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Abstract We study a class of integrity constraints for tree-structured data
modelled as data trees, whose nodes have a label from a finite alphabet and
store a data value from an infinite data domain. The constraints require each
tuple of nodes selected by a conjunctive query (using navigational axes and
labels) to satisfy a positive combination of equalities and a positive combina-
tion of inequalities over the stored data values. Such constraints are instances
of the general framework of XML-to-relational constraints proposed recently
by Niewerth and Schwentick. They cover some common classes of constraints,
including W3C XML Schema key and unique constraints, as well as domain
restrictions and denial constraints, but cannot express inclusion constraints,
such as reference keys. Our main result is that consistency of such integrity
constraints with respect to a given schema (modelled as a tree automaton)
is decidable. An easy extension gives decidability for the entailment problem.
Equivalently, we show that validity and containment of unions of conjunctive
queries using navigational axes, labels, data equalities and inequalities is de-
cidable, as long as none of the conjunctive queries uses both equalities and
inequalities; without this restriction, both problems are known to be undecid-
able. In the context of XML data exchange, our result can be used to establish
decidability for a consistency problem for XML schema mappings. All the de-
cision procedures are doubly exponential, with matching lower bounds. The
complexity may be lowered to singly exponential, when conjunctive queries are
replaced by tree patterns, and the number of data comparisons is bounded.
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1 Introduction

Static analysis is an area of database theory that focuses on deciding prop-
erties of syntactic objects, like queries, integrity constraints, or data depen-
dencies. The unifying paradigm is that because these objects are mostly user-
generated, they tend to be small; hence, higher complexities are tolerable.
The fundamental problems include satisfiability, validity, containment, and
equivalence of queries [9,25], as well as consistency and entailment of integrity
constraints [16,28]. More specialized tasks include query rewriting in data in-
tegration scenarios [24], and manipulating schema mappings in data exchange
and schema evolution scenarios [1,15]. Many of these problems are equivalent
to satisfiability of fragments of first order logic, possibly over a restricted class
of structures, but they are rarely presented this way, because the involved
fragments are tailored for specific applications, and usually do not form natu-
ral sublogics. As satisfiability over arbitrary structures is undecidable even for
relatively simple fragments of first order logic, in static analysis undecidability
is always close [19,20].

In this paper we present a decidability result (with tight complexity bounds)
for a problem in static analysis for tree-structured data. The specific model
we consider is that of data trees: finite ordered unranked trees whose nodes
have a label from a finite alphabet and store a data value from an infinite data
domain. The problem has three possible interpretations:

– consistency modulo schema for a class of integrity constraints;
– validity modulo schema for a class of queries; and
– consistency for a class of schema mappings.

The more general problems of entailment (or implication) of constraints and
containment of queries are—as is often the case—very close to their restricted
counterparts listed above, and can be solved by easy modifications of our
decision procedure.

Our basic setting is that of consistency of integrity constraints; it seems best
suited for proofs and—in combination with entailment—the most appealing.
We consider non-mixing constraints of the forms

α(x̄)⇒ η∼(x̄) and α(x̄)⇒ η�(x̄)

that require each tuple x̄ of nodes selected by α to satisfy, respectively, a
positive combination of equalities η∼ or a positive combination of inequalities
η� over the stored data values. As tuple selectors α(x̄) we use conjunctive
queries over the signature including label tests and the usual navigational
axes. For example, the constraint

a(x) ∧ x ↓ y ∧ x ↓ y′ ∧ y →+ y′ ⇒ y � y′

expresses that different children of the same a-labelled node store different
data values, and the constraint

a(x) ∧ x ↓ y ∧ x ↓ y′ ∧ x ↓ y′′ ⇒ y ∼ y′ ∨ y′ ∼ y′′ ∨ y′′ ∼ y
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expresses that at most two different data values are used by children of each a-
labelled node. The consistency problem is to decide if there exists an instance
of a given schema that satisfies a given set of constraints. In the example above,
there exists an instance satisfying both constraints if and only if the schema
allows trees without a-labelled nodes with more than two children.

What is the expressive power of non-mixing constraints? Let us first look
at what they cannot do. Being first-order constraints, they cannot compare
full subtrees, unlike some other formalisms [21,22]. They have purely universal
character (can be written as universal sentences of first order logic), so they
cannot express general inclusion dependencies nor foreign keys, as these need
quantifier alternation. Finally, the inability to mix freely data equalities and
inequalities within a single constraint makes them unable to express general
functional dependencies. What can they do, then?

