arXiv:1303.2059v1 [cs.LO] 8 Mar 2013

Structural Tractability of Counting of
Solutions to Conjunctive Queries

Arnaud Durand* Stefan Mengel!
IMJ UMR 7586 - Logique Institute of Mathematics
Université Paris Diderot University of Paderborn
F-75205 Paris, France D-33098 Paderborn, Germany
durand@math.univ-paris-diderot.fr smengel@mail.uni-paderborn.de

November 2, 2018

In this paper we explore the problem of counting solutions to conjunctive
queries. We consider a parameter called the quantified star size of a formula ¢
which measures how the free variables are spread in ¢. We show that for
conjunctive queries that admit nice decomposition properties (such as being
of bounded treewidth or generalized hypertree width) bounded quantified
star size exactly characterizes the classes of queries for which counting the
number of solutions is tractable. This also allows us to fully characterize the
conjunctive queries for which counting the solutions is tractable in the case of
bounded arity. To illustrate the applicability of our results, we also show that
computing the quantified star size of a formula is possible in time n®®*) for
queries of generalized hypertree width k. Furthermore, quantified star size is
even fixed parameter tractable parameterized by some other width measures,
while it is W/[1]-hard for generalized hypertree width and thus unlikely to be
fixed parameter tractable. We finally show how to compute an approximation
of quantified star size in polynomial time where the approximation ratio
depends on the width of the input.

1 Introduction

Conjunctive queries (CQs) are a fundamental class of logical queries that consist of
evaluating an existential conjunctive first-order formula over a finite structure. They

*Partially supported by ANR-11-1S02-0003, project ALCOCLAN

fPartially supported by DFG grants BU 1371/2-2 and BU 1371/3-1. Furthermore, the research leading to
these results has received funding from the [European Community’s] Seventh Framework Programme
[FP7/2007-2013] under grant agreement n° 238381

admit a number of equivalent formulations for example as select-project-join queries in
database theory or as homomorphism problems in constraint satisfaction and thus have
been extensively studied in various contexts. Deciding if a Boolean CQ is true or not on
a structure is well known to be NP-complete, so the main interest of study has been
to identify tractable subclasses, so-called “islands of tractability”, where the decision
question is tractable, i.e. can be solved in polynomial time.

One main direction in finding tractable classes of CQs has been imposing structural
restrictions on the formula of the query — more exactly on the hypergraph associated to
it — while the database is assumed to be arbitrary. In a seminal paper Yannakakis [25]
proved that if the formula is acyclic, then the Boolean CQ question becomes tractable.
The main idea behind structural restrictions is to extend this result by generalizing it
to “nearly acyclic” queries. This has lead to many different decompositions for graphs
and hypergraphs and associated width measures (see e.g. [13| [, 23]). The common
approach for these decompositions is to group together vertices or edges (of the graphs or
hypergraphs) into clusters of some fixed constant size and to arrange these clusters into
a tree. The resulting width measures are often sought to have two desirable properties:

e For every k the class of queries of width k£ should be tractable, i.e. Boolean CQ
should be solvable in polynomial time.

e Given an instance it should be possible to decide if there is a decomposition of
width k& and construct one if it exists.

While decomposition techniques without the first property do not make any sense in
the context of CQs, the second property is sometimes relaxed. For some decomposition
techniques one does not actually need the decomposition to solve the Boolean query
problem [6], a promise of the existence is enough. For other decompositions one only
knows approximation algorithms that construct decompositions of width that is near the
optimal width, which is enough to guarantee tractability of Boolean CQ [22] [1].

More recently there has also been interest in enumerating all solutions to CQs and in
the corresponding counting question. For enumeration of the query answers it turns out
that the picture is less clear than for decision [2} [4, [16]. Also the situation for counting is
more subtle: For quantifier free queries — which correspond to queries without projections
in the database perspective — most commonly considered structural restrictions yield
tractable counting problems (see, e.g. [24]). While this is nice it is not fully satisfying,
because quantifiers/projections are very natural and essential in database queries. While
introducing projections does not make any difference for the complexity of Boolean CQ),
the situation for the associated counting problem, denoted #CQ, is dramatically different.
In [24] it is shown that even one single existentially quantified variable is enough to make
counting answers to CQs #P-hard even when the structure of the query is a tree (which
implies width 1 for all commonly considered decomposition techniques). This underlines
the gain of expressive power obtained by existential quantification in the context of
counting. It also follows that the decomposition techniques used for Boolean CQ are not
enough to guarantee tractability for counting.

In a previous paper [10] the authors of this paper have proposed a way out of this
dilemma for counting by introducing a parameter called quantified star size for acyclic
conjunctive queries (ACQs). This parameter measures how the free variables are spread
in the formula. We represented a query formula ¢(x) with a list x of free variables, by
extending the hypergraph H = (V, E) associated to ¢(x) with a set S C V. Then the
quantified star size is the size of a maximum independent set consisting of vertices from
the set S in some specified subhypergraphs of H. It turns out that this measure precisely
characterizes the tractable subclasses of ACQs. The main result is that (under the widely
believed assumption FPT # #W/[1] from parameterized complexity) solutions to a class
of ACQs can be counted in polynomial time if and only if the queries in the class are of
bounded quantified star size.

Overview of the results

Counting solutions to queries In this paper we extend the results of [10] from acyclic
queries to commonly considered decomposition techniques. To do so we generalize the
notion of quantified star size from acyclic queries to general conjunctive queries. We
show that every class of CQs that allows efficient counting must be of bounded quantified
star size — again under the same assumption from parameterized complexity. We then go
on showing that for all decomposition techniques for CQs commonly considered in the
literature combining them with bounded quantified star size leads to tractable counting
problems. The key feature that makes this result work is the organization of atoms
into a tree of clusters that is prominent in all decomposition methods for CQs known
so far. Combining the results above we get an exact characterization of the classes of
tractable CQ counting problems for commonly considered decomposition techniques. Let
us illustrate these results for the example of generalized hypertree decomposition [13],
which is one of the most general decomposition methods and one of the most studied
too [13], 15, 23]. We have that, under the assumption that FPT # #W/[1], for any
(recursively enumerable) class C of hypergraphs of bounded generalized hypertreewidth
the following statements are equivalent:

e #CQ for instances in C can be solved in polynomial time
e C is of bounded quantified star size.

In our considerations, the arity of atoms of queries is not a priori bounded. In this
setting, there is no known ultimate measure resulting from a decomposition method
that fully characterizes tractability even for Boolean CQ. This explains why our char-
acterizations are stated for each decomposition method. For bounded arity however,
the situation is different. It is well known that being of bounded treewidth completely
characterizes tractability for decision [19, [I7] and counting [9] for CSP (corresponding to
quantifier free conjunctive queries in this setting). Combining [19, [I7] and our results
from above we derive a complete characterization of tractability for #CQ in terms of
tree width and quantified star size for the bounded arity case.

Note that our results are for counting with set semantics, i.e. we count each solution
only once. Counting for bag semantics in which multiple occurences of identical tuples
are counted has already been essentially solved in [24].

Discovering quantified star size To exploit tractability results of the above kind it is
helpful if the membership in a tractable class can be decided efficiently, i.e. in our case if
computing the quantified star size is also tractable. In the second part of the paper, we
turn to these “discovery problems” of determining the quantified star size of queries.

In [10] it is shown that quantified star size of acyclic CQs can be determined in
polynomial time. Since star size is equivalent to independent sets, we cannot expect this
to be true on more general queries anymore. Fortunately, it turns out that for queries of
generalized hypertree width k, there is a n* algorithm that computes the quantified star
size. We show that this is in a sense optimal, because under the assumption FPT # W]1]
there is no efficient (fixed paramater tractable in k) algorithm computing the quantified
star size for queries parameterized by generalized hypertree width.

Still some natural decomposition methods admit fixed parameter discovery algorithms.
We prove that this is the case for the class of CQ having bounded hingetree width (see [§]).
This result is interesting on his own from a hypergraph algorithms perspective. Because
of the connection between star size and maximum independent set, it provides a new
class of hypergraphs for which computing the maximum independent set is FPT. Note
that the preceding hardness result shows that fixed parameterized tractability of this
problem is unlikely for other hypergraph decomposition techniques.

We then turn our attention to star size approximation. We show that there is a
polynomial time approximation algorithm with ratio k£ that given a decomposition of
width k runs in time independent of k.

Summing these results up, quantified star size does not only imply tractable counting
if combined with well known decomposition techniques, but in case the decomposition is
given or can be efficiently computed (hypertreewidth, hingetree width) or approximated
(generalized hypertreewidth), then computing quantified star size is itself tractable.

Finally, we investigate the problem of counting solution and computing quantified
star size for queries of bounded fractional hypertree width [I8] 22]. This decomposition
method is of a somewhat different nature than the ones studied before so we treat it
individually. We again prove that counting is tractable in this setting and that the
discovery problem can be decided in O(nko(l)) i.e. with a slightly bigger dependency in k
than before.

