
Noname manuscript No.
(will be inserted by the editor)

The Advice Complexity of a Class of Hard Online Problems

Joan Boyar · Lene M. Favrholdt · Christian
Kudahl · Jesper W. Mikkelsen

August 29, 2018

Abstract The advice complexity of an online problem is a measure of how much
knowledge of the future an online algorithm needs in order to achieve a certain com-
petitive ratio. Using advice complexity, we define the first online complexity class,
AOC. The class includes independent set, vertex cover, dominating set, and several
others as complete problems. AOC-complete problems are hard, since a single wrong
answer by the online algorithm can have devastating consequences. For each of these
problems, we show that log

(
1+(c−1)c−1/cc

)
n =Θ(n/c) bits of advice are neces-

sary and sufficient (up to an additive term of O(logn)) to achieve a competitive ratio
of c.

The results are obtained by introducing a new string guessing problem related to
those of Emek et al. (TCS 2011) and Böckenhauer et al. (TCS 2014). It turns out
that this gives a powerful but easy-to-use method for providing both upper and lower
bounds on the advice complexity of an entire class of online problems, the AOC-
complete problems.

Previous results of Halldórsson et al. (TCS 2002) on online independent set, in a
related model, imply that the advice complexity of the problem is Θ(n/c). Our results
improve on this by providing an exact formula for the higher-order term. For online
disjoint path allocation, Böckenhauer et al. (ISAAC 2009) gave a lower bound of
Ω(n/c) and an upper bound of O((n logc)/c) on the advice complexity. We improve

A preliminary version of this paper appeared in the proceedings of the 32nd International Symposium on
Theoretical Aspects of Computer Science (STACS 2015), Leibniz International Proceedings in Informatics
30: 116-129, 2015.

This work was partially supported by the Villum Foundation and the Danish Council for Independent
Research, Natural Sciences.

J. Boyar · L.M. Favrholdt · C. Kudahl · J.W. Mikkelsen
Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense M,
Denmark
Tel.: +45 6550-2338,
E-mail: {joan,lenem,jesperwm,kudahl}@imada.sdu.dk

ar
X

iv
:1

40
8.

70
33

v3
 [

cs
.D

S]
 2

5
M

ay
 2

01
6

2 Joan Boyar et al.

on the upper bound by a factor of logc. For the remaining problems, no bounds on
their advice complexity were previously known.

Keywords online algorithms, advice complexity, complexity class, asymmetric
string guessing, covering designs, Asymmetric Online Covering (AOC)

1 Introduction

An online problem is an optimization problem in which the input is divided into small
pieces, usually called requests, arriving sequentially. An online algorithm must serve
each request without any knowledge of future requests, and the decisions made by the
online algorithm are irrevocable. The goal is to minimize or maximize some objective
function.

Traditionally, the quality of an online algorithm is measured by the competitive
ratio, which is an analog of the approximation ratio for approximation algorithms:
The solution produced by the online algorithm is compared to the solution produced
by an optimal offline algorithm, OPT, which knows the entire request sequence in
advance, and only the worst case is considered.

For some online problems, it is impossible to achieve a good competitive ratio.
As an example, consider the classical problem of finding a maximum independent
set in a graph. Suppose that, at some point, an online algorithm decides to include a
vertex v in its solution. It then turns out that all forthcoming vertices in the graph are
connected to v, but not to each other. Thus, the online algorithm cannot include any of
these vertices. On the other hand, OPT knows the entire graph, and so it rejects v and
instead takes all forthcoming vertices. In fact, one can easily show that, even if we
allow randomization, no online algorithm for this problem can obtain a competitive
ratio better than Ω(n), where n is the number of vertices in the graph.

A natural question for online problems, which is not answered by competitive
analysis, is the following: Is there some small amount of information such that, if
the online algorithm knew this, then it would be possible to achieve a significantly
better competitive ratio? Our main result is a negative answer to this question for an
entire class of hard online problems, including independent set. We prove our main
result in the recently introduced advice complexity model. In this model, the online
algorithm is provided with b bits of advice about the input. No restrictions are placed
on the advice. This means that the advice could potentially encode some knowledge
which we would never expect to be in possession of in practice, or the advice could
be impossible to compute in any reasonable amount of time. Lower bounds obtained
in the advice complexity model are therefore very robust, since they do not rely on
any assumptions about the advice. If we know that b bits of advice are necessary to
be c-competitive, then we know that any piece of information which can be encoded
using less than b bits will not allow an online algorithm to be c-competitive.

In this paper, we use advice complexity to introduce the first complexity class for
online problems. The complete problems for this class, one of which is independent
set, are very hard in the online setting. We essentially show that for the complete
problems in the class, a c-competitive online algorithm needs as much advice as is
required to explicitly encode a solution of the desired quality. One important feature

The Advice Complexity of a Class of Hard Online Problems 3

of our framework is that we introduce an abstract online problem which is complete
for the class and well-suited to use as the starting point for reductions. This makes it
easy to prove that a large number of online problems are complete for the class and
thereby obtain tight bounds on their advice complexity.

1.1 Advice Complexity

Advice complexity [7, 14, 15, 22] is a quantitative and standardized, i.e., problem
independent, way of relaxing the online constraint by providing the algorithm with
partial knowledge of the future. The main idea of advice complexity is to provide an
online algorithm, ALG, with some advice bits. These bits are provided by a trusted
oracle, O, which has unlimited computational power and knows the entire request
sequence.

In the first model proposed [14], the advice bits were given as answers (of varying
lengths) to questions posed by ALG. One difficulty with this model is that using at
most 1 bit, three different options can be encoded (giving no bits, a 0, or a 1). This
problem was addressed by the model proposed in [15], where the oracle is required
to send a fixed number of advice bits per request. However, for the problems we
consider, one bit per request is enough to guarantee an optimal solution, and so this
model is not applicable. Instead, we will use the “advice-on-tape” model [7], which
allows for a sublinear number of advice bits while avoiding the problem of encoding
information in the length of each answer. Before the first request arrives, the oracle
prepares an advice tape, an infinite binary string. The algorithm ALG may, at any
point, read some bits from the advice tape. The advice complexity of ALG is the
maximum number of bits read by ALG for any input sequence of at most a given
length.

When advice complexity is combined with competitive analysis, the central ques-
tion is: How many bits of advice are necessary and sufficient to achieve a given com-
petitive ratio c?

Definition 1 (Competitive ratio [23, 32] and advice complexity [7, 22]) The input
to an online problem, P, is a request sequence σ = 〈r1, . . . ,rn〉. An online algorithm
with advice, ALG, computes the output y = 〈y1, . . . ,yn〉, under the constraint that yi is
computed from ϕ,r1, . . . ,ri, where ϕ is the content of the advice tape. Each possible
output for P is associated with a score. For a request sequence σ , ALG(σ) (OPT(σ))
denotes the score of the output computed by ALG (OPT) when serving σ .

If P is a maximization problem, then ALG is c(n)-competitive if there exists a
constant, α , such that, for all n ∈ N,

OPT(σ)≤ c(n) ·ALG(σ)+α,

for all request sequences, σ , of length at most n. If P is a minimization problem, then
ALG is c(n)-competitive if there exists a constant, α , such that, for all n ∈ N,

ALG(σ)≤ c(n) ·OPT(σ)+α,

4 Joan Boyar et al.

for all request sequences, σ , of length at most n. In both cases, if the inequality holds
with α = 0, we say that ALG is strictly c(n)-competitive.

The advice complexity, b(n), of an algorithm, ALG, is the largest number of bits
of ϕ read by ALG over all possible inputs of length at most n. The advice complexity
of a problem, P, is a function, f (n,c), c ≥ 1, such that the smallest possible advice
complexity of a strictly c-competitive online algorithm for P is f (n,c).

In this paper, we only consider deterministic online algorithms (with advice).
Note that both the advice read and the competitive ratio may depend on n, but, for
ease of notation, we often write b and c instead of b(n) and c(n). Also, by this def-
inition, c ≥ 1, for both minimization and maximization problems. For minimization
problems, the score is also called the cost, and for maximization problems, the score
is also called the profit. Furthermore, we use output and solution interchangeably.
Lower and upper bounds on the advice complexity have been obtained for many
problems, see e.g. [2, 4–10, 13–15, 17, 18, 22, 24, 26, 28, 30, 31].

1.2 String guessing

In [5, 15], the advice complexity of the following string guessing problem, SG, is
studied: For each request, which is simply empty and contains no information, the
algorithm tries to guess a single bit (or more generally, a character from some finite
alphabet). The correct answer is either revealed as soon as the algorithm has made
its guess (known history), or all of the correct answers are revealed together at the
very end of the request sequence (unknown history). The goal is to guess correctly as
many bits as possible.

The problem was first introduced (under the name generalized matching pennies)
in [15], where a lower bound for randomized algorithms with advice was given. In [5],
the lower bound was improved for the case of deterministic algorithms. In fact, the
lower bound given in [5] is tight up to lower-order additive terms. While SG is rather
uninteresting in the view of traditional competitive analysis, it is very useful in an
advice complexity setting. Indeed, it has been shown that the string guessing problem
can be reduced to many classical online problems, thereby giving lower bounds on
the advice complexity for these problems. This includes bin packing [10], the k-server
problem [18], list update [9], metrical task system [15], set cover [5] and a certain
version of maximum clique [5].

1.2.1 Asymmetric string guessing

In this paper, we introduce a new string guessing problem called asymmetric string
guessing, ASG, formally defined in Section 2. The rules are similar to those of the
original string guessing problem with an alphabet of size two, but the score function
is asymmetric: If the algorithm answers 1 and the correct answer is 0, then this counts
as a single wrong answer (as in the original problem). On the other hand, if the al-
gorithm answers 0 and the correct answer is 1, the solution is deemed infeasible and
the algorithm gets an infinite penalty. This asymmetry in the score function forces the
algorithm to be very cautious when making its guesses.

The Advice Complexity of a Class of Hard Online Problems 5

As with the original string guessing problem, ASG is not very interesting in the
traditional framework of competitive analysis. However, it turns out that ASG cap-
tures, in a very precise way, the hardness of problems such as online independent set
and online vertex cover.

1.3 Problems

Many of the problems that we consider are graph problems, and most of them are
studied in the vertex-arrival model. In this model, the vertices of an unknown graph
are revealed one by one. That is, in each round, a vertex is revealed together with all
edges connecting it to previously revealed vertices. For the problems we study in the
vertex-arrival model, whenever a vertex, v, is revealed, an online algorithm ALG must
(irrevocably) decide if v should be included in its solution or not. Denote by VALG the
vertices included by ALG in its solution after all vertices of the input graph have been
revealed. The individual graph problems are defined by specifying the set of feasible
solutions. The cost (profit) of an infeasible solution is ∞ (−∞).

The problems we consider in the vertex-arrival model are:

– ONLINE VERTEX COVER. A solution is feasible if it is a vertex cover in the input
graph. The problem is a minimization problem.

– ONLINE CYCLE FINDING. A solution is feasible if the subgraph induced by the
vertices in the solution contains a cycle. We assume that the presented graph
always contains a cycle. The problem is a minimization problem

– ONLINE DOMINATING SET. A solution is feasible if it is a dominating set in the
input graph. The problem is a minimization problem.

– ONLINE INDEPENDENT SET. A solution is feasible if it is an independent set in
the input graph. The problem is a maximization problem.

We emphasize that the classical 2-approximation algorithm for offline vertex
cover cannot be used in our online setting, even though the algorithm is greedy. That
algorithm greedily covers the edges (by selecting both endpoints) one by one, but this
is not possible in the vertex-arrival model.

Apart from the graph problems in the vertex-arrival model mentioned above, we
also consider the following online problems. Again, the cost (profit) of an infeasible
solution is ∞ (−∞).

– ONLINE DISJOINT PATH ALLOCATION. A path with L+1 vertices {v0, . . . ,vL}
is given. Each request (vi,v j) is a subpath specified by the two endpoints vi and v j.
A request (vi,v j) must immediately be either accepted or rejected. This decision
is irrevocable. A solution is feasible if the subpaths that have been accepted do
not share any edges. The profit of a feasible solution is the number of accepted
paths. The problem is a maximization problem.

– ONLINE SET COVER (set-arrival version). A finite set U known as the universe
is given. The input is a sequence of n finite subsets of U , (A1, . . . ,An), such that
∪1≤i≤nAi = U . A subset can be either accepted or rejected. Denote by S the set
of indices of the subsets accepted in some solution. The solution is feasible if

6 Joan Boyar et al.

∪i∈SAi = U . The cost of a feasible solution is the number of accepted subsets.
The problem is a minimization problem.

1.4 Preliminaries

Throughout the paper, we let n denote the number of requests in the input.
We let log denote the binary logarithm log2 and ln the natural logarithm loge.
By a string we always mean a bit string. For a string x∈ {0,1}n, we denote by |x|1

the Hamming weight of x (that is, the number of 1s in x) and we define |x|0 = n−|x|1.
Also, we denote the i’th bit of x by xi, so that x = x1x2 . . .xn.

For n∈N, define [n] = {1,2, . . . ,n}. For a subset Y ⊆ [n], the characteristic vector
of Y is the string y = y1 . . .yn ∈ {0,1}n such that, for all i ∈ [n], yi = 1 if and only if
i ∈ Y . For x,y ∈ {0,1}n, we write xv y if xi = 1⇒ yi = 1 for all 1≤ i≤ n.

If the oracle needs to communicate some integer m to the algorithm, and if the
algorithm does not know of any upper bound on m, the oracle needs to use a self-
delimiting encoding. For instance, the oracle can write dlog(m + 1)e in unary (a
string of 1’s followed by a 0) before writing m itself in binary. In total, this encoding
uses 2dlog(m+ 1)e+ 1 = O(logm) bits. Slightly more efficient encodings exist, see
e.g. [6].

1.5 Our contribution

In Section 3, we give lower and upper bounds on the advice complexity of the new
asymmetric string guessing problem, ASG. The bounds are tight up to an additive
term of O(logn). Both upper and lower bounds hold for the competitive ratio as well
as the strict competitive ratio.

More precisely, if b is the number of advice bits necessary and sufficient to
achieve a (strict) competitive ratio c > 1, then we show that

b = log
(

1+
(c−1)c−1

cc

)
n±Θ(logn), (1)

where
1

e ln2
n
c
≤ log

(
1+

(c−1)c−1

cc

)
n≤ n

c
.