Non-mixing integrity constraints can be seen as a special case of the gen-
eral framework of XML-to-relational constraints (X2R constraints) introduced
by Niewerth and Schwentick [27]. Within this framework they cover a wide
subclass of functional dependencies, dubbed XKFDs, which are particularly
well suited for tree-structured data. They include W3C XML Schema key and
unique constraints [18], as well as absolute and relative XML keys by Arenas,
Fan, and Libkin [2], and XFDs by Arenas and Libkin [3]. XKFDs can be ex-
pressed with non-mixing constraints of the form α(x̄)⇒ η�(x̄); that is, using
only data inequalities.

Constraints of the form α(x̄)⇒ η∼(x̄)—that is, using only equalities—can
express all sorts of finite data domain restrictions, either to a specific set of
constants or to a set of data values taken from the data tree (the latter can
be seen as a limited variant of inclusion constraints), as well as cardinality
restrictions over data values (like in the example above).

The novelty of our work is that we allow these two kinds of constraints
simultaneously. Unrestricted mixing of data equalities and inequalities in con-
straints would immediately lead to undecidability [6], but for non-mixing con-
straints we can show decidability of the consistency problem, and a slight
extension of the proof gives decidability for entailment (with the same com-
plexity bounds).

Our approach leads through a simple model property, which asserts that
a set of constraints is satisfiable if and only if it has a model of bounded data
cut [7]; that is, the number of data values shared by any subforest of the model
and its complement is bounded. This property can be seen as a strengthening of
the bounded clique-width property [11], in which decompositions must follow
the structure of data trees. The robustness of our approach is witnessed by the
fact that it can be naturally extended to constraints in which tuple selectors
α(x̄) are expressed in monadic second order logic (MSO) using label tests and
navigational predicates. At the core of our argument lies a simple lemma of
geometric nature.

Under the second interpretation our result shows decidability of validity
and containment for unions of conjunctive queries where each conjunctive
query can use either data equality or inequality, but never both. Seen this way,
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our result is a uniform extension of decidability results for UCQs using only
data equality, and UCQs using only data inequality by Björklund, Martens
and Schwentick [6] (see also [12]). However, it cannot be obtained via a com-
bination of techniques used in these cases, as they are virtually contradictory:
they require assuming that almost all data values in counter-examples are,
respectively, different and equal. If data equalities and inequalities are mixed
freely in UCQs, even validity is undecidable [6].

In its third incarnation, our result gives decidability of the consistency
problem for XML schema mappings with source integrity constraints, which
asks to decide if there exists a source instance which satisfies the integrity
constraints and admits a target instance satisfying the requirements imposed
by the schema mapping.

In all three cases (excluding the unsurprisingly non-elementary MSO ex-
tension), the decision procedure is doubly exponential. This bound is tight,
as already validity modulo schema for UCQs over trees without data values
is 2ExpTime-complete [6]. We show that restricting the CQs to tree patterns
does not help. However, the complexity does drop to ExpTime-complete when
we replace CQs with tree patterns and bound the number of variables used in
data comparisons.

A broader context for our work is the rich landscape of results on static
analysis for the popular XML query language XPath [5,26] and related for-
malisms like alternating register automata [17,23] or the two-variable fragment
of first order logic with data comparisons [8]. These formalisms do not com-
pare easily with ours. Arbitrary alternation of quantifiers (implicit, in the case
of XPath) lets them reach far beyond conjunctive queries. But the restriction
on the number of registers or variables (reflected in the the syntax of XPath)
limits data comparisons: one cannot compare data values from too many nodes
at the same time. In their basic form, our results imply decidability (with the
same tight complexity bounds) of the containment problem in the presence
of a schema for unions of XPath queries without negation, where each query
uses either equality or inequality, but never both. The extension to MSO con-
straints allows free use of negation as long as data comparisons are not used
under negation.

The remainder of the paper begins with a precise definition of non-mixing
constraints and a short discussion of their scope (Section 2). Then we present
the decision procedure for consistency of non-mixing constraints and show
its optimality (Section 3). We continue with a potpourri of extensions and
connections: the entailment problem (Section 4.1), the lower-complexity frag-
ment (Section 4.2), the relationships with existing constraint formalisms (Sec-
tion 4.4), the two alternative interpretations of our results (Section 4.3 and 4.5),
a comparison with clique-width (Section 4.6), and the MSO extension (Sec-
tion 4.7). We conclude with a brief discussion of further possible extensions
and open questions (Section 5).