2 Preliminaries

Conjunctive queries We assume the reader to be familiar with the basics of (first order)
logic (see [21]). We assume all formulas to be in prenex form. If ¢ is a first order formula,
var(¢) denotes the set of its variables, free(¢) C var(¢) the set of its free variables and
atom(¢) the set of its atomic formulas. Let x = x1, ..., 2k, we denote ¢(x) the formula
with free variables x. If ¢ is such that free(¢) = var(¢) then ¢ is said to be quantifier-free.

The Boolean query problem ® = (A, ¢) associated to a formula ¢(x) and a structure A,
asks whether the set

¢(A) ={a: (A a) F ()}

called the query result is empty or not. The (general) query problem consists of computing
the set ¢(A), while the corresponding counting problem is computing the size of ¢(.A),
denoted by |¢(A)|. We call two instances ® = (A4, ¢), &' = (A’, ¢’) solution equivalent, if
free(¢) = free(¢’) and ¢(A) = ¢'(A’). When ¢ is a {3, A}-first order formula the boolean
query problem is known as the Conjunctive Query Problem, CQ for short. It is well
known that the the Boolean CQ problem is NP-complete. We denote by #CQ the
associated counting problem: given a query instance ® = (A, ¢), return |¢(A)|.

Any a € ¢(A) will be alternatively seen as an assignment a : free(¢) — D or as a tuple
of dimension |free(¢)|. Two assignments a and a’ are compatible (symbol: a ~ a’) if they
agree on their common variables.

Definition 2.1 Let ¢(x,y), ¥(y,z) be two conjunctive queries with x Nz = () and let
A, A be two finite structures. The the natural join of ¢ and 1 is ¢(A) > P(A") =
{(a,b,c): (a,b) € ¢(A) and (b,c) € Y(A)}

When A = A, ¢(R) x19(A) is simply [¢ A ¢](A).

Query size and Model of computation The underlying model of computation for
our algorithms will be the RAM model with unit costs. We assume the relations of a
conjunctive query to be encoded by listing their tuples. For a relation R let arity(R)
denote the arity of R and |R| the number of tuples in R. Then the size of an encoding
of R is |R|| := ©(arity(R) - |R|). For a vocabulary 7 let |7| be the number of predicate
symbols. Finally, let |D| be the size of a domain D. Then encoding a structure A over
the vocabulary 7 with domain D takes space ||A| := |7| +|D| + > re, R4

Furthermore, it takes space [|¢[| := ©(3 peatom(e) 2rity(P)) to encode a formula ¢. The
size of an encoding of a CQ instance ® = (¢,.A) is then ||®| := ||¢]|| + ||A]l-

For a detailed discussion and justification of these conventions see [11, Section 2.3]

Parameterized complexity This section is a very short introduction to some notions
from parameterized complexity used in the remainder of this paper (for more details
see [12]).

A parameterized decision problem over an alphabet X is a language L C ¥* together
with a computable parameterization : ¥* — N. The problem (L,) is said to be fixed
parameter tractable, or (L, k) € FPT, if there is a computable function f: N — N such
that there is an algorithm that decides for 2 € ¥* in time f(x(z))|z|°M) if z is in L.

Let (L,x) and (L', k") be two parameterized decision problems over the alphabets
Y resp. II. A parameterized many-one reduction from (L,) to (L', ') is a function
r: X% — II* such that for all x € ¥*:

eczcl&r(x)el,

e r(z) can be computed in time f(k(z))|z|® for a computable function f and a
constant ¢, and

e &'(r(x)) < g(k(x)) for a computable function g.

It is easy to see that FPT is closed under parameterized many-one reductions.

Let p-Clique be the problem of deciding on an input (G, k) where G is a graph and k and
integer, if G has a k-clique. Here the parameterization is simply defined by (G, k) := k.
The class W|[1] consists of all parameterized problems that are parameterized many-one
reducible to p-Clique. A problem (L, k) is called W[1]-hard, if there is a parameterized
many-one reduction from p-Clique to (L, k).

It is widely believed that FPT # W]1] and thus in particular p-Clique and all
W]1]-hard problems are not fixed parameter tractable.

Parameterized counting complexity theory is developed similarly to decision complexity.
A parameterized counting problem is a function F': ¥* x N — N, for an alphabet ¥. Let
(z,k) € ¥* x N, then we call x the input of F' and k the parameter. A parameterized
counting problem F' is fixed parameter tractable, or F' € FPT, if there is an algorithm
computing F(z, k) in time f(k)-|z|® for a computable function f : N — N and a constant
ceN.

Let F: ¥* x N —> Nand G :II* x N — N be two parameterized counting problems. A
parameterized parsimonious reduction from F' to G is an algorithm that computes for
every instance (z,k) of F' an instance (y,[) of G in time f(k) - |z|® such that | < g(k)
and F(x,k) = G(y,l) for computable functions f,g : N — N and a constant ¢ € N. A
parameterized T-reduction from F' to G is an algorithm with an oracle for G that solves
any instance (z, k) of F' in time f(k) - |z|¢ in such a way that for all oracle queries the
instances (y, 1) satisfy [< g(k) for computable functions f, g and a constant ¢ € N.

Let p-#Clique be the problem of counting k-cliques in a graph where k is the parameter
and the graph is the input. A parameterized problem F' is in #W/[1] if there is a
parameterized parsimonious reduction from F' to p-#Clique. F' is #W/|[1]-hard, if there
is a parameterized T-reduction from p-#Clique to F. As usual, F' is #W/[1]-complete if
it is in #W/1] and hard for it, too.

Again, it is widely believed that there are problems in #W/1] (in particular the
complete problems) that are not fixed parameter tractable. Thus, from showing that a
problem F'is #W/1]-hard it follows that F' can be assumed to be not fixed parameter
tractable.

Hypergraph decompositions In this section we present some well known hypergraph
decompositions methods. For more details and more decomposition techniques see e.g.
I8, 13, 23].

A (finite) hypergraph H is a pair (V, E) where V is a finite set and E C P(V). We
associate a hypergraph H = (V| E) to a formula ¢ (the canonical structure describing ¢)
by setting V := var(¢) and E := {var(a) | a € atom(¢)}.

Figure 1: The hypergraph associated to the formula ¢ of Example

Example 2.2 Consider the formula

¢ = FugTusIuzIugIusIugIurIug
Py (vi,u1) A Py(ve,ur, ug) A P3(ve, vy, ug, us)
APy (v3,v4, 05, u3, ug, us) A Ps(vy, v5, V6, Vg)
APs(v7, v8, us, ug) A Py(vg, v, uz) A Pa(vs, vy, ug)

The associated hypergraph is illustrated in Figure [1]

An independent set I in H is a set of vertices I C V such that no two of them lie in
one edge together. An edge cover C' of H is an edge set E' C E such that (J,cpe="V.

Definition 2.3 A generalized hypertree decomposition of a hypergraph H = (V, E) is a
triple (T, (M)ter, (xt)teT) where T = (T, F) is a rooted tree and \y C E and x; CV for
every t € T satisfying the following properties:

1. For everyv € V the set {t € T | v € x+} induces a subtree of T.
2. For every e € E there is at € T such that e C x.
3. For everyt € T we have xt C UeeAt e.

The first property is called the connectedness condition. The sets x; are called blocks or
bags of the decomposition, while the sets Ay are called the guards of the decomposition.
A pair (A, xt) is called guarded block.

The width of a decomposition (T, (At)ier, (Xt)teT) s defined as maxier(|\e]). The
generalized hypertree width of H is the minimum width over all generalized hypertree
decompositions of H.

We sometimes identify a guarded block (A, x¢) with the vertex ¢.

{V3, V4, Vs, U3, Ug, Us}
{V4r VSI V6' VS}'
{Vvs, Vg, Us, Ug}

V3, V4, V5, V6, V7:
Vg, Uz, Uy, Us, Ug

\

({vl, s}, {va, uy, uz}w {Va, Vs, Ve, Vg,

{v2, V4, Uy, U3} Ve, Vo, U7},
{VS' Vg, US}

V4, V5, V6, V8, Vg,
Uz, Ug
Figure 2: A generalized hypertree decomposition of width 3 for the hypergraph from

Figure [1} The boxes are the guarded blocks. In the upper parts the guards are
given while the lower parts show the blocks.

LVl, Vo, Vg, Ug, Uy, U3

Example 2.4 Figure[d shows a generalized hypertree decomposition of width 3 for the
hypergraph from Figure [1]

Definition 2.5 A hypergraph is acyclic if it has generalized hypertree width 1. In this
case, the decomposition restricted to its blocks is called a join tree.