This holds for all variants of the asymmetric string guessing problem (minimiza-
tion/maximization and known/unknown history). See Figure 1 on page 14 for a graph-
ical plot. For the lower bound, the constant hidden in Θ(logn) depends on the additive
constant α of the c-competitive algorithm. We only consider c > 1, since in order to
be strictly 1-competitive, an algorithm needs to correctly guess every single bit. It is
easy to show that this requires n bits of advice (see e.g. [5]). By Remark 1 in section 3,
this also gives a lower bound for being 1-competitive.

In Section 4, we introduce a class, AOC, of online problems. The class AOC
essentially consists of those problems which can be reduced to ASG. In particular,
for any problem in AOC, our upper bound on the advice complexity for ASG applies.

The Advice Complexity of a Class of Hard Online Problems 7

This is one of the few known examples of a general technique for constructing online
algorithms with advice, which works for an entire class of problems.

On the hardness side, we show that several online problems, including ONLINE
VERTEX COVER, ONLINE CYCLE FINDING, ONLINE DOMINATING SET, ONLINE
INDEPENDENT SET, ONLINE SET COVER and ONLINE DISJOINT PATH ALLOCA-
TION are AOC-complete, that is, they have the same advice complexity as ASG. We
prove this by providing reductions from ASG to each of these problems. The re-
ductions preserve the competitive ratio and only increase the number of advice bits
by an additive term of O(logn). Thus, we obtain bounds on the advice complexity
of each of these problems which are essentially tight. Finally, we give a few exam-
ples of problems which belong to AOC, but are provably not AOC-complete. This
first complexity class with its many complete problems could be the beginning of a
complexity theory for online algorithms.

As a key step in obtaining our results, we establish a connection between the
advice complexity of ASG and the size of covering designs (a well-studied object
from the field of combinatorial designs).

1.5.1 Discussion of results

Note that the offline versions of the AOC-complete problems have very different
properties. Finding the shortest cycle in a graph can be done in polynomial time.
There is a greedy 2-approximation algorithm for finding a minimum vertex cover. No
o(logn)-approximation algorithm exists for finding a minimum set cover (or a min-
imum dominating set), unless P = NP [29]. For any ε > 0, no n1−ε -approximation
algorithm exists for finding a maximum independent set, unless ZPP= NP [21]. Yet
these AOC-complete problems all have essentially the same high advice complexity.
Remarkably, the algorithm presented in this paper for problems in AOC is oblivious
to the input: it ignores the input and uses only the advice to compute the output. Our
lower bound proves that for AOC-complete problems, this oblivious algorithm is op-
timal. This shows that for AOC-complete problems, an adversary can reveal the input
in such a way that an online algorithm simply cannot deduce any useful information
from the previously revealed requests when it has to answer the current request. Thus,
even though the AOC-complete problems are very different in the offline setting with
respect to approximation, in the online setting, they become equally hard since an ad-
versary can prevent an online algorithm from using any non-trivial structure of these
problems.

Finally, we remark that the bounds (1) are under the assumption that the number
of 1s in the input string (that is, the size of the optimal solution) is chosen adversar-
ially. In fact, if t denotes the number of 1s in the input string, we give tight lower
and upper bounds on the advice complexity as a function of both n, c, and t. We then
obtain (1) by calculating the value of t which maximizes the advice needed (it turns
out that this value is somewhere between n/(ec) and n/(2c)). If t is smaller or larger
than this value, then our algorithm will use less advice than stated in (1).

8 Joan Boyar et al.

1.5.2 Comparison with previous results

The original string guessing problem, SG, can be viewed as a maximization problem,
the goal being to correctly guess as many of the n bits as possible. Clearly, OPT
always obtains a profit of n. With a single bit of advice, an algorithm can achieve a
strict competitive ratio of 2: The advice bit simply indicates whether the algorithm
should always guess 0 or always guess 1. This is in stark contrast to ASG, where
linear advice is needed to achieve any constant competitive ratio. On the other hand,
for both SG and ASG, achieving a constant competitive ratio c < 2 requires linear
advice. However, the exact amount of advice required to achieve such a competitive
ratio is larger for ASG than for SG. See Figure 1 for a graphical comparison.

The problems ONLINE INDEPENDENT SET and ONLINE DISJOINT PATH AL-
LOCATION, which we show to be AOC-complete, have previously been studied in the
context of advice complexity or similar models. We present a detailed comparison of
our work to these previous results.

In [7], among other problems, the advice complexity of ONLINE DISJOINT PATH
ALLOCATION is considered. It is shown that a strictly c-competitive algorithm must
read at least n+2

2c −2 bits of advice. Comparing with our results, we see that this lower
bound is asymptotically tight. On the other hand, the authors show that for any c≥ 2,
there exists a strictly c-competitive online algorithm reading at most b bits of advice,
where

b = min
{

n log
(

c
(c−1)(c−1)/c

)
,

n logn
c

}
+3logn+O(1) .

We remark that n log
(

c/(c−1)(c−1)/c
)
≥ (n logc)/c, for c ≥ 2. Thus, this upper

bound is a factor of 2 logc away from the lower bound.
In [19], the problem ONLINE INDEPENDENT SET is studied in a multi-solution

model. In this model, an online algorithm is allowed to maintain multiple solutions.
The algorithm knows (a priori) the number n of vertices in the input graph. The model
is parameterized by a function r(n). Whenever a vertex v is revealed, the algorithm
can include v in at most r(n) different solutions (some of which might be new solu-
tions with v as the first vertex). At the end, the algorithm outputs the solution which
contains the most vertices.

The multi-solution model is closely related to the advice complexity model. After
processing the entire input, an algorithm in the multi-solution model has created at
most n · r(n) different solutions (since at most r(n) new solutions can be created
in each round). Thus, one can convert a multi-solution algorithm to an algorithm
with advice by letting the oracle provide log(n · r(n)) bits of advice indicating which
solution to output. In addition, the oracle needs to provide O(logn) bits of advice in
order to let the algorithm learn n (which was given to the multi-solution algorithm
for free). On the other hand, an algorithm using b(n) bits of advice can be converted
to 2b(n) deterministic algorithms. One can then run them in parallel to obtain a multi-
solution algorithm with r(n) = 2b(n). These simple conversions allow one to translate
both upper and lower bounds between the two models almost exactly (up to a lower-
order additive term of O(logn)).

The Advice Complexity of a Class of Hard Online Problems 9

It is shown in [19] that for any c≥ 1, there is a strictly c-competitive algorithm in
the multi-solution model if dlogr(n)− 1e ≥ n/c. This gives a strictly c-competitive
algorithm reading n

c +O(logn) bits of advice. On the other hand, it is shown that
for any strictly c-competitive algorithm in the multi-solution model, it must hold that
c ≥ n/(2log(n · r(n))). This implies that any strictly c-competitive algorithm with
advice must read at least n

2c − logn bits of advice. Thus, the upper and lower bounds
obtained in [19] are asymptotically tight.

Comparing our results to those of [19] and [7], we see that we improve on both
the lower and upper bounds on the advice complexity of the problems under consid-
eration by giving tight results. For the upper bound on ONLINE DISJOINT PATH AL-
LOCATION, the improvement is a factor of (logc)/2. The results of [19] are already
asymptotically tight. Our improvement consists of determining the exact coefficient
of the higher-order term. Perhaps even more important, obtaining these tight lower
and upper bounds on the advice complexity for ONLINE INDEPENDENT SET and
ONLINE DISJOINT PATH ALLOCATION becomes very easy when using our string
guessing problem ASG. We remark that the reductions we use to show the hardness
of these problems reduces instances of ASG to instances of ONLINE INDEPENDENT
SET (resp. ONLINE DISJOINT PATH ALLOCATION) that are identical to the hard in-
stances used in [19] (resp. [7]). What enables us to improve the previous bounds,
even though we use the same hard instances, is that we have a detailed analysis of the
advice complexity of ASG at our disposal.

1.6 Related work

The advice complexity of ONLINE DISJOINT PATH ALLOCATION has also been
studied as a function of the length of the path (as opposed to the number of requests),
see [3, 7].

The advice complexity of ONLINE INDEPENDENT SET on bipartite graphs and
on sparse graphs has been determined in [13]. It turns out that for these graph classes,
even a small amount of advice can be very helpful. For instance, it is shown that a
single bit of advice is enough to be 4-competitive on trees (recall that without advice,
it is not possible to be better than Ω(n)-competitive, even on trees).

It is clear that online maximum clique in the vertex arrival model is essentially
equivalent to ONLINE INDEPENDENT SET. In [5], the advice complexity of a differ-
ent version of online maximum clique is studied: The vertices of a graph are revealed
as in the vertex-arrival model. Let VALG be the set of vertices selected by ALG and
let C be a maximum clique in the subgraph induced by the vertices VALG. The profit
of the solution VALG is |C|2 / |VALG|. In particular, the algorithm is not required to
output a clique, but is instead punished for including too many additional vertices in
its output.

The ONLINE VERTEX COVER problem and some variations thereof are studied
in [11].

The advice complexity of an online set cover problem [1] has been studied in [24].
However, the version of online set cover that we consider is different and so our
results and those of [24] are incomparable.

10 Joan Boyar et al.

2 Asymmetric String Guessing

In this section, we formally define the asymmetric string guessing problem and give
simple algorithms for the problem. There are four variants of the problem, one for
each combination of minimization/maximization and known/unknown history. Col-
lectively, these four problems will be referred to as ASG.

We have deliberately tried to mimic the definition of the string guessing problem
SG from [5]. However, for ASG, the number, n, of requests is not revealed to the
online algorithm (as opposed to in [5]). This is only a minor technical detail since it
changes the advice complexity by at most O(logn) bits.

2.1 The Minimization Version

We begin by defining the two minimization variants of ASG: One in which the output
of the algorithm cannot depend on the correctness of previous answers (unknown
history), and one in which the algorithm, after each guess, learns the correct answer
(known history1). We collectively refer to the two minimization problems as MIN-
ASG.

Definition 2 The minimum asymmetric string guessing problem with unknown his-
tory, MINASGU, has input 〈?1, . . . ,?n,x〉, where x ∈ {0,1}n, for some n ∈ N. For
1≤ i≤ n, round i proceeds as follows:

1. The algorithm receives request ?i which contains no information.
2. The algorithm answers yi, where yi ∈ {0,1}.

The output y = y1 . . .yn computed by the algorithm is feasible, if xv y. Otherwise, y
is infeasible. The cost of a feasible output is |y|1, and the cost of an infeasible output
is ∞. The goal is to minimize the cost.

Thus, each request carries no information. While this may seem artificial, it does
capture the hardness of some online problems (see for example Lemma 7).

Definition 3 The minimum asymmetric string guessing problem with known history,
MINASGK, has input 〈?,x1, . . . ,xn〉, where x = x1 . . .xn ∈ {0,1}n, for some n ∈ N.
For 1≤ i≤ n, round i proceeds as follows:

1. If i> 1, the algorithm learns the correct answer, xi−1, to the request in the previous
round.

2. The algorithm answers yi = f (x1, . . . ,xi−1)∈ {0,1}, where f is a function defined
by the algorithm.

The output y = y1 . . .yn computed by the algorithm is feasible, if xv y. Otherwise, y
is infeasible. The cost of a feasible output is |y|1, and the cost of an infeasible output
is ∞. The goal is to minimize the cost.

1 The concept of known history for online problems also appears in [19, 20] where it is denoted trans-
parency.

The Advice Complexity of a Class of Hard Online Problems 11

The string x in either version of MINASG will be referred to as the input string or the
correct string. Note that the number of requests in both versions of MINASG is n+1,
since there is a final request that does not require any response from the algorithm.
This final request ensures that the entire string x is eventually known. For simplicity,
we will measure the advice complexity of MINASG as a function of n (this choice is
not important as it changes the advice complexity by at most one bit).

Clearly, for any deterministic MINASG algorithm which sometimes answers 0,
there exists an input string on which the algorithm gets a cost of ∞. However, if an
algorithm always answers 1, the input string could consist solely of 0s. Thus, no
deterministic algorithm can achieve any competitive ratio bounded by a function of
n. One can easily show that the same holds for any randomized algorithm.

We now give a simple algorithm for MINASG which reads O(n/c) bits of advice
and achieves a strict competitive ratio of dce.

Theorem 1 For any c≥ 1, there is a strictly dce-competitive algorithm for MINASG
which reads d n

c e+O(log(n/c)) bits of advice.

Proof We will prove the result for MINASGU. Clearly, it then also holds for MIN-
ASGK.

Let x = x1 . . .xn be the input string. The oracle encodes p = dn/ce in a self-
delimiting way, which requires O(log(n/c)) bits of advice. For 0 ≤ j < p, define
C j = {xi : i ≡ j (mod p)}. These p sets partition the input string, and the size of
each C j is at most dn/pe. The oracle writes one bit, b j, for each set C j. If C j con-
tains only 0s, b j is set to 0. Otherwise, b j is set to 1. Thus, in total, the oracle writes
dn/ce+O(log(n/c)) bits of advice to the advice tape.

The algorithm, ALG, learns p and the bits b0, . . . ,bp−1 from the advice tape. In
round i, ALG answers with the bit bimod p. We claim that this algorithm is strictly dce-
competitive. It is clear that the algorithm produces a feasible output. Furthermore, if
ALG answers 1 in round i, it must be the case that at least one input bit in Cimod p is
1. Since the size of each C j is at most dn/pe ≤ dce, this implies that ALG is strictly
dce-competitive. ut

2.2 The Maximization Version

We also consider ASG in a maximization version. One can view this as a dual version
of MINASG.

Definition 4 The maximum asymmetric string guessing problem with unknown his-
tory, MAXASGU, is identical to MINASGU, except that the score function is differ-
ent: The score of a feasible output y is |y|0, and the score of an infeasible output is
−∞. The goal is to maximize the score.

The maximum asymmetric string guessing problem with known history is defined
similarly:

Definition 5 The maximum asymmetric string guessing problem with known history,
MAXASGK, is identical to MINASGK, except that the score function is different: The

12 Joan Boyar et al.

score of a feasible output y is |y|0, and the score of an infeasible output is −∞. The
goal is to maximize the score.

