
Network Formation for Asymmetric Players and

Bilateral Contracting∗
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Abstract

We study a network formation game where players wish to send traffic
to other players. Players can be seen as nodes of an undirected graph
whose edges are defined by contracts between the corresponding players.
Each player can contract bilaterally with others to form bidirectional links
or break unilaterally contracts to eliminate the corresponding links. Our
model is an extension of the traffic routing model considered in [5, 6, 7] in
which we do not require the traffic to be uniform and all-to-all. Player i
specifies the amount of traffic tij ≥ 0 that wants to send to player j. Our
notion of stability is the network pairwise Nash stability, when no node
wishes to deviate unilaterally and no pair of nodes can obtain benefit from
deviating bilaterally. We show a characterization of the topologies that
are pairwise Nash stable for a given traffic matrix. We prove that the best
response problem is NP-hard and devise a myopic dynamics so that the
deviation of the active node can be computed in polynomial time. We
show the convergence of the dynamics to pairwise Nash configurations,
when the contracting functions are anti-symmetric and affine, and that
the expected convergence time is polynomial in the number of nodes when
the node activation process is uniform.

keywords network formation games bilateral contracting pairwise Nash
equilibrium myopic dynamics

1 Introduction

Nowadays social and economic networks, and even communication networks are
typically endogenous and operate at a scale that makes unpractical the use
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of centralized policies. In all these networks, nodes can be seen as autonomous
agents that wish to communicate to each other. Each agent may choose whom to
accept connections from or whom to connect to. Moreover nodes can also decide
to break a set of non profitable connections. A general framework for the study
of network creation with selfish agents was proposed by Jackson and Wolinsky
[17]. Different extensions to this model are numerous in Economics (see the
survey [16]). Our study focuses on network formation games for modeling the
formation of communication networks. Fabrikant et al. [15] introduce a novel
game that models the creation of Internet-like networks by selfish node-agents
without central coordination. Nodes pay for links that they establish unilaterally
and benefit from short paths to all destinations. Hence, the cost of each node
has two components: the total cost of the edges created by this node plus the
sum of distances from the node to all the others. The authors assume that all
pairs of nodes have the same interest (all-to-all communication pattern with
identical weights), the cost of being disconnected is infinite and the edges paid
by one node can be used by others. They do not look at the dynamics for
network creation in which networks are developed in stages where nodes can
add or delete links at each stage. Albers et al. in [1, 2] continue the study of
the model of [15] improving some of their bounds of the price of anarchy.

Corbo and Parkes [10] generalize the model of Fabrikant et al. [15] by having
links formed bilaterally instead of unilaterally and having the cost of links shared
equally between both end nodes. In subsequent works many other different net-
work formation games have been defined by considering distinct cost functions
or different kind of strategies jointly with their appropriate equilibrium concept
(see [11, 19, 9, 13, 12, 4, 3, 18, 8, 14]).

Some common characteristics of all the previously referred models are that
each pair of nodes want to communicate to each other and that the cost function
depends on the distance to other nodes among other components. In the models
studied by Arcaute el al. in [5, 6, 7] each node derives utility from connectivity
and incurs a cost. The cost is comprised of three different terms: the cost of
routing traffic, the maintenance cost of its links, and the disconnection cost.
The routing cost depends on the amount of traffic routed through the node
instead of the distances to all the other nodes. The player’s utility comes from
the payments for the contracts which are a natural mechanism to compensate
the costs of creating links. In this model link formation is bilateral, while link
elimination is unilateral, and then an appropriate notion of stability is captured
by Pairwise Nash equilibrium, as it is argued in [5, 7]. The authors study such
game under a form of myopic best response dynamics and they characterize a
set of assumptions under which these dynamics converges to a stable network.
The authors left as an open question the extension of the model defined in [5, 7]
to asymmetric traffic matrix instead of the uniform all-to-all traffic considered
in the paper. They also suggest to expand the strategy space considered by
each node in their dynamics.

In this work we extend the model of Arcaute et al. [5, 7] by considering
asymmetric players. Each player i specifies the amount of traffic tij that de-
sires to send to player j for each j 6= i. Observe that we do not require the
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traffic matrix to be uniform all-to-all as it was done in the model studied in
[5, 7]. Our first contribution is a general characterization of the pairwise Nash
topologies depending on a given traffic matrix. Our second key contribution is
a new and original myopic dynamics. Since we show that the Best Response
problem is NP-hard, we define a myopic dynamics which avoids to compute the
best response. At each round a node is activated to improve his own benefit
whenever it is possible. We define a subset of possible deviations in such a way
that a sink configuration of our dynamics is a pairwise Nash configuration. And
finally, our third contribution is the proof of the convergence of our dynamics
to a pairwise Nash configuration for any traffic pattern under some natural as-
sumptions on the contracting functions, including the all-to-all uniform traffic
pattern. The key idea is to associate a tuple of integer values to each configura-
tion describing some relevant parameters of the current topology in relation to
the given traffic. We show that these values decrease “globally” like a potential
function as the dynamics evolves until a sink configuration is reached. Under
the condition that the node activation process is uniform we show that the ex-
pected convergence time is polynomial. When we consider the specific case in
which the traffic matrix represents a uniform all-to-all communication pattern
our dynamics converges faster than the dynamics studied by Arcaute et al. in
[5, 7].

The paper is organized as follows. In Section 2 we define the Network For-
mation Game. In Section 3 we define the concept of pairwise Nash equilibrium,
as well as the concept of pairwise Nash outcome and the strong notion of stable
topologies for a given traffic matrix. We show a characterization of pairwise
Nash topologies. In Section 4 we focus on the study of a myopic dynamics and
the conditions that guarantee its convergence to pairwise Nash configurations in
a polynomial number of rounds, in expectation. Finally, in Section 5 we present
our conclusions and open questions.

2 The Network Formation Game: A traffic rout-
ing model

Communication Network. We use the notation G = (V,E) to denote the
network topology consisting of a set V of n nodes and a set E of edges. The n
nodes are the players of our game. We assume that edges or links are undirected
and we denote by ij the edge between i and j. We use the shorthand ij ∈ G to
denote that G contains ij and use G+ ij and G− ij to represent the resulting
graph from adding ij to G and, respectively, subtracting ij from G. We denote
by Cu the connected component of G that contains u ∈ V (C ′

u if the graph is
denoted by G′).