Let us fix some notation: For an edge set A C E we use the shorthand [JA :=J.¢\ €.
For a decomposition (7, (A)ier, (Xt)ter) we write T; for the subtree of T that has ¢ as
its root. We also write X (7;) := Uyey(7;) Xe'-

Definition 2.6 A generalized hypertree decomposition is called hingetree decompositiorﬂ
if it satisfies the following conditions:

4. For each pair ti,ta € T with t1 # to there are edges e1 € A\¢; and ez € Ay, such that
Xt N Xt, € €1 Nea.

5. For each t € T we have |JN = xt-

6. For each e € E there is at € T such that e €).

Hingetree width (also called degree of cyclicity) is defined analogously to generalized
hypertree width.

Example 2.7 The decomposition from Figure[d is also a hingetree decomposition.

!Note that this is not the original definition from [20] but an alternative, equivalent definition from [g].

Definition 2.8 The primal graph of a hypergraph H = (V, E) is the graph Hp = (V, E})
with E, := {uv € (‘2/) | dJe € E:u,v € E}.

Definition 2.9 A tree decomposition of a hypergraph H is a generalized hypertree
decomposition of its primal graph Hp. The width of a tree decomposition is the size
of its biggest bag minus 1. The treewidth of H is the minimum width over all tree
decompositions of H.

For all decompositions defined above we define the width of a CQ-instance to be the
width of the associated hypergraph.
We now recall some known results on the various decomposition methods.

Lemma 2.10 a) (see e.g. [8]) For all of the width measures defined above Boolean
CQ-instances of width k can be solved in time ||®||P*) for a polynomial p.

b) ([20]) There is an algorithm that given a hypergraph H = (V,E) computes a
minimum width hingetree decomposition in time |V,

¢) ([3])Computing minimum width tree decompositions is fized parameter tractable
parameterized by the treewidth.

d) ([1,[74)]) There is an algorithm that given a hypergraph H = (V, E) of generalized
hypertree width k constructs a generalized hypertree decomposition of width O(k)
of H in time |V |O%),

Definition 2.11 Let H = (V, E) be a hypergraph and V' C V. The induced subhyper-
graph H[V'] of H is the hypergraph H[V'] = (V. {enV' e € E;,enV’ #0}).

Let x,y € V, a path between x and y is a sequence of vertices x = vy, ..., v = Yy such
that for each i € [k — 1] there is an edge e; € E with vi,vi1+1 € e;.

A (connected) component of H is the induced subhypergraph H[V'] for a mazimal vertex
set V' such that for each pair x,y € V' there is a path between x and y in H.

Observation 2.12 Let 8 be any decomposition technique defined in this section. Let H =
(V,E) be a hypergraph of B-width k. Then for every V! C V the induced subhypergraph
H[V'] has S-width at most k.

Proof. Let (T, (At)ter, (Xt)t;nT) be a B-decomposition of H of width k. For each guarded
block (A¢, x¢) compute a guarded block (A}, x}) with x; := x;NV’ and \; := {eNV’ | e € A}
It is easy to check that (7, (A})er, (Xi)t;nT) is a S-decomposition of width at most k. <

3 Quantified-star size

In this section we generalize quantified star size which was introduced in [10] for acyclic
conjunctive queries to general conjunctive queries.

Definition 3.1 Let H = (V, E) be a hypergraph and S C V. Let C be the vertex set of
a connected component of H[V — S|. Let Ec be the set of hyperedges {e € E | eNC # ()}
and V' :=J cp. e Then H[V'] is called an S-component of H.

Definition 3.2 Let H = (V, E) be a hypergraph. For a set S C V' the S-star size of
H is the mazimum size of an independent set consisting only of vertices in S in an
S-component of H. We say that this independent set forms the S-star.

Example 3.3 Take S = {v1,...,v9} in the hypergraph of Figure . It has three S-
components with respective edge lists:

1. {Ulaul}y {UQ,UI,UQ}, {7)2,’1)4,U2,u3}, {U77U87U57u6}7 {U47U57U6aU8}7 {’U3,U4,U5,U3,U4,U5},

{vs}
2. {vs,vg,ug}, {vs}
3. {ve,vg,ur}, {ve}

The S-star size i.e. the size of a maximum independent of S-vertices in a S-component
is 4. The set {v1,va,v3,v7} forms an S-star (there are several other possibilities).

It is easy to see that for acyclic hypergraphs this definition of S-star size coincides
with the definition in [10] which was only defined for acyclic hypergraphs.

Definition 3.4 An S-hypergraph is a pair (H,S) where H = (V, E) is a hypergraph
and S C V. To each formula ¢ we associate an S-hypergraph (H,S) where H is the
hypergraph associated to ¢ and S := free(¢). The quantified star size of a CQ instance
& = (A, @) is the S-star size of (H,S).

Let Ys4ar be the class of S-hypergraphs (H,, Sp,), n € N, where H,, is a star graph and
Sy, consists of its leaves. More precisely, H, = (V,, Ey,), S, are defined as

o Vo, ={z,vy1, .., Un},
o B, ={{zui}|i=1,..,n},
o S ={y1,., Un}

We will use the following lemma from [10] to which we give an alternative simpler
proof below.

Lemma 3.5 ([10]) #CQ is #W/[1]-hard restricted to instances that have S-hypergraphs
in Gsiar parameterized by the size of the stars.

Proof. We show the hardness by a parameterized T-reduction from p-#Clique. The
basic idea is that instead of counting k-cliques in a graph, we can also count the k-tuples
of vertices that are not a clique.

10

So let G = (V, E) be a simple, undirected graph and k € N. A tuple (vq,...,v;) € V¥
is not a clique if and only if it there are i,j € [k],i # j such that v;v; is not an edge.
Observe that because G is loopless this is necessarily true if (vy, ..., vg) contains a double
vertex. We will show how to check if a tuple (vy,...vg) is a clique with a CQ-instance of
the prescribed form.

We construct a #CQ-instance ® = (A, ¢) with ¢ := 3z /\;cyy; Fi(z,v). Clearly the
formula is of the right form. The domain of A is D :=V U (V x V x [k] x [k]). For each
i € [k] the structure A has the relation

PA = U{((v,w,i,7),v), (w,v,4,7),v) | v,w eV
v#w,vw ¢ E,j€lk],j#i}
UV x Vox ([k]\ {7}) x ([k]\ {i})) x V.

This completes the construction of ®.

First, observe that ® can be constructed in time polynomial in |G| and k, so if we can
compute the number of k-cliques of G from |¢(.A)| sufficiently quickly, the construction
is indeed a parameterized T-reduction.

Furthermore, observe that for each satisfying assignment the variables vy, ..., vy take
only values in V. We claim that an assignment a : {v1,...,vx} — D satisfies ¢ if and
only if a(v1),...,a(vy) is not a clique of size k in G. Essentially, the quantified variable
2 here guesses the edge that is missing between v; and v;.

Indeed, if a(vi),...,a(vy) is a tuple of vertices such that two vertices in it are not
adjacent, say a(v;) = x;, a(vj) = zj, z;x; ¢ E, then assigning (x;,x;,1,7) to z satisfies
all atoms.

Let on the other hand a(v1),...,a(vg) be a clique of size k in G. We claim that there
is no assignment to z that satisfies all atoms. Clearly in a satisfying assignment z can
take no value in V. So z must take a value in V' x V' x [k] x [k], say (v, w,1,j). But then
in particular P;(z,v;) and Pj(z,v;) are satisfied. It follows that a(v;) = v, a(v;) = w,
v,w ¢ E, which is a contradictiton. So indeed, a(vi),...,a(vy) is a clique of size k in G
if and only if a is a satisfying assignment.

It follows that the number of cliques in G is % (|V[*\ [¢(A)]). But |V|* and k! can be
easily computed in time (k|V|)?") and thus one can compute the number of k-cliques of
G from |¢|, G and k in time (k|V||$|)°™) which completes the reduction. <

4 The complexity of counting

In this section we show that the decomposition techniques introduced in Section [2| lead
to efficient counting when combined with bounded quantified star size. Furthermore, we
show that bounded quantified star size is necessary for efficient counting under standard
assumptions.

Theorem 4.1 There is an algorithm that given a #CQ-instance ® = (A, ¢) of quantified
starsize £ and a generalized hypertree decomposition = = (T, (Mt)ier, (Xt)ter) of © of
width k counts the solutions of ¢ in time ||®||P*) for a fized polynomial p.

11

In the proof we will use the following lemma from [10].

Lemma 4.2 For acyclic hypergraphs the size of a maximum independent set and a
minimum edge cover coincide. Moreover, there is a polynomial time algorithm that given
an acyclic hypergraph H computes a mazimum independent set I and a minimum edge
cover E* of H.

Proof. [of Theorem Given ® = (A, ¢), we construct a solution equivalent instance
®” in two steps which is of generalized hypertree width k, too, and has a quantifier free
formula.

