Weak abelian periodicity of infinite words

Sergey Avgustinovich ${ }^{1}$ and Svetlana Puzynina ${ }^{1,2 \star}$
${ }^{1}$ Sobolev Institute of Mathematics, Russia, avgust@math.nsc.ru
${ }^{2}$ University of Turku, Finland, svepuz@utu.fi

Abstract

We say that an infinite word w is weak abelian periodic if it can be factorized into finite words with the same frequencies of letters. In the paper we study properties of weak abelian periodicity, its relations with balance and frequency. We establish necessary and sufficient conditions for weak abelian periodicity of fixed points of uniform binary morphisms. Also, we discuss weak abelian periodicity in minimal subshifts.

The study of abelian properties of words dates back to Erdös's question whether there is an infinite word avoiding abelian squares [5]. Abelian powers and their avoidability in infinite words is a natural generalization of analogous questions for ordinary powers. The answer to Erdös's question has been given by Keränen, who provided a construction of an abelian square-free word [7. From that time till nowadays, many problems concerning different abelian properties of words have been studied, including abelian periods, abelian powers, avoidability, complexity (see, e. g., 4], 10, [2, [13).

Two words are said to be abelian equivalent, if they are permutations of each other. Simirarly to usual powers, an abelian k-power is a concatenation of k abelian equivalent words. We define a weak abelian power as a concatenation of words with the same frequencies of letters. So, in a weak abelian power we admit words with different lengths; if all words are of the same length, then we have an abelian power. Earlier some questions about avoidability of weak abelian powers have been considered. In 8 for given integer k the author finds an upper bound for length of binary word which does not contain weak abelian k powers. In [6] the authors build an infinite ternary word having no weak abelian $\left(5^{11}+1\right)$-powers.

The notion of abelian period is a generalization of the notion of normal period, and it is closely related with abelian powers. A periodic infinite word can be defined as an infinite power. Similarly, we say that a word is (weak) abelian periodic, if it is a (weak) abelian ∞-power. In the paper we study the property of weak abelian periodicity for infinite words, in particular, its connections with related notions of balance and frequency. We establish necessary and sufficient conditions for weak abelian periodicity of fixed points of uniform binary morphisms. Also, we discuss weak abelian periodicity in minimal subshifts.

[^0]The paper is organized as follows. In Section 2 we fix our terminology, in Section 3 we discuss some general properties of weak abelian periodicity and its connections with other notions, such as balance and frequencies of letters. In Section 4 we give a criteria for weak abelian periodicity of fixed points of primitive binary uniform morphisms. In Section 5 we study weak abelian periodicity of points in shift orbit closure of uniform recurrent words.

1 Preliminaries

In this section we give some basics on words following terminology from [9] and introduce our notions.

Given a finite non-empty set Σ (called the alphabet), we denote by Σ^{*} and Σ^{ω}, respectively, the set of finite words and the set of (right) infinite words over the alphabet Σ. Given a finite word $u=u_{1} u_{2} \ldots u_{n}$ with $n \geq 1$ and $u_{i} \in \Sigma$, we denote the length n of u by $|u|$. The empty word will be denoted by ε and we set $|\varepsilon|=0$.

Given the words w, x, y, z such that $w=x y z, x$ is called a prefix, y is a factor and z a suffix of w. The factor of w starting at position i and ending at position j will be denoted by $w[i, j]=w_{i} w_{i+1} \ldots w_{j}$. The prefix (resp., suffix) of length n of w is denoted $\operatorname{pref}_{n}(w)\left(\right.$ resp., $\left.\operatorname{suff}_{n}(w)\right)$. The set of all factors of w is denoted by $F(w)$, the set of all factors of length n of w is denoted by $F_{n}(w)$.

An infinite word w is ultimately periodic, if for some finite words u and v it holds $w=u v^{\omega} ; w$ is purely periodic (or briefly periodic) if $u=\varepsilon$. An infinite word is aperiodic if it is not ultimately periodic.

An infinite word $w=w_{1} w_{2} \ldots$ is recurrent if any of its factors occurs infinitely many times in it. The word w is uniformly recurrent if any its factor u there exists C such that whenever $w[i, j]=u$, there exists $0<k \leq C$ such that $w[i, j]=w[i+C, j+C]=u$. In other words, factors occur in w in a bounded gap.

Given a finite word $u=u_{1} u_{2} \ldots u_{n}$ with $n \geq 1$ and $u_{i} \in \Sigma$, for each $a \in \Sigma$, we let $|u|_{a}$ denote the number of occurrences of the letter a in u. Two words u and v in Σ^{*} are abelian equivalent, denoted $u \sim_{a b} v$, if and only if $|u|_{a}=|v|_{a}$ for all $a \in \Sigma$. It is easy to see that abelian equivalence is indeed an equivalence relation on Σ^{*}.

An infinite word w is called abelian (ultimately) periodic, if $w=v_{0} v_{1} \ldots$, where $v_{k} \in \Sigma^{*}$ for $k \geq 0$, and $v_{i} \sim_{a b} v_{j}$ for all integers $i \geq 1, j \geq 1$.

For a finite word $w \in \Sigma^{*}$, we define frequency $\rho_{a}(w)$ of a letter $a \in \Sigma$ in w as $\rho_{a}(w)=\frac{|w|_{a}}{|w|}$.

Definition 1. An infinite word w is called weak abelian (ultimately) periodic, if $w=v_{0} v_{1} \ldots$, where $v_{i} \in \Sigma^{*}, \rho_{a}\left(v_{i}\right)=\rho_{a}\left(v_{j}\right)$ for all $a \in \Sigma$ and all integers $i, j \geq 1$.