Players. In our game each player i ∈ V wants to send a certain amount of
traffic to other players. Let tij ≥ 0 be the number of units or packets that
player i wants to send to player j. Let T = (tij)i,j∈V be the traffic matrix and
let GT = (V, {ij : tij + tji > 0}) be the graph associated to T . We want to
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remark that GT does not have to be the resulting topology of the game. Let us
define Participants(i) = {j : tij + tji > 0}.

The strategy of each player i is defined by two sets Fi, Ti ⊆ V where Fi

is the set of players that i is willing to accept a contract from and Ti is the
set of players that i wants to contract with. Let Γ = Γ(T,F) be a directed
graph representing the contracting graph which captures the direction of the
contracts. A contract (i, j) ∈ Γ if and only if i ∈ Fj (j accepts a contract from
i) and j ∈ Ti (i wants to contract with j). Let G = G(T,F) be the resulting
communication network defined as follows: ij ∈ G if and only if (i, j) ∈ Γ or
(j, i) ∈ Γ.

Every player i experiences three types of costs in the communication net-
work G: the routing cost R(i;G), the maintenance cost M(i;G), and the dis-
connection cost D(i;G). The total cost of node i in a graph G, is defined as
C(i;G) = R(i;G) +M(i;G) +D(i;G).

The routing cost is defined as R(i;G) = ci f(i;G) where ci is the routing cost
of player i per unit of traffic and f(i;G) is the total traffic that transits through
i including the traffic received by i and the traffic sent by i. We assume that
traffic is routed uniformly across shortest paths. If there are multiple shortest
paths, then the traffic is split equally among all available paths. Moreover, we
consider routing policies satisfying the following flow monotonicity property: for
all G and for all i and j, f(i;G) ≤ f(i;G+ ij).

The maintenance cost is defined by M(i;G) = Πδ(i;G) where Π > 0 is the
cost incurred by the endpoints of each link and δ(i;G) is the degree of node i
in graph G.

Finally, the disconnection cost D(i;G) depends on whether i is connected to
its participants. We do not consider any particular disconnection function but
we will consider only those that satisfy some properties to be defined later. In
particular we assume that the disconnection cost D(i;G) does not depend on
the selected node to connect i to its participants.
Assumption 1 (About disconnection): D(i;G) = 0 if i is connected to all its
participants. Otherwise, if j ∈ Participants(i) and Ci 6= Cj , D(i;G + ik) =
D(i;G+ il) for any k, l ∈ Cj .

Contracting function and payments. A contracting function Q can be inter-
preted as the outcome of a negotiation process that depends on the network
topology. We assume that Q(i, j;G) specifies the transfer of benefit from player
i to player j when the network topology is G. (If Q(i, j;G) < 0, then the
transfer is from j to i). Instead of considering particular contracting functions,
we are interested in general contracting functions that satisfy some natural as-
sumptions.

Given Q and Γ, the payment matrix P = (pij)i,j∈V specifies the payments
between players. If i = j we assume that pij = 0. For each pair i, j of different
players, the payment from i to j is defined as follows:

pij =

{
Q(i, j;G) if (i, j) ∈ Γ,
0 otherwise.
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The total utility of player i in the communication network G with payment
matrix P is defined by

U(i;G,P) =
∑
j 6=i

(pji − pij)− C(i;G).

We assume that the contracting function Q jointly with the disconnection
function D define a utility function U such that, for any i, player i prefers always
to include more elements of Participants(i) in his connected component when
possible.

As an extension of the usual notation, let C1
i and C2

i be the connected
components containing i in G1 and G2.

Assumption 2 (Monotonicity): For any player i and for any pair of configura-
tions (G1,Γ1,P1) and (G2,Γ2,P2), if Participants(i)∩Ci ( Participants(i)∩
C ′

i then U(i;G1,P1) < U(i;G2,P2).
In the following section we give a natural example of Q and D that satisfy

both assumptions. On the one hand we assume that there exists a maximum
value pMAX bounding the payment of any link of the communication graph. On
the other hand we define a disconnection function D(i;G) depending on pMAX

and the number of nodes in Participants(i)−Ci. To our knowledge, both seem
very natural conditions.

We refer to (G(T,F),Γ(T,F),P(T,F)) as the outcome or configuration as-
sociated to strategy vectors (T,F). By an abuse of notation we will often use
the shorthand G, Γ and P to refer to specific instantiations of network topology
G(T,F), contracting graph Γ(T,F), and payment matrix P(T,F), respectively.
We say that (G,Γ,P) is a feasible configuration if there exist strategy vectors
(T,F) such that (G,Γ,P) is the outcome associated to (T,F). Given (T,F),
the utility of node i is defined by U(i;G(T,F),P(T,F)).

3 A family of contracting functions and discon-
necting cost functions fulfilling the utility re-
quirements

We provide a natural example of a family of contracting functions functions Q
and adequate disconnection costs D so that the corresponding utility functions
satisfy both Assumptions 1 and 2.

Recall that a game is defined by (V, T, (ci)i∈V ,Π, D,Q) where V is a set of
n players or nodes, T is the traffic matrix, ci is the routing cost of player i per
unit of traffic, Π is the maintenance cost, D is the disconnection cost, and Q is
the contracting function. Let CMAX = maxi∈V {ci} and TMAX =

∑
i,j∈V tij .

Recall that he total cost of player i in a graph G is defined by

C(i;G) = cif(i;G) + Πδ(i;G) +D(i;G)
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and the total utility of player i in the communication network G with payment
matrix P is defined by

U(i;G,P) =
∑
j 6=i

(pji − pij)− C(i;G)

Our bounded payment contracting function family requires that Q satisfies
the property that the payment of any link can no be greater than a certain
maximum value. Formally, we consider contracting functions Q for which there
exists an upper limit PMAX > 0 such that ∀G,∀i, j ∈ V (G), |Q(i, j;G)| ≤
PMAX .