This is an extended version of an 18-pages-long paper under the same title
presented at ICDT 2016. The new material includes full proofs of all results,
as well as the comparison with clique-width and the MSO extension. There is
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... ...

Fig. 1 A tree t and a subforest tv associated with a node v.

also a major difference in the way the proof of the main result is presented. In
the conference version, register tree automata are used to recognize witnesses
for consistency of bounded data cut. Here, we encode such witnesses as trees
over a finite alphabet and use ordinary tree automata. The new formulation
encapsulates reasoning about data values within the encoding, and harmonizes
with the clique-width approach and the MSO extension.

2 Non-mixing constraints

2.1 Preliminaries

Let us fix a finite labelling alphabet Γ and a countably infinite set of data
values D. A data tree t is a finite ordered unranked tree whose nodes are
labelled with elements of Γ by function labt : domt → Γ , and with elements
of D by function valt : domt → D; here, domt stands for the domain of tree t,
that is, the set of its nodes. If labt(v) = a and valt(v) = d, we say that node v
has label a and stores data value d. A data forest f is a sequence of data trees
whose roots are considered siblings (with the inherited order); labf , valf , and
domf are defined naturally. While each data tree contains at least the root,
a data forest can be empty. For a node v of t, we write tv for the data forest
consisting of subtrees of t rooted at v itself and at all preceding siblings of
v; by slight abuse of notation we write t − tv for the remaining part of t (see
Figure 1 for illustration). For a forest f we use the analogous notation, fv and
f − fv.

We abstract schemas as tree automata in the “previous sibling, last child”
variant. A tree automaton A is a tuple (Q, q0, F, δ), where Q is a finite set
of states, q0 ∈ Q is an initial state, F ⊆ Q is a set of accepting states, and
δ ⊆ Q×Q×Γ×Q is a set of transitions. During the computation the automaton
assigns a state to each node v of the input tree t, based on the accumulated
information about tv. More precisely, the state for the node v depends on
the label of v and the states from the previous sibling and the last child of
v. In leftmost siblings and in leaves we resort to imaginary nodes outside of
the actual tree t, which are always assigned the initial state q0. Formally, let
domcl

t be the set containing each node of t, an artificial previous sibling for
each leftmost sibling in t, and an artificial (last) child for each leaf in t. A
run of A on t is a function ρ : domcl

t → Q such that ρ(v) = q0 for every
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node v ∈ domcl
t − domt, and for every node v ∈ domt with previous sibling

vps and last child vlc there is a transition (ρ(vps), ρ(vlc), labt(v), ρ(v)) ∈ δ. A
run ρ is accepting if it assigns a state from F to the root of t, and a tree t is
accepted byA if it admits an accepting run. Runs on forests are defined entirely
analogously; acceptance is based on the state in the root of the last tree (if the
forest is empty, we take the initial state q0). An automaton is deterministic if
δ is a function Q × Q × Γ → Q. Each deterministic automaton has a unique
run on each tree (and forest), and can be complemented (negated) simply by
replacing the set of final states F with its complement Q− F .

To facilitate the use of the standard first order semantics, we model data
trees and data forests as relational structures over signature

sigdt = {↓, ↓+,→,→+,∼,�} ∪ Γ ∪ D ∪ Ď

with Ď =
{
ď
∣∣ d ∈ D}; that is, we have

– binary relations: child ↓, descendant ↓+, next sibling →, and following
sibling →+;

– data equality relation ∼ and data inequality relation � that contain pairs of
nodes storing, respectively, the same data value and different data values;

– unary relation a for each label a ∈ Γ ;
– unary relations d and ď for each data value d ∈ D that contain nodes

storing, respectively, data value d and any data value different from d.

Signature sigdt is infinite (because of D and Ď), but queries use only finite
fragments. We include Ď in the signature to keep negation out of the syntax.

A conjunctive query α(x1, . . . , xn) over a signature sig is a first order for-
mula of the form

∃y1 . . . ∃ym β(x1, . . . , xn, y1, . . . , ym) ,

where β(x1, . . . , xn, y1, . . . , ym) is a conjunction of atoms over signature sig
and variables x1, . . . , xn, y1, . . . , ym.

