1)ĉ)(ρ − 1)

ρ(ρ − 2 + (ρ − 1)ĉ)
− ρ + 2 > 0.

Of course,

qi+1

p∗
i+1

≤ qi

p∗
i

≤ ρ − 2 + (ρ − 1)ĉ

ρ − 1

holds trivially. We showed that if α∗
i+1 ≤ 1 − ρ−1

ρ(ρ−2+(ρ−1)ĉ)
, then we have Φi+1 ≤

Φi − ε for ε > 0 and qi+1/p
∗
i+1 ≤ (ρ −2+ (ρ −1)ĉ)/(ρ −1). This finishes the proof

of this lemma. �

This ends this extensive induction. Let us summarize the complete induction and
show that it actually gives the desired contradiction.

Recall that our induction hypothesis in Lemma 12 states that Φ1 ≤ ρ−2+(ρ−1)ĉ

and q1/p
∗
1 < 1/ρ.

First assume that whenever we need to apply Lemma 16, then the second condi-
tion holds, i.e., Φi+1 ≤ Φi − ε and qi+1/p

∗
i+1 ≤ (ρ − 2 + (ρ − 1)ĉ)/(ρ − 1). Then

Lemma 13 (for qi+1 = β∗
i p∗

i ), Lemma 14 (for qi+1 = α′
ip

∗
i ) and Lemmas 15 and 16

(for qi+1 = qi ) show that the potential decreases by a constant in every step.
Now if Lemma 16 is applied and the second condition does not hold, then Φi+1 <

ρ − 2 and qi+1/p
∗
i+1 < 1/ρ. Thus Lemma 13 (for qi+1 = β∗

i p∗
i ), Lemma 14 (for

qi+1 = α′
ip

∗
i ) and Lemmas 15 (for qi+1 = qi ) show that the qi/p

∗
i ratio remains less
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than 1/ρ. So the precondition for Lemma 15 is always satisfied if qi+1 = qi and
we do not need to apply Lemma 16 anymore. Thus from this point on, the potential
decreases by a constant in every further step.

Summarizing, we derived a contradiction to Φi ≥ 0 for all i ≥ 1, thereby proving
Theorem 1.
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