The disconnection cost D, for a given contracting function with payment
bound PMAX , is defined as

D(i;G) = ||Participants(i)− Ci||VMAX

where VMAX = CMAXTMAX + nΠ + 2nPMAX .
It is easy to see that D satisfies Assumption 1 as the disconnection cost

of a node i directly depends on the number of participants of i that are not
connected to i. Formally, we have that if Participants(i) ⊆ Ci then D(i;G) = 0.
Moreover, if j 6∈ Ci and j ∈ Participants(i) then if we consider any pair k, l ∈ Cj

, the graphsG+ik andG+il have the same new connected component containing
i. Hence D(i;G+ ik) = D(i;G+ il).

It only remains to show that the corresponding utility function U satisfies
Assumption 2. Let us consider a pair of configurations (G,Γ, P ) and (G′,Γ′, P ′)
such that Ci ∩ Participants(i) ( C ′

i ∩ Participants(i).
Let K = ||Participants(i)− Ci|| and K ′ = ||Participants(i)− C ′

i||. Notice
that K > K ′ and D(i, G) = KVMAX and D(i;G′) = K ′VMAX .

Now let us consider the value of the utility function, for node i, in both
graphs. Observe that we have U(i;G,P ) ≤ PMAX(n − 1) − C(i;G) and that
U(i;G′, P ′) ≥ −C(i;G′). If we consider their difference, we have

U(i;G,P )− U(i;G′, P ′) ≤ 2PMAX(n− 1)− C(i;G) + C(i;G′)

≤ 2PMAX(n− 1) + Πδ(i;G′) + cif(i;G′)−D(i;G) +D(i;G′)

≤ 2PMAX(n− 1) + Πδ(i;G′) + cif(i;G′)− (K −K ′)VMAX

≤ 2PMAX(n− 1) + Π(n− 1) + CMAXTMAX − VMAX

< 2PMAXn+ Πn+ CMAXTMAX − VMAX

= 0.

Hence, for each pair of configurations (G,Γ, P ) and (G′,Γ′, P ′) for which
Ci ∩ Participants(i) ⊂ C ′

i ∩ Participants(i), we have that

U(i;G,P )− U(i;G′, P ′) < 0.

4 Pairwise Nash Equilibrium

One of the aims of our model is to formalize the fact that players may deviate
from their strategies not only unilaterally, but also bilaterally. It seems natural
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that a player can delete contracts unilaterally. Once a contract is deleted, the
corresponding network link disappears. But if a player wants to add a new
contract with another player, then the former needs the agreement of the latter.
This bilateral process leads to the creation of a new link between both players.
Since Nash equilibrium does not allow us to represent the link formation as a
bilateral process, we adopt the notion of pairwise Nash stability used in [6].

Given the strategy vector (T,F), let G = G(T,F), Γ = Γ(T,F), and P =
P(T,F). Given the strategy vector (T′,F′), let G′ = G(T′,F′) and Γ′ =
Γ(T′,F′). We define P′ = (p′ij)i,j∈V according to:

p′kl =

 pkl if (k, l) ∈ Γ′ and (k, l) ∈ Γ
Q(k, l;G′) if (k, l) ∈ Γ′ and (k, l) /∈ Γ
0 otherwise

We assume that all contracts present both before and after the deviation main-
tain the same payment which is consistent with the notion of contract.

Pairwise Nash Equilibrium. Let us consider a game defined by a set of
players V , a traffic matrix T , and a utility function U with parameters ci for each
player i, Π, Q, andD (satisfying Assumptions 1 and 2 ). A strategy vector (T,F)
is a pairwise Nash equilibrium for the game defined by (V, T, (ci)i∈V ,Π, D,Q) if

(1) No unilateral deviation is profitable, i.e.,
for all i and for all (T ′

i , F
′
i ) ⊆ (Ti, Fi), U(i;G,P) ≥ U(i;G′,P′).

(2) No bilateral deviation is profitable, i.e.,
for all i, j and for all (Ti, Fi) ⊆ (T ′

i , F
′
i ) and (Tj , Fj) ⊆ (T ′

j , F
′
j),

if U(i;G,P) < U(i;G′,P′) then U(j;G,P) > U(j;G′,P′).

In a pairwise Nash equilibrium (T,F), the corresponding communication net-
work G = G(T,F) does not change. In this situation no player has incentive
to deviate. In section 4 we define a dynamic model where different networks
are formed over time. For this reason we consider that at each round, the acti-
vated player has to update the payments of all his links according to the present
topology.

Pairwise Nash Outcome. A feasible configuration (G,Γ,P) is a pairwise
Nash outcome for the game defined by (V, T, (ci)i∈V ,Π, D,Q) if there exists a
pairwise Nash equilibrium (T,F) for such a game such that (G,Γ,P) is the
outcome of (T,F).

Notice that a configuration (G,Γ,P) can be the outcome of different strategy
vectors, even the contracting graph Γ can be the result of different strategy
vectors. Let us define a notion of normalized vector in order to associate to
each (G,Γ,P) a unique strategy vector. A strategy vector (NT,NF) is the
normalized strategy vector of (G,Γ,P) when for each player i, NTi = {j|(i, j) ∈
Γ} and NFi = {j|(j, i) ∈ Γ}. We can extend the definition of normalized
strategy vector of a configuration (G,Γ,P) to the normalized strategy vector of
a contracting graph Γ or even of a strategy vector (T,F).
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By definition, if only one of the strategy vectors producing (G,Γ,P) is a
pairwise Nash equilibrium then (G,Γ,P) is a pairwise Nash outcome. In the
following we show that the pairwise Nash stability of an outcome is equivalent
to the pairwise Nash stability of its normalized strategy vector.

Lemma 1. If (T,F) is a pairwise Nash equilibrium then its corresponding nor-
malized strategy vector (NT,NF) also is a pairwise Nash equilibrium. However,
there exists a non pairwise Nash equilibrium (T,F) such that its corresponding
normalized strategy vector (NT,NF) is a pairwise Nash equilibrium.