Let H = (V, E) be the hypergraph of ¢. Let Vi,...,V,, be the vertex sets of the
components of H[V — S] and let V{, ..., V,/ be the vertex sets of the S-components of H.
Clearly, V; CV/ and V/ - V; = V/ NS =: S;. Let ®; be the #CQ-instance whose formula
¢ is obtained by restricting all atoms of ¢ to the variables in V; and whose structure \A;
is obtained by projecting all relations of A accordingly. The associated hypergraph of
@i is H[V]] and H[V/] has a generalized hypertree decomposition =; of width at most k
with tree a 7; that is a subtree of 7 (see Observation [2.12).

For each ®; we construct a new #CQ-instance ®; = (A}, ¢!) as follows. For each
guarded block b = (A, x) € Z; we construct a new atomic formula ¢ in the variables x.
The associated relation is given by my (>gcatom(®,): var(¢)cr @) i-e. by taking the natural
join of all relations whose variables are guarded in the guarded block and projecting
on x. The formula ¢ for ®/ is obtained as the conjunction of all ;. The decomposition
Z; has width at most k so this can be done in time ||®[|®). Obviously, ®; and @/
are solution equivalent. Furthermore ¢} is acyclic, because it has a decomposition with
tree 7;, the same blocks as =; and width 1. Let H; be the associated hypergraph of ¢/,
then #H; has only one single S;-component, because all the vertices in V; are connected
in H and thus also in H;. Also the S;-star size of H; is at most £. To see this consider
two independent vertices u,v in H;. The edges of H; are equal to the blocks of =;, so
u and v do not appear in a common block in =;. But then u and v cannot appear in
one common block in =, because of T being a tree and the connectedness condition.
So u and v are independent in H, too, and thus every independent set in H; is also
independent in H. So H; indeed has S;-star size at most £. Thus the vertices in .S; can
be covered by at most £ edges ey,...,ep in H; which we can compute in polynomial
time by Lemma Let ag,...,as be the corresponding atoms. We again construct a
new atomic formula ¢} in the variables S; only and an associated relation A} as follows:
For each combination ¢1,...,t, of tuples in a;(A}), ..., ay(A)) fix the free variables in
@ to the constants prescribed by the tuples ¢1, ..., if these do not contradict. If the
resulting CQ instance has a solution, add the projection of t; b ... = t;, on S; to the
relation A/ of ¢/. By construction @, and (A}, ;) are solution equivalent. Observe that
the instances to be solved in this construction are tractable [25], so all of this can be
done in time ||®;|[?(%9 for a polynomial p'.

We now eliminate all quantified variables in the original formula ¢. To do so we add
the atom ¢! for i € [m] and delete all atoms that contain any quantified variable, i.e.
we delete each ¢. Add the A7 to the structure A and call the resulting #CQ instance

12

" = (A", ¢"). Because (A}, /) is solution equivalent to @}, we have that ® and ®”
are solution equivalent, too. We construct a guarded decomposition of ¢” by doing the
following: For each guarded block (), x) of = with x N'V; # () we construct a guarded
block (X, x") by deleting all edges e with e N V; #) from A and adding the edge S; for
¢!. Furthermore we set X’ = (x — Vi) U S;. It is easy to see that the result is indeed a
generalized hypertree decomposition of ¢” of width at most k.

With standard techniques (see e.g. [§]) we construct in polynomial time a quantifier
free acyclic #CQ-instance that is solution equivalent to ®”. Its solutions and thus those
of ® can then be counted with the algorithm in [24] or [10]. <

We now show that bounded quantified star size is necessary for efficient counting no
matter which other structural restrictions we put on S-hypergraphs.

Lemma 4.3 Let & be a recursively enumerable class of S-hypergraphs such that #CQ
for all instances whose S-hypergraph is in ¢4 is fixed parameter tractable parameterized
by the size of the formulas. Then &4 has bounded S-star size or #W|[1] = FPT.

Proof. [sketch] The proof is a generalization of the respective proof in [10]: We show
that if the S-star size of ¢4 is not bounded, then there is an FPT algorithm for #CQ on
Ystar, the class of stars with a single quantified variable in the center. As this problem is
#W/(1]-hard by Lemma it follows that #W/[1] = FPT.

So assume that #CQ is tractable on ¢ and ¢ has unbounded S-star size. We will
construct a fixed parameter algorithm for #CQ on 4. So let ® = (A,) be an instance
of this latter problem, i.e. ® has the formula ¢ := 3z /\i?:1 E;i(yi, z). Let the domain of
A be D. Because ¥ is recursively enumerable and of unbounded S-star size, there is a
computable function g : N — N such that for £ € N one can compute (H,S) € ¥ with
S-star size at least k in time g(k). We will embed ® into H to construct an #CQ-instance
' = (A, 9) of size g(k)n®M) where n is the size of ®. Furthermore, 1) will have the
S-hypergraph H and A’ the same domain D as A. For convenience, ®’ will be built on a
language containing one distinct relation symbol for each hyperedges in H.

Let H' be the S-component of H that contains k independent vertices in the respective
primal component. Call these vertices s1,...s;. We may assume that the s; are also
computed in time g(k) during the construction of . Observe that there must be a vertex
v that is connected to each of the s; by a path P; such that the only vertex in P; that
is in S is s;, because all the s; lie in the same S-component. We now construct a #CQ
instance @’ that has the associated S-hypergraph H.

All vertices that do not lie on any P; are forced to a dummy value d in a straightforward
way by all their constraints. All vertices on the P; that are no s; may take arbitrary
but equal values in D. This is possible, because they are all connected to the common
vertex v by paths. Let v; be the predecessor of s; on P;. For all constraints that contain
v; and s; we allow for them exactly the combinations allowed by the relation of EiA.
Observe that there is no edge that contains more than one of the s; by definition, so each
constraint has at most |D|? tuples.

Clearly, ® and @’ have the same number of solutions. Furthermore, we have [¢| < g(k)
and @' can be constructed in time at most g(k)||®||?, because H has size at most g(k)

13

and the size of the relations for the constraints is bounded by |D|?. But by assumption
the solutions of ®' can be counted in time h(]y)|)||®’||¢ for a constant ¢ and a computable
function h. Thus the solutions of ® can be counted in time h(g(k))||®||¢ for a constant
¢’ which completes the proof. <

With Theorem and Lemma we have a solid understanding of the complexity
of #CQ for structural classes that can be characterized by restrictions of generalized
hypertree width. For each decomposition method with what Cohen et al. [§] call the
“tractable construction” property, i.e. there must be a way to construct a decomposition
efficiently, quantified star size is essentially the only parameterization that makes counting
tractable. For the definitions of decomposition techniques not defined in this paper see [13].

Corollary 4.4 Let 8 be one of the following decomposition techniques: biconnected
component, cycle-cutset, cycle-hypercutset, hinge-tree, hypertree, or generalized hypertree
decomposition. Let furthermore 4 be a recursively enumerable class of S-hypergraphs
of bounded B-width. Then counting solutions to all #CQ-instances whose associated
hypergraph is in ¢ is tractable if and only if C is of bounded S-star size (assuming
FPT # #W]1]).

5 An optimal result for bounded arity

In this section we show that for bounded arity #CQ we can exactly characterize which
classes of instances allow polynomial time counting. This result is derived by combining
the results of the preceding sections and the following theorem from [19] that we rephrase
in our slighlty different wording.

Theorem 5.1 ([19]) Let 4 be a recursively enumerable class of hypergraphs of bounded
arity. Assume FPT # WI[1]. Then the following three statements are equivalent:

e Boolean CQ for all instances with hypergraphs in & can be decided in polynomial
time.

e Boolean CQ for all instances with hypergraphs in ¢ is fixed parameter tractable
parameterized by the size of the formulas.

o The hypergraphs in 4 are of bounded treewidth.

Theorem is originally stated to be true even for every fixed vocabulary. It has
been generalized to any recursively enumerable class of conjunctive formulas [I7]. In
this context, a characterization of tractability for counting solutions of quantifier-free
conjunctive queries is given in [9] in almost the same terms as Theorem but with the
weaker assumption that FPT # #W/[1]. We show here a complete characterization of
tractability for counting for general conjunctive queries. Not too surprisingly, tractability
depends on both treewidth and star size of the underlying hypergraph.

Theorem 5.2 Let ¥ be a recursively enumerable class of S-hypergraphs of bounded arity.
Assume that W[1] # FPT. Then the following statements are equivalent:

14

1. #CQ for all instances whose S-hypergraph is in ¢4 is solvable in polynomial time.

2. #CQ for all instances whose S-hypergraph is in 4 is fized parameter tractable
parameterized by the size of the formulas.

3. There is a constant ¢ such that for each S-hypergraph (H,S) in & the treewidth of
H and the S-star size are at most c.

Proof. The direction [T] — [2]is trivial. Furthermore, [3| — [1] follows directly from Theorem
[41] So it remains only to show 2] — [3]

So assume that there is a recursively enumerable class ¢ of S-hypergraphs such that
counting solutions to #CQ-instances whose S-hypergraph are in ¢ is fixed parameter
tractable but [3] is not satisfied by 4. From Lemma we know that the S-starsize of ¢
must be bounded, so it follows that the treewidth of ¢4 must be unbounded.