We collectively refer to the two problems as MAXASG. Similarly, MINASGU
and MAXASGU are collectively called ASGU, and MINASGK and MAXASGK are
collectively called ASGK.

An algorithm for MAXASG without advice cannot attain any competitive ratio
bounded by a function of n. If such an algorithm would ever answer 0 in some round,
an adversary would let the correct answer be 1 and the algorithm’s output would be
infeasible. On the other hand, answering 1 in every round gives an output with a profit
of zero.

Consider instances of MINASG and MAXASG with the same correct string x.
It is clear that the optimal solution is the same for both instances. However, as is
usual with dual versions of a problem, they differ with respect to approximation. For
example, if half of the bits in x are 1s, then we get a 2-competitive solution y for the
MINASG instance by answering 1 in each round. However, in MAXASG, the profit
of the same solution y is zero. Despite this, there is a similar result to Theorem 1 for
MAXASG.

Theorem 2 For any c≥ 1, there is a strictly dce-competitive algorithm for MAXASG
which reads dn/ce+O(logn) bits of advice.

Proof We will prove the result for MAXASGU. Clearly, it then also holds for MAX-
ASGK.

The oracle partitions the input string x = x1 . . .xn into dce disjoint blocks, each
containing (at most) d n

c e consecutive bits. Note that there must exist a block where
the number of 0s is at least |x|0 /dce. The oracle uses O(logn) bits to encode the index
i in which this block starts and the index i′ in which it ends. Furthermore, the oracle
writes the string xi . . .xi′ onto the advice tape, which requires at most d n

c e bits, since
this is the largest possible size of a block. The algorithm learns the string xi . . .xi′

and answers accordingly in rounds i to i′. In all other rounds, the algorithm answers
1. Since the profit of this output is at least |x|0 /dce, it follows that ALG is strictly
dce-competitive. ut

In the following section, we determine the amount of advice an algorithm needs
to achieve some competitive ratio c > 1. It turns out that the algorithms from Theo-
rems 1 and 2 use the asymptotically smallest possible number of advice bits, but the
coefficient in front of the term n/c can be improved.

3 Advice Complexity of ASG

In this section we give upper and lower bounds on the number of advice bits necessary
to obtain c-competitive ASG algorithms, for some c > 1. The bounds are tight up to
O(logn) bits. For ASGU, the gap between the upper and lower bounds stems only
from the fact that the advice used for the upper bound includes the number, n, of
requests and the number, t, of 1-bits in the input. Since the lower bound is shown to
hold even if the algorithm knows n and t, this slight gap is to be expected.

The following two observations will be used extensively in the analysis.

The Advice Complexity of a Class of Hard Online Problems 13

Remark 1 Suppose that a MINASG algorithm, ALG, is c-competitive. By definition,
there exists a constant, α , such that ALG(σ) ≤ c ·OPT(σ)+α . Then, one can con-
struct a new algorithm, ALG′, which is strictly c-competitive and uses O(logn) addi-
tional advice bits as follows:

Use O(logn) bits of advice to encode the length n of the input and use α ·dlogne=
O(logn) bits of advice to encode the index of (at most) α rounds in which ALG
guesses 1 but where the correct answer is 0. Clearly, ALG′ can use this additional
advice to achieve a strict competitive ratio of c.

This also means that a lower bound of b on the number of advice bits required
to be strictly c-competitive implies a lower bound of b−O(logn) advice bits for
being c-competitive (where the constant hidden in O(logn) depends on the additive
constant α of the c-competitive algorithm).

The same technique can be used for MAXASG.

Remark 2 For a minimization problem, an algorithm, ALG, using b bits of advice
can be converted into 2b algorithms, ALG1, . . . ,ALG2b , without advice, one for each
possible advice string, such that ALG(σ) = mini ALGi(σ) for any input sequence
σ . The same holds for maximization problems, except that in this case, ALG(σ) =
maxi ALGi(σ).

For ASG with unknown history, the output of a deterministic algorithm can de-
pend only on the advice, since no information is revealed to the algorithm through
the input. Thus, for MINASGU and MAXASGU, a deterministic algorithm using b
advice bits can produce only 2b different outputs, one for each possible advice string.

3.1 Using Covering Designs

In order to determine the advice complexity of ASG, we will use some basic results
from the theory of combinatorial designs. We start with the definition of a covering
design.

For any k ∈N, a k-set is a set of cardinality k. Let v≥ k≥ t be positive integers. A
(v,k,t)-covering design is a family of k-subsets (called blocks) of a v-set, S, such that
any t-subset of S is contained in at least one block. The size of a covering design, D,
is the number of blocks in D. The covering number, C(v,k, t), is the smallest possible
size of a (v,k, t)-covering design. Many papers have been devoted to the study of
these numbers. See [12] for a survey. The connection to ASG is that for inputs to
MINASG where the number of 1s is t, an (n,bctc, t)-covering design can be used to
obtain a strictly c-competitive algorithm.

It is clear that a (v,k, t)-covering design always exists. Since a single block has
exactly

(k
t

)
t-subsets, and since the total number of t-subsets of a set of size v is

(v
t

)
,

it follows that
(v

t

)
/
(k

t

)
≤C(v,k, t). We will make use of the following upper bound on

the size of a covering design:

Lemma 1 (Erdős, Spencer [16]) For all natural numbers v≥ k ≥ t,(v
t

)(k
t

) ≤C(v,k, t)≤
(v

t

)(k
t

) (1+ ln
(

k
t

))

14 Joan Boyar et al.

We use Lemma 1 to express both the upper and lower bound in terms of (a quo-
tient of) binomial coefficients. This introduces an additional difference of logn be-
tween the stated lower and upper bounds.

Lemma 17 in Appendix A shows how the bounds we obtain can be approximated
by a closed formula, avoiding binomial coefficients. This approximation costs an
additional (additive) difference of O(logn) between the lower and upper bounds. The
approximation is in terms of the following function:

B(n,c) = log
(

1+
(c−1)c−1

cc

)
n

For c > 1, we show that B(n,c)±O(logn) bits of advice are necessary and sufficient
to achieve a (strict) competitive ratio of c, for any version of ASG. See Figure 1 for
a graphical view. It can be shown (Lemma 15) that

1
e ln(2)

n
c
≤ B(n,c)≤ n

c
.

In particular, if c = o(n/ logn), we see that O(logn) becomes a lower-order additive
term. Thus, for this range of c, we determine exactly the higher-order term in the
advice complexity of ASG. Since this is the main focus of our paper, we will often
refer to O(logn) as a lower-order additive term. The case where c = Ω(n/ logn) is
treated separately in Section 3.4.

0.0

0.2

0.4

0.6

0.8

1.0

A
d
v
ic
e
b
it
s
p
er

re
q
u
es
t

1 2 3 4 5
Competitive ratio c

ASG SG
1

c

1

e ln(2)c

Fig. 1 The solid line shows the number of advice bits per request which are necessary and sufficient for
obtaining a (strict) competitive ratio of c for ASG (ignoring lower-order terms). The dashed line shows
the same number for the original binary string guessing problem SG [5]. The dotted lines are the functions
1/c and 1/(e ln(2)c).

The Advice Complexity of a Class of Hard Online Problems 15

3.2 Advice Complexity of MINASG

We first consider MINASG with unknown history. Clearly, an upper bound for MIN-
ASGU is also valid for MINASGK. We will show that the covering number C(v,k, t)
is very closely related to the advice complexity of MINASGU.

Theorem 3 For any c > 1, there exists a strictly c-competitive algorithm for MIN-
ASG reading b bits of advice, where

b≤ B(n,c)+O(logn).

Proof We will define an algorithm ALG and an oracle O for MINASGU such that
ALG is strictly c-competitive and reads at most b bits of advice. Clearly, the same
algorithm can be used for MINASGK.

Let x = x1 . . .xn be an input string to MINASGU and set t = |x|1. The oracle O

writes the value of n to the advice tape using a self-delimiting encoding. Furthermore,
the oracle writes the value of t to the advice tape using dlogne bits (this is possible
since t ≤ n). Thus, this part of the advice uses at most 3dlogne+1 bits in total.

If bctc ≥ n, then ALG will answer 1 in each round. If t = 0, ALG will answer 0 in
each round.

If 0 < bctc < n, then ALG computes an optimal (n,bctc, t)-covering design as
follows: ALG tries (in lexicographic order, say) all possible sets of bctc-blocks, start-
ing with sets consisting of one block, then two blocks, and so on. For each such set,
ALG can check if it is indeed an (n,bctc, t)-covering design. As soon as a valid cov-
ering design, D, is found, the algorithm can stop, since D will be a smallest possible
(n,bctc, t)-covering design.

Now, O picks a bctc-block, Sy, from D, such that the characteristic vector y of Sy
satisfies that xv y. Note that, since ALG is deterministic, the oracle knows which cov-
ering design ALG computes and the ordering of the blocks in that design. The oracle
then writes the index of Sy on the advice tape. This requires at most dlogC(n,bctc, t)e
bits of advice.

ALG reads the index of the bctc-block Sy from the advice tape and answers 1 in
round i if and only if the element i belongs to Sy. Clearly, this will result in ALG
answering 1 exactly bctc times and producing a feasible output. It follows that ALG
is strictly c-competitive. Furthermore, the number of bits read by ALG is

b≤
⌈

log
(

max
t : bctc<n

C(n,bctc, t)
)⌉

+3dlogne+1 .

The theorem now follows from Lemma 17, Inequality (8). ut

We now give an almost matching lower bound.

Theorem 4 For any c > 1, a c-competitive algorithm ALG for MINASGU must read
b bits of advice, where

b≥ B(n,c)−O(logn) .

16 Joan Boyar et al.

Proof By Remark 1, it suffices to prove the lower bound for strictly c-competitive
algorithms. Suppose that ALG is strictly c-competitive. Let b be the number of advice
bits read by ALG on inputs of length n. For 0≤ t ≤ n, let In,t be the set of input strings
of length n with Hamming weight t, and let Yn,t be the corresponding set of output
strings produced by ALG. We will argue that, for each t, 0 ≤ bctc ≤ n, Yn,t can be
converted to an (n,bctc, t)-covering design of size at most 2b.

By Remark 2, ALG can produce at most 2b different output strings, one for each
possible advice string. Now, for each input string, x ∈ In,t , there must exist some
advice which makes ALG output a string y, where |y|1 ≤ bctc and x v y. If not, then
ALG is not strictly c-competitive. For each possible output y ∈ {0,1}n computed by
ALG, we convert it to the set Sy ⊆ [n] which has y as its characteristic vector. If
|y|1 < bctc, we add some arbitrary elements to Sy so that Sy contains exactly bctc
elements. Since ALG is strictly c-competitive, this conversion gives the blocks of an
(n,bctc, t)-covering design. The size of this covering design is at most 2b, since ALG
can produce at most 2b different outputs. It follows that C(n,bctc, t) ≤ 2b, for all t,
0≤ bctc ≤ n. Thus,

b≥ log
(

max
t : bctc<n

C(n,bctc, t)
)
.

The theorem now follows from Lemma 17, Inequality (6). ut

Note that the proof of Theorem 4 relies heavily on the unknown history in order
to bound the total number of possible outputs. However, Theorem 5 below states that
the lower bound of B(n,c)−O(logn) also holds for MINASGK. In order to prove this,
we show how an adversary can ensure that revealing the correct answers for previous
requests does not give the algorithm too much extra information. The way to ensure
this depends on the specific strategy used by the algorithm and oracle at hand, and so
the proof is more complicated than that of Theorem 4.

Theorem 5 For any c > 1, a c-competitive algorithm for MINASGK must read b bits
of advice, where

b≥ B(n,c)−O(logn) .

Proof By Remark 1, it suffices to prove the lower bound for strictly c-competitive
algorithms. Consider the set, In,t , of input strings of length n and Hamming weight t,
for some t such that bctc ≤ n. Restricting the input set to strings with one particular
Hamming weight can only weaken the adversary.

Let ALG be a strictly c-competitive algorithm for MINASGK which reads at most
b bits of advice for any input of length n. For an advice string ϕ , denote by Iϕ ⊆ In,t
the set of input strings for which ALG reads the advice ϕ . Since we are considering
MINASGK, in any round, ALG may use both the advice string and the information
about the correct answer for previous rounds when deciding on an answer for the
current round.

We will prove the lower bound by considering the computation of ALG, when
reading the advice ϕ , as a game between ALG and an adversary. This game proceeds
according to the rules specified in Definition 3. In particular, at the beginning of round

The Advice Complexity of a Class of Hard Online Problems 17

i, the adversary reveals the correct answer xi−1 for round i− 1 to ALG. Thus, at the
beginning of round i, the algorithm knows the first i−1 bits, x1, . . . ,xi−1, of the input
string. We say that a string s ∈ Iϕ is alive in round i if s j = x j for all j < i, and we
denote by Ii

ϕ ⊆ Iϕ the set of strings which are alive in round i. The adversary must
reveal the correct answers in a way that is consistent with ϕ . That is, in each round,
there must exist at least one string in Iϕ which is alive.

We first make two simple observations:

– Suppose that, in some round i, there exists a string s ∈ Ii
ϕ such that si = 1. Then,

ALG must answer 1, or else the adversary can choose s as the input string and
thereby force ALG to incur a cost of ∞. Thus, we will assume that ALG always
answers 1 in such rounds.

– On the other hand, if, in round i, all s ∈ Ii
ϕ have si = 0, then ALG is free to answer

0. We will assume that ALG always answers 0 in such rounds.

Assume that, at some point during the computation, Iϕ contains exactly m strings
and exactly h 1s are still to be revealed. We let L1(m,h) be the largest number such
that for every set of m different strings of equal length, each with Hamming weight
h, the adversary can force ALG to incur a cost of at least L1(m,h) when starting for
this situation. In other words, L1(m,h) is the minimum number of rounds in which
the adversary can force ALG to answer 1.

Claim: For any m,h≥ 1,

L1(m,h)≥min
{

d : m≤
(

d
h

)}
. (2)

Before proving the claim, we will show how it implies the theorem. For any t, 0≤
bctc < n, there are

(n
t

)
possible input strings of length n and Hamming weight t. By

the pigeonhole principle, there must exist an advice string ϕ ′ such that
∣∣Iϕ ′
∣∣≥ (n

t

)
/2b.