In other words, a word is weak abelian periodic if it can be factorized into words of different lengths with the same frequencies of letters. In the further text
we usually omit the word "ultimately", meaning that there can be a prefix with different frequencies. Also, we often write WAP instead of weak abelian periodic for brevity.

Definition 2. An infinite word w is called bounded weak abelian periodic, if it is weak abelian periodic with bounded lengths of blocks, i. e., there exists C such that for every i we have $\left|v_{i}\right| \leq C$.

We mainly focus on binary words, but we also make some observations in the case of general alphabet. One can consider the following geometric interpretation of weak abelian periodicity. Let $w=w_{1} w_{2} \ldots$ be an infinite word over a finite alphabet Σ. We translate w to a graphic visiting points of the infinite rectangular grid by interpreting letters of w by drawing instructions. In the binary case, we assign 0 with a move by vector $\mathbf{v}_{0}=(1,-1)$, and 1 with a move $\mathbf{v}_{1}=(1,1)$. We start at the origin $\left(x_{0}, y_{0}\right)=(0,0)$. At step n, we are at a point $\left(x_{n-1}, y_{n-1}\right)$ and we move by a vector corresponding to the letter w_{n}, so that we come to a point $\left(x_{n}, y_{n}\right)=\left(x_{n-1}, y_{n-1}\right)+v_{w_{n}}$, and the two points $\left(x_{n-1}, y_{n-1}\right)$ and $\left(x_{n}, y_{n}\right)$ are connected with a line segment. So, we translate the word w to a path in \mathbb{Z}^{2}. We denote corresponding graphic by g_{w}. So, for any word w, its graphic is a piece-wise linear function with linear segments connecting integer points. It is easy to see that weak abelian periodic word w has graphic with infinitely many integer points on a line with rational slope (we will sometimes write that w is WAP along this line). A bounded weak abelian periodic word has a graphic with bounded differences between letters. Note also that instead of vectors $(1,-1)$ and $(1,1)$ one can use any other pair of noncollinear vectors \mathbf{v}_{0} and \mathbf{v}_{1}, and sometimes it will be convenient for us to do it. For a k-letter alphabet one can consider a similar graphic in \mathbb{Z}^{k}. Note that the graphic can also be defined for finite words in a similar way, and we will sometimes use it.

Definition 3. We say that a word w is of bounded width, if there exist two lines with the same rational slope, so that the path corresponding to w lies between these two lines. Formally, there exist rational numbers a, b_{1}, b_{2}, so that $a x+b_{1} \leq$ $g_{w}(x) \leq a x+b_{2}$.

Note that we focus on rational a, because words of bounded irrational width cannot be weak abelian periodic. Equivalently, bounded width means that graphic of the word lies on finitely many lines with rational coefficients.

We will also need notions of frequency and balance, which are closely connected with abelian periodicity. Relations between these notions are discussed in the next section. A word w is called C-balanced if for any its factors u and v of equal length $\left||u|_{a}-|v|_{a}\right| \leq C$ for any $a \in \Sigma$. Actually, the notion of bounded width is equiivalent to the notion of balance (see, e.g., [1). We say that a letter $a \in \Sigma$ has frequency $\rho_{a}(w)$ in w if $\rho_{a}(w)=\lim _{n \rightarrow \infty} \rho_{a}\left(\operatorname{pref}_{n}(w)\right)$. Note that for some words the limit does not exist, and we say that such words do not have letter frequencies. Note also that we define here a prefix frequency, though sometimes another version of frequency of letters in words is studied (see Section 5 for definitions). Remark that if a WAP word has a frequency of a letter, then
this frequency coincides with frequency of this letter in factors of corresponding factorization.

A morphism is a function $\varphi: \Sigma^{*} \rightarrow \Delta^{*}$ such that $\varphi(\varepsilon)=\varepsilon$ and $\varphi(u v)=$ $\varphi(u) \varphi(v)$, for all $u, v \in \Sigma^{*}$. Clearly, a morphism is completely defined by the images of the letters in the domain. For most of morphisms we consider, $\Sigma=\Delta$. A morphism is primitive, if there exists k such that for every $a \in \Sigma$ the image $\varphi^{k}(a)$ contains all letters from Δ. A morphism is uniform, if $|\varphi(a)|=|\varphi(b)|$ for all $a, b \in \Sigma$, and prolongeable on $a \in \Sigma$, if $a=\operatorname{pref}_{1}(\varphi(a))$. If φ is prolongeable on a, then $\varphi^{n}(a)$ is a proper prefix of $\varphi^{n+1}(a)$, for all $n \in \omega$. Therefore, the sequence $\left(\varphi^{n}(a)\right)_{n \geq 0}$ of words defines an infinite word w that is a fixed point of φ.

Remind the definition of Toeplitz words. Let? be a letter not in Σ. For a word $w \in \Sigma(\Sigma \cup ?)^{*}$, let

$$
T_{0}(w)=?^{\omega}, T_{i+1}(w)=F_{w}\left(T_{i}(w)\right)
$$

where $F_{w}(u)$, defined for any $u \in(\Sigma \cup ?)^{\omega}$, is the word obtained from w^{ω} by replacing the sequence of all occurrences of ? by u; in particular, $F_{w}(u)=w^{\omega}$ if w contains no ?.