We construct a class 4’ of hypergraphs by doing the following: For each S-hypergraph
(H,S) in 4 we add H to ¥'. Clearly ¢4’ is recursively enumerable and of unbounded
treewidth. We will show that Boolean CQ for all instances whose hypergraphs are in ¢’
is fixed parameter tractable parameterized by the size of the formula. This leads to a
contradiction with Theorem (.11

Because ¢ is recursively enumerable, there is an algorithm that that for each H in ¢’
constructs an S-hypergraph (#,S) in ¢ that has lead to the addition of H to 4’. For
example one can simply enumerate all S-hypergraphs in ¢ until finding such a (H, 5).
Let f(H) be the number of steps the algorithm needs on input H. The function f(#) is
well defined and computable. We then define g : N — N by setting g(k) := maxy (f(H)),
where the maximum is over all hypergraphs H of size k in ¢4’. Clearly, g is again well
defined and computable. Thus for each H in ¢’ we can compute in time g(|H|) an
S-hypergraph (#,S) in 4.

Now let ® = (A, ¢) be a CQ-instance with hypergraph H in ¢’. To solve it we first
compute (#H,S) as above and construct a #CQ-instance ¥ = (A,) with (H,S) as
associated S-hypergraph for ¢ by adding existential quantifiers for all variables not in S.
Obviously ® has solutions if and only if ¥ has any. But by assumption the solutions of
W can be counted in time A([¢)])||¥[|°M) for some computable function h, so ® can be
decided in time (g(|#|) + h(|#]))||®||°") and thus is fixed parameter tractable. This is
the desired contradiction to Theorem |

Remark 5.3 Note that our characterization relies on the underlying hypergraph struc-
tures of the query. In [17, (9], the corresponding characterizations are stronger in the
sense that they are true for any recursively enumerable class of conjunctive formulas.
Also these results and the one from [19] can be proved for every fized vocabulary, while
our proofs of the Lemmas and[{.3 and thus also Theorem[5.9 rely on the fact that we
can choose our vocabulary in the construction. It remains an open question whether our
result can be improved similarly to the others.

Also, the result in [9] (for quantifier free #CQ) is proved under the weaker assumption
#W([1] # FPT. Showing the same equivalent result for general #CQ seems to be hard
since our case also contains decision problems (e.g. #CQ with no free variables).

15

6 Computing star size

In this section we consider the problem of computing the quantified star size of bounded
width instances. Observe that the computation of quantified star size is not strictly
necessary. The algorithm of Theorem does not need to find S-stars for graphs of
width & but only for acyclic hypergraphs, which is easy by Lemma [4.2] Still it is of course
desirable to know the quantified star size of an instance before applying the counting
algorithm, because quantified star size has an exponential influence on the runtime. We
show that for all decomposition techniques considered in this paper the quantified star
size can be computed rather efficiently, roughly in |V|O(k) where k is the width of the
input. For small values of k, this bound is reasonable. We then proceed by showing that,
on the one hand, for some decomposition measures such as treewidth or hingetree, the
computation of quantified star size is even fixed parameter tractable parameterized by
the width. On the other hand, we show that for decomposition measures above hypertree
width it is unlikely that fixed parameter tractability can be obtained (under standard
assumptions).

Instead of tackling quantified star size directly, we consider the combinatorially less
complicated notion of independent sets, which is justified by the following observation:

Observation 6.1 Let 8 be any decomposition technique considered in this paper. Then
for every k € N computing the S-starsize of S-hypergraphs of 5-width at most k polynomial
time Turing-reduces to computing the size of a maximum independent set for hypergraphs
of B-width at most k. Furthermore, there is a polynomial time many one reduction from
computing the size of a mazimum independent set in hypergraphs of B-width at most k to
computing the S-star size of hypergraphs of B-width at most k + 1.

Proof. By definition computing S-starsize reduces to the computation of independent
sets of S-components. S-components are induced subhypergraphs, so we get the first
direction form Observation .12

For the other direction let H = (V| E) be a hypergraph for which we want to compute
the size of a maximum independent set. Let x ¢ V. We construct the hypergraph H’
of vertex set V! =V U {z} and edge set E' = {eU {z} | e € E} and set S := V. The
hypergraph is one single S-component, because x is in every edge. Furthermore, the
S-starsize of H’ is obviously the size of a maximum independent set in H. It is easy to
see that the construction increases the treewidth of the hypergraph by at most 1 and
does not increase the S-width for all other decomposition considered here at all. <

Because of Observation we will not talk about S-star size in this section anymore
but instead formulate everything with independent sets.
6.1 Exact computation

Proposition 6.2 There is an algorithm that given a hypergraph H = (V,E) and a
generalized hypertree decomposition = = (T, (M)ter, (Xt)teT) of H of width k computes
a mazimum independent set of H in time k|V|O®),

16

Proof. We apply dynamic programming along the decomposition. Let b = (A, x) be a
guarded block of 7. Let 7, be the subtree of 7 with b as its root. We set V4 := x(7Tp).
Observe that I C V, is independent in H if and only if it is independent in H[V}] so
we do not differentiate between the two notions. For each independent set ¢ C x we
will compute an independent set I, , C Vj, that is maximum under the independent sets
containing exactly the vertices o from y. Observe that because A contains at most k
edges that cover xy we have to compute at most kn* independent sets I , for each b.

If b is a leaf of T, the construction of the I, is straightforward and can certainly be
done in time k|V|O%),

Let now b = (A, x) be an inner vertex of 7 with children by, ..., b,. For each independent
set 0 C x we do the following: Let b; = (\;, xs), then let o; be an independent set of
xi such that o N x Nx; = o; N x N x; and |[p, »,| is maximal. We claim that we can set
Ibﬂ =o U Ibl’gl U...u Ibmffr'

We first show that I, , defined this way is independent. Assume this is not true, then
I » contains z,y that are in one common edge e in #H[V;]. But then z,y do not lie both
in x, because I , N x = o and o is independent. By induction x,y do not lie in one Vj,
either. Assume that x € x and y € V;, for some i. Then certainly = ¢ V;, and y ¢ x.
But the edge e must lie in one guard)\ such that the corresponding block X’ contains
e. Because of the connectivity condition for y the guarded block (X', x’) must lie in the
subtree with root b;, which contradicts € e. Finally, assume that z € Vj, and y € V3,
for i # j and z,y ¢ x. Then z and y cannot be adjacent because of the connectivity
condition. This shows that I , is indeed independent.

Now assume that I , is not of maximum size and let J C V4 be an independent set
with |J| > |Iy»| and J N x = 0. Because J and I, are fixed to o on x there must be
a b; such that |J NV4,| > |1y, »,|. This contradicts the choice of o;. So I, is indeed of
maximum size.

Because each block has at most /-c]V\k independent sets, all computations can be done
in time k|V|O%), <

6.2 Parameterized complexity

While the algorithm in the last section is nice in that it is a polynomial time algorithm
for fixed k, it is somewhat unsatisfying for some decomposition techniques: If we can
compute the composition quickly, we would ideally want to be able to compute the star size
efficiently, too. Naturally we cannot expect a polynomial time algorithm independent of
k, because independent set is NP-complete, but we can hope for at least fixed parameter
tractability with respect to k. We will show that this is indeed possible for some width
measures, in particular tree decompositions and hingetree decompositions. On the other
hand we show that this can likely not be extended to more general decomposition
techniques, because independent set parameterized by hypertree width is W[1]-hard.

Proposition 6.3 Given a hypergraph H computing a mazimum independent set in H is
fixed parameter tractable parameterized by the treewidth of H.

17

This can be seen either by applying Courcelle’s Theorem of by straightforward dynamic
programming. Interestingly, one can show the same result also for bounded hingetree
width, which is a decomposition technique in which the bags are of unbounded size. This
unbounded size makes the dynamic programming in the proof far more involved than for
treewidth.

Proposition 6.4 Given a hypergraph H computing a mazimum independent set in H is
fized parameter tractable parameterized by the hingetree width of H.

Proof. First observe that minimum width hingetree decompositions can be computed in
polynomial time [20], so we simply assume that a decomposition is given in the rest of
the proof.

The proof has some similarity with that of Proposition [6.2 so we use some notation
from there. For guarded block (A, x) we will again compute maximum independent
sets containing prescribed vertices. The difference is, that we can take these prescribed
sets to be of size 1: because of the hingetree condition, only one vertex of a block may
be reused in any independent set in the parent. The second idea is that we can use
equivalence classes of vertices in the computations of independent sets in the considered
guarded blocks, which limits the number of independent sets we have to consider. We
now describe the computation in detail.