Now, if m =
∣∣Iϕ ′
∣∣ > (bctc

t

)
, then by (2), L1(m, t) ≥ min{d :

(bctc
t

)
<
(d

t

)
} = bctc+ 1.

This contradicts the fact that ALG is strictly c-competitive. Thus, it must hold that∣∣Iϕ ′
∣∣≤ (bctc

t

)
. Combining the two inequalities involving

∣∣Iϕ ′
∣∣, we get(

bctc
t

)
≥
∣∣Iϕ ′
∣∣≥ (n

t

)
2b ⇒ 2b ≥

(n
t

)(bctc
t

)
Since this holds for all values of t, we obtain the lower bound

b≥ log

(
max

t : bctc<n

(n
t

)(bctc
t

)) .

The theorem then follows from Lemma 17 and Inequalities (7) and (6).

Proof of claim: Fix 1≤ i≤ n and assume that, at the beginning of round i, there
are m strings alive, all of which still have exactly h 1’s to be revealed. The rest of the
proof is by induction on m and h.

For the base case, suppose first that h = 1. Then, for each of the m strings,
s1, . . . ,sm ∈ Ii

ϕ , there is exactly one index, i1,. . . , im, such that s1
i1 = · · · = sm

im = 1.

18 Joan Boyar et al.

Since all strings in Ii
ϕ must be different, it follows that i j 6= ik for j 6= k. Without

loss of generality, assume that i1 < i2 < · · ·< im. In rounds i1, . . . , im−1, the adversary
chooses the correct answer to be 0, while ALG is forced to answer 1 in each of these
rounds. Finally, in round im, the adversary reveals the correct answer to be 1 (and
hence the input string must be sm). In total, ALG incurs a cost of m, which shows that
L1(m,1) = m for all m≥ 1.

Assume now that m = 1. It is clear that L1(m,h)≥ h for all values of h. In partic-
ular, L1(1,h) = h. This finishes the base case.

For the inductive step, fix integers m,h ≥ 2. Assume that the formula is true for
all (i, j) such that j ≤ h−1 or such that j = h and i ≤ m−1. We will show that the
formula is also true for (m,h).

Consider the strings s1, . . . ,sm ∈ Ii
ϕ alive at the beginning of round i. We partition

Ii
ϕ into two sets, S0 = {s j : s j

i = 0} and S1 = {s j : s j
i = 1}, and let m0 = |S0| and

m1 = |S1|. Recall that if all sequences s∈ Ii
ϕ have si = 0, we assume that ALG answers

0, leaving m and h unchanged. Thus, we may safely ignore such rounds and assume
that m0 < m. We let

d = min
{

d′ : m≤
(

d′

h

)}
,

d0 = min
{

d′ : m0 ≤
(

d′

h

)}
, and

d1 = min
{

d′ : m1 ≤
(

d′

h−1

)}
.

If d1+1≥ d, then the adversary chooses 1 as the correct answer in round i. By the
induction hypothesis, L1(m1,h− 1) ≥ d1. Together with the fact that ALG is forced
to answer 1 in round i, this shows that the adversary can force ALG to incur a cost of
at least L1(m1,h−1)+1≥ d1 +1≥ d.

On the other hand, if d1 +1 < d, the adversary chooses 0 as the correct answer in
round i. Note that this implies that each string alive in round i+1 still has exactly h 1’s
to be revealed. We must have d1 ≤ d−2 since d1 and d are both integers. Moreover,
by definition of d, it holds that m >

(d−1
h

)
. Thus, we get the following lower bound

on m0:

m0 = m−m1

>

(
d−1

h

)
−
(

d1

h−1

)
≥
(

d−1
h

)
−
(

d−2
h−1

)
, since

(
a
b

)
is increasing in a

=

(
d−2

h

)
, by Pascal’s Identity.

This lower bound on m0 shows that d0 > d− 2, and hence d0 ≥ d− 1. Combining
this with the induction hypothesis gives L1(m0,h)≥ d0 ≥ d−1. Since m1 ≥ 1, ALG
is forced to answer 1 in round i, so the adversary can make ALG incur a cost of at
least L1(m0,h)+1≥ d. ut

The Advice Complexity of a Class of Hard Online Problems 19

3.3 Advice Complexity of MAXASG

In this section, we will show that the advice complexity of MAXASG is the same
as that of MINASG, up to a lower-order additive term of O(logn). We use the same
techniques as in Section 3.2.

As noted before, the difficulty of computing a c-competitive solution for a specific
input string is not the same for MINASG and MAXASG. The key point is that com-
puting a c-competitive solution for MAXASG, on input strings with u 0’s, is roughly
as difficult as computing a c-competitive solution for MINASG, on input strings with
du/ce 1’s.

We show that the proofs of Theorems 3–5 can easily be modified to give up-
per and lower bounds on the advice complexity of MAXASG. These bounds within
the proofs look slightly different from the ones obtained for MINASG, but we show
in Lemmas 19 and 20 that they differ from B(n,c) by at most an additive term of
O(logn).

Theorem 6 For any c > 1, there exists a strictly c-competitive online algorithm for
MAXASG reading b bits of advice, where

b≤ B(n,c)+O(logn).

Proof We will define an algorithm ALG and an oracle O for MAXASGU such that
ALG is strictly c-competitive and reads at most b bits of advice. Clearly, the same
algorithm can be used for MAXASGK.

As in the proof of Theorem 3, we note that, for any integers n,u where 0 < u <
n, the algorithm ALG can compute an optimal (n,n−du/ce,n− u)-covering design
deterministically.

Let x = x1 . . .xn be an input string to MAXASGU and set u = |x|0. The oracle O

writes the values of n and u to the advice tape using at most 3dlogne+1 bits in total.
If 0 < u < n, then O picks an (n− du/ce)-block, Sy, from the optimal (n,n−

du/ce,n−u)-covering design, as computed by ALG, such that the characteristic vec-
tor y of Sy satisfies that x v y. The oracle writes the index of Sy on the advice tape.
This requires at most dlogC(n,n−du/ce,n−u)e bits of advice.

The algorithm, ALG, first reads the values of n and u from the advice tape. If
u = 0, then ALG will answer 1 in each round, and if u = n, then ALG will answer 0
in each round. If 0 < u < n, then ALG will read the index of the (n−du/ce)-block
Sy from the advice tape. ALG will answer 1 in round i if and only if the element
i belongs to the given block. Clearly, this will result in ALG answering 0 exactly
n− (n−du/ce) = du/ce times and producing a feasible output. It follows that ALG
will be strictly c-competitive. Furthermore, the number of bits read by ALG is

b≤
⌈

log
(

max
u : 0<u<n

C
(

n,n−
⌈u

c

⌉
,n−u

))⌉
+3dlogne+1 .

The theorem now follows from Lemma 20. ut

Theorem 7 For any c> 1, a c-competitive algorithm ALG for MAXASGU must read
b bits of advice, where

b≥ B(n,c)−O(logn) .

20 Joan Boyar et al.

Proof By Remark 1, it suffices to prove the lower bound for strictly c-competitive
algorithms. Suppose that ALG is strictly c-competitive. Let b be the number of advice
bits read by ALG on inputs of length n. For 0 ≤ u ≤ n, let In,u be the set of input
strings x of length n with |x|0 = u, and let Yn,u be the corresponding set of output
strings produced by ALG. We will argue that, for each u, Yn,u can be converted to an
(n,n−du/ce,n−u)-covering design of size at most 2b.

By Remark 2, ALG can produce at most 2b different output strings, one for each
possible advice string. Now, for each input string, x = x1 . . .xn with |x|0 = u (and,
hence, |x|1 = n−u), there must exist some advice which makes ALG output a string
y = y1 . . .yn where |y|0 ≥ du/ce (and, hence, |y|1 ≤ n−du/ce) and xv y. If not, then
ALG is not strictly c-competitive. For each possible output y ∈ {0,1}n computed by
ALG, we convert it to the set Sy ⊆ [n] which has y as its characteristic vector. If
|y|1 < n−du/ce, we add some arbitrary elements to Sy so that Sy contains exactly
n−du/ce elements. Since ALG is strictly c-competitive, this conversion gives the
blocks of an (n,n−du/ce,n− u)-covering design. The size of this covering design
is at most 2b, since ALG can produce at most 2b different outputs. It follows that
C(n,n−du/ce,n−u)≤ 2b, for all u. Thus,

b≥ log
(

max
u : 0<u<n

C
(

n,n−
⌈u

c

⌉
,n−u

))
.

The theorem now follows from Lemma 20. ut
As was the case for MINASG, the lower bound for MAXASGU also holds for

MAXASGK.

Theorem 8 For any c> 1, a c-competitive algorithm ALG for MAXASGK must read
at least b bits of advice, where

b≥ B(n,c)−O(logn) .

Proof By Remark 1, it suffices to prove the lower bound for strictly c-competitive
algorithms.

Consider input strings, x, of length n and such that |x|0 = u. Let t = |x|1 = n−u.
We reuse the notation from the proof of Theorem 5 and let Iϕ ⊆ In,t denote the set of
strings for which ALG reads the advice string ϕ .

Suppose there exists some advice string ϕ ′ such that m =
∣∣Iϕ ′
∣∣ > (n−d u

c e
t

)
. Since

Inequality (2) from the proof of Theorem 5 holds for MAXASG too, we get that
L1(m, t)≥ n−d u

c e+1. But this means that there exists an input x ∈ Iϕ ′ , with |x|1 = t,
such that ALG must answer 1 at least n−d u

c e+1 times. In other words, for the output
y, computed by ALG on input x, it holds that |y|0 ≤ n−(n−d u

c e+1)≤ d u
c e−1. Since

|x|0 = u, this contradicts the fact that ALG is strictly c-competitive.
Since there are

(n
u

)
possible input strings x such that |x|0 = u, and since the above

was shown to hold for all choices of u, we get the lower bound

b≥ log

(
max

u : 0<u<n

(n
u

)(n−d u
c e

n−u

)) .

The theorem now follows from Lemma 20. ut

The Advice Complexity of a Class of Hard Online Problems 21

3.4 Advice Complexity of ASG when c = Ω(n/ logn)

Throughout the paper, we mostly ignore additive terms of O(logn) in the advice
complexity. However, in this section, we will consider the advice complexity of ASG
when the number of advice bits read is at most logarithmic. Surprisingly, it turns out
that the advice complexity of MINASG and MAXASG is different in this case.

Recall that, by Theorem 6 (or Theorem 2), using O(logn) bits of advice, an algo-
rithm for MAXASG can achieve a competitive ratio of n

logn . The following theorem
shows that there is a “phase-transition” in the advice complexity, in the sense that
using less than logn bits of advice is no better than using no advice at all. We re-
mark that Theorem 9 and its proof are essentially equivalent to a previous result of
Halldórsson et al. [19] on ONLINE INDEPENDENT SET in the multi-solution model.

Theorem 9 (cf. [19]) Let ALG be an algorithm for MAXASG reading b < blognc
bits of advice. Then, the competitive ratio of ALG is not bounded by a function of n.
This is true even if ALG knows n in advance.

Proof We will prove the result for MAXASGK. Clearly, it then also holds for MAX-
ASGU.

By Remark 2, we can convert ALG to m = 2b online algorithms without ad-
vice. Denote the algorithms by ALG1, . . . ,ALGm. Since b < blognc, it follows that
m ≤ n/2. We claim that the adversary can construct an input string x = x1 . . .xn for
MAXASGK such that the following holds: For each 1 ≤ j ≤ m, the output of ALG j
is either infeasible or contains only 1s. Furthermore, x can be constructed such that
|x|0 ≥ n

2 .
We now show how the adversary may achieve this. For 1 ≤ i ≤ n, the adversary

decides the value of xi as follows: If there is some algorithm, ALG j, which answers 0
in round i and ALG j answers 1 in all rounds before round i, the adversary lets xi = 1.
In all other cases, the adversary lets xi = 0. It follows that if an algorithm ALG j ever
answers 0, its output will be infeasible. Furthermore, the number of 1’s in the input
string constructed by the adversary is at most n/2, since m≤ n/2. Thus, the profit of
OPT on this input is at least n/2, while the profit of ALG is at most 0. ut

For MINASG, the algorithm from Theorem 1 achieves a competitive ratio of dce
and uses O(n/c) bits of advice, for any c > 1. In particular, it is possible to achieve a
competitive ratio of e.g. O(n/(log logn)) using O(log logn) bits of advice, which we
have just shown is not possible for MAXASG. The following theorem shows that no
strictly c-competitive algorithm for MINASG can use less than Ω(n/c) bits of advice,
even if n/c = o(logn).

Theorem 10 For any c > 1, on inputs of length n, a strictly dce-competitive algo-
rithm ALG for MINASG must read at least b = Ω(n/c) bits of advice.

Proof We will prove the result for MINASGK. Clearly, it then also holds for MIN-
ASGU.

22 Joan Boyar et al.

Suppose that ALG is strictly dce-competitive. Since bdcetc= dcet, it follows from
the proof of Theorem 5 that ALG must read at least b bits of advice, where

b≥ log

(
max

t : dcet<n

(n
t

)(dcet
t

)) .

By Lemma 18, this implies that b = Ω(n/c). ut

4 The Complexity Class AOC

In this section, we define a class, AOC, and show that for each problem, P, in AOC,
the advice complexity of P is at most that of ASG.

Definition 6 A problem, P, is in AOC (Asymmetric Online Covering) if it can be de-
fined as follows: The input to an instance of P consists of a sequence of n requests,
σ = 〈r1, . . . ,rn〉, and possibly one final dummy request. An algorithm for P com-
putes a binary output string, y = y1 . . .yn ∈ {0,1}n, where yi = f (r1, . . . ,ri) for some
function f .

For minimization (maximization) problems, the score function, s, maps a pair,
(σ ,y), of input and output to a cost (profit) in N∪{∞} (N∪{−∞}). For an input, σ ,
and an output, y, y is feasible if s(σ ,y) ∈ N. Otherwise, y is infeasible. There must
exist at least one feasible output. Let Smin(σ) (Smax(σ)) be the set of those outputs
that minimize (maximize) s for a given input σ .

If P is a minimization problem, then for every input, σ , the following must hold:

1. For a feasible output, y, s(σ ,y) = |y|1.
2. An output, y, is feasible if there exists a y′ ∈ Smin(σ) such that y′ v y.