Clearly,

$$
T(w)=\lim _{i \rightarrow \infty} T_{i}(w) \in \Sigma^{\omega}
$$

is well-defined, and it is referred to as the Toeplitz word determined by the pattern w. Let $p=|w|$ and $q=|w|$? be the length of w and the number of ?s in w, respectively. Then $T(w)$ is called a (p, q)-Toeplitz word.
Example 1. Paperfolding word:

$$
00100110001101100010011100110110 \ldots
$$

This word can be defined, e.g., as a Toeplitz word with pattern $w=0$?1?. The graphic corresponding to the paperfolding word with $\mathbf{v}_{0}=(1,-1), \mathbf{v}_{1}=(1,1)$ is in Fig. 1. The paperfolding word is not balanced and is WAP along the line $y=-1$ (and actully along any line $y=C, C=-1,-2, \ldots$). See Proposition 2 (2) for details.

Fig. 1. The graphic of the paperfolding word with $\mathbf{v}_{0}=(1,-1), \mathbf{v}_{1}=(1,1)$.
Example 2. A word obtained as an image of the morphism $0 \rightarrow 01,1 \rightarrow 0011$ of any nonperiodic binary word is bounded WAP.

2 General properties of weak abelian periodicity

In this section we discuss relations between notions defined in the previous section and observe some simple properties of weak abelian periodicity. We start with the property of bounded width and its connections to weak abelian periodicity.

Proposition 1. 1. If an infinite word w is of bounded width, then w is WAP. 2. There exists an infinite word w of bounded width which is not bounded WAP. 3. If an infinite word w is bounded WAP, then w is of bounded width.

Proof. 1. Since w is of bounded width, its graphic lies on a finite number of lines with rational coefficients. By the pigeonhole principle it has infinitely many points on one of these lines and hence is WAP.
2. Consider
$w=01110100010101110101010 \cdots=(01)^{1} 1(10)^{2} 0(01)^{3} 1(10)^{4} \ldots(01)^{2 i-1} 1(10)^{2 i} 0 \ldots$
Taking its graphic with $\mathbf{v}_{0}=(-1,1)$ and $\mathbf{v}_{1}=(1,1)$ we see that it lies on the lines $y=0,-1,1,2$ and hence w is of bounded width. The graphic intersects each of these lines infinitely many times, but each of them with growing gaps.
3. Again, take graphic of w with $\mathbf{v}_{0}=(-1,1)$ and $\mathbf{v}_{1}=(1,1)$. Bounded WAP means that it intersects some line $y=a x+b$ with a, b rational and gap at most C for some integer C, i. e., the difference between two consecutive points x_{i} and x_{i+1} is at most C. So, the graphic lies between lines $y=a x+b-C / 2$ and $y=a x+b+C / 2$, and hence w is of bounded width.

In the following proposition we discuss the connections between uniform recurrence and WAP.

Proposition 2. 1. If w is uniformly recurrent and of bounded width, then w is bounded WAP.
2. There exists a uniformly recurrent WAP word w which is not of bounded width.

Proof. 1. Take graphic of w with some vectors, e. g., $\mathbf{v}_{0}=(-1,1)$ and $\mathbf{v}_{1}=(1,1)$. Bounded width means that the graphic g_{w} satisfies $a x+b_{1} \leq g_{w}(x) \leq a x+b_{2}$ for some rational numbers a, b_{1}, b_{2}, so that $a x+b_{1} \leq g_{w}(x) \leq a x+b_{2}$. Take the biggest such b_{1} and the smallest b_{2}, i. e., there are integers x_{1} and x_{2} such that $g_{w}\left(x_{1}\right)=a x_{1}+b_{1}, g_{w}\left(x_{2}\right)=a x_{2}+b_{2}$. Without loss of generality suppose $x_{1} \leq x_{2}$ and consider the factor $w\left[x_{1}, x_{2}\right]$. Since w is uniformly recurrent, this factor occurs infinitely many times in it with bounded gap. Every position i corresponding to an occurrence of this factor satisfies $g_{w}(i)=a i+b_{1}$, otherwise $g_{w}\left(i+x_{2}-x_{1}\right)>a\left(i+x_{2}-x_{1}\right)+b_{2}$, which contradicts the choice of b_{2}. Hence the word is bounded WAP along the line $y=a x+b_{1}$ (and moreover along $y=a x+b_{2}$ and any rational line in between).
2. One of such examples is the paperfolding word w. It can be defined in several equivalent ways, we define it as a Toeplitz word with pattern 0?1? [3. It is not difficult to see that $\left|\operatorname{pref}_{4^{k}-1}(w)\right|_{0}=4^{k} / 2,\left|\operatorname{pref}_{4^{k}-1}(w)\right|_{1}=4^{k} / 2-1$. So, the word is WAP with frequencies $\rho_{0}=\rho_{1}=\frac{1}{2}$ along the line $y=-1$. On the other hand, taking $n=2^{k}+2^{k-2}+\cdots+2^{k-2\left\lfloor\frac{k}{2}\right\rfloor}$, one gets $\left|\operatorname{pref}_{n}(w)\right|_{0}-\left|\operatorname{pref}_{n}(w)\right|_{1}=$ $k+1$. So, the word is not of bounded width.

Next, we study the relation between WAP property and frequencies of letters.
Proposition 3. 1. There exists an infinite word w with rational frequencies of letters which is not WAP.
2. If an infinite word w has irrational frequency of some letters, then w is not WAP.
3. If a binary infinite word w does not have frequencies of letters, then w is WAP.
4. There exist a ternary infinite word w which is does not have frequencies of letters and which is not WAP.