2.2 Definition

In their most general form, non-mixing integrity constraints σ are formulas of
the form

α(x̄)⇒ η∼(x̄) ∧ η�(x̄)

where

– α(x̄) is a conjunctive query over the signature signav = {↓, ↓+,→,→+}∪Γ ;
– η∼(x̄) is a finite positive Boolean combination of atoms over the signature

sig∼ = {∼} ∪ D and variables x̄;
– η�(x̄) is a finite positive Boolean combination of atoms over the signature

sig� = {�} ∪ Ď and variables x̄.
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Query α is called the selector of σ, and η∼, η� are its assertions. Non-mixing
constraints have the usual semantics of first order logic formulas: a data tree
t satisfies constraint σ, denoted t |= σ, if each tuple v̄ of nodes of t selected by
α satisfies both η∼ and η�; that is,

t |= α(v̄) implies t |= η∼(v̄) ∧ η�(v̄) .

For a set Σ of non-mixing constraints, we write t |= Σ if t |= σ for all σ ∈ Σ.

Note that α⇒ η∼∧η� is equivalent to {α⇒ η∼ , α⇒ η�}. Consequently,
each set Σ of non-mixing constraints is equivalent to Σ∼ ∪Σ�, where Σ∼ is a
set of constraints of the form α ⇒ η∼, Σ� is a set of constraints of the form
α ⇒ η�, and the sizes of Σ∼ and Σ� are bounded by the size of Σ. Thus,
without loss of generality, we restrict our attention to sets of constraints of the
form Σ∼ ∪ Σ�, which do not mix sig∼ and sig� (hence “non-mixing”). One
can also assume that α is quantifier free: ∃ȳ α(x̄, ȳ) ⇒ η(x̄) is equivalent to
α(x̄, ȳ)⇒ η(x̄).

2.3 Scope

Using non-mixing constraints one can express a variety of useful constraints.
Let us consider a database storing information about banks, each in a separate
sub-document. We want each bank to be identified by its BIC number. This
key constraint can be expressed as

qbic(x, x′) ∧ qbic(y, y′) ∧ x 6= y ⇒ x′ � y′

where qbic selects the root of the sub-document for bank, and the node storing
the BIC number. Depending on the schema, query qbic could be for instance
qbic(x, x′) = bank(x) ∧ x ↓ x′ ∧ BIC(x′). Node inequality 6= is not part of the
signature, but can be expressed using signav. Assuming that the roots of the
sub-documents for banks are siblings, x 6= y can be replaced by x →+ y.
In general, we also need to consider four other possible ways in which two
different nodes x and y can be positioned in a tree (up to swapping x and y):

x ↓+ y , x→+ z ∧ z ↓+ y , z ↓+x ∧ z→+ y , and z ↓+x ∧ z→+ z′ ∧ z′ ↓+ y ,

which means that we need five non-mixing constraints to express a single key
constraint.

Another natural constraint is that account numbers should be different for
every account within the same bank, but different banks may use the same
account numbers. Such a relative key constraint can also be expressed as

bank(z) ∧ z ↓+x ∧ z ↓+ y ∧ qacc(x, x′) ∧ qacc(y, y′) ∧ x 6=y ⇒ x′ � y′ .

where qacc(x, x′) selects account x and its number x′, similarly to qbic.



8 W. Czerwiński, C. David, F. Murlak, and P. Parys

We can also express multi-attribute keys (i.e. keys using composite
fields). For example

qbic(u, u′) ∧ qbic(v, v′) ∧ u↓+x ∧ v↓+ y ∧ qacc(x, x′) ∧ qacc(y, y′) ∧ x 6=y ⇒
⇒ u′�v′ ∨ x′�y′ .

asserts that BIC and account number form an absolute key, not relative to
bank sub-document.

If, as a result of redundancy, BIC appears in several places within a bank
sub-document, using the singleton constraint

bank(x) ∧ x ↓+x′ ∧ BIC(x′) ∧ x ↓+x′′ ∧ BIC(x′′) ⇒ x′ ∼ x′′

we can guarantee that each time it gives the same value (for the same bank).
Assume now that each bank has a director and several branches, each of

them having a team of employees among which one is the manager of the
branch. The information about each employee is stored in a sub-document of
its branch’s sub-document. Each employee reports either to the manager of
the branch or directly to the director of the bank. Using a conjunctive query
qsuper(x, y, z), we can select the director’s ID node x, the branch manager’s
ID node y and the node z storing the supervisor’s ID for an employee of the
same branch. The constraint on employee’s supervisor can be encoded as

qsuper(x, y, z) ⇒ x ∼ z ∨ y ∼ z .