If there is no such y′, the output may or may not be feasible.

If P is a maximization problem, then for every input, σ , the following must hold:

1. For a feasible output, y, s(σ ,y) = |y|0.
2. An output, y, is feasible if there exists a y′ ∈ Smax(σ) such that y′ v y.

If there is no such y′, the output may or may not be feasible.

The dummy request is a request that does not require an answer and is not counted
when we count the number of requests. Most of the problems that we consider will
not have such a dummy request, but it is necessary to make sure that ASG belongs to
AOC.

The input, σ , to a problem P in AOC can contain any kind of information. How-
ever, for each request, an algorithm for P only needs to make a binary decision. If the
problem is a minimization problem, it is useful to think of answering 1 as accepting
the request and answering 0 as rejecting the request (e.g. vertices in a vertex cover).
The output is guaranteed to be feasible if the accepted requests are a superset of the
requests accepted in an optimal solution (they “cover” the optimal solution).

If the problem is a maximization problem, it is useful to think of answering 0
as accepting the request and answering 1 as rejecting the request (e.g. vertices in an

The Advice Complexity of a Class of Hard Online Problems 23

independent set). The output is guaranteed to be feasible if the accepted requests are
a subset of the requests accepted in a optimal solution.

Note that outputs for problems in AOC may have a score of ±∞. This is used to
model that the output is infeasible (e.g. not a vertex cover/independent set).

We now show that our ASGU algorithm based on covering designs works for
every problem in AOC. This gives an upper bound on the advice complexity for all
problems in AOC.

Theorem 11 Let P be a problem in AOC. There exists a strictly c-competitive online
algorithm for P reading b bits of advice, where

b≤ B(n,c)+O(logn).

Proof We first assume that P is a minimization problem. Let ALG be a strictly c-
competitive MINASGU algorithm reading at most b bits of advice provided by an
oracle O. By Theorem 3, such an algorithm exists. We will define a P algorithm,
ALG′, together with an oracle O′, that is strictly c-competitive and reads at most b bits
of advice.

For a given input, σ , to P, the oracle O′ starts by computing an x such that x ∈
Smin(σ). This is always possible since by the definition of AOC, such an x always
exists, and O′ has unlimited computational power. Let ϕ be the advice that O would
write to the advice tape if x were the input string in an instance of MINASGU. O′

writes ϕ to the advice tape. From here, ALG′ behaves as ALG would do when reading
ϕ (in particular, ALG′ ignores any possible information contained in σ) and computes
the output y. Since ALG is strictly c-competitive for MINASGU, we know that xv y
and that |y|1 ≤ c |x|1. Since P is in AOC, this implies that y is feasible (with respect
to the input σ) and that s(σ ,y)≤ c |x|1 = c ·OPT(σ).

Similarly, one can reduce a maximization problem to MAXASGU and apply The-
orem 6. ut

Showing that a problem, P, belongs to AOC immediately gives an upper bound on
the advice complexity of P. For all variants of ASG, we know that this upper bound
is tight up to an additive O(logn) term. This leads us to the following definition of
completeness.

Definition 7 A problem, P, is AOC-complete if

– P belongs to AOC and
– for all c > 1, any c-competitive algorithm for P must read at least b bits of advice,

where
b≥ B(n,c)−O(logn).

Thus, the advice complexity of an AOC-complete problem must be identical to
the upper bound from Theorem 11, up to a lower-order additive term of O(logn). By
Definitions 2–5 combined with Theorems 4–5 and 7–8, all of MINASGU, MINASGK,
MAXASGU and MAXASGK are AOC-complete.

When we show that some problem, P, is AOC-complete, we usually do this by
giving a reduction from a known AOC-complete problem to P, preserving the com-
petitive ratio and increasing the number of advice bits by at most O(logn). ASGK is
especially well-suited as a starting point for such reductions.

24 Joan Boyar et al.

We allow for an additional O(logn) bits of advice in Definition 7 in order to be
able to use the reduction between the strict and non-strict competitive ratios as ex-
plained in Remark 1 and in order to encode some natural parameters of the problem,
such as the input length or the score of an optimal solution. For most values of c, it
seems reasonable to allow these additional advice bits. However, it does mean that
for c = Ω(n/ logn), the requirement in the definition of AOC-complete is vacuously
true. We refer to Section 3.4 for a discussion of the advice complexity for this range
of competitive ratio.

4.1 AOC-complete Minimization Problems

In this section, we show that several online problems are AOC-complete, starting with
ONLINE VERTEX COVER. See the introduction for the definition of the problems

4.1.1 Online Vertex Cover.

Lemma 2 ONLINE VERTEX COVER is in AOC.

Proof We need to verify the conditions in Definition 6.
Recall that an input σ = 〈r1, . . . ,rn〉 for ONLINE VERTEX COVER is a sequence

of requests, where each request is a vertex along with the edges connecting it to
previously requested vertices. There is no dummy request at the end. For each request,
ri, an algorithm makes a binary choice, yi: It either includes the vertex into its solution
(yi = 1) or not (yi = 0).

The cost of an infeasible solution is ∞. A solution y = y1 . . .yn for ONLINE VER-
TEX COVER is feasible if the vertices included in the solution form a vertex cover in
the input graph. Clearly, there is always at least one feasible solution, since taking all
the vertices will give a vertex cover.

Thus, ONLINE VERTEX COVER has the right form. Finally, we verify that con-
ditions 1 and 2 are also satisfied: Condition 1 is satisfied since the cost of a feasible
solution is the number of vertices in the solution and condition 2 is satisfied since a
superset of a vertex cover is also a vertex cover. ut

We now show a hardness result for ONLINE VERTEX COVER. In our reduction,
we make use of the following graph construction. The same construction will also be
used later on for other problems. We remark that this graph construction is identical
to the one used in [19] for showing lower bounds for ONLINE INDEPENDENT SET in
the multi-solution model.

Definition 8 (cf. [19]) For any string x = x1 . . .xn ∈ {0,1}n, define Gx = (V,E) as
follows:

V = {v1, . . . ,vn},
E = {(vi,v j) : xi = 1 and i < j}.

Furthermore, let V0 = {vi : xi = 0} and V1 = {vi : xi = 1}.

The Advice Complexity of a Class of Hard Online Problems 25

For a string x∈ {0,1}n, the graph Gx from Definition 8 is a split graph: The vertex
set V can be partitioned into V0 and V1 such that V0 is an independent set of size |x|0
and V1 is a clique of size |x|1.

0 1 1 0 1 0

Fig. 2 G011010

Lemma 3 If there is a c-competitive algorithm reading b bits for ONLINE VERTEX
COVER, then there is a c-competitive algorithm reading b+O(logn) bits for MIN-
ASGK.

Proof Let ALG be a c-competitive algorithm for ONLINE VERTEX COVER reading
at most b bits of advice. By definition, there exists a constant α such that ALG(σ)≤
c ·OPT(σ)+α for any input sequence σ . We will define an algorithm, ALG′, and
an oracle, O′, for MINASGK such that ALG′ is c-competitive (with the same additive
constant) and reads at most b+O(logn) bits of advice.

For x = x1 . . .xn an input string to MINASGK, consider the input instance to ON-
LINE VERTEX COVER Gx = (V,E) defined in Definition 8 where the vertices are
requested in the order 〈v1, . . . ,vn〉. We say that a vertex in V0 is bad and that a vertex
in V1 is good. Note that V1 \{vn} is a minimum vertex cover of Gx. Also, if an algo-
rithm rejects a good vertex vi, then it must accept all later vertices v j (where i< j≤ n)
in order to cover the edges (vi,v j). In particular, since the good vertices form a clique,
no algorithm can reject more than one good vertex.

Let ϕ be the advice read by ALG, and let VALG be the vertices chosen by ALG.
Since ALG is c-competitive, we know that VALG must be a vertex cover of size at most
c |V1 \{vn}|+α ≤ c |V1|+α .

We now define ALG′ and O′. As usual, y denotes the output computed by ALG′.
We consider three cases. The first two bits of the advice tape will be used to tell ALG′

which one of the three cases we are in.
Case 1: ALG accepts all good vertices in Gx, i.e., V1 ⊆VALG. The oracle O′ writes

the advice ϕ to the advice tape. When ALG′ receives request i, it considers what ALG
does when the vertex vi in Gx is revealed: ALG′ answers 1 if ALG accepts vi and 0
otherwise. Note that it is possible for ALG′ to simulate ALG since, at the beginning
of round i, ALG′ knows x1 . . .xi−1. In particular, ALG′ knows which edges to reveal
to ALG along with the vertex vi in Gx. Together with access to the advice ϕ read
by ALG, this allows ALG′ to simulate ALG. Since V1 ⊆ VALG, we get that x v y.
Furthermore, since |VALG| ≤ c |V1|+α , we also get that |y|1 ≤ c |x|1 +α .

Case 2a: ALG rejects a good vertex, vi, and accepts a bad vertex, v j. In this case,
the oracle O′ writes the indices of i and j in a self-delimiting way, followed by ϕ ,

26 Joan Boyar et al.

to the advice tape. ALG′ simulates ALG as before and answers accordingly, except
that it answers 1 in round i and 0 in round j. This ensures that x v y. Furthermore,
|y|1 = |VALG| ≤ c |V1|+α = c |x|1 +α .

Case 2b: ALG rejects a good vertex, vi, and all bad vertices. In this case, VALG =
V1 \ {vi}. The oracle O′ writes the value of i to the advice tape in a self-delimiting
way, followed by ϕ . Again, ALG′ simulates ALG, but it answers 1 in round i. Thus,
x = y, meaning that xv y and y is optimal.

In all cases, ALG′ computes an output y such that xv y and |y|1≤ c |x|1+α . Since
|ϕ| ≤ b, the maximum number of bits read by ALG′ is b+O(logn)+2= b+O(logn).
ut

Theorem 12 ONLINE VERTEX COVER is AOC-complete.

Proof By Lemma 2, ONLINE VERTEX COVER is in AOC. Combining Lemma 3 and
Theorem 5 shows that a c-competitive algorithm for ONLINE VERTEX COVER must
read at least B(n,c)−O(logn) bits of advice. Thus, ONLINE VERTEX COVER is
AOC-complete. ut

4.1.2 Online Cycle Finding.

Most of the graph problems that we prove to be AOC-complete are, in their of-
fline versions, NP-complete. However, in this section, we show that ONLINE CYCLE
FINDING is also AOC-complete. The offline version of this problem is very simple
and can easily be solved in polynomial time.

Lemma 4 ONLINE CYCLE FINDING is in AOC.

This and the following proofs of membership of AOC have been omitted. They are
almost identical to the proof of Lemma 2.

In order to show that ONLINE CYCLE FINDING is AOC-complete, we will make
use of the following graph.

Definition 9 For a string x = x1 . . .xn ∈ {0,1}n define f (xi) to be the largest j < i
such that x j = 1. Note that this may not always be defined. We let MAX be the largest
i such that xi = 1. Similarly, we let MIN be the smallest i such that xi = 1. We now
define the graph Hx = (V,E):

V = {v1, . . . ,vn},
E = {(v j,vi) : f (xi) = j}∪{(vMIN,vMAX)}.

Furthermore, let V0 = {vi : xi = 0} and V1 = {vi : xi = 1}.

Lemma 5 If there is a c-competitive algorithm reading b bits for ONLINE CYCLE
FINDING, then there is a c-competitive algorithm reading b+O(logn) bits for MIN-
ASGK.

The Advice Complexity of a Class of Hard Online Problems 27

0 1 0 0 1 0 1

Fig. 3 H0100101

Proof Let ALG be a c-competitive algorithm (with an additive constant α) for ON-
LINE CYCLE FINDING reading at most b bits of advice. We will define an algorithm
ALG′ and an oracle O′ for MINASGK such that ALG′ is c-competitive (with the same
additive constant) and reads at most b+O(logn) bits of advice.

Let x = x1 . . .xn be an input string to MINASGK. The oracle O′ first writes one bit
of advice to indicate if |x|1 ≤ 2. If this is the case, O′ writes (in a self-delimiting way)
the index of these at most two 1s to the advice tape. This can be done using O(logn)
bits and clearly allows ALG′ to be strictly 1-competitive. In the rest of the proof, we
will assume that there are at least three 1s in x.

Consider the input instance to ONLINE CYCLE FINDING, Hx = (V,E), defined
in Definition 9, where the vertices are requested in the order 〈v1, . . . ,vn〉. Note that
the vertices V1 form the only cycle in Hx. Thus, if an algorithm rejects a vertex from
V1, the subgraph induced by the vertices accepted by the algorithm cannot contain a
cycle.

Let ϕ be the advice read by ALG, and let VALG be the vertices chosen by ALG,
when the n vertices of Hx are revealed. Since ALG is c-competitive, we know that
|VALG| ≤ c |V1|+α .

We now define ALG′. As usual, y denotes the output computed by ALG′. Since
ALG is c-competitive, it must hold that V1 ⊆ VALG. The oracle O′ writes the advice
ϕ to the advice tape. When ALG′ receives request i at the beginning of round i in
MINASGK, it considers what ALG does when the vertex vi in Hx is revealed: ALG′

answers 1 if ALG accepts vi and 0 otherwise. Note that it is possible for ALG′ to
simulate ALG since, at the beginning of round i, ALG′ knows x1 . . .xi−1. In particular,
ALG′ knows which edges were revealed to ALG along with the vertex vi in Hx. Note,
however, that in order to simulate the edge from vMIN to vMAX, ALG needs to know
when vMAX is being revealed. This can be achieved using O(logn) additional advice
bits.

Together with access to the advice ϕ read by ALG, this allows ALG′ to simulate
ALG. Since V1 ⊆VALG, we get that xv y. Furthermore, since |VALG| ≤ c |V1|+α , we
also get that |y|1 ≤ c |x|1 +α . ut

Theorem 13 ONLINE CYCLE FINDING is AOC-complete

Proof This follows from Lemmas 4 and 5 together with Theorem 5. ut

28 Joan Boyar et al.

4.1.3 Online Dominating Set.

In this section, we show that ONLINE DOMINATING SET is also AOC-complete. We
do not require that the vertices picked by the online algorithm form a dominating set
at all times. We only require that the solution produced by the algorithm is a domi-
nating set when the request sequence ends. Of course, this makes a difference only
because we consider online algorithms with advice. For ONLINE VERTEX COVER,
this issue did not arise, since it is not possible to end up with a vertex cover without
maintaining a vertex cover at all times. Thus, in this aspect, ONLINE DOMINATING
SET is more similar to ONLINE CYCLE FINDING.