Proof. For the first statement, let (T,F) be a strategy vector and let (NT,NF)
be its corresponding normalized vector. Let (G,Γ,P) be the outcome of (T,F),
by the definition of normalized strategy vector, we have that (T,F) has the
same outcome (G,Γ,P). In the following we show that any profitable deviation
of a player in (NT,NF) can be translated to a profitable deviation in (T,F).

Let us suppose that (NT,NF) is not a pairwise Nash equilibrium. Then
there exists a player i that prefers to deviate his strategy unilaterally or bi-
laterally. In the former, there exist NT ′

i ⊆ NTi and NF ′
i ⊆ NFi such that

U(i;G′,P′) > U(i;G,P). The same player i in (T,F) can consider a deviataion
T ′
i = NT ′

i and F ′
i = NFi (recall that NT ′

i ⊆ NTi ⊆ Ti and NF ′
i ⊆ NFi ⊆ Fi).

Notice that the outcome of (T′,F′) is equal to the outcome of (NT′,NF′) and
then this unilateral deviation is also profitable for player i in (T,F).

In the case of a profitable bilateral deviation of player i in (NT,NF) there
exists a player j such that accepts a contract from i (or to i). Let us suppose that
NTi∪{j} ⊆ NT ′

i , NFj∪{i} ⊆ NF ′
j , U(i;G′,P′) > U(i;G,P) and U(j;G′,P′) ≥

U(j;G,P). Notice that Γ′ = Γ ∪ {(i, j)}. Now, if we consider strategy vector
(T,F), players i and j also prefer to deviate their strategies so that T ′

i = Ti∪{j}
and F ′

j = Fj ∪ {i}. Since the outcome of (T′,F′) is equal to the outcome of
(NT′,NF′) then such bilateral deviation is profitable.

To prove the second statement, let us consider a contracting graph Γ with
E(Γ) = {(i, l), (i, k), (k, j)} and let (NT,NF) be its normalized strategy vector.
We define (T,F) as the strategy with the same contracting graph Γ but it differs
from (NT,NF) in that j ∈ Fl and j 6∈ NFl. Notice that if T ′

j = Tj ∪ {l} a new
contract (l, j) is added in the case that j increases its profit and i has at least
the same profit. If player j in (NT,NF) includes l in NT ′

j then the contracting
graph does not change and the deviation is not profitable.

Proposition 1. A configuration (G,Γ,P) is a pairwise Nash outcome for the
game defined by (V, T, (ci)i∈V ,Π, D,Q) if and only if the corresponding normal-
ized vector (NT,NF) is a pairwise Nash equilibrium.

Proof. By definition, if (G,Γ,P) is the outcome of a pairwise Nash equilibrium
(NT,NF) then (G,Γ,P) is a pairwise Nash outcome. And by Lemma 1 if
(G,Γ,P) is a pairwise Nash outcome then its normalized strategy vector is a
pairwise Nash equilibrium.

Notice that a normalized vector (NT,NF) is a pairwise Nash equilibrium if
and only if
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1. no player can increase his utility by breaking some of his contracts, and

2. no pair of players i, j can simultaneously increase their utility by creating
a new link ij.

We are interested in characterizing the topologies that, independently of
the other parameters, lead to a pairwise Nash equilibrium configuration. We
say that (G,Γ,P) is a proper configuration when for each ij ∈ G, (i, j) ∈ Γ if
and only if (j, i) 6∈ Γ. Notice that if a configuration is not proper, an existing
contract may be broken without changing the topology.

Pairwise Nash Topology. A graph G is a pairwise Nash topology for a traffic
matrix T if for all ((ci)i∈V ,Π, D,Q) (satisfying Assumptions 1 and 2 ), any
feasible and proper configuration (G,Γ,P) is a pairwise Nash outcome for the
game defined by (V, T, (ci)i∈V ,Π, D,Q).

Theorem 1. A network topology G is a pairwise Nash topology for a traffic
matrix T if and only if G satisfies the following properties:

1. For every pair u, v ∈ G such that u ∈ Participants(v) then Cu = Cv.

2. G is a forest.

3. For every edge uv ∈ G, if G′ = G − uv, and C ′
u, C

′
v are the corre-

sponding connected components containing u and v, respectively, then,
C ′

u ∩ Participants(v) 6= ∅ and C ′
v ∩ Participants(u) 6= ∅.

Proof. Let G be a pairwise Nash topology for T :
(1) Let us suppose that there exists a pair u, v ∈ V such that v ∈ Participants(u)
and Cu 6= Cv. Then by Assumption 2, u and v prefer to create the link uv to
increment their utilities.
(2) If there exists a link uv ∈ G contained in a cycle then for some contracting
function we have that puv − pvu > 0. Note that if u eliminates uv (breaking
the contract (u, v) or (v, u)) then u still remains connected to its participants.
Then the maintenance cost decreases by Π, the total traffic through u in G−uv
is not greater than that the one through u in G and the disconnection cost is
the same by Assumption 1. Therefore node u can increment its utility applying
such unilateral deviation.
(3) Let us suppose that there exist u ∈ V and uv ∈ G such that u remains
connected to all its participants in G − uv. Hence, for a contracting function
with puv − pvu > 0, u can increase its utility by eliminating the link uv. Let
G be a topology that satisfies (1), (2) and (3). Let us consider a proper and
feasible configuration (G,Γ,P). If u breaks a contract then by (3) u becomes
disconnected from some of its participants and then, by Assumption 2 this uni-
lateral deviation is not profitable. Moreover if a new link uv is created, then if
we consider a contracting function such that p′uv − p′vu > 0 (exactly one con-
tract either (u, v) or (v, u) is added) we have that the utility of u is decreased
strictly since and puv = pvu = 0, the maintenance cost increases (Π > 0) and
the routing cost of u may also be incremented. Notice that by (1) and (2) a
new link uv can provide shorter paths between pairs of participants.
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Figure 1: G is a pairwise Nash topology of a traffic matrix T

Given the above characterization it is not hard to see that, for any traffic
matrix T , every spanning forest of GT is a pairwise Nash topology, but there
might exist pairwise Nash topologies G 6= GT . One example is the graph G
given in Fig. 1. When GT is a complete graph, then we obtain as a corollary
an analogous result to the one presented in [5] for the uniform all-to-all traffic
matrix, i.e., for any i 6= j, ti,j = 1.