Proof. 1. Consider

$$
w=01001010(01)^{4} \ldots 0(01)^{2^{n}} \ldots
$$

This word has letter frequencies $\rho_{0}=\rho_{1}=1 / 2$. Suppose it is weak abelian periodic. If a word has frequencies of letters and is WAP, then these frequencies coincide with frequencies of letters in the corresponding factorization. So, if w is WAP, then there is a sequence k_{1}, k_{2}, \ldots (the sequence of lengths of factors in the corresponding factorization), such that $\left|\operatorname{pref}_{k_{i}} w\right|_{0}=k_{i} / 2+C$, where C is defined by the first factor of length $k_{1}: C=k_{1} / 2-\left|\operatorname{pref}_{k_{1}} w\right|_{0} / 2$. For the word w, the number of $0-\mathrm{s}$ in a prefix of length n is $\left|\operatorname{pref}_{n} w\right|_{0}=n / 2+\theta(\log n)$. For $n=k_{i}$ large enough one has $\theta(\log n)>C$, a contradiction. So, w is not WAP.

For uniformly recurrent examples see Section 5.
2. Assume that the word w is WAP, then for every letter a there exists a rational partial limit $\lim _{n_{k} \rightarrow \infty} \frac{\left|\operatorname{pref}_{n_{k}}(w)\right|_{a}}{\left|\operatorname{pref}_{n_{k}}(w)\right|}$. For w having irrational frequency of some letter all such partial limits corresponding to this letter exist and are equal to this irrational frequency. A contradiction.
3. Consider a sequence $\left(\frac{\left|\operatorname{pref}_{n}(w)\right|_{a}}{\left|\operatorname{pref}_{n}(w)\right|}\right)_{n \geq 1}$. This sequence is bounded, and has a lower and upper partial limits $r=\underline{\lim }_{n \rightarrow \infty} \frac{\left|\operatorname{pref}_{n}(w)\right|_{a}}{\left|\operatorname{pref}_{n}(w)\right|}$ and $R=\varlimsup_{n \rightarrow \infty} \frac{\left|\operatorname{limef}_{n}(w)\right|_{a}}{\left|\operatorname{pref}_{n}(w)\right|}$. Since the sequence does not have a limit, these partial limits do not coincide: $r<R$. Using graphic of w, one gets that the graphic intersects every line with slope corresponding to frequency between r and R. For rational frequencies one gets that the graphic intersects the line infinitely many times. Hence there are infinitely many integer points on it (or its shift, depending on the choice of v_{0} and $\left.v_{1}\right)$. So, we proved that w is WAP, and moreover, it is WAP with any rational frequency $\rho, r<\rho<R$ in factors in corresponding factorization.
4. Consider a word

$$
w=01201^{2} 2^{4} 0^{6} 1^{10} 2^{16} \ldots 0^{n_{i}} 1^{n_{i+1}} 2^{n_{i+2}} \ldots
$$

where $n_{i}=n_{i-1}+n_{i-2}$ for every $i \geq 5, n_{1}=n_{2}=n_{3}=n_{4}=1$. The word is organized in a way that after each block $a^{n_{i}}$ the frequency of the letter a in the prefix ending in this block is equal to $1 / 2$, i. e., $\rho_{a}\left(01201^{2} 2^{4} \ldots a^{n_{i}}\right)=\frac{1}{2}$ for $a \in\{0,1,2\}$. So, frequencies of letters do not exist.

Now we will prove that it is not weak abelian periodic. Suppose it is, with points $k_{1}, k_{2} \ldots$ and rational frequencies $\rho_{0}, \rho_{1}, \rho_{2}$ in the blocks, i. e. $w=$ $w_{1} w_{2} \ldots$, and $\left|w_{1} \ldots w_{n}\right|=k_{n}$ and $\frac{\left|w_{i}\right|_{a}}{\left|w_{i}\right|}=\rho_{a}$ for every $a \in\{0,1,2\}$ and $i>1$. By the pigeonhole principle there exists a letter a such that infinitely many k_{i} are in the blocks of a-s, meaning that at least one of the letters $w_{k_{i}}, w_{k_{i}+1}$ is a. Without loss of generality suppose $a=2$. Using the recurrence relation for n_{i}, one can find $\lim _{n \rightarrow \infty} \frac{\left|\operatorname{pref}_{k_{n}} w\right|_{0}}{\left|\operatorname{pref}_{k_{n}} w\right|_{1}}=\frac{1}{\lambda_{1}}$, where $\lambda_{1}=\frac{1+\sqrt{5}}{2}$ is the larger root of the equation $\lambda^{2}=\lambda+1$ corresponding to the recurrence relation. So, the limit is irrational, and hence w cannot be equal to $\frac{\rho_{0}}{\rho_{1}}$. Thus, w is not WAP.

So, we obtain the following corollary:
Corollary 1. If a binary word w is not WAP, then it has frequencies of letters.
This simple corollary, however, is unexpected: from the first glance weak abelian periodicity and frequencies of letters seem to be very close notions. But it turns out that one of them (WAP) does not hold, then the other one should necessarily hold.

We end this section with an observation about WAP of non-binary words. We will show that contrary to normal and abelian periodicity, the property WAP cannot be checked from binary words obtained by unifying letters of the original word.

For a word w over an alphabet of cardinality k define $w^{a \cup b}$ as a word over an alphabet of cardinality $k-1$ obtained form w by unifying letters a and b. In other words, $w^{a \cup b}$ is an image of w under a morphism $b \rightarrow a, c \rightarrow c$ for every $c \neq b$.

Proposition 4. There exists a ternary word w, such that $w^{0 \cup 1}, w^{0 \cup 2}, w^{1 \cup 2}$ are $W A P$, and w itself is not WAP.

Proof. We use the example we built in the proof of Proposition 3 (3), i. e., we take $w=01201^{2} 2^{4} 0^{6} 1^{10} 2^{16} \ldots 0^{n_{i}} 1^{n_{i+1}} 2^{n_{i+2}} \ldots$, where $n_{i}=n_{i-1}+n_{i-2}$ for every i. Due to space limitations, we omit the calculations.