Lemma 6 ONLINE DOMINATING SET in in AOC.

In order to show that ONLINE DOMINATING SET is AOC-complete, we use the fol-
lowing construction.

Definition 10 For a string x= x1 . . .xn such that |x|1≥ 1, define MAX to be the largest
i such that xi = 1 and define Kx = (V,E) as follows:

V = {v1, . . . ,vn},
E = {(vi,vMAX) : xi = 0}.

Furthermore, let V0 = {vi : xi = 0} and V1 = {vi : xi = 1}.

Note that V1 is a smallest dominating set in Kx and that any dominating set is ei-
ther a superset of V1 or equal to V \{vMAX}. We now give a lower bound on the advice
complexity of ONLINE DOMINATING SET. Interestingly, it is possible to do this by
making a reduction from MINASGU (instead of MINASGK) to ONLINE DOMINAT-
ING SET.

Lemma 7 If there is a c-competitive algorithm for ONLINE DOMINATING SET read-
ing b bits of advice, then there is a c-competitive algorithm reading b+O(logn) bits
of advice for MINASGU.

Proof Let ALG be a c-competitive algorithm (with an additive constant of α) for
ONLINE DOMINATING SET reading at most b bits of advice. We will define an algo-
rithm ALG′ and an oracle O′ for MINASGU such that ALG′ is c-competitive (with the
same additive constant) and reads at most b+O(logn) bits of advice.

Let x = x1 . . .xn be an input string to MINASGU. The oracle O′ first writes one bit
of advice to indicate if |x|1 = 0. If this is the case, ALG′ answers 0 in each round. In
the rest of the proof, we will assume that |x|1 ≥ 1.

Consider the input instance to ONLINE DOMINATING SET, Kx = (V,E), defined
in Definition 10, where the vertices are requested in the order 〈v1, . . . ,vn〉. Note that
V1 is the smallest dominating set in Kx. Let ϕ be the advice read by ALG, and let VALG

be the vertices chosen by ALG, when the n vertices of Kx are revealed. Since ALG is
c-competitive, we know that VALG is a dominating set of size |VALG| ≤ c |V1|+α .

We now define ALG′ and O′. The second bit of the advice tape will be used to let
ALG′ distinguish the two cases described below. Note that the only vertex from V1

The Advice Complexity of a Class of Hard Online Problems 29

that can be rejected by a c-competitive algorithm is vMAX, and nothing can be rejected
when V1 =V . Hence the two cases are exhaustive.

Case 1: ALG accepts all vertices in V1. The oracle O′ writes the value of MAX
in a self-delimiting way. This requires O(logn) bits. Furthermore, O′ writes ϕ to the
advice tape. Now, ALG′ learns ϕ and MAX and works as follows: In round i≤MAX−
1, ALG′ answers 1 if ALG accepts the vertex vi and 0 otherwise. Note that ALG′

knows that no edges are revealed to ALG in the first MAX− 1 rounds. Thus, ALG′

can compute the answer produced by ALG in these rounds from ϕ alone. In round
MAX, ALG′ answers 1. In rounds MAX+1, . . . ,n, the algorithm ALG′ always answers
0.

Case 2: ALG rejects vMAX. In order to dominate vMAX, ALG must accept a vertex
vi ∈V0. The oracle O′ writes the values of MAX and i in a self-delimiting way, followed
by ϕ , to the advice tape. ALG′ behaves as in Case 1, except that it answers 0 in round
i.

In both cases, xv y and |y|1≤ |VALG| ≤ c |V1|+α = c |x|1+α . Furthermore, ALG′

reads b+O(logn) bits of advice. ut

Theorem 14 ONLINE DOMINATING SET is AOC-complete

Proof This follows from Lemmas 6 and 7 together with Theorem 5. ut

4.1.4 Online Set Cover.

We study a version of ONLINE SET COVER in which the universe is known from
the beginning and the sets arrive online. Note that this problem is very different from
the set cover problem studied in [1, 24], where the elements (and not the sets) arrive
online.

Lemma 8 ONLINE SET COVER is in AOC

Lemma 9 If there is a c-competitive algorithm for ONLINE SET COVER reading b
bits of advice, then there is a c-competitive algorithm reading b+O(logn) bits of
advice for MINASGU.

Proof Let x = x1 . . .xn be an input string to MINASGU with |x|1 ≥ 1, and define MAX
as in Definition 10. We define an instance of ONLINE SET COVER as follows. The
universe is [n] = {1, . . . ,n} and there are n requests. For i 6= MAX, request i is just the
singleton {i}. Request MAX is the set {MAX}∪S0, where S0 = {i : xi = 0}.

Using these instances of ONLINE SET COVER and the same arguments as in
Lemma 7 proves the theorem. Note that for ONLINE SET COVER, only Case 1 of
Lemma 7 is relevant, since a c-competitive algorithm for this problem will accept all
requests i 6∈ S0. ut

Theorem 15 ONLINE SET COVER is AOC-complete

Proof This follows from Lemmas 8 and 9 together with Theorem 5. ut

30 Joan Boyar et al.

4.2 AOC-complete maximization problems

In this section, we consider two maximization problems which are AOC-complete.

4.2.1 Online Independent Set.

The first maximization problem that we consider is ONLINE INDEPENDENT SET.

Lemma 10 ONLINE INDEPENDENT SET is in AOC.

Proof Each request is a vertex along with the edges connecting it to previously re-
quested vertices. The algorithm makes a binary choice for each request, to include
the vertex (yi = 0) or not (yi = 1). The feasible outputs are those that are independent
sets. There exists a feasible output (taking no vertices). The score of a feasible output
is the number of vertices in it, and the score of an infeasible output is−∞. Any subset
of the vertices in an optimal solution is a feasible solution. ut

Lemma 11 If there is a c-competitive algorithm reading b bits for ONLINE INDE-
PENDENT SET, then there is a c-competitive algorithm reading b+O(logn) bits for
MAXASGK.

Proof The proof is almost identical to the proof of Lemma 3. Let ALG be a c-
competitive algorithm (with an additive constant of α) for ONLINE INDEPENDENT
SET reading at most b bits of advice. We will define an algorithm ALG′ and an oracle
O′ for MAXASGK such that ALG′ is c-competitive (with the same additive constant)
and reads at most b bits of advice.

As in Lemma 3, on input x = x1 . . .xn to ONLINE INDEPENDENT SET, the algo-
rithm ALG′ simulates ALG on Gx (from Definition 8). This time, a vertex in V0 is
good and a vertex in V1 is bad. Note that V0∪{vn} is a maximum independent set in
Gx. Also, if ALG accepts a bad vertex, vi, then no further vertices v j (where i < j≤ n)
can be accepted because of the edges (vi,v j). Thus, ALG accepts at most one bad ver-
tex. Let VALG be the vertices accepted by ALG. Since ALG is c-competitive, VALG is
an independent set satisfying |V0| ≤ |V0∪{vn}| ≤ c |VALG|+α . We denote by y the
output computed by ALG′. There are three cases to consider:

Case 1: All vertices accepted by ALG are good, that is VALG ⊆ V0. In this case,
ALG answers 0 in round i if vi ∈ VALG and 1 otherwise. Clearly, x v y and |x|0 =
|V0| ≤ c |VALG|+α = c |y|0 +α .

Case 2a: ALG accepts a bad vertex, vi, and rejects a good vertex, v j. In this
case, the oracle O′ writes the indices i and j in a self-delimiting way. ALG simulates
ALG′ as before, but answers 1 in round i and 0 in round j. It follows that x v y and
|x|0 ≤ c |y|0 +α .

Case 2b: ALG accepts a bad vertex, vi, and all good vertices. This implies that
VALG is an independent set of size |V0|+ 1, which must be optimal. The oracle O′

writes the value of i to the advice tape in a self-delimiting way. ALG simulates ALG′

as before but answers 1 in round i. It follows that xv y. Furthermore, |y|0 = |VALG|−
1 = |V0|= |x|0, and hence the solution y is optimal.

The Advice Complexity of a Class of Hard Online Problems 31

x = 010

L = 8

Ix = 〈(0,4),(4,6),(4,5)〉

Fig. 4 An example of the reduction used in the proof of Lemma 13. The request (0,4) is good, since
x1 = 0, and (4,6) is a bad request, since x2 = 1.

In order to simulate ALG, the algorithm ALG′ needs to read at most b bits of
advice plus O(logn) bits of advice to specify the case and handle the cases where
ALG accepts a bad vertex. ut

Theorem 16 ONLINE INDEPENDENT SET is AOC-complete.

Proof This follows from Lemmas 10 and 11 together with Theorem 8. ut

4.2.2 Online Disjoint Path Allocation.

In this section, we show that ONLINE DISJOINT PATH ALLOCATION is AOC-complete.

Lemma 12 ONLINE DISJOINT PATH ALLOCATION is in AOC.

In Lemma 13, we use the same hard instance for ONLINE DISJOINT PATH ALLO-
CATION as in [7] to get a lower bound on the advice complexity of ONLINE DISJOINT
PATH ALLOCATION.

Lemma 13 If there is a c-competitive algorithm reading b bits for ONLINE DIS-
JOINT PATH ALLOCATION, then there is a c-competitive algorithm reading b +
O(logn) bits for MAXASGK.

Proof The proof is similar to the proof of Lemma 11. Let ALG be a c-competitive al-
gorithm for ONLINE DISJOINT PATH ALLOCATION reading at most b bits of advice.
We will describe an algorithm ALG′ and an oracle O′ for MAXASGK such that ALG′

is c-competitive (with the same additive constant α as ALG) and reads at most b bits
of advice.

Let x = x1 . . .xn be an input to MAXASGK. We define an instance Ix of ONLINE
DISJOINT PATH ALLOCATION with L = 2n (that is, the number of vertices on the
path is 2n +1). In round i, 1≤ i≤ n, a path of length 2n−i arrives. For 2≤ i≤ n, the
position of the path depends on xi−1. We define the request sequence inductively (for
an example, see Figure 4):

In round 1, the request (u1,v1) arrives, where

u1 = 0

v1 = 2n−1

32 Joan Boyar et al.

In round i, 2≤ i≤ n, the request (ui,vi) arrives, where

ui =

{
ui−1, if xi−1 = 1
vi−1, if xi−1 = 0

vi = ui +2n−i

We say that a request ri = (ui,vi) is good if xi = 0 and bad if xi = 1. If ri is good,
then none of the later requests overlap with ri. On the other hand, if ri is bad, then all
later requests do overlap with ri. In particular, if one accepts a single bad request, then
no further requests can be accepted. An optimal solution is obtained if one accepts
all good requests together with rn.

The oracle O′ will provide ALG′ with the advice ϕ read by ALG when processing
Ix. Since ALG knows the value of xi−1 at the beginning of round i in MAXASGK, ALG
can use the advice ϕ to simulate ALG′ on Ix. If ALG only accepts good requests, it
is clear that ALG′ can compute an output y such that xv y and |x|0 ≤ c |y|0 +α . The
case where ALG accepts a bad request is handled by using at most O(logn) additional
advice bits, exactly as in Lemma 11. ut

Theorem 17 ONLINE DISJOINT PATH ALLOCATION is AOC-complete.

4.3 AOC Problems which are not AOC-complete

In this section, we will give two examples of problems in AOC which are provably
not AOC-complete.

4.3.1 Uniform knapsack.

We define the problem ONLINE UNIFORM KNAPSACK as follows: For each request,
i, an item of weight ai, 0≤ ai ≤ 1, is requested. A request must immediately be either
accepted or rejected, and this decision is irrevocable. Let S denote the set of indices
of accepted items. We say that S is a feasible solution if ∑i∈S ai ≤ 1. The profit of a
feasible solution is the number of items accepted (all items have a value of 1). The
problem is a maximization problem.

The ONLINE UNIFORM KNAPSACK problem is the online knapsack problem as
studied in [8], but with the restriction that all items have a value of 1. This problem is
the same as online dual bin packing with only a single bin available and where items
can be rejected.

It is clear that ONLINE UNIFORM KNAPSACK belongs to AOC since a subset
of a feasible solution is also a feasible solution. Furthermore, since all items have
value 1, the profit of a feasible solution is simply the number of items packed in the
knapsack. The problem is hard in the sense that no deterministic algorithm (without
advice) can attain a strict competitive ratio better than Ω(n) (see [8, 25]). However,
as the next lemma shows, the problem is not AOC-complete. In [8], it is shown that
for any ε > 0, it is possible to achieve a competitive ratio of 1+ ε using O(logn)
bits of advice, under the assumption that all weights and values can be represented

The Advice Complexity of a Class of Hard Online Problems 33

in polynomial space. Lemma 14 shows how this assumption can be avoided when all
items have unit value.

Lemma 14 There is a strictly 2-competitive ONLINE UNIFORM KNAPSACK algo-
rithm reading O(logn) bits of advice, where n is the length of the input.

Proof Fix an input σ = 〈a1, . . . ,an〉. Let m be the number of items accepted by OPT.
The oracle writes m to the advice tape using a self-delimiting encoding. Since m≤ n,
this requires O(logn) bits. The algorithm ALG learns m from the advice tape and
works as follows: If ALG is offered an item, ai, such that ai ≤ 2/m and if accepting
ai will not make the total weight of ALG’s solution larger than 1, then ALG accepts
ai. Otherwise, ai is rejected.

In order to show that ALG is strictly 2-competitive, we define A= {ai : ai≤ 2/m}.
First note that |A| ≥ m/2, since the sizes of the m smallest items add up to at most 1.
Thus, if ALG accepts all items contained in A, it accepts at least m/2 items. On the
other hand, if ALG rejects any item ai ∈ A, it means that it has already accepted items
of total size more than 1−2/m. Since all accepted items have size at most 2/m, this
means that ALG has accepted at least m/2 items. ut

Even though ONLINE UNIFORM KNAPSACK is not AOC-complete, the fact that
it belongs to AOC might still be of interest, since this provides some starting point for
determining the advice complexity of the problem. In particular, it gives some (non-
trivial) way to obtain a c-competitive algorithm for c < 2. Determining the exact
advice complexity of ONLINE UNIFORM KNAPSACK is left as an open problem.