Corollary 1. Let T be a traffic matrix such that GT is a complete graph. G
is a pairwise Nash topology for T if and only if G is a tree containing all the
nodes of GT .

5 Myopic Dynamics

We consider a dynamic model of the previous network formation game in which
different networks are formed over time. The dynamic game can be seen as a pro-
cess where players interact over time through unilateral or bilateral deviations.
At each round a player can change his strategy only if this change improves
his current payoff. Our aim is to define a myopic dynamics that converges to
a pairwise Nash equilibria in polynomial time. Note that a strategic deviation
consists in either deleting unilaterally a set of contracts or adding bilaterally a
new link. Hence the set of all possible deviations has an exponential size with
respect to the number of players. We show that the problem of computing the
best possible deviation is NP-hard.

BEST RESPONSE: Given a game defined by (V, T, (ci)i∈V ,Π, D,Q), a config-
uration (G,Γ,P), a node u, and an integer C, decide whether there is a deviation
of u such that after applying it, u’s utility is greater than or equal to C.

Theorem 2. The BEST RESPONSE problem is NP-complete.

Proof. It is not hard to see that BR is in NP. We can define a nondeterministic
algorithm that guesses a deviation of player u and afterwards it verifies that the
utility of player u is greater than or equal to C. Of course, we assume that given
the description of D and Q, both functions are polynomial time computable in
n, the number of players.

In order to prove the NP hardness we reduce the Independent Set problem to
BR. Given a graph G = (V,E) and an integer C such that 0 ≤ C ≤ |V |, the re-
duction function returns a configuration (S,Γ,P), a game (V, T, (ci)i∈V ,Π, D,Q),
a new node u, and the value C where:
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− S is a star where V (S) = V ∪{u}, being u 6∈ V and E(S) = {uv : v ∈ V }.

− T = (tvw) where tvw = 1 if vw ∈ E, and tvw = 0, otherwise. Since G is
undirected, if vw ∈ E, we assume that only one of tvw and twv has the
value 1 and tvw + twv = 1. Note that Participants(u) = ∅.

− Γ = {(v, u) : v ∈ V }.

− Q(v, u;G) = 2 and Q(u, v;G) = −2 for all v ∈ V .

− D is any function such that jointly with Q satisfy Assumptions 1 and 2
(Since u has no participants, D(u;G,P) = 0 whatever be G and P) .

− The maintenance cost Π = 1 and the routing costs cv = n for all v ∈
V ∪ {u}.

Notice that since u has a contract to each of the n nodes of V , then the only
possible deviations of u consist in breaking contracts. Let us assume that there
is an independent set I ⊆ V such that |I| = C. If u deletes all the contracts
with I ′ = {v : v /∈I} then u only remains connected to all nodes of I. Let S′ be
the resulting topology and P′ the resulting payment matrix. Since there is no
traffic between the nodes in I, then U(u, S′,P′) = 2|I| − |I| = |I| = C.

Conversely, let us assume that there is no independent set of G of size C.
Then, for all I ⊆ V with |I| ≥ C, we have that there exists at least a pair of nodes
v, w ∈ I such that vw ∈ E. If after the deviation of u there still remain a < C
links between u and nodes in V , the resulting graph S′ and payment matrix
P′ satisfy U(u, S′,P′) = 2a− a− cuk where k =

∑
v,w∈I,vw∈E tvw ≥ 0. Hence,

U(u, S′,P′) ≤ a < C. Otherwise, if after the deviation of player u there are
b ≥ C links between u and nodes in V , then the resulting graph S′ and payment
matrix P′ satisfy U(u, S′,P′) = 2b − b − cuk where k =

∑
v,w∈I,vw∈E tvw ≥ 1.

Since cu = n then U(u, S′,P′) < 0.

Therefore, the NP-hardness of the BEST RESPONSE problem leads us to
reconsider the definition of each round of the dynamics. The main idea behind
our definition is to restrict the best response so that the deviation of the active
node can be computed in polynomial time and when no deviation of this kind
is possible, then the current configuration is a pairwise Nash configuration.

Myopic dynamics We consider a discrete dynamics where the time is divided
into periods or rounds. We denote by (G(k),Γ(k),P(k)) the configuration at the
beginning of round k, for any k ≥ 0. We assume that any initial configuration
(G(0),Γ(0),P(0)) is a feasible and proper configuration.

At each round k a node u is activated by an activation process. An ac-
tivation process is any discrete time stochastic process {Uk}k∈N where all Uk

are i.i.d. random variables from V drawn with full support. A realization of
an activation process is called an activation sequence. We consider a uniform
activation process, where the probability that Uk = u is uniform over all nodes.
Thus P [Uk = u] = 1/n.

In a single round k, if the active node is uk and the current configuration is
(G(k),Γ(k),P(k)) then uk takes the following actions:

11



1. uk updates the prices of all its current contracts: p
(k)
ukv = Q(uk, v;G(k)) if

(uk, v) ∈ Γ(k) and p
(k)
vuk = Q(v, uk;G(k)) if (v, uk) ∈ Γ(k).

2. uk selects the action from all the possible actions described below that
maximizes its utility. If uk has multiple choices, then we assume that uk
selects one of them randomly. The possible actions are:

(i) To break one of its contracts (uk, v) (or (v, uk)). Therefore Γ(k+1) =
Γ(k) − (uk, v) ( or Γ(k+1) = Γ(k) − (v, uk)), G(k+1) = G(k) − ukv and
P(k+1) = P(k)’.

(ii) To ask for a new contract (uk, v), and if v accepts, then Γ(k+1) =
Γ(k) + (uk, v), G(k+1) = Gk + ukv and P(k+1) = P(k)’.

(iii) To do nothing, and then (G(k+1),Γ(k+1),P(k+1)) = (G(k),Γ(k),P(k)).