Let = = (T, (M)ter, (Xt)ter) be a hingetree decomposition of H of width k. Let
b= (A, x) be a guarded block of = and let b’ = (X, x’) be its parent. As before, let T, be
the subtree of 7 with b as its root and Vj, := x(Tp). Set Hyp := (Vp, Ep) with Ep := [JA*
with the union being over all guarded blocks in 7,. The main idea is to iteratively
compute, for all vertices v € x’' N x, a maximum independent set J,; in Hy = (V3, Ep)
containing v. Furthermore, we also compute an independent set Jp; that contains no
vertices of x' N x. Note that, since x C [J,c, €, there are no isolated vertices in x and
the size of a maximum independent set is bounded by & in each block.

For a node b = (), x), we organize the vertices in y into at most 2¥ equivalence classes
by defining v and u to be equivalent if they lie in the same subset of edges of A\. The
equivalence class of v is denoted by c(v). For each class, a representant is fixed. We
denote by ¥, the representant of the equivalence class of v and by x C x, the restriction
of x on these at most 2* representants.

Let first b be a leaf. We first compute independent sets on . Observe that the
independent sets are invariant under the choice of representants. For each equivalence
class c(v), we compute J;, C x as a maximum independent set containing v. Computing
the classes and a choice of maximum independent sets containing each v can be done in
time k28 because independent sets cannot be bigger than k. Clearly, J, 3, a maximum
independent set containing v, can be easily computed from the set J; ;. Thus, one can
compute all the J, ; in time k2% n. The computation of Jp;, can be done on representants,
too, by simply excluding the vertices from x’' N x.

Let b now be an inner vertex and by, ba, ..., by, be its children with b; = (A, x4), @ € [m].
We again consider equivalence classes on x. Fix v € x and compute the list Ly of all
independent sets o C ¥ containing v. Fix now o € Lg;. We first compute a set J;: b

18

as a maximum independent set of H; containing v and whose vertices in x have the
representants . We will distinguish for a given vertex u € o if it is the representant of a
vertex belonging to the block of some (or several) children of b or if it represents vertices
of x\(UUZ, xi) only. Therefore we partition ¢ into ¢’, 0" accordingly:

e 0:=0'Uoc”
o o :=xn{a|luelU", vl
e o/ :=x\{u|ue Ulnil Xi}

Set ¢’ := {4y, ...,up} with h < m. Let us examine the consequences of 7 being a
hingetree decomposition. We have that, for all i € [m], there exists e; € A, such that
X N x; C e;. Thus, since o is an independent set in ¥ C Y, at most one vertex in o’ is a
representant of a vertex in x;. Thus

Vu#u €o:x;Ne(u) =0V yx;Ne(d) =0. (1)

We denote by S; = {j | c(u;) N x; # 0} and by S = [m]\US;. By the sets
S1, ...y Sp, S form a partition of [m]. To construct Jp» we now determine for each ¢ < h,
which vertex u of ¢(u;) can contribute the most, by taking the union of all the maximum
independent sets Jyp,, j € Si, it induces at the level of the children of b.

For each fixed u € c(u;), let

Ii,u = {u} U U Ju,bj7

JES;

where we set Jyp, 1= Jgp, if u ¢ x;. Let then I; = I; , for some u € c(u;) for which the
size of I;,, is maximal.

The set JJ, is now obtained as follows depending on whether v € 0" or v € o'. If
v € 0", we claim that Jf;b can be chosen as

h
T2y = {ru @\ uJ 1o U Ao

=1 1€S

If 0 € o/, say ¥ = uy, we claim that J7, can be chosen as

h
Ih=0"u |J Znu U JepuULul s
JES1WEX; JESTvEX; =2 i€S

The set J,j is taken as one of the sets J7, of maximal size for a o € L, . To compute
Jpp, the arguments are similar. 7

We first show that all .J, ; are indeed independent sets in H;,. Clearly, it is enough to
prove this for any J7,. There will be no reason to distinguish whether v € ¢” or v € ¢/,
because our argumen:cs will apply to all JJ, independent of the choice of a distinguished
element v. We will make extensive use of the two following facts.

19

e Let j,j' € [m]and I CV,,, I' C Vb, independent sets of H;, and Hb;. respectively.
By the connectivity condition for tree decomposition we have

INI'Cx;NxjyNx.

This permits to investigate the intersection of two independent sets I, I’ by looking
at their restriction on Y.

e Let now I C Vj; be an independent set of H;;. Then, I remains an independent set in
Hp. Indeed, suppose there is a e € Eb\Ebj containing two vertices y1,y2 € I. Since
all edges must belong to a guard, there exists a node b* = (A*, x*) such that e € *.
Then, since in a hingetree decomposition we have x* = [J A*, then {y1,y2} C e C x*.
But then, by the connectivity condition it follows that {y1,y2} C x. Hence, by the
intersection property of hingetree decomposition, there exists e; € x; such that

{yr, 12} S xNx;Nej

which implies that y; and y2 are adjacent in H;;. Contradiction.

We now start the proof that J7, is independent incrementally. Let i € [h], u € c(u;)
and j € 5; and consider the set I = Jup;- By induction, the set I is independent in
Hyp,. By the hingetree condition, there exists e; € A; such that x N x; C e;. By the
connectivity condition, this implies x NI C e;. Then, since I is an independent set, no
two vertices of x can belong to I i.e. [x N I| < 1. The connectivity condition also implies
that, for j' # j, Vo, N1 € XN x;j, hence ij, NI| <1 and I is an independent set of Hjp.
Finally, the set I; = | jes; Jup; 18 also an independent set of Hj, since for any distinct
3,5" € Si:

Jup; OV Jup, S XN X5 N X E e

Hence Jy,p;, N Ju7bj, contains at most one vertex (which is in x and could then only be
Let now 4,4 € [m] be distinct. By the arguments above, I; (resp. I;) contains at most
one element u (resp. u') such that u € c(u;) (resp. v’ € c(uy)). By Equation (1, we have
that the two classes are distinct and that u; # u;. But u;, uy € ¢ and o is independent
in x. Hence, u;, uy cannot be adjacent in H;. Consequently,

is an independent set in H,.
Let j € S. Jop, is independent in Hp, and Jg,, © Vi, \x. Hence, Jop, is independent
in Hp. This also implies that, given j' € [m] distinct from 7, Jop; N Vbj, = (). Thus,

h
U LU U ‘]@Jh"
=1

i€S

20

is independent in Hy.

Finally, by construction, for all ¢ € [h], I; Ny = {u} with @ = 4; € ¢’. Also 0 =o' Ud”
is independent in x hence in H;. No vertices y; € I; and y» € ¢” can be adjacent
because, again, this would imply that {y;,y2} C x and contradict the fact that g, y2 are
independent in o. Thus Jz‘}” , is independent.

We now prove that J, ; is of maximum size. Observe that it suffices to show this again
for each JJ,. Each maximum independent set J of H; that contains v and whose vertices
in y have eixactly the representants o can be expressed as TUJ; UJoU...UJp,. Here 7 C x
is an independent set of b containing v and whose representants are . Furthermore, J; is
an independent set of H; that contains only vertices of V3,. The set J; may only contain
one vertex u; from x N x;. But then exchanging J; for J,, 5, may only increase the size of
the independent set, so we can assume that I has the form 7U Jy, p, U Jyy p, U. .. Udy,, b1
where u; may also stand for ().

Assume now that J7, is not maximum, i.e. there is an independent set J containing v
whose vertices in y have the representants o and .J is bigger than J7,. Then one of four
following things must happen: 7

2,b2

e There is an 4 such that v € x; and J NV}, is bigger than J, ;,. But this case cannot
occur by induction.

e v = and there is a j € Sy such that v ¢ x; and |J N V| > |Jyy,|- By induction
we know that Jy;, is optimal under all independent sets of H;, not containing any
vertex of x; M x, so there must be a vertex u € JNxNx;. Since J is independent, v
and u share no edge in A and then v # . Since j € Sy, it holds that c(v) Nx; # 0
and by Equation [1 c(u) N x; = 0. Contradiction.

e There is an i € S such that J NV}, is bigger than Jy,;,. But from 7 € S it follows
by definition that x N x; NJ = (), so this case can not occur by induction, either.

e Thereis an i € [h] such that [JN(U;cg, Vi)l > 1] We claim that (g, x;) NxNJ
contains only one vertex. Assume there are two such vertices x and y. By definition,
Z,y € 7. Since J is independent, T and g are not adjacent in ¥ and & # y. At least
one of these, say y, must be in c(u;), because u; € 7 by definition. Let x € Vj with
J' € S;, then there is a vertex w € c(u;) = ¢(y) in xj N x C e; by definition of S;.
But then z and 4 are adjacent in Y which is a contradiction.

So there is exactly one vertex u in (U;cg, X;)NxNJ. But then [JN(U;cg, Vi)l > Liu-
Thus either there must be a j € S; with u € V; such that [J N Vj| > [Jy,]| or
there must be a j € S; with u ¢ V; such that [J N Vj[> |Jyy,|. The former
clearly contradicts the optimality of .J,, p;, while the latter leads to a contradiction
completely analogously to the second item above.