4.3.2 Matching under edge-arrival.

We briefly consider the ONLINE MATCHING problem in an edge-arrival version. For
each request, an edge is revealed. An edge can be either accepted or rejected. Denote
by EALG the edges accepted by some algorithm ALG. A solution EALG is feasible if
the set of edges in the solution is a matching in the input graph, and the profit of
a feasible solution is the number of edges in EALG. The problem is a maximization
problem.

It is well-known that the greedy algorithm is 2-competitive for ONLINE MATCH-
ING. Since this algorithm works in an online setting without any advice, it follows that
ONLINE MATCHING is not AOC-complete. On the other hand, ONLINE MATCHING
is in AOC. This gives an upper bound on the advice complexity of the problem for
1≤ c < 2. It seems obvious that this upper bound is not tight, but currently, no better
bound is known.

5 Conclusion and Open Problems

The following theorem summarizes the main results of this paper.

Theorem 18 For the problems

– ONLINE VERTEX COVER

34 Joan Boyar et al.

– ONLINE CYCLE FINDING
– ONLINE DOMINATING SET
– ONLINE SET COVER (set-arrival version)
– ONLINE INDEPENDENT SET
– ONLINE DISJOINT PATH ALLOCATION

and for any c > 1, possibly a function of the input length n,

b = log
(

1+
(c−1)c−1

cc

)
n±O(logn)

bits of advice are necessary and sufficient to achieve a (strict) competitive ratio of c.

As with the original string guessing problem SG [5,15], we have shown that ASG
is a useful tool for determining the advice complexity of online problems. It seems
plausible that one could identify other variants of online string guessing and obtain
classes similar to AOC. Potentially, this could lead to an entire hierarchy of string
guessing problems and related classes.

More concretely, there are various possibilities of generalizing ASG. One could
associate some positive weight to each bit xi in the input string. The goal would then
be to produce a feasible output of minimum (or maximum) weight. Such a string
guessing problem would model minimum weight vertex cover (or maximum weight
independent set). Note that for MAXASG, the algorithm from Theorem 2 works in
the weighted version. However, the same is not true for any of the algorithms we have
given for MINASG. Thus, it remains an open problem if O(n/c) bits of advice suffice
to achieve a competitive ratio of c for the weighted version of MINASG.

Acknowledgements The authors would like to thank Magnus Gausdal Find for helpful discussions.

References

1. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover problem. SIAM J.
Comput. 39(2), 361–370 (2009)

2. Barhum, K.: Tight bounds for the advice complexity of the online minimum steiner tree problem.
In: Proc. 40th International Conf. on Current Trends in Theory and Practice of Computer Science
(SOFSEM), Lecture Notes in Comput. Sci., Springer, vol. 8327, pp. 77–88 (2014)

3. Barhum, K., Böckenhauer, H.J., Forišek, M., Gebauer, H., Hromkovič, J., Krug, S., Smula, J., Steffen,
B.: On the power of advice and randomization for the disjoint path allocation problem. In: Proc.
40th International Conf. on Current Trends in Theory and Practice of Computer Science (SOFSEM),
Lecture Notes in Comput. Sci., Springer, vol. 8327, pp. 89–101 (2014)

4. Bianchi, M.P., Böckenhauer, H.J., Hromkovič, J., Keller, L.: Online coloring of bipartite graphs with
and without advice. Algorithmica 70(1), 92–111 (2014)

5. Böckenhauer, H.J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.: The string guessing
problem as a method to prove lower bounds on the advice complexity. Theor. Comput. Sci. 554,
95–108 (2014)

6. Böckenhauer, H.J., Komm, D., Královič, R., Královič, R.: On the advice complexity of the k-server
problem. In: Proc. 38th International Colloquium on Automata, Languages, and Programming
(ICALP), Lecture Notes in Comput. Sci., Springer, vol. 6755, pp. 207–218 (2011)

7. Böckenhauer, H.J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the advice complexity
of online problems. In: Proc. 20th International Symp. on Algorithms and Computation (ISAAC),
Lecture Notes in Comput. Sci., Springer, vol. 5878, pp. 331–340 (2009)

The Advice Complexity of a Class of Hard Online Problems 35

8. Böckenhauer, H.J., Komm, D., Královič, R., Rossmanith, P.: The online knapsack problem: Advice
and randomization. Theor. Comput. Sci. 527, 61–72 (2014)

9. Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: On the list update problem with advice. In: Proc.
8th International Conf. on Language and Automata Theory and Applications (LATA), Lecture Notes
in Comput. Sci., Springer, vol. 8370, pp. 210–221 (2014). Full paper to appear in Information and
Computation.

10. Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: Online bin packing with advice. Algorithmica
74, 507–527 (2016)

11. Demange, M., Paschos, V.T.: On-line vertex-covering. Theor. Comput. Sci. 332(1-3), 83–108 (2005)
12. Dinitz, J.H., Stinson, D.R. (eds.): Contemporary Design Theory: a Collection of Surveys. Wiley-

Interscience series in discrete mathematics and optimization. Wiley, New York (1992). URL http:

//opac.inria.fr/record=b1088981

13. Dobrev, S., Královič, R., Královič, R.: Advice complexity of maximum independent set in sparse and
bipartite graphs. Theory Comput. Syst. 56(1), 197–219 (2015)

14. Dobrev, S., Královič, R., Pardubská, D.: Measuring the problem-relevant information in input. RAIRO
- Theor. Inf. Appl. 43(3), 585–613 (2009)

15. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theor. Comput.
Sci. 412(24), 2642–2656 (2011)

16. Erdős, P., Spencer, J.: Probabilistic Methods in Combinatorics. Academic Press (1974)
17. Forišek, M., Keller, L., Steinová, M.: Advice complexity of online coloring for paths. In: Proc. 6th

International Conf. on Language and Automata Theory and Applications (LATA), Lecture Notes in
Comput. Sci., Springer, vol. 7183, pp. 228–239 (2012)

18. Gupta, S., Kamali, S., López-Ortiz, A.: On advice complexity of the k-server problem under sparse
metrics. In: Proc. 20th International Colloquium on Structural Information and Communication Com-
plexity (SIROCCO), Lecture Notes in Comput. Sci., Springer, vol. 8179, pp. 55–67 (2013)

19. Halldórsson, M.M., Iwama, K., Miyazaki, S., Taketomi, S.: Online independent sets. Theor. Comput.
Sci. 289(2), 953–962 (2002)

20. Halldórsson, M.M., Szegedy, M.: Lower bounds for on-line graph coloring. Theor. Comput. Sci.
130(1), 163–174 (1994)

21. Håstad, J.: Clique is hard to approximate within n1−ε . Acta Math. 182(1), 105–142 (1999)
22. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online problems. In: Proc. 35th

Symp. on Mathematical Foundations of Computer Science (MFCS), Lecture Notes in Comput. Sci.,
Springer, vol. 6281, pp. 24–36 (2010)

23. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica
3, 77–119 (1988)

24. Komm, D., Královič, R., Mömke, T.: On the advice complexity of the set cover problem. In: Proc.
7th International Computer Science Symp. in Russia (CSR), Lecture Notes in Comput. Sci., Springer,
vol. 7353, pp. 241–252 (2012)

25. Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems. Math. Program. 68,
73–104 (1995)

26. Mikkelsen, J.W.: Optimal online edge coloring of planar graphs with advice. In: Proc. 9th Interna-
tional Conf. on Algorithms and Complexity (CIAC), Lecture Notes in Comput. Sci., Springer, vol.
9079, pp. 352–364 (2015)

27. Mitzenmacher, M., Upfal, E.: Probability and Computing - Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press (2005)

28. Miyazaki, S.: On the advice complexity of online bipartite matching and online stable marriage. Inf.
Process. Lett. 114(12), 714–717 (2014)

29. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-
probability PCP characterization of NP. In: Proc. 29th Symp. on Theory of Computing (STOC),
pp. 475–484. ACM (1997)

30. Renault, M.P., Rosén, A., van Stee, R.: Online algorithms with advice for bin packing and scheduling
problems. Theor. Comput. Sci. 600, 155–170 (2015)

31. Seibert, S., Sprock, A., Unger, W.: Advice complexity of the online coloring problem. In: Proc. 8th
International Conf. on Algorithms and Complexity (CIAC), Lecture Notes in Comput. Sci., Springer,
vol. 7878, pp. 345–357 (2013)

32. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM
28(2), 202–208 (1985)

http://opac.inria.fr/record=b1088981
http://opac.inria.fr/record=b1088981

36 Joan Boyar et al.

Appendix

A Approximation of the Advice Complexity Bounds

In Theorems 3-8, bounds on the advice complexity of ASG were obtained. These
bounds are tight up to an additive term of O(logn). However, within the proofs, they
are all expressed in terms of the minimum size of a certain covering design or a quo-
tient of binomial coefficients. In this appendix, we prove the closed formula estimates
for the advice complexity stated in Theorems 3-8 and 11. Again, these estimates are
tight up to an additive term of O(logn). The key to obtaining the estimates is the
estimation of a binomial coefficient using the binary entropy function.

A.1 Approximating the Function B(n,c)

Lemma 15 For c > 1, it holds that

1
e ln(2)

1
c
≤ log

(
1+

(c−1)c−1

cc

)
≤ 1

c
.

Proof We prove the upper bound first. To this end, note that

log
(

1+
(c−1)c−1

cc

)
≤ 1

c
⇔ 1+

(c−1)c−1

cc ≤ 21/c ⇔
(

1+
(c−1)c−1

cc

)c

≤ 2.

Using calculus, one may verify that
(

1+ (c−1)c−1

cc

)c
is decreasing in c for c> 1. Thus,

by continuity, it follows that(
1+

(c−1)c−1

cc

)c

≤ lim
c→1+

(
1+

(c−1)c−1

cc

)c

= lim
c→1+

(
1+
(

c−1
c

)c−1 1
c

)c

= lim
c→1+

(
1+

1
c

)c

= 2.

For the lower bound, let a = e ln(2) and note that

1
ac
≤ log

(
1+

(c−1)c−1

cc

)
⇔ 2≤

(
1+

(c−1)c−1

cc

)ac

.

Again, using calculus, one may verify that
(

1+ (c−1)c−1

cc

)ac
is decreasing in c for

c > 1. It follows that(
1+

(c−1)c−1

cc

)ac

≥ lim
c→∞

(
1+

(c−1)c−1

cc

)ac

= lim
c→∞

(
1+
(

c−1
c

)c−1 1
c

)ac

= lim
c→∞

(
1+

1
e

1
c

)ac

= lim
c→∞

(
1+

a/e
ac

)ac

= ea/e = eln(2) = 2.

ut

The Advice Complexity of a Class of Hard Online Problems 37

A.2 The Binary Entropy Function

In this section, we give some properties of the binary entropy function that will be
used extensively in Section A.4.

Definition 11 The binary entropy function H : [0,1]→ [0,1] is the function given by

H(p) =−p log(p)− (1− p) log(1− p), for 0 < p < 1,

and H(0) = H(1) = 0.

Lemma 16 (Lemma 9.2 in [27]) For integers m,n such that 0≤ m≤ n,

2nH(m/n)

n+1
≤
(

n
m

)
≤ 2nH(m/n).

Proposition 1 The binary entropy function H(p) has the following properties.

(H1) H
(1

s

)
= log(s)+ 1−s

s log(s−1) for s > 1.
(H2) sH

(1
s

)
≤ logs+2 for s > 1.

(H3) H ′(p) = log
(

1
p −1

)
and H ′′(p)< 0 for 0 < p < 1.

(H4) For any fixed t > 0, sH
(t

s

)
is increasing in s for s > t.

(H5) nH
(1

x

)
−nH

(1
x +

1
n

)
< 3 if n≥ 3 and x > 2.

Proof (H1): Follows from the definition.
(H2): For s > 1,

sH
(

1
s

)
= s
(

logs+
1− s

s
log(s−1)

)
, by (H1)

= log

((
1+

1
s−1

)s−1

s

)
≤ log(e · s) = log(e)+ log(s)≤ logs+2.

(H3): Note that H is smooth for 0< p< 1. The derivative H ′(p) can be calculated
from the definition. The second-order derivative is

H ′′(p) =
−1

(1− p)p ln(2)
,

which is strictly less than zero for all 0 < p < 1.
(H4): Fix t > 0. The claim follows by showing that the partial derivative of sH(t

s)
with respect to s is positive for all s > t.

d
ds

(
sH
(t

s

))
= H

(t
s

)
+ sH ′

(t
s

)(
− t

s2

)
= H

(t
s

)
− t

s
H ′
(t

s

)
=− t

s
log
(t

s

)
−
(

1− t
s

)
log
(

1− t
s

)
− t

s
log
(s

t
−1
)
, by Def. 11 and (H3)

=− log
(

1− t
s

)
> 0.

38 Joan Boyar et al.

(H5): H(p) is increasing for 0≤ p≤ 1
2 and decreasing for 1

2 ≤ p≤ 1. If 1
x +

1
n ≤

1
2 ,

then the claim is trivially true (since then the difference is negative). Assume therefore
that 1

x +
1
n > 1

2 . Under this assumption, H(1
x) increases and H(1

x +
1
n) decreases as x

tends to 2. Thus, H(1
x)−H(1

x +
1
n) increases as x tends to 2 and, hence,

H
(

1
x

)
−H

(
1
x
+

1
n

)
≤ H

(
1
2

)
−H

(
1
2
+

1
n

)
. (3)

Inserting into the definition of H gives

H
(

1
2

)
−H

(
1
2
+

1
n

)
= 1−

(
−
(

1
2
+

1
n

)
log
(

1
2
+

1
n

)
−
(

1
2
− 1

n

)
log
(

1
2
− 1

n

))
=

1
n

log

(
1
2 +

1
n

1
2 −

1
n

)
+

1
2

log
((

1
2
+

1
n

)(
1
2
− 1

n

))
+1

=
1
n

log
(

n+2
n−2

)
+

1
2

log
(

n2−4
4n2

)
+1

Since (n+2)/(n−2) is decreasing for n ≥ 3, it follows that log((n+2)/(n−2)) ≤
log(5). Furthermore, (n2−4)/(4n2)≤ 1

4 for all n≥ 3, and so 1
2 log

(
(n2−4)/(4n2)

)
+

1≤ 0. We conclude that, for all n≥ 3,

H
(

1
2

)
−H

(
1
2
+

1
n

)
≤ log(5)

n
<

3
n
. (4)

Combining (3) and (4) proves (H5). ut

A.3 Binomial Coefficients

The following proposition is a collection of simple facts about the binomial coeffi-
cient that will be used in Sections A.4 and A.5.