3 Weak abelian periodicity of fixed points of binary uniform morphisms

In this section we study weak abelian periodicity of fixed points of non-primitive uniform binary morphisms.

Consider a binary uniform morphism φ with matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. This means that $|\varphi(0)|_{0}=a,|\varphi(0)|_{1}=b,|\varphi(1)|_{0}=c,|\varphi(1)|_{1}=d$, and $a+b=c+d=k$, since we
consider a uniform morphism. In a fixed point w of the binary uniform morphism φ the frequencies exist and they are rational. It is easy to see that $\rho_{0}(w)=\frac{c}{b+c}$, $\rho_{1}(w)=\frac{b}{b+c}$. It will be convenient for us to consider a geometric interpretation with $\mathbf{v}_{0}=(1,-b), \mathbf{v}_{1}=(1, c)$. If w is WAP, then the frequency inside the blocks is equal to the frequency in the whole word. So, WAP can be reached along a horizontal line $y=C$.

The following theorem gives a characterization of weak abelian periodicity for fixed points of non-primitive binary uniform morphisms:

Theorem 1. Consider a non-primitive binary uniform morphism φ with matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ having a fixed point w starting in 0 . For any $u \in\{0,1\}^{*} \cup\{0,1\}^{\infty}$ let g_{u} be its graphic with vectors $\boldsymbol{v}_{0}=(1,-b), \boldsymbol{v}_{1}=(1, c)$.

1. If $g_{\varphi(0)}(x)=0$ for some $x, 0<x \leq k$, then w is WAP.
2. If $g_{\varphi(0)}(k) \geq-b$, then w is $W A P$.
3. Otherwise we need the following parameters. Denote $\Delta=g_{\varphi(0)}(k), A=$ $\max \left\{g_{\varphi(0)}(i) \mid i=1, \ldots k, w_{i}=1\right\}, t=\max \left\{g_{\varphi(1)}(i) \mid i=1, \ldots k, w_{i}=1\right\}$.

If φ does not satisfy conditions 1 and 2, then its fixed point w is WAP if and only if $\Delta \frac{A-c}{-b}+t \geq A$.

Proof. 1. If in the condition $g_{\varphi(0)}(x)=0,0<x \leq k$, the number x is integer, then for every i it holds $g_{\varphi^{i}(0)}\left(k^{i-1} x\right)=0$, so the word is WAP. If x is not integer, then we have either $g_{\varphi(0)}(\lfloor x\rfloor)<0$ and $g_{\varphi(0)}(\lceil x\rceil)>0$ or $g_{\varphi(0)}(\lfloor x\rfloor)>$ 0 and $g_{\varphi(0)}(\lceil x\rceil)<0$. Without loss of generality consider the first case. For any i, one has $g_{\varphi^{i}(0)}\left(k^{i-1}\lfloor x\rfloor\right)<0$ and $g_{\varphi^{i}(0)}\left(k^{i-1}\lceil x\rceil\right)>0$, so there exists $x_{i}, k^{i-1}\lfloor x\rfloor<x_{i}<k^{i-1}\lceil x\rceil$, such that $g_{\varphi^{i}(0)}\left(x_{i}\right)=0$. So, we have an infinite sequence of points $\left(x_{i}\right)_{i=1}^{\infty}$ such that $g_{w}\left(x_{i}\right)=0$. By the definition of g_{w} and the pigeonhole principle we get that there is an infinite number of integer points from the set $\left\lfloor x_{i}\right\rfloor,\left\lceil x_{i}\right\rceil, i=1, \ldots, \infty$, on one of the lines $x=A, A=-\max (b, c)+$ $1,-\max (b, c)+2, \ldots, \max (b, c)-1$. So, w is WAP.
2. If $g_{\varphi(0)}(k) \geq 0$, we are in the conditions of the case 1 , so the word is WAP. If $0>g_{\varphi(0)}(k) \geq-b$, then the only possible case is $g_{\varphi(0)}(k)=-b$. This follows from the fact that the condition $0>g_{\varphi(0)}(k) \geq-b$ means that $a>c$, or, equivalently, $a-c \geq 1$, and so $g_{\varphi(0)}(k)=a(-b)+b c=-b(a-c) \geq-b$. Hence $c=a-1$, and so $g_{\varphi^{i}(0)}\left(k^{i}\right)=-b$, and thus w is WAP along the line $y=-b$.
3. Suppose that $\Delta \frac{A-c}{-b}+t \geq A$. We need to prove that w is WAP.

Let j be such that $g_{\varphi(1)}(j)=t$. Under these conditions we will prove the following claim: If for some m one has $w_{m}=1$ and $g_{w}(m) \geq A$, then $w_{k m+j}=1$ and $g_{w}(k(m-1)+j) \geq A$.

Consider the occurrence of 1 at the position m. By the definition of the graphic of w, one has that $g_{w}(m-1) \geq A-c$, and hence $\operatorname{pref}_{m-1}(w)$ contains at least $\frac{c}{b+c}(m-1)-\frac{1}{b+c}(A-c)$ letters 0 and at most $\frac{b}{b+c}(m-1)+\frac{1}{b+c}(A-c)$ letters 1. So, for the image of this prefix one has $g_{w}(k(m-1)) \geq \Delta \frac{A-c}{-b}$. Since $w_{m}=1$, one has $w[k(m-1)+1, k m]=\varphi(1)$. Then $g_{w}(k(m-1)+j)=g_{w}(k(m-1))+t \geq$
$\Delta \frac{A-c}{-b}+t$, and we have $\Delta \frac{A-c}{-b}+t \geq A$, and so $g_{w}(k(m-1)+j) \geq A$. The claim is proved.