Let MyopicRound be the function defined as follows: Given as input a node
u and a configuration (G,Γ,P), MyopicRound(u,G,Γ,P) returns the config-
uration resulting of applying 1) and 2) considering that the active node is u
and the current configuration is (G,Γ,P). Hence given an initial configuration
(G(0),Γ(0),P(0)) and an activation sequence u0 . . . , ukuk+1 . . ., we have that for
each k ≥ 0, (G(k+1),Γ(k+1),P(k+1)) = MyopicRound(uk, G

(k),Γ(k),P(k)).
It is not hard to see that for any k ≥ 0, (G(k),Γ(k),P(k)) is a proper config-

uration. Given any initial configuration (G(0),Γ(0),P(0)) and an instance of the
activation process, we say that the dynamics converges if there exists K such
that for all k > K, (G(k+1),Γ(k+1),P(k+1)) = (G(k),Γ(k),P(k)). Further, we say
that the dynamics converges uniformly if for every ε > 0 there exists K such
that

Pr
[
(G(k+1),Γ(k+1),P(k+1)) = (G(k),Γ(k),P(k)),∀k > K

]
≥ 1− ε

where the probability is taken with respect to the activation process.
A configuration (G,Γ,P) is a sink configuration of the dynamics if whatever

is the node u, MyopicRound(u,G,Γ,P) = (G,Γ,P). A key property of our
dynamics is that any sink configuration also is a pairwise Nash outcome or
configuration. Since we assume that Π > 0, it is not hard to see that the
topology of a sink configuration has no cycles. The hard part of the proof is to
show that in any sink configuration any node does not have incentive to break
a set of at least two contracts.

Proposition 2. Any sink configuration is a pairwise Nash configuration.

Proof. Let (G,Γ,P) be a sink configuration. Then any node is connected to its
participants. Hence for any u ∈ V , D(u;G) = 0.

Let us suppose that G contains a cycle and let uv be a link of such cycle.
Since (G,Γ,P) is a proper configuration either (u, v) ∈ Γ or (v, u) ∈ Γ. Let us
assume w.l.o.g. that (u, v) ∈ Γ and then pvu = 0. If puv > 0 then

U(u;G,P)− U(u;G− uv,P′) = −puv −Π− cu(f(u,G)− f(u;G− uv)).
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Since f(u,G)−f(u;G−uv) ≥ 0 we have that U(u;G,P)−U(u;G−uv,P′) < 0.
Then u has incentive to break the link uv, which contradicts the assumption
that (G,Γ,P) is a sink configuration. In the case that puv < 0 we obtain that v
has incentive to break uv (using the same arguments but interchanging u with
v).

From now on we have that G has no cycle and ∀u, D(u;G) = 0, u does not
want to break any link uv, and if u has incentive to add a new link uw, then w
does not agree. It remains to show that no node u has incentive to break a set
of links (of cardinality greater than 1).

Let us suppose that ∃u,∃A = {uv1, vv2, . . . , uvk} ⊆ E a minimal set with
k ≥ 2 satisfying U(u;G,P) < U(u;G−A,P′). Therefore,

∑
v|uv∈A

(pvu − puv) < Π|A|+ cu(f(u;G)− f(u;G−A)) (1)

Intuitively, u has an incentive to break all the links of A since the payments
that u receives do not amortize their maintenance and the routing costs.

Moreover, we know that every node has no incentive to break only one of its
links, i.e. ∀u ∈ V, ∀uv ∈ E, U(u;G,P) ≥ U(u;G− uv,P′). Then we have that:

(pvu − puv)−Πδ(u;G)− cuf(u;G) ≥ −Π(δ(u;G)− 1)− cuf(u;G− uv)

pvu − puv ≥ Π + cu(f(u;G)− f(u;G− uv))

pvu − puv ≥ Π (2)

Let us consider the links of A. It can be the case that u does not route traffic
through any link uv ∈ A, f(u;G) = f(u;G− uv). Then we have that

by (2),
∑
uv∈A

(pvu − puv) ≥ Π|A|

and by (1),
∑
uv∈A

(pvu − puv) < Π|A|+ cu(f(u;G)− f(u,G−A)) = Π|A|

which is a contradiction.
If it is the case that there exists uv ∈ A such that f(u;G) > f(u;G − uv)

then let us consider the subset of A defined by A′ = A − {uv} and let A′′ =
{uw ∈ E|uw 6∈ A} (Notice that A′ ∪ {uv} ∪ A′′ = {uw|w ∈ V } ∩ E). Let
B′ = {w|uw ∈ A′} and B′′ = V − (B ∪ {u, v}), and let us consider the different
kind of traffic through u. We denote by:

• fB′′B′′ the amount of traffic through u between pairs of nodes of B′′,

• fvB′′ the amount of traffic through u between v and B′′,

• fvB′ the amount of traffic through u between v and B′,
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• fB′B′ the amount of traffic through u between pairs of nodes of B′, and

• fB′B′′ the amount of traffic through u between B′ and B′′.

Notice that fB′′B′′ , fvB′′ , fvB′ , fB′B′ , fB′B′′ ≥ 0. We can express the traffic
through u as follows:

f(u;G) = fvB′′ + fvB′ + fB′B′ + fB′B′′ + fB′′B′′

f(u;G− uv) = fB′B′ + fB′B′′ + fB′′B′′

f(u;G−A′) = fvB′′ + fB′′B′′

f(u;G−A) = fB′′B′′

SinceA is a minimal set satisfying U(u;G,P) < U(u;G−A,P′) then U(u;G,P) ≥
U(u;G−A′,P′) and U(u;G,P) ≥ U(u;G− uv,P′). Thus∑

uw∈A′

(pwu − puw) ≥ Π(|A| − 1) + cu(fvB′ + fB′B′ + fB′B′′)

pvu − puv ≥ Π + cu(fvB′ + fvB′′)

Combining both inequalities we have that∑
uw∈A

(pwu − puw) ≥ Π|A|+ cu(2fvB′ + fvB′′ + fB′B′ + fB′B′′)

and by (1),
∑

uw∈A

(pwu − puw) < Π|A|+ cu(fvB′ + fvB′′ + fB′B′ + fB′B′′)

Hence 2fvB′ < fvB′ which is a contradiction since fvB′ ≥ 0. The contra-
diction arises from considering that there exists a minimal set A with |A| ≥ 2
satisfying U(u;G,P) < U(u;G−A,P′). Then, no node u has incentive to break
any set of links.