Because only k2% n? sets have to be considered for each guarded block, this results in
an algorithm with runtime k2%*|V|O(). <

21

5 2N 2\ .
pdipea ¢ o

b V2 o oA N e N Ne

c 'd V3 [] [] [] [] [] []

f © V4 o L[]] [) 3 °

Ho H, He Hg He H

Figure 3: We illustrate the construction for Lemma by an example. A graph G on
the left with the associated hypergraph H for k = 4 on the right. To keep the
illustration more transparent the edge sets F;; are not shown except for £ o
and E271.

Lemma 6.5 Computing mazimum independent sets on hypergraphs is W [1]-hard pa-
rameterized by generalized hypertree width.

Proof. We will show a reduction from p-IndependentSet which is the following problem:
Given a graph G and an integer k which is the parameter, decide if G has an independent
set of size k. Because p-IndependentSet is well known to be W{1]-hard, this suffices to
establish W[1]-hardness of independent set parameterized by hypertree width.

So let G = (V, E) be a graph and let k be a positive integer. We construct a hypergraph
H = (V', E') in the following way: For each vertex v the hypergraph H has k vertices
U1y...,0. Fori=1,... k we have an edge V; := {v; | v € V} in E’. Furthermore,
for each v € V we add an edge H, := {v; | i € [k]}. Finally we add the edge sets
E;j == {vu; | uwv € E} for 4, j € [k]. H has no other vertices or edges. The construction
is illustrated in Figure

We claim that G has an independent set of size k if and only if H has an independent
set of size k. Indeed, if G has an independent set v!,...,v*, then v%, .. .v,’j is easily seen
to be an independent set of size k in H. Now assume that H has an independent set
I of size k. Then for each v € I we can choose a vertex 7(v) € V such that v € Hy(,).
Furthermore for distinct v, u € I the corresponding vertices 7(v), 7(u) have to be distinct,
too, so m(I) C V has size k. Finally, we claim that 7(I) is independent in G. Assume
this is not true, then there are vertices 7(v), 7(u) such that m(v)w(u) € E. But then
vu € E' by construction which is a contradiction. So, indeed G has an independent set
of size k if and only if H has one.

We now show that H has generalized hypertree width at most k by constructing a
generalized hypertree decomposition (7, (A¢)ier, (Xt)ter) of H of width k. The tree
T only consists of one single vertex v, the block of v is x, := V’ and the guard is
A = {Vq,...,Vi}. It is easily seen that this is indeed a hypertree decomposition of
width k.

22

Observing that the construction of H from G can be done in time polynomial in |V
and k completes the proof. <

6.3 Approximation

We have seen that computing maximum independent sets of hypergraphs with decom-
positions of width k£ can be done in polynomial time for fixed width k£ and that for
some decompositions it is even fixed parameter tractable with respect to k. Still, the
exponential influence of & is troubling. In this section we will show that we can get rid of
it if we are willing to sacrifice the optimality of the solution. We give a k-approximation
algorithm for computing maximum independent sets of graphs with generalized hypertree
width k assuming that a decomposition is given. We start by formulating a lemma.

Lemma 6.6 Let ‘H be a hypergraph with a generalized hypertree decomposition = =
(T, (M)ter, (xt)ter) of width k. Let H' = (V, E') where E' := {x; | t € T}. Let ¢ be the
size of a mazimum independent set in H and let ¢’ be the size of a mazimum independent
set in H'. Then

— <0<y

Before we prove Lemma [6.6] we will show how to get the approximation algorithm from
it.

Observation 6.7 Every independent set of H' is also an independent set of H.

Proof. Each pair of independent vertices z,y in H’ is by definition only in different
blocks x: in ‘H. For each edge e € E there must by definition of generalized hypertree
decompositions be a block y such than e C x. Thus no edge e € E can contain both x
and y, so x and y are independent in H, too. <

Corollary 6.8 There is a polynomial time algorithm that given a hypergraph H and a
generalized hypertree decomposition of width k computes an independent set of size £ of
H such that |I| > % where £ is the size of a mazimum independent set of H.

Proof. Observe that H' is acyclic. With Lemma [4.2) we compute a maximum independent
set I of H’ whose size by Lemma only differs by a factor % from ¢. By Observation
we have that I is also an independent set of H. |

Proof of Lemma 6.6 The second inequality follows directly from Observation

For the first inequality consider a maximum independent set I of . Observe that a
set I' is an independent set of H' if and only if it is an independent set of its primal
graph H'5, so it suffices to show the same result for H’.

Claim 1 H'5[I] has treewidth at most k — 1.

23

Proof. We construct a tree decomposition from =. To do so consider Z[I] which for
each guarded block (), x) of = contains (X, x’) where N :={enI|ee€ X enl#(} and
X' :=xNI. The set I is independent, so each guard of Z’[I] is a set of singletons and if
follows |x'| < |N| for each guarded block (X, x/).

Let T[I] be the tree of Z[I] induced by T in the obvious way. Then the blocks
X' = x N1 still fulfill the connectedness condition. Furthermore, for each edge uv in H'[I]
there is a guarded block (N, x’) such that u,v € x’. Thus Z[I] is a tree decomposition
of H'»[I]. But we have that |x'| < |X| < |A| < k and thus the tree decomposition is of
width at most k£ — 1. >

Claim 2 H',[I] has an independent set I' of size at least %

Proof. From Claim (1] it follows that H'[I] and all of its subgraphs have a vertex of
degree at most k (see e.g. [12) p. 265]). We construct I’ iteratively by choosing a vertex
of minimum degree and deleting it and its neighbors from the graph. In each round we
delete at most k vertices, so we can choose a vertex in at least % rounds. Obviously the
chosen vertices are independent. <

Every independent set of H p[I] is also an independent set of 7 p which completes the
proof of Lemma <

7 Fractional Hypertree width

In this section we extend the main results of the paper to fractional hypertree width,
which is the most general notion known so far that leads to tractable Boolean CQ [18].
In particular it is strictly more general than generalized hypertree width.

Definition 7.1 Let H = (V, E) be a hypergraph. A fractional edge cover of a vertez set
S CV is a mapping ¥ : E — [0,1] such that for every v € S we have) g c. ¥(€) > 1.
The weight of ¥ is Y . (e). The fractional edge cover number of S, denoted by p3,(S)
is the minimum weight taken over all fractional edge covers of S.

A fractional hypertree decomposition of H is a triple (T, (xt)ter, (Vt)ter) where
T =(T,F) is a tree, and x¢ CV and ¢y is a fractional edge cover of x; for everyt € T
satisfying the following properties:

1. For everyv € V the set {t € T | v € xt} induces a subtree of T.
2. For every e € E there is at € T such that e C xy.

The width of a fractional hypertree decomposition (T, (Xt)ieT» (Vt)t;nT) 18 maxier (03, (Xt))-
The fractional hypertree width of H is the minimum width over all fractional hypertree
decompositions of H.

Together with the previous results of this paper, the two following ones will serve as
key ingredients to prove the main results of this section.

24

Theorem 7.2 ([18]) The solutions of a CQ instance ® with hypergraph H can be
H)+0(1)

enumerated in time ||®|°"(.

Theorem 7.3 ([22]) Given a hypergraph H and a rational number w > 1, it is possible
in time | H]|°™°) to either

o compute a fractional hypertree decomposition of H with width at mots Tw? +31w+7,
or

o correctly conclude that thw(H) > w.

7.1 Tractable counting

We start of with the quantifier free case which we will use as a building block for the
more general result later.

Lemma 7.4 The solutions of a quantifier free CQ instance ® with hypergraph H can be
counted in time H<I>Hfhw(7")o<1).

Proof. With Theorem [7.3] we can compute a fractional hypertree decomposition
(T, (Bt)ter, (Vi)ter) of width at most k := O(thw(#)?3). For each bag B; we can with
Theorem in time ||®||* compute all solutions to the CQ ®[B;] that is induced by the
variables in B;. Let these solutions form a new relation R; belonging to a new atom ;.
Then A,cp ¢t(Bt) gives a solution equivalent, acyclic, quantifier free #CQ instance of
size ||®|OF). <

We can now formulate a version of Theorem for fractional hypertree width.

Theorem 7.5 There is an algorithm that given a #CQ-instance ® of quantified starsize
¢ and fractional hypertree width k counts the solutions of ® in time ||®|P* 0 for a
polynomzial p.

Proof. This is a minor modification of the proof of Theorem Let H = (V, E) be
the hypergraph of ®. Because of Theorem we may assume that we have a fractional
hypertree decomposition = := (T, (x¢)ter, (Vi)ter) of width & := kO of H where H is
the hypergraph of ®. For each edge e € FE we let ¢(e) be the atom of ® that induces e.

Let Vi,...,V;, be the vertex sets of the components of H — S and let V{,..., V! be
the vertex sets of the S-components of . Clearly, V; CV/ and V/ = V; =V/ NS =: 5.
Let ®; be the restriction of ® to the variables in V/ and Let =; be the corresponding
fractional hypertree decomposition. Then =; has a tree 7; that is a subtree of 7.

For each ®; we construct a new #CQ-instance ®; by computing for each bag B; a
constraint ¢ in the variables B; that contains the solutions of ®;[B;]. The decomposition
= has width at most &’ so this can be done in time n®*") by Theorem Obviously ®;
and @/ are solution equivalent and @/ is acyclic. Furthermore, ®/ has only one single
Si-component, because all the vertices in V; are connected in ® and thus also in ®/. Let
H; be the hypergraph of ®,, then H; has S;-star size at most ¢. Thus the vertices in

25

S; can be covered by at most £ edges in H; by Lemma [4.2] Pick ¢ such edges eq,...,¢ey.
We construct a new atom ¢; in the variables S; that is solution equivalent to @, by
doing the following: For each combination t1,...,¢, of tuples in ¢(e1),...,p(er) fix the

free variables in @/ to the constants prescribed by the tuples ¢1, ..., if these do not
contradict. If the resulting ACQ instance has a solution, add #; b ... > t; to the relation
of QZSZ

We now eliminate all quantified variables in ®. To do so we add the constraint ¢; for
i € [m] and delete all constraints that contain any quantified variable, i.e. we delete each
®!. Call the resulting #CQ instance ®'. Because ¢; is solution equivalent to ®, we have
that ® and @’ are solution equivalent, too.

We then construct a fractional hypertree decomposition of ® by doing the following:
we set By = (By \ Ujeq, Vi) U Ujep, Si for each bag By where Iy := {i | ByNV; # 0}. For
each bag B; we construct a fractional edge cover 1, of By by setting ;(e) := 1x(e) for
all old edges and setting ¢(S;) = 1 for i € I; where S; corresponds to the newly added
constraint ¢; with B, N V; # 0. The result is indeed a fractional edge cover of width at
most k', because each variable not in any S; is still covered as before and the variables in
S; are covered by definition of ;. Furthermore, we claim that the width of the cover is
at most k’. Indeed, for each i € I we had for each v € V; Y cp.,c. ¥(€) > 1. None of
these edges appears in the new decomposition anymore. Thus adding the edge .S; with
weight 1 does not increase the total weight of the cover. It is now easy to see that doing
this construction for all B; leads to a fractional hypertree decomposition of ® of width
at most &'

Applying Lemma [7.4] concludes the proof. |

7.2 Computing independents sets

Also S-star size or equivalently independent sets of bounded fractional hypertree width
hypergraphs can be computed efficiently.

Lemma 7.6 The independent sets of a hypergraph H = (V, E) can be enumerated in
time |H|OPx(V)),

Proof. Let H = (V, E). We construct a conjunctive query ® with the hypergraph H.
Let V' be the variables of ®, {0, 1} the domain and add a relation R, for each e € E. The
relation R, has all tuples that contain at most one 1 entry. Finally, ® has the formula
AccrRe(©).

Clearly, ® has indeed the hypergraph H. Furthermore the solutions of ® are exactly the
characteristic vectors of independent sets of ®. Thus we can enumerate all independent
sets of H in time |H|°*") with Theorem <

Lemma 7.7 There is an algorithm that given a hypergraph H = (V, E) of fractional

hypertree width at most k computes a mazximum independent set of H in time]’H|ko(l).

26

Proof. Dynamic programming along a fractional hypertree decomposition. In a first
step we compute a fractional hypertree decomposition (7, (B¢)ter, (¥t)ter) of width
k' = kOM of H with Theorem For each bag B; we then compute all independent
sets of H[B] with Lemma call this set I;.

By dynamic programming similar to the proof of Lemma we then compute a
maximum independent set of H. <

8 Conclusion

The results of this paper give a clear picture of tractability for counting solutions of
conjunctive queries for structural classes that are known to have tractable decision
problems. Essentially counting is tractable if and only if these classes are combined
with quantified star size. So to find more general structural classes that allow tractable
counting, progress for the corresponding decision question appears to be necessary.

Another way of generalizing the results of this paper would be extending the logic that
the queries can be formulated in. Just recently Chen and Dalmau [7] have characterized
the tractable classes of bounded arity QCSP which is essentially a version of CQ in
which also universal quantifiers are allowed. They do this by introducing a new width
measure for first order {V, 3, A}-formulas. We conjecture that their width measure also
characterizes the tractable cases for #QCSP, i.e. tractable decision and counting coincide
here. It would be interesting to see how far this can be pushed for the case of unbounded
arity.

Another extension appears in a recent paper by Chen [5] where he considers existential
formulas that may use conjunction and disjunction. This is particularly interesting,
because it corresponds to the classical select-project-join queries with union that play an
important role in database theory. One may wonder if Chen’s results may be extended
to counting, too.

Acknowledgements The authors are grateful for the very helpful feedback on this paper
they got from the reviewers of the conference version.

References

[1] I. Adler, G. Gottlob, and G. Grohe. Hypertree width and related hypergraph
invariants. Eur. J. Comb., 28(8):2167-2181, 2007.

[2] G. Bagan, A. Durand, and G. Grandjean. On Acyclic Conjunctive Queries and
Constant Delay Enumeration. In CSL’07, 16th Annual Conference of the FACSL,
volume 4646 of LNCS, pages 208-222. Springer, 2007.

[3] H. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. In Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing, pages 226-234. ACM, 1993.

27

[4]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Bulatov, V. Dalmau, M. Grohe, and D. Marx. Enumerating homomorphisms. J.
Comput. Syst. Sci., 78(2):638-650, 2012.

H. Chen. On the Complexity of Existential Positive Queries. ArXiv e-prints, June
2012.

H. Chen and V. Dalmau. Beyond Hypertree Width: Decomposition Methods
Without Decompositions. In 11th International Conference Principles and Practice
of Constraint Programming, CP 05, pages 167-181, 2005.

H. Chen and V. Dalmau. Decomposing quantified conjunctive (or disjunctive)
formulas. LICS, 2012.

D. Cohen, P. Jeavons, and M. Gyssens. A unified theory of structural tractability
for constraint satisfaction problems. Journal of Computer and System Sciences,
74(5):721 — 743, 2008.

V. Dalmau and P. Jonsson. The complexity of counting homomorphisms seen from
the other side. Theor. Comput. Sci., 329(1-3):315-323, 2004.

A. Durand and S. Mengel. The Complexity of Weighted Counting for Acyclic
Conjunctive Queries. Arxiv preprint arXiv:1110.4201, 2011.

J. Flum, M. Frick, and M. Grohe. Query Evaluation via Tree-Decompositions. J.
ACM, 49(6):716-752, 2002.

J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag New
York Inc, 2006.

G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural CSP decomposi-
tion methods. Artif. Intell., 124(2):243-282, 2000.

G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable
queries. J. Comput. Syst. Sci., 64(3):579-627, 2002.

G. Gottlob, Z. Miklos, and T. Schwentick. Generalized Hypertree Decompositions:
NP-Hardness and Tractable Variants. J. ACM, 56(6), 2009.

G. Greco and F. Scarcello. Structural Tractability of Enumerating CSP Solutions.
In Proceedings of the 16th International Conference on Principles and Practice of
Constraint Programming, CP ’10, pages 236-251, 2010.

M. Grohe. The complexity of homomorphism and constraint satisfaction problems
seen from the other side. J. ACM, 54(1), 2007.

M. Grohe and D. Marx. Constraint Solving via Fractional Edge Covers. In 17th
annual ACM-SIAM symposium on Discrete algorithm, SODA 06, pages 289-298,
New York, NY, USA, 2006. ACM.

28

[19]

M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of conjunctive
queries tractable? In Proceedings of the thirty-third annual ACM symposium on
Theory of computing, pages 657-666. ACM, 2001.

M. Gyssens, P. Jeavons, and D. Cohen. Decomposing Constraint Satisfaction
Problems Using Database Techniques. Artif. Intell., 66(1):57-89, 1994.

L. Libkin. FElements of Finite Model Theory. EATCS Series. Springer, 2004.

D. Marx. Approximating fractional hypertree width. ACM Trans. Algorithms,
6(2):29:1-29:17, Apr. 2010.

Z. Miklés. Understanding Tractable Decompositions for Constraint Satisfaction.
PhD thesis, University of Oxford, 2008.

R. Pichler and A. Skritek. Tractable Counting of the Answers to Conjunctive Queries.
In AMW, 2011.

M. Yannakakis. Algorithms for Acyclic Database Schemes. In VLDB, pages 82-94,
1981.

29

	1 Introduction
	2 Preliminaries
	3 Quantified-star size
	4 The complexity of counting
	5 An optimal result for bounded arity
	6 Computing star size
	6.1 Exact computation
	6.2 Parameterized complexity
	6.3 Approximation

	7 Fractional Hypertree width
	7.1 Tractable counting
	7.2 Computing independents sets

	8 Conclusion