Following this idea we can express inclusion constraints of a restricted
form, where the intended superset is a tuple of values that can be selected by
a conjunctive query. This includes enumerative domain restrictions, like
the constraint

creditCard(x) ∧ x ↓+x′ ∧ brand(x′)⇒
⇒ Visa(x′) ∨MasterCard(x′) ∨AmericanExpress(x′) ,

ensuring that banks issue only Visa, Master Card, and American Express
cards. Unrestricted inclusion constraints are beyond the scope of our formal-
ism. Indeed, non-mixing constraints cannot be violated by removing nodes,
which is not the case even for the simplest unary inclusion constraints, like
each value stored in an a node is also stored in a b node.

Our formalism is also capable of expressing cardinality constraints. As-
sume, for instance, that banks support charity projects by delegating their
employees to help. The projects are organized by category (culture, education,
environment, etc.) and each project sub-document carries the list of involved
employees. For the sake of balance, we want each category to involve at most
ten different employees in total. This can be imposed by selecting eleven em-
ployee nodes below a single category node and imposing at least two of them
to carry the same data value by means of a long disjunction of data equalities.
We can also ensure that no employee is involved in more than three differ-
ent projects: the conjunctive query selects four different project nodes and
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an employee for each of them; the assertion imposes at least two of the four
employees to have different ID.

Let us remark that while these constraints look clumsy expressed as non-
mixing constraints, one can easily imagine a syntactic-sugar layer on top of
our formalism. The point is that all these constraints can be rewritten as non-
mixing constraints of linear size (except for the cardinality constraints, where
the size would grow by a factor proportional to the numerical bounds).

In Section 4 we examine the expressive power of non-mixing constraints
further by comparing them to other existing formalisms.

3 Consistency problem

Our main result is decidability of the consistency problem for non-mixing
constraints:

Problem: Consistency of non-mixing constraints
Input: A set Σ of non-mixing constraints, a tree automaton A.

Question: Is there a data tree t ∈ L(A) such that t |= Σ ?

More precisely, we show the following theorem, establishing tight complexity
bounds.

Theorem 1 Consistency of non-mixing constraints is 2ExpTime-complete.

The reminder of this section is devoted to the proof of Theorem 1. The
proof is based on a simple idea with a geometric flavour, but does not require
any specialist knowledge from geometry or linear algebra. Consider a family
of finite unions of affine subspaces of an Euclidean space. The intersection of
this family can be also represented as a finite union of affine subspaces and
we show that their number can be bounded independently of the cardinality
of the family. From this bound we infer a “bounded data cut” model property
for non-mixing constraints, where by data cut of a data tree t, denoted by
datacut(t), we mean the maximum over nodes v ∈ domt of the number of data
values shared by tv and t − tv. With bounded data cut, we can reduce the
consistency problem to the emptiness problem for tree automata (over a finite
alphabet). In the final subsection we prove the lower bound.

3.1 Intersecting unions of subspaces

By a subspace of D` we mean a subset of D` defined by equating pairs of
coordinates and fixing coordinates; that is, it is a set of points (x1, x2, . . . , x`)
in space D` defined by a conjunction of equalities of the form xi = xj or xi = d
where d ∈ D. By simple rewriting of equalities, each nonempty subspace of D`
can be defined with a canonical set of at most ` equalities such that

– for each coordinate i we have either xi = xj with i < j, or xi = d with
d ∈ D, or nothing;
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– each coordinate j occurs at most once on the right side of an equality; and
– no data value d is used in more than one equality.

A subspace of D` has dimension k if its canonical definition consists of ` − k
equalities. In other words, each equality that does not follow from the others
decreases the dimension by one. To enhance intuitions, let us remark that if
we equip D` with the structure of linear space by assuming that D is a field,
this notion of dimension coincides with the classical notion of dimension for
affine subspaces (of which the subspaces above are a special case).

An intersection X ∩ Y of subspaces X,Y is also a subspace, defined by
the conjunction of conditions defining X and Y . If X 6⊆ Y , then the canoni-
cal definition of X ∩ Y contains at least one more equation than that of X;
consequently, the dimension of X ∩Y is strictly smaller than the dimension of
X. Similarly, intersecting unions of subspaces, we obtain a union of subspaces;
the following lemma gives a bound on the size of such union.

Lemma 1 Let Z1, Z2, . . . , Zm ⊆ D` be such that each Zi is a union of at most
n subspaces of D`. Then, Z1 ∩ Z2 ∩ · · · ∩ Zm can be represented as a union of
at most n` subspaces of D`.