In order to guarantee the convergence of our dynamics we consider a class of
contracting functions satisfying two natural properties. First we assume that the
contracting function is anti-symmetric in the sense that Q(i, j;G) and Q(j, i;G)
have the same magnitude but opposite signs. The idea is that a link only is
payed by one of the two endpoints. And second we focus on the convenience of
a node of being connected to the maximum number of its participants.

Anti-symmetric property : A contracting function Q is anti-symmetric if, for
all nodes i and j, and any graph G, Q(i, j;G) = −Q(j, i;G).

Affine property : A contracting function Q is affine if, for all nodes i, j, k
such that j ∈ Participants(i) and k 6∈ Participants(i), then we have that
|Q(i, j;G+ ij)| > |Q(i, k;G+ ik)|.

Now in addition to Assumptions 1 and 2 we also require that the contracting
function should satisfy the anti-symmetric and affine properties. One example of
contracting function with payment bounded by 2, satisfying the two additional
properties, is the following:
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If i < j, Q(i, j, G) =

{
2 if j ∈ Participants(i)
1 otherwise

And

If i > j, Q(i, j, G) =

{
−2 if j ∈ Participants(i)
−1 otherwise

Observe that this contracting function provides an example in which the
player with the lowest identity pays for the established link.

In the rest of this section we introduce all the ingredients to prove the con-
vergence of our dynamics when the contracting function is antisymmetric and
affine. From now on let us suppose that Q is an antisymmetric and affine con-
tracting function. The main idea of the proof is based on associating a tuple
of integer values to each configuration. The components of such tuple describe
some important parameters of the current topology in relation to the traffic
matrix. We are going to show that the values of these parameters decrease
“globally” as the dynamics evolves, like a kind of potential function. In fact we
prove that at each round, some parameters never increase and in the case that
the current configuration is not a pairwise Nash equilibrium, then some param-
eters decrease strictly. Finally, since the configurations with “minimum values”
are pairwise Nash stable, then we can conclude that our dynamics converges.
Let us introduce formally the key element of the proof and all the properties
needed to prove the dynamics convergence.

The mapping of game configurations We define the mapping function Φ,
a function that maps game configurations to 4-tuples of non-negative integers,
as follows. Φ(G,Γ,P) = (CF , CE , AE , AP ), where:

• CF is the number of edges that have to be removed to have a spanning
forest of G.

• CE is the maximum number of edges ij, such that i 6∈ Participants(j)
in all spanning forests of G. CE = maxB∈ST (G) |{ij : ij ∈ E(B) ∧ i /∈
Participants(j)}|, where ST (G) is the set of all spanning forests of G.

• AE is the minimum number of edges to be added in order to get a graph
in which each node is connected to its participants.

• AP is the number of contracts that their payments have not been updated
yet, this is |{(i, j) : (i, j) ∈ Γ, pij 6= Q(i, j;G)}|.

Since any sink configuration (G,Γ,P) is a pairwise Nash equilibrium, we
have that (G,Γ,P) is a feasible configuration, G can not contain any cycle, and
each node is connected to all its participants.

Lemma 2. If (G,Γ,P) is sink configuration then Φ(G,Γ,P) = (0, CE , 0, 0).
Furthermore, if Φ(G,Γ,P) = (0, 0, 0, 0) then (G,Γ,P) is a sink configuration.
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Proof. If (G,Γ,P) is a sink configuration then the graph G is acyclic, (G,Γ,P)
is a feasible configuration, and all nodes are connected to their participants.
Hence CF = 0, AP = 0 and AE = 0.

If Φ(G,Γ,P) = (0, 0, 0, 0), then the configuration is feasible, G is a spanning
forest of GT and for all uv ∈ G, u ∈ Participants(v). Let us show that any ac-
tion of a node u other than do nothing decrements strictly its utility. Notice that
u can not update any of its contracts since the configuration is feasible. Since
there are no cycles in G and each uv ∈ E satisfies that u ∈ Participants(v),
then u has no incentive to delete a contract (recall that the sink configuration
is a proper configuration, an then if (u, v) ∈ Γ then (v, u) /∈ Γ). If by adding
a new contract (u, v) ∈ Γ, it does not decrease the utility of u, then puv < 0.
Hence v has no incentive to accept the proposal.

At any round of the Myopic Dynamics neither CE + AE nor CF will be
incremented.

Lemma 3. Let (G,Γ,P) be any proper configuration and let u ∈ V . Assume
that Φ(G,Γ,P) = (CF , CE , AE , AP ) and that Φ(MyopicRound(u,G,Γ,P)) =
(C ′

F , C
′
E , A

′
E , A

′
P ). Then, for any vertex u ∈ V , we have C ′

E + A′
E ≤ CE + AE

and C ′
F ≤ CF . Moreover, if AE = 0 then no pair of nodes have incentive to

create a new link.

Proof. Let us consider all the possible actions of u after updating the prices of
all its contracts:

(i) u does not do anything else. Hence the topology remains the same.

(ii) u breaks a contract (u, v) (or (v, u)), then C ′
F ≤ CF and C ′

E ≤ CE . But
it might occur that A′

E = AE + 1 and then by Assumption 2 we have that
v 6∈ participants(u) and then C ′

E = CE − 1.

(iii) u asks whether v accepts a contract (u, v) (or (v, u)) and v accepts it. Then
it can be the case that Cu 6= Cv. If the new link uv connects u or v to
one of their (disconnected) participants, then A′

E = AE − 1. Otherwise,
u only has incentive to add (u, v) if at least −puv − Π > 0 and v has
incentive to accept the contract only if puv − Π ≥ 0. Since Π > 0, it can
not occur. Finally, in the case that Cu = Cv, then G + uv contains a
cycle. Notice that we have the same conditions as in the previous case
and then the bilateral deviation does not occur. Summarizing, uv does
not add a new cycle, C ′

F = CF , uv connects at least two (disconnected)
participants, A′

E = AE , and since only a new link is added, C ′
E ≤ CE + 1.

Since u can not introduce a new cycle, if AE = 0 then u has no incentive
to add a new link.