Now consider the occurrence of 1 corresponding to the value A defined in the theorem, i. e., we consider $w_{i}=1$ such that $g_{w}(i)=A$. Applying the claim we just proved to $m=i$ we have $w_{k(i-1)+j}=1, g_{w}(k(i-1)+j) \geq A$. Now we can apply the claim to $m=k(i-1)+j$ and get that $w_{k(k(i-1)+j)+j}=1$, $g_{w}(k(k(i-1)+j)) \geq A$. Continuing this line of reasoning, one gets infinitely many positions n for which $g_{w}(n) \geq A$. On the other hand, it is easy to see that $g_{w}\left(k^{l}\right)<0$ for all integers l. So, w is WAP along one of the lines $y=C$, $A-\max (b, c)+1 \leq C \leq \max (b, c)-1$. Additional $\pm \max (b, c)$ are taken to guarantee integer points, since the graphic "jumps" by b and c.

Now suppose that $\Delta \frac{A-c}{-b}+t<A$. We need to prove that w is not WAP.
Let j be such that $g_{\varphi(1)}(j)=t$. Under these conditions we prove the following claim: If for all m in a prefix of w of length N such that $w_{m}=1$ one has $g_{w}(m) \leq A$, then for all $N+1 \leq l \leq N k$ such that $w_{l}=1$ we have $g_{w}(l)<$ $\max _{m}\left\{g_{w}(m) \mid 1 \leq m \leq N, w_{m}=1\right\}$, or, equivalently, $g_{w}(l) \leq \max _{m}\left\{g_{w}(m)-\right.$ $\left.1 \mid 1 \leq m \leq N, w_{m}=1\right\}$. Roughly speaking, the claim says that maximal values are decreasing. The claim is proved in a similar way as the previous claim, so we omit the proof.

Now consider occurrences of 1 from $\varphi(0)$, i. e., we consider $w_{i}=1$ such that $1 \leq i \leq k$. By the conditions of the part 3 of the theorem we have $g_{w}(i) \leq A$. Applying the latter claim to $m=i$ we have that for all occurrences l of 1 in $w\left[k+1, k^{2}\right]$ it holds $g_{w}(l) \leq A-1$. By the definition of the graphic g_{w}, maximal values are attained immediately after the occurrences of 1 -s, so we actually have $g_{w}(l) \leq A-1$ for all $k+1 \leq l \leq k^{2}$. Continuing this line of reasoning, we get that for $k^{n}+1 \leq i \leq k^{n+1}$ it holds $g_{w}(l) \leq A-n$. So, the word w is not WAP (since w can be WAP only along horizontal lines).

Now we are going to show that a fixed point of a uniform morphism is bounded WAP iff it is abelian periodic. This is probably known or follows from some general characterizations of balance of morphic words (e. g., 11), but we anyway provide a short combinatorial proof to be self-contained.

Theorem 2. Let w be a fixed point of binary k-uniform morphism φ. The following are equivalent:

1. w is bounded WAP
2. w is abelian periodic
3. $\varphi(0) \sim_{a b} \varphi(1)$ or k is odd and $\varphi(0)=(01)^{\frac{k-1}{2}} 0, \varphi(1)=(10)^{\frac{k-1}{2}} 1$.

Proof. We prove the theorem in the following way. Starting with bounded WAP word w, we step by step restrict the form of w and prove that the morphism should satisfy either $\varphi(0) \sim_{a b} \varphi(1)$ or k is odd and $\varphi(0)=(01)^{\frac{k-1}{2}} 0, \varphi(1)=$ $(10)^{\frac{k-1}{2}} 1$. These conditions clearly imply abelian periodicity, and abelian periodicity implies bounded WAP. So, we actually prove $1 \Rightarrow 3 \Rightarrow 2 \Rightarrow 1$, and the only implication to be proved is $1 \Rightarrow 3$.

Suppose that w is bounded WAP and $\varphi(0)$ is not abelian equivalent to $\varphi(1)$, i. e., $a \neq c$. Without loss of generality we may assume that the fixed point starts in 0 and that $a>c$. If $a<c$, we consider a morphism φ^{2}, so that one has $g_{\varphi^{2}(0)} \leq 0$. We will prove that either the fixed point is not of bounded width or the morphism is of the form $\varphi(0)=(01)^{\frac{k-1}{2}} 0, \varphi(1)=(10)^{\frac{k-1}{2}} 1, k$ odd.

In the proof we will use the following notation. For a factor u of w such that $\rho_{0}(u)>\rho_{0}(w)$, we say that u has m extra 0 's, if $\frac{|u|_{0}-m}{|u|-m}=\rho_{0}(w)$. In other words, deleting m letters 0 from u gives a word with frequency $\rho_{0}(w)$. We also admit non-integer values of m. E. g., if $\rho_{0}(w)=\frac{1}{3}$ and $u=01$, then u has $\frac{1}{2}$ extra 0 's.

Suppose $a>c+1$. In this case $\varphi^{i}(0)$ contains $(a-c)^{i}$ extra zeros. Since $(a-c)^{i}$ increases as i increases, w is not of bounded width. So, the fixed point is not bounded WAP in this case, and hence for bounded WAP one should have $a=c+1$.