Proof Assume that Z1∩Z2∩· · ·∩Zi−1 is a union X1∪X2∪· · ·∪Xp of subspaces
of D`. We can write Zi as Y1 ∪ Y2 ∪ · · · ∪ Yn, where some of subspaces Yk may
be empty. We have

Z1 ∩ Z2 ∩ · · · ∩ Zi = (X1 ∪X2 ∪ · · · ∪Xp) ∩ Zi =

= (X1 ∩ Zi) ∪ (X2 ∩ Zi) ∪ · · · ∪ (Xp ∩ Zi) .

Let us examine a single Xj ∩ Zi. If Xj ⊆ Yk for some k, then Xj ∩ Zi = Xj .
Otherwise, Xj ∩ Zi is a union of n subspaces, Xj ∩ Y1, Xj ∩ Y2, . . . , Xj ∩ Yn,
where each Xj ∩Yk is either empty or has dimension strictly smaller than Xj .
Thus, when X1 ∪X2 ∪ · · · ∪Xp is intersected with Zi, each Xj either does not
change, or is split into at most n subspaces of strictly smaller dimension; if Xj

is a point, in the second possibility it disappears.
Now, consider the following process: begin with D`, a single subspace of

dimension `, and then intersect with Zi for i from 1 to m, one by one. Since
with each split, the dimension strictly decreases, each non-empty subspace in
the resulting union is obtained in the course of at most ` splits. Since each
split generates at most n subspaces, we cannot obtain more than n` subspaces
in this process. ut

We remark that the bound in Lemma 1 is tight, as shown by the following
example.

Example 1 1 Assume 0, 1 ∈ D and let Zi =
{
x̄ ⊆ D`

∣∣ xi = 0 ∨ xi = 1
}

for
i = 1, 2, . . . , `. Then Z1 ∩ Z2 ∩ · · · ∩ Z` = {0, 1}` is a union of 2` (disjoint)
subspaces of D` of dimension 0.

1 Provided by Micha l Pilipczuk, during the Warsaw Automata Group’s research camp
Autobóz 2015.
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3.2 Bounding the data cut

Based on the geometric fact we have proved in the previous subsection, in
Lemma 3 we bound the data cut of data trees witnessing consistency of non-
mixing constraints. The proof relies on a simple compositionality property for
conjunctive queries over trees, shown in Lemma 2.

Lemma 2 Let α(x̄, ȳ) be a conjunction of atoms over signav, where x̄ and ȳ
are disjoint, and let w be a node of a data tree t. For all tuples ū, ū′ of nodes
from tw and tuples v̄, v̄′ of nodes from t− tw, if

t |= α(ū, v̄) and t |= α(ū′, v̄′) ,

then
t |= α(ū, v̄′) and t |= α(ū′, v̄) .

Proof Let ū, ū′, v̄, v̄′ be as in the statement of the lemma. Since α(x̄, ȳ) is
a conjunction of atoms, we only need to check that each atom of α(ū, v̄′)
and α(ū′, v̄) is satisfied in t. Given that t |= α(ū, v̄) and t |= α(ū′, v̄′), it is
enough to examine atoms using variables from both x̄ and ȳ. That excludes
unary relations and leaves us with atoms of the forms xi ↓ yj , xi ↓+ yj , xi →
yj , xi →+ yj , and symmetrical. Given that variables x̄ are matched within tw,
and variables ȳ are matched within t − tw, atoms xi ↓ yj , xi ↓+ yj , yj → xi,
and yj →+ xi are excluded by the combination of two things: the way tw and
t− tw are positioned within tree t (see Figure 1 on page 5), and the fact that
t |= α(ū, v̄). That is, it remains to consider yj ↓ xi, yj ↓+ xi, xi → yj , and
xi →+ yj . Suppose yj ↓ xi occurs in α. We know that vj ↓ ui and v′j ↓ u′i. Since
nodes ui, u

′
i are from tw and nodes vj , v

′
j are from t−tw, it follows immediately

that vj and v′j are equal to the parent of node w, and ui, u
′
i are siblings of w

or w itself. Consequently, vj ↓ u′i and v′j ↓ ui. For the remaining three kinds
of atoms the reasoning is similar. If vj ↓+ ui and v′j ↓+ u′i, then vj , v

′
j are

ancestors of w and ui, u
′
i are nodes in tw, so vj ↓+ u′i and v′j ↓+ ui follows.