However, the previous invariant property of the dynamics is not enough to
guarantee convergence.
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Lemma 4. If Φ(G,Γ,P) = (CF , CE , AE , AP ) and AE ≥ 1, then there exists
at least a node u such that its most profitable action is to create a new edge
uv where v 6∈ Cu and v ∈ Participants(u). Then Φ(G + uv,Γ + (u, v),P′) =
(CF , CE , AE − 1, A′

P ).

Proof. Since AE ≥ 1, there exist u, v such that u ∈ Participants(v) and Cu 6=
Cv. By Assumptions 1 and 2, u prefers to add a contract to a node of Cv

instead of cutting any of its contracts. The same occurs with v, it prefers to
add a contract to a node of Cu.

Let us suppose that Q(u, v;G + uv) ≤ 0, i.e. v pays to u. If u is the
active node, by the affinity property of Q, it is more convenient for u to create a
contract with v than with any other w 6∈ Participants(u). Notice that the traffic
through u is the same whatever is the selected node v′ ∈ Cv. Then, the most
profitable action for u is to add a contract (u, v′) that maximizes Q(v′, u;G+uv′)
considering only nodes v′ ∈ Cv ∩ Participants(u). By Assumptions 1 and 2, v′

accepts the contract (u, v′). If Q(u, v;G+ uv) > 0, then by the anti-symmetric
property Q(v, u;G + uv) < 0. Hence we can apply the same argument than
above but replacing node active u by node v. Then, the most profitable action
for v is to add a contract (v, u′) that maximizes Q(u′, v;G + u′v) considering
only nodes u′ ∈ Cu ∩ Participants(v). By Assumptions 1 and 2, u′ accepts the
contract (v, u′).

Now, we have all the ingredients to prove the convergence of our dynam-
ics. We assume that the activation process is uniform, i.e. for all nodes u,
Pr [Uk = u] = 1

n , where n is the number of nodes1.

Theorem 3. The Myopic Dynamics initiated at any initial configuration con-
verges uniformly to a pairwise Nash configuration after O(n2 log n) rounds in
expectation.

Proof. Let (G,Γ,P) be any proper configuration and assume that Φ(G,Γ,P) =
(CF , CE , AE , AP ). If AE ≥ 1 , then by lemma 5 there exists at least a node
u such that its most profitable action is to create a new link with one of its
participants without introducing any cycle so that Φ(G + uv,Γ + (u, v),P′) =
(CF , CE , AE − 1, A′

P ). By a coupon collector argument, the expected number
of rounds to activate each node at least once is O(n log n), then AE decreases
by one in O(n log n) rounds in expectation. Hence, after O(n2 log n) rounds in
expectation we have that AE = 0.

If AE = 0 then by lemma 4, no pair of nodes have incentive to create a new
link and for any u ∈ V , if Φ(MyopicRound(u,G,Γ,P)) = (C ′

F , C
′
E , A

′
E , A

′
P )

then C ′
E + A′

E ≤ CE + AE and C ′
F ≤ CF . Hence, either C ′

E = CE − 1 and
A′

E = 1, or C ′
F = CF −1. The worst case is that neither decreases CE +AE nor

CF . This means that C ′
E = CE − 1 and A′

E = 1 and C ′
F = CF . Since A′

E = 1,

1The proof of convergence holds whenever the node activation process guarantees that
almost surely all pair of nodes u and v are activated successively infinitely often (however the
expected time will not necessarily be the same)
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then there exists at least one node that its most profitable action is to create
a link with one of its participants and the parameters of the new configuration
are A′′

E = 0, C ′′
E = CE − 1, and C ′′

F = CF . Hence in O(2n log n) rounds in
expectation, CE decreases by one and AE = 0. Notice that CE ≤ n− 1, then in
O(n2 log n) rounds in expectation the current C ′′

E can not be decreased anymore
and C ′′

F ≥ 0.
In O(n log n) additional rounds in expectation all the nodes will be activated

once and and then the current CF is decremented at least by one (and by n
at most). Then in O(n2 log n) additional rounds in expectation CF becomes 0.
Finally it only remains to update the payments of all contracts. Hence Ap = 0
in O(n log n) additional rounds in expectation.

Therefore, the myopic dynamics initiated at any proper and feasible con-
figuration reaches a sink (G′,Γ′,Pupdated) for which Φ((G′,Γ′,Pupdated)) =
(0, C ′′

E , 0, 0) in O(n2 log n) rounds in expectation.

We notice that the assumptions made on the contracting function are quite
natural and, even though the initial configuration and the communication pat-
tern can be any one, the myopic dynamics converges uniformly to a pairwise
Nash configuration in a polynomial number of rounds in expectation. Observe
that when the traffic matrix represents a uniform all-to-all communication pat-
tern Theorem 3 improves the expected convergence time with respect to the
dynamics studied in [5, 7].

6 Conclusions

In this work we have extended the network formation model of Arcaute et al.
[5, 7] to nonuniform traffic. Our model considers a traffic matrix for asymmetric
players, each pair of nodes can have a different amount of traffic, instead of the
uniform all-to-all pattern, in which all traffic demands are equal, considered in
[5, 7]. We have shown a general characterization of the pairwise Nash topologies
depending on the traffic. We have focused our study on the definition of an orig-
inal dynamics model. Our dynamics considers a new strategy space and as long
as the assumptions made on the utility function and the contracting function
are satisfied, the convergence to a pairwise Nash configuration is guaranteed.
Furthermore, under a uniform node activation process we can guarantee conver-
gence in a polynomial number of rounds in expectation. Besides, the expected
time O(n2 log n) of our dynamics improves the time bound O(n5) obtained, for
the dynamics for the uniform all to all traffic, in [5, 7], although the assumptions
make in both models are not the same.

There are several open research directions. The most obvious is to study the
quality of the equilibria with respect to the social optimum. It seems natural
to analyze it in relation to the given traffic matrix as well as in relation to the
initial configuration in the dynamics. Another interesting direction is the study
of other natural requirements on the contracting function that guarantee the
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convergence of the dynamics or showing that the assumptions in this paper are
tight.
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