Suppose that $\varphi(0)$ has a prefix x with more than one extra zero. Without loss of generality we assume that x ends in 0 , otherwise we may take a smaller prefix. So, $x=x^{\prime} 0$, and x^{\prime} has $m>0$ extra 0 -s. It is not difficult to show that under condition $a=c+1$ the image $\varphi\left(x^{\prime}\right)$ also contains m extra 0 . An image of x starts in $\varphi\left(x^{\prime}\right) x^{\prime} 0$. An image of this word starts in $\varphi^{2}\left(x^{\prime}\right) \varphi\left(x^{\prime}\right) x^{\prime} 0$. Continuing taking images, we get that for every i the word w has a prefix of the form $\varphi^{i}\left(x^{\prime}\right) \varphi^{i-1}\left(x^{\prime}\right) \ldots \varphi\left(x^{\prime}\right) x^{\prime} 0$. This word contains $(i+1) m+1$ extra 0 -s, and this amount grows as i grows. Hence w word is not of bounded width, a contradiction. So, we have that every prefix of $\varphi(0)$ has at most one extra 0 , in particular, $\varphi(0)$ starts in 01.

In a similar way we show that every suffix of $\varphi(0)$ has at most one extra 0 . The only difference is we obtain a series of factors (not prefixes) of w with growing amount of extra $0-\mathrm{s}$.

Now consider an occurrence of 0 in $\varphi(0)$, i. e., $w_{j}=0,1 \leq j \leq k$. Due to what we just proved $\rho_{0}\left(\operatorname{pref}_{j-1}(\varphi(0)) \geq \rho_{0}(w)\right.$, and $\rho_{0}\left(\operatorname{suff}_{k-j}(\varphi(0)) \geq \rho_{0}(w)\right.$. Since $\varphi(0)$ has one extra 0 , we have $\rho_{0}\left(\operatorname{pref}_{j-1}(\varphi(0))=\rho_{0}\left(\operatorname{suff}_{k-j}(\varphi(0))=\rho_{0}(w)\right.\right.$. So, w_{j} can be equal to 0 only if in the prefix $\operatorname{pref}_{j-1}(\varphi(0))$ the frequency of 0 is the same as in w.

On the other hand, if the frequencies in the $\operatorname{pref}_{j-1}(\varphi(0))$ are the same as in w, then w_{j} cannot be equal to 1 . Suppose the converse; let $w_{j}=1$, then all $w_{l}=1, l=j, \ldots, k-1$, since by induction in all the prefixes $\operatorname{pref}_{l}(\varphi(0))$ the frequency of 0 is less than $\rho_{0}(w)$. So, in $\varphi(0)$ there will be less than one extra 0 , a contradiction.

Thus, each time we have $\rho_{0}\left(\operatorname{pref}_{j-1}(\varphi(0))=\rho_{0}(w)\right.$, we necessarily have $w_{j}=$ 0 , otherwise $w_{j}=1$. Since $|\varphi(0)|_{0}=a$, the frequency $\rho_{0}(w)$ is reached a times, and $\varphi(0)$ consists of $a-1$ blocks with one 0 and with frequency $\rho_{0}(w)$, and one extra block 0 . Therefore, $a-1$ divides $a-1+b$, i. e., $b=i(a-1)$ for some integer i. By a similar argument applied for $\varphi(1)$ we get that $d-1$ divides $c-1$, which means $i(a-1)$ divides $a-1$. Hence $i=1$, and so the matrix of the morphism is $\left(\begin{array}{cc}a & a-1 \\ a-1 & a\end{array}\right)$. Combining this with the conditions for positions of 0 in $\varphi(0)$, we obtain $\varphi(0)=(01)^{\frac{k-1}{2}} 0, \varphi(1)=(10)^{\frac{k-1}{2}} 1$.

4 On WAP of points in a shift orbit closure

In this section we consider the following question: if a uniformly recurrent word w is WAP, what can we say about WAP of other words with the language $F(w)$?

As a corollary from Theorem 1 we obtain the following Proposition:
Proposition 5. There exists a binary uniform morphism having two infinite fixed points, such that one of them is WAP, and the other one is not.

Proof. Consider a morphism $\varphi: 0 \rightarrow 0001,1 \rightarrow 1011$. Using Theorem $\mathbb{1}(3)$, one gets that the fixed point starting from 0 is not WAP. Using Theorem $1(1)$, one gets that the fixed point starting from 1 is WAP.

Remark. In particular, this means that there exist two words with same sets of factors such that one of them is WAP while the other one is not.

In this section we need some more definitions.
Let $T: \Sigma^{\omega} \rightarrow \Sigma^{\omega}$ denote the shift transformation defined by $T:\left(x_{n}\right)_{n \in \omega} \rightarrow$ $\left(x_{n+1}\right)_{n \in \omega}$. The shift orbit of an infinite word $x \in \Sigma^{\omega}$ is the set $O(x)=$ $\left\{T^{i}(x) \mid i \geq 0\right\}$ and its closure is given by $\bar{O}(x)=\left\{y \in \Sigma^{\omega} \mid \operatorname{Pref}(y) \subseteq \operatorname{Pref}\left(T^{i}(x)\right)\right.$, where $\operatorname{Pref}(w)$ denotes the set of prefixes of a finite or infinite word w. For a uniformly recurrent word w any infinite word x in $\bar{O}(w)$ has the same set of factors as w.

We say that $w \in \Sigma^{\omega}$ has uniform frequency ρ_{a} of a letter a, if every word in $\bar{O}(w)$ has frequency ρ_{a} of a letter a. In other words, a letter $a \in \Sigma$ has uniform frequency ρ_{a} in w if its minimal frequency $\underline{\rho}_{a}=\lim _{n \rightarrow \infty} \inf _{x \in F_{n}(w)} \frac{|x|_{a} \mid}{|x|}$ is equal to its maximal frequency $\bar{\rho}_{a}=\lim _{n \rightarrow \infty} \sup _{x \in F_{n}(w)} \frac{|x| a}{|x|}$, i. e. $\underline{\rho}_{a}=\bar{\rho}_{a}$.