If ui → vj and u′i → v′j , then ui = u′i = w and vj = v′j is w’s next sibling.
Finally, if ui →+ vj and u′i →+ v′j , then ui, u

′
j are preceding siblings of w (or

w itself) and vj , v
′
j are following siblings of w. ut

Lemma 3 If Σ∼ ∪Σ� is satisfied in a data tree t, it is also satisfied in some
data tree t′ obtained from t by changing data values, such that

datacut(t′) ≤ ` · 2` · (`+m)`
2

· |Σ∼| ,

where ` and m are the maximal numbers of, respectively, variables and predi-
cates from D ∪ Ď in the constraints from Σ∼.

Proof Assume that t |= Σ∼ ∪Σ�. We show that for each node w of the data

tree t, one can replace all but ` ·2` · (`+m)`
2 · |Σ∼| data values used in tw with

distinct fresh data values without violating Σ∼ ∪ Σ�. After this operation is
performed for a node w, the number of data values used both in tw and t− tw
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is bounded by ` · 2` · (` + m)`
2 · |Σ∼|. Moreover, as the fresh data values are

to be distinct, the new ∼ relation over nodes of t is a subset of the old one. In
consequence, the operation does not increase the number of data values shared
by tw′ and t − tw′ for other nodes w′. Consequently, applying this operation
for each node of t in an arbitrary order, we obtain a model of bounded data
cut.

Let us fix a node w of t. As long as the fresh values are pairwise different,
the obtained tree will still satisfy Σ�. Hence, we only need to ensure that Σ∼
is not violated. Consider a constraint α ⇒ η∼ in Σ∼. Recall that we assume
that α is quantifier free. Let x̄, ȳ be a partition of variables used in α (one
of the tuples x̄, ȳ may be empty). We shall indicate the partition of variables
by writing the constraint as α(x̄, ȳ)⇒ η∼(x̄, ȳ). The intended meaning is that
the variables x̄ refer to nodes in tw, and the variables ȳ refer to nodes outside
of tw. Directly from the definition it follows that t |= α ⇒ η∼, if and only if
for each partition x̄, ȳ of variables in α, for each tuple ū of nodes from tw and
each tuple v̄ of nodes from t− tw, if t |= α(ū, v̄), then t |= η∼(ū, v̄).

Fix a partition x̄, ȳ. By Lemma 2, the condition above is equivalent to:
for all tuples ū, ū′ of nodes from tw and all tuples v̄, v̄′ of nodes from t − tw,
if t |= α(ū, v̄) and t |= α(ū′, v̄′), then t |= η∼(ū, v̄′). Let us turn this into a
condition on stored data values. Define η(x̄, ȳ) as the formula obtained from
η∼(x̄, ȳ) by replacing ∼ with =, and d(z) with z = d for all variables z and all
d ∈ D. Reformulating the condition above we obtain: for each tuple ū of nodes
from tw such that t |= α(ū, v̄) for some tuple v̄ of nodes from t− tw, the tuple
valt(ū) of data values belongs to the set

Zα(x̄,ȳ)⇒η∼(x̄,ȳ) =
⋂
v̄′

{
c̄ ∈ D|x̄|

∣∣ η(c̄, valt(v̄
′))
}
,

where v̄′ ranges over tuples of nodes from t − tw satisfying t |= α(ū′, v̄′) for
some tuple ū′ of nodes from tw.

Writing η(x̄, valt(v̄
′)) in the disjunctive normal form, we see that the set{

c̄ ∈ D|x̄|
∣∣ η(c̄, valt(v̄

′))
}

is a union of subspaces of D|x̄|. How many subspaces?
The canonical definition of each nonempty subspace has for each coordinate i
either an equality xi = xj for some j > i, or an equality xi = d for some d ∈ D,
or nothing. In our case, d is a data value used explicitly in η or occurring in
the data tuple valt(v̄

′). Consequently, the number of these subspaces can be
bounded by (N + |x̄| + |ȳ|)|x̄|, where N is the number of data values used
explicitly in η. That is, Zα(x̄,ȳ)⇒η∼(x̄,ȳ) is an intersection of unions of at most

(N + |x̄| + |ȳ|)|x̄| subspaces of D|x̄|. By Lemma 1, it can be represented as a

union of at most (N + |x̄| + |ȳ|)|x̄|2 subspaces. In the canonical definition of
each of these subspaces, there are at most |x̄| equalities of the form xi = d
for d ∈ D. That is, we can define Zα(x̄,ȳ)⇒η∼(x̄,ȳ) using explicitly at most

|x̄| · (N + |x̄| + |ȳ|)|x̄|2 data values. From this we shall derive a bound on the
number of important data values in tw that ensure satisfaction of Σ∼, and
conclude that we can safely replace others with fresh ones.