Proposition 2 Let a,b,c ∈ N.

(B1)
(a

b

)
= a

a−b

(a−1
b

)
, where b < a.

(B2) For fixed b,
(a

b

)
is increasing in a.

(B3) If c≤ b≤ a, then (a
c

)(b
c

) = (a
b

)(a−c
a−b

) .
Proof First, we prove (B1):(

a
b

)
=

a!
b!(a−b)!

=
a

a−b
(a−1)!

b!(a−1−b)!
=

a
a−b

(
a−1

b

)
(B2) follows directly from (B1).

The Advice Complexity of a Class of Hard Online Problems 39

To prove (B3), we calculate the two fractions separately:(a
c

)(b
c

) = a!
c!(a− c)!

c!(b− c)!
b!

=
a!

(a− c)!
(b− c)!

b!(a
b

)(a−c
a−b

) = a!
b!(a−b)!

(a−b)!(b− c)!
(a− c)!

=
a!
b!

(b− c)!
(a− c)!

=

(a
c

)(b
c

)
ut

A.4 Approximating the Advice Complexity Bounds for MINASG

The following lemma is used for proving Theorems 3–5.

Lemma 17 For c > 1 and n≥ 3,

log
(

max
t : bctc<n

C(n,bctc, t)
)
≥ log

(
max

t : bctc<n

(n
t

)(bctc
t

)) (5)

≥ log
(

1+
(c−1)c−1

cc

)
n−2log(n+1)−5 (6)

and

log
(

max
t : bctc<n

C(n,bctc, t)
)
≤ log

(
max

t : bctc<n

(n
t

)(bctc
t

)n

)
(7)

≤ log
(

1+
(c−1)c−1

cc

)
n+3log(n+1). (8)

Proof We prove the upper and lower bounds separately.

Upper bound: Fix n,c. By Lemma 1,

C(n,bctc, t)≤
(n

t

)(bctc
t

) (1+ ln
(
bctc

t

))
.

Note that 1+ ln
(bctc

t

)
≤ n since we consider only bctc < n. This proves (7). Now,

taking the logarithm on both sides gives

log(C(n,bctc, t))≤ log

((n
t

)(bctc
t

))+ logn≤ log

((n
t

)(dcte−1
t

))+ logn

≤ log

 (n
t

)
dcte−t
dcte

(dcte
t

)
+ logn, by (B1)

≤ log

((n
t

)(dcte
t

))+ log
(
dcte
dcte− t

)
+ logn

≤ log

((n
t

)(dcte
t

))+2logn . (9)

40 Joan Boyar et al.

Above, we have increased bctc to dcte in the binomial coefficient (at the price of
an additive term of logn). This is done since it will later be convenient to use that
ct ≤ dcte. Using Lemma 16, we get that(n

t

)(dcte
t

) ≤ 2nH(t/n)

2dcteH(t/dcte) (dcte+1) ,

and therefore

log

((n
t

)(dcte
t

))≤ nH
(t

n

)
−dcteH

(
t
dcte

)
+ log(dcte+1)

≤ nH
(t

n

)
− ctH

(
1
c

)
+ log(n+1), by (H4). (10)

Define

M(n, t) = nH
(t

n

)
− ctH

(
1
c

)
.

Combining (9) and (10) shows that

log(C(n,bctc, t))≤M(n, t)+3log(n+1) . (11)

The function M is smooth. For any given input length n, we can determine the value
of t maximizing M(n, t) using calculus. In order to simplify the notation for these
calculations, define

x =
(

c
c−1

)c

(c−1)+1,

and note that

log(x−1) = c
(

logc+
1− c

c
log(c−1)

)
= cH

(
1
c

)
, by (H1). (12)

We want to determine those values of t for which d
dt M(n, t) = 0:

d
dt

M(n, t) =
d
dt

(
nH
(t

n

)
− ctH

(
1
c

))
= 0

⇔ nH ′
(t

n

)
· 1

n
− cH

(
1
c

)
= 0

⇔ log
(n

t
−1
)
= cH

(
1
c

)
, by (H3)

⇔ n
t
= 2cH(1/c)+1

⇔ t =
n

2cH(1/c)+1

⇔ t =
n

2log(x−1)+1
, by (12)

⇔ t =
n
x
.

The Advice Complexity of a Class of Hard Online Problems 41

Note that d2

dt2 M(n, t) = H ′′(t
n)/n < 0 for all values of t, by (H3). Thus,

M(n, t)≤M
(

n,
n
x

)
, for all values of t . (13)

The value of M(n, n
x) can be calculated as follows:

M
(

n,
n
x

)
= nH

(
1
x

)
− c

n
x

H
(

1
c

)
= n

(
log(x)+

1− x
x

log(x−1)− c
x

H(1/c)
)
, by (H1)

= n
(

log(x)+
1− x

x
log(x−1)− 1

x
log(x−1)

)
, by (12)

= n
(

log(x)− log(x−1)
)
= n log

(
x

x−1

)
= n log

(
1+

(c−1)c−1

cc

)
. (14)

Combining (11), (13), and (14), we conclude that

log(C(n,bctc, t))≤ n log
(

1+
(c−1)c−1

cc

)
+3log(n+1).

Lower Bound: By Lemma 1,

log
(

max
t : bctc<n

C(n,bctc, t)
)
≥ log

(
max

t : bctc<n

(n
t

)(bctc
t

)) .

This proves (5). In order to prove (6), first note that by Lemma 15,

log
(

1+
(c−1)c−1

cc

)
n≤ n

c
.

Thus, for c ≥ n
2 , the righthand side of (6) is negative, and hence, the inequality is

trivially true.
Assume now that c< n

2 . We will determine an integer value of t such that
(n

t

)
/
(bctc

t

)
becomes sufficiently large. First, we use Lemma 16:(n

t

)(bctc
t

) ≥ 2nH(t/n)

(n+1) ·2bctcH(t/bctc) =
2nH(t/n)−bctcH(t/bctc)

n+1

It is possible that t = bctc, but this is fine since H(1) = 0. Using (H4), we see that

bctcH
(

t
bctc

)
≤ ctH

(t
ct

)
= ctH

(
1
c

)
.

42 Joan Boyar et al.

Thus,

log

((n
t

)(bctc
t

))≥ nH
(t

n

)
− ctH

(
1
c

)
− log(n+1) = M(n, t)− log(n+1). (15)

Let t ′ = n
x . We know that M(n, t) attains its maximum value when t = t ′. Since c > 1,

it is clear that x > c and hence t ′ < n
c . It follows that bct ′c < n. However, t ′ might

not be an integer. In what follows, we will first argue that bcdt ′ec < n and then that
M(n,dt ′e) is close to M(n, t ′). The desired lower bound will then follow by setting
t = dt ′e.

Using calculus, it can be verified that, for c > 1, x/c is increasing in c. Hence,

x
c
=

(
c

c−1

)c−1

+
1
c

≥ lim
c→1+

((
c

c−1

)c−1

+
1
c

)
, for c > 1

= lim
c→1+

(
1+

1
c−1

)c−1

+ lim
c→1+

1
c
= lim

a→0+

(
1+

1
a

)a

+1 = 2 .

Thus, c≤ x/2, and hence,

bcdt ′ec ≤ c
⌈n

x

⌉
<

cn
x
+ c≤ n

2
+ c < n .

Note that d
dt M(n, t) < 0 for t > t ′, so M(n,dt ′e) ≥ M(n, t ′+ 1). Combining this

observation with (H2) and (H5), we get that

M(n,dt ′e)≥M(n, t ′+1) = nH
(

t ′+1
n

)
− c(t ′+1)H

(
1
c

)
= nH

(
1
x
+

1
n

)
− c

n
x

H
(

1
c

)
− cH

(
1
c

)
≥ nH

(
1
x
+

1
n

)
− c

n
x

H
(

1
c

)
− logn−2, by (H2)

≥ nH
(

1
x

)
− c

n
x

H
(

1
c

)
− logn−5, by (H5)

= M(n, t ′)− logn−5.

By choosing t = dt ′e in the max, we conclude that

log

(
max

t : bctc<n

(n
t

)(bctc
t

))≥M(n,dt ′e)− log(n+1), by (15)

≥M(n, t ′)− log(n+1)− logn−5

≥ n log
(

1+
(c−1)c−1

cc

)
−2log(n+1)−5, by (14).

ut

The Advice Complexity of a Class of Hard Online Problems 43

The following lemma is used for proving Theorem 10.

Lemma 18 If c is an integer-valued function of n and c > 1, it holds that

log

(
max

t : ct<n

(n
t

)(ct
t

))= Ω

(n
c

)
.

Proof Assume that c is an integer-valued function of n, that c > 1 and that ct < n. It
follows that (n

t

)(ct
t

) = n!(ct− t)!
(n− t)!(ct)!

≥ n(n−1) · · ·(n− t +1)
(ct)(ct−1) · · ·(ct− t +1)

Let t = b n
ecc. Then(n

t

)(ct
t

) = n(n−1) · · ·(n− t +1)
(ct)(ct−1) · · ·(ct− t +1)

≥ n(n−1) · · ·(n− t +1)
n
e (

n
e −1) · · ·(n

e − t +1)

=
n
n
e

n−1
n
e −1

· · · n− t +1
n
e − t +1

≥ et .

Since

log(et) = t log(e)≥
(n

ec
−1
)

loge =
n

e ln(2)c
− log(e) = Ω

(n
c

)
,

this proves the lemma by choosing t = b n
ecc. ut

A.5 Approximating the Advice Complexity Bounds for MAXASG

Lemma 20 of this section is used for Theorems 6–8. In proving Lemma 20, the fol-
lowing lemma will be useful.

Lemma 19 For all n,c, it holds that

max
u : 0<u<n

(n
u

)(n−du/ce
n−u

) ≤ n

(
max

t : bctc<n

(n
t

)(bctc
t

)) .

On the other hand, it also holds that

max
u : 0<u<n

(n
u

)(n−du/ce
n−u

) ≥ 1
n

(
max

t : bctc<n

(n
t

)(bctc
t

)) .

Proof Let

fn,c(t) =

(n
t

)(bctc
t

) and gn,c(u) =

(n
u

)(n−du/ce
n−u

) .

44 Joan Boyar et al.

In order to prove the upper bound, we show that fn,c(bu/cc) ≥ gn,c(u)/n, for any
integer u, 0 < u < n. Note that bu/cc< u, since c > 1.

fn,c(bu/cc) =

(n
bu/cc

)(bcbu/ccc
bu/cc

)
≥

(n
bu/cc

)(u
bu/cc

) , by (B2)

=

(n
u

)(n−bu/cc
n−u

) , by (B3)

≥ u−bu/cc
n−bu/cc

(n
u

)(n−du/ce
n−u

) , by (B1)

≥ u−bu/cc
n−bu/cc

gn,c(u)

≥ 1
n

gn,c(u), since u−bu/cc ≥ 1.

By (B1), the second last inequality is actually an equality, unless u/c is an integer.
In order to prove the lower bound, we will show that gn,c(dcte) ≥ fn,c(t)/n, for

any integer t with bctc< n. Note that t < dcte, since c > 1.

gn,c(dcte) =

(n
dcte
)(n−ddcte/ce

n−dcte
)

≥

(n
dcte
)(n−t

n−dcte
) , by (B2)

=

(n
n−dcte

)(n−t
n−dcte

)
=

(n
n−t

)(dcte
t

) , by (B3)

=

(n
n−t

)
dcte
dcte−t

(bctc
t

) , by (B1)

=
dcte− t
dcte

fn,c(t)

≥ 1
n

fn,c(t), since dcte− t ≥ 1 and dcte ≤ n.

ut

The Advice Complexity of a Class of Hard Online Problems 45

Lemma 20 Let c > 1 and n≥ 3. It holds that

log
(

max
u : 0<u<n

C(n,n−
⌈u

c

⌉
,n−u)

)
≥ log

(
max

u : 0<u<n

(n
u

)(n−d u
c e

n−u

))

≥ log
(

1+
(c−1)c−1

cc

)
n−3logn−6.

Furthermore,

log
(

max
u : 0<u<n

C(n,n−
⌈u

c

⌉
,n−u)

)
≤ log

(
max

u : 0<u<n

(n
u

)(n−d u
c e

n−u

) n

)

≤ log
(

1+
(c−1)c−1

cc

)
n+4log(n+1)

Proof We prove the lower bound first.

log
(

max
u : 0<u<n

C(n,n−
⌈u

c

⌉
,n−u)

)
≥ log

(
max

u : 0<u<n

(n
u

)(n−d u
c e

n−u

)) , by Lemma 1

≥ log

(
max

t : bctc<n

(n
t

)(bctc
t

))− logn, by Lemma 19

≥ log
(

1+
(c−1)c−1

cc

)
n−2log(n+1)−5− logn, by (6)

≥ log
(

1+
(c−1)c−1

cc

)
n−3logn−6, since n≥ 3.

We now prove the upper bound.

log
(

max
u : 0<u<n

C(n,n−
⌈u

c

⌉
,n−u)

)
≤ log

(
max

u : 0<u<n

(n
u

)(n−d u
c e

n−u

) (1+ ln
(

n−du/ce
n−u

)))
, by Lemma 1

≤ log

(
max

u : 0<u<n

(n
u

)(n−d u
c e

n−u

) n

)

= log

(
max

u : 0<u<n

(n
u

)(n−d u
c e

n−u

))+ logn

≤ log

(
max

t : bctc<n

(n
t

)(bctc
t

) n

)
+ logn, by Lemma 19

≤ log
(

1+
(c−1)c−1

cc

)
n+4log(n+1), by (8)

ut

	1 Introduction
	2 Asymmetric String Guessing
	3 Advice Complexity of ASG
	4 The Complexity Class AOC
	5 Conclusion and Open Problems
	A Approximation of the Advice Complexity Bounds

