Skip to main content
Log in

On the Chromatic Number of Non-Sparse Random Intersection Graphs

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

An intersection graph of n vertices assumes that each vertex is equipped with a subset of a global label set. Two vertices share an edge when their label sets intersect. Random intersection graphs (RIGs) (as defined in Karoński et al. Comb. Probab. Comput. J. 8, 131–159 (1999); Singer-Cohen (1995)) consider label sets formed by the following experiment: each vertex, independently and uniformly, examines all the labels (m in total) one by one. Each examination is independent and the vertex succeeds to put the label in her set with probability p. Such graphs can capture interactions in networks due to sharing of resources among nodes. In this paper, we discuss various structural and algorithmic results concerning random intersection graphs and we focus on the computational problem of properly coloring random instances of the binomial random intersection graphs model. For the latter, we consider a range of parameters m, p for which RIGs differ substantially from Erdős-Rényi random graphs and for which greedy approaches fail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note however, that this does not mean that the chromatic number is close to np, since the part that is not coloured could be a clique in the worst case.

  2. A perfect graph is a graph in which the chromatic number of every induced subgraph equals the size of the largest clique of that subgraph. Consequently, the clique number of a perfect graph is equal to its chromatic number.

  3. More precisely, if \(\mathcal {B}\) is the set of different label choices that can give rise to a graph G, then the problem of inferring the complete information of label choices from G is solvable if there is some \(B^{*} \in \mathcal {B}\) such that Pr(B |G) > Pr(B|G), for all \(\mathcal {B} \ni B \neq B^{*}\).

References

  1. Leone, P., Moraru, L., Powell, O., Rolim, J.D.P.: Localization algorithm for wireless ad-hoc sensor networks with traffic overhead minimization by emission inhibition. In: Proceedings of the 2nd International Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS), pp 119–129 (2006)

  2. Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Communication in wireless networks with directional antennas. In: Proceedings of the 20th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp 344–351 (2008)

  3. Busch, C., Magdon-Ismail, M., Sivrikaya, F., Yener, B.: Contention-free MAC protocols for asynchronous wireless sensor networks. Distrib. Comput. 21(1), 23–42 (2008)

    Article  MATH  Google Scholar 

  4. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. In: Proceedings of the 6th Annual ACM Symposium on Theory of Computing, pp. 47–63 (1974). doi:10.1145/800119.803884

  5. Halldórsson, M.M.: A still better performance guarantee for approximate graph coloring. Inf. Process. Lett. 45, 19–23 (1993). doi:10.1016/0020-0190(93)90246-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3, 103–128 (2007). doi:10.4086/toc.2007.v003a006

    Article  MathSciNet  MATH  Google Scholar 

  7. Bollobás, B.: The chromatic number of random graphs. Combinatorica 8(1), 49–55 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Łuczak, T.: The chromatic number of random graphs. Combinatorica 11(1), 45–54 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.C.: Secure communication over radio channels. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pp 105–114 (2008)

  10. Dolev, S., Lahiani, L., Yung, M.: Secret swarm unitreactive k-secret sharing. In: Proceedings of the 8th International Conference on Cryptology in India (INDOCRYPT), pp 123–137 (2007)

  11. Karoński, M., Sheinerman, E.R., Singer-Cohen, K.B.: On random intersection graphs: The subgraph problem. Comb. Probab. Comput. J. 8, 131–159 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Singer-Cohen, K.B.: Random Intersection Graphs. PhD thesis, John Hopkins University (1995)

  13. Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: Large independent sets in general random intersection graphs. Theor. Comput. Sci. 406, 215–224 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Godehardt, E., Jaworski, J.: Two models of random intersection graphs for classification. In: Opitz, O., Schwaiger, M. (eds.) Studies in Classification, Data Analysis and Knowledge Organization, pp 67–82. Springer Verlag, Berlin, Heidelberg, New York (2002)

    Google Scholar 

  15. Fill, J.A., Sheinerman, E.R., Singer-Cohen, K.B.: Random intersection graphs when m = ω(n): an equivalence theorem relating the evolution of the G(n, m, p) and G(n, p) models. Random Struct. Algoritm. 16(2), 156–176 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rybarczyk, K.: Equivalence of a random intersection graph and G(n, p). Random Struct. Algoritm. 38(1–2), 205–234 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stark, D.: The vertex degree distribution of random intersection graphs. Random Struct. Algoritm. 24(3), 249–258 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shang, Y.: On the isolated vertices and connectivity in random intersection graphs. Int. J. Comb. 2011, Article ID 872703 (2011). doi:10.1155/2011/872703

    MathSciNet  MATH  Google Scholar 

  19. Behrisch, M., Taraz, A., Ueckerdt, M.: Coloring random intersection graphs and complex networks. SIAM J. Discrete Math. 23, 288–299 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nikoletseas, S., Raptopoulos, C., Spirakis, P.: Colouring non-sparse random intersection graphs. In: Proceedings of the 34th International Symposium on Mathematical Foundations of Computer Science (MFCS), pp 600–611 (2009)

  21. Frieze, A.: On the independence number of random graphs. Disc. Math. 81, 171–175 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ross, S.M.: Stochastic Processes, 2nd edn. Wiley (2000)

  23. Alon, N., Spencer, J.: The Probabilistic Method. Wiley (2000)

  24. Nikoletseas, S., Raptopoulos, C., Spirakis, P.: On the independence number and hamiltonicity of uniform random intersection graphs. In: Proceedings of the 23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp 1–11 (2009)

  25. Erdős, P., Selfridge, J.: On a combinatorial game. J. Combinatorial Th. (A) 14, 298–301 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method. Springer (2002)

  27. Bloznelis, M., Godehardt, E., Jaworski, J., Kurauskas, V., Rybarczyk, K.: Recent progress in complex network analysis - models of random intersection graphs. In: Lausen, B., Krolak-Schwerdt, S., Bhmer, M. (eds.) Data Science, Learning by Latent Structures, and Knowledge Discovery, pp 59–68. Springer (2015)

  28. Raptopoulos, C., Spirakis, P.: Simple and efficient greedy algorithms for hamilton cycles in random intersection graphs (2005)

  29. Efthymiou, C., Spirakis, P.G.: Sharp thresholds for Hamiltonicity in random intersection graphs. Theor. Comput. Sci. 411(40–42), 3714–3730 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: Maximum cliques in graphs with small intersection number and random intersection graphs. In: Proceedings of the 37th International Symposium on Mathematical Foundations of Computer Science (MFCS), pp 728–739 (2012)

  31. Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: Expander properties and the cover time of random intersection graphs. Theor. Comput. Sci. 410(50), 5261–5272 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cooper, C., Frieze, A.: The cover time of sparse random graphs. In: Random Structures and Algorithms, vol. 30, pp 1–16. Wiley (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoforos L. Raptopoulos.

Additional information

This article is part of the Topical Collection on 50th Anniversary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikoletseas, S.E., Raptopoulos, C.L. & Spirakis, P.G. On the Chromatic Number of Non-Sparse Random Intersection Graphs. Theory Comput Syst 60, 112–127 (2017). https://doi.org/10.1007/s00224-016-9733-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-016-9733-x

Keywords

Navigation