Let val′ : domt → D be a new data labelling of t. As we are only going to
change data values in tw, keeping a constraint α⇒ η∼ satisfied requires only
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that for each partition x̄, ȳ of its variables, for each tuple ū of nodes from tw, if
t |= α(ū, v̄) for some tuple v̄ of nodes from t−tw, then val′(ū) ∈ Zα(x̄,ȳ)⇒η∼(x̄,ȳ).
Moreover, replacing all occurrences of a data value d in tw with a given data

value d′ does not affect equalities of the form xi = xj in the canonical definition
of the set Zα(x̄,ȳ)⇒η∼(x̄,ȳ). We only need to ensure that equalities of the form
xi = d are not violated. Let D ⊆ D be the set of data values occurring in
these equalities for all sets Zα(x̄,ȳ)⇒η∼(x̄,ȳ), with α(x̄, ȳ) ⇒ η∼(x̄, ȳ) ranging
over constraints from Σ∼ with all possible partitions of variables. A labelling
val′ that replaces each data value from D − D used in tw with a fresh data
value does not violate Σ∼. For each constraint α ⇒ η∼ there is at most 2`

partitions x̄, ȳ of variables; each partition corresponds to a set Zα(x̄,ȳ)⇒η∼(x̄,ȳ),

which contributes at most
(
` · (m+ `)`

2)
data values, where ` and m are the

maximal numbers of variables and predicates from D ∪ Ď in constraints from
Σ∼. Hence, we have |D| ≤ |Σ∼| · 2` ·

(
` · (m+ `)`

2)
. ut

3.3 From bounded data cut to automata

In order to use automata, we need to encode data trees of bounded data cut
as trees over a finite alphabet. Let C,D ⊆ D be two disjoint finite sets of data
values; we shall call elements of C colours and elements of D distinguished
data values. As encodings we shall use trees over the alphabet

Γ × (C ∪D)× P(C) ;

we shall refer to the values in the third component of label as refresh sets.
The distinguished data values (corresponding to data values used explicitly
in the constraints) are represented explicitly in the encoding. The remaining
data values are represented implicitly by colours and refresh sets: two nodes
u, v store the same data value if and only if they have the same colour c and
there is no node w such that u ∈ tw and v ∈ t− tw (or symmetrically), and the
refresh set for w contains c. We define the semantics of the encoding slightly
more generally: to every forest f over the alphabet Γ × (C ∪ D) × P(C) we

associate a data forest f̂ . It has the same domain as f , the structure and
labelling with elements of Γ is inherited from f , and the assignment of data
values is defined inductively based on the remaining two components of the
labelling of f . If the forest f is empty, so is f̂ . Otherwise, let us decompose
f into a forest f ′ followed by a tree further decomposed into the root and a
forest f ′′ (see Figure 2); both f ′ and f ′′ may be empty. Assume the root has

label (a, d,R). The forest f̂ is obtained by plugging f̂ ′′ under a root with label

a and data value d, appending the resulting tree to f̂ ′, and then replacing each
colour from the refresh set R used in the resulting forest with a globally fresh
data value from D − (C ∪ D). Note that f̂ is unique up to permutations of

D− (C ∪D). By construction, datacut(f̂ ) ≤ |C ∪D|.
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...
...

Fig. 2 Forest f decomposed into a forest f ′ followed by a tree further decomposed into the
root and a forest f ′′.

Lemma 4 For each data forest f of data cut n and all finite disjoint sets
C,D ⊆ D such that

|C| > 3

2
· n ,

there exists a forest g over Γ × (C ∪ D) × P(C) such that ĝ = f up to a
permutation of D−D.

Proof Since we only aim at equality modulo a permutation of D−D, we may
assume that no data value from C is used in f . As the structure of g must be
identical to that of f , we only need to define the labelling. Moreover, in the
label (a, d,R) of a node w, we must always have a = labf (w). The remaining
two components, d and R, are defined in the course of a procedure processing
nodes in the usual bottom-up, left-to-right order, maintaining the following
invariants:

1. ĝw = fw up to a bijection iw between the colours from C used in ĝw and
the data values from D−D shared by fw and f − fw;

2. if v is the last child of the next sibling of w