Theorem 3. Let w be an infinite binary uniformly recurrent word.

1. If w has irrational frequencies of letters, then every word in its shift orbit closure is not WAP.
2. If w does not have uniform frequencies of letters, then there is a point in a shift orbit closure of w which is WAP.
3. If w has uniform rational frequencies of letters, then there is a point in a shift orbit closure of w which is WAP.
4. There exists a non-balanced word w with uniform rational frequencies of letters, such that every point in a shift orbit closure of w is WAP.

Proof. 1. Follows from Proposition 3 (2).
2. Follows from Proposition 3 (3).
3. In the proof we use the notion of a return word. For $u \in F(w)$, let $n_{1}<$ $n_{2}<\ldots$ be all integers n_{i} such that $u=w_{n_{i}} \ldots w_{n_{i}+|u|-1}$. Then the word $w_{n_{i}} \ldots w_{n_{i+1}-1}$ is a return word (or briefly return) of u in w [11, [12, [13.

We now build a WAP word u from $\bar{O}(w)$. Start with any factor u_{1} of w, e. g. with a letter. Without loss of generality assume that $\rho_{0}\left(u_{1}\right) \geq \rho_{0}(w)$. Consider factorization of w into first returns to $u_{1}: w=v_{1}^{1} v_{2}^{1} \ldots v_{i}^{1} \ldots$, so that v_{i}^{1} is a
return to u_{1} for $i>1$. Then there exists $i_{1}>1$ satisfying $\rho_{0}\left(v_{i_{1}}^{1}\right) \geq \rho_{0}$. Suppose the converse, i. e., for all $i>1 \rho_{0}\left(v_{i}^{1}\right)<\rho_{0}$. Due to uniform recurrence, the lengths of v_{i}^{1} are uniformly bounded, and hence $\rho_{0}(w)<\rho_{0}$, a contradiction. Take $u_{2}=v_{i_{1}}^{1}$, so $u_{1}=\operatorname{pref}\left(u_{2}\right)$. Now consider a factorization of w into first returns to $u_{2}: w=v_{1}^{2} v_{2}^{2} \ldots v_{i}^{2} \ldots$ Then there exists $i_{2}>1$ satisfying $\rho_{0}\left(v_{i_{2}}^{2}\right) \leq \rho_{0}$, take $u_{3}=v_{i_{2}}^{2}$. Continuing this line of reasoning to infinity, we build a word $u=\lim _{n \rightarrow \infty} u_{i}$, such that $\rho_{0}\left(u_{2 i}\right) \geq \rho_{0}, \rho_{0}\left(u_{2 i+1}\right) \leq \rho_{0}$. So, the graphic of w with vectors $\mathbf{v}_{0}=(1,-1)$ and $\mathbf{v}_{0}=(1,-1)$ intersects the line $y=\rho_{0} x$ infinitely many times. Since ρ_{0} is rational, by a pigeonhole principle the graphic intersects in integer points infinitely many times one of finite number (actually, a denominator of ρ_{0}) of lines parallel to $y=\rho_{0} x$. It follows that u is WAP with frequency ρ_{0}, and by construction $u \in \bar{O}(w)$.
4. Due to space limitations, we omit the proof of this item.

References

1. B. Adamczewski, Balances for fixed points of primitive substitutions, Words. Theoret. Comput. Sci. 307 (2003), 47-75.
2. S. Avgustinovich, J. Karhumäki, S. Puzynina, On abelian versions of critical factorization theorem. RAIRO - Theoretical Informatics and Applications, 46 (2012), p. 3-15.
3. J. Cassaigne, J. Karhumäki. Toeplitz Words, Generalized Periodicity and Periodically Iterated Morphisms. Eur. J. Comb. 18(5), 1997, p. 497-510.
4. S. Constantinescu and L. Ilie. Generalised Fine and Wilfs theorem for arbitrary number of periods. Theoret. Comput. Sci., 339:4960, 2005.
5. P. Erdös. Some unsolved problems. Magyar Tud. Akad. Mat. Kutató Int. Közl., 6: 221-254, 1961.
6. J. L. Gerver and L. T. Ramsey. On certain sequences of lattice points. Pacific J. Math. Volume 83, Number 2 (1979), 357-363.
7. V. Keränen. Abelian squares are avoidable on 4 letters. In Automata, languages and programming (Vienna, 1992), volume 623 of Lecture Notes in Comput. Sci., pages 41-52. Springer, Berlin, 1992.
8. V. A. Krajnev. Words that do not contain consequtive factors with equal frequencies of letters. Metody discretnogo analiza v reshenii kombinatornyh zadach, v. 34 (1980), p. 27-37.
9. M. Lothaire, Algebraic combinatorics on words. Cambridge University Press, 2002.
10. J. Cassaigne, G. Richomme, K. Saari, L. Q. Zamboni. Avoiding Abelian powers in binary words with bounded Abelian complexity, Int. J. Found. Comput. Sci. 22(4): 905-920 (2011).
11. F. Durand: A characterization of substitutive sequences using return words, Discrete Mathematics 179 (1-3) (1998), p. 89-101.
12. C. Holton, L. Q. Zamboni: Geometric Realizations Of Substitutions, Bull. Soc. Math. France 126 (1998), p. 149-179.
13. S. Puzynina, L. Q. Zamboni Abelian returns in Sturmian words. J. Combin. Theory, Ser. A, V. 120, Issue 2, 2013, p. 390-408.

[^0]: * Supported in part by the Academy of Finland under grant 251371, by Russian Foundation of Basic Research (grant 12-01-00448), and by RF President grant MK4075.2012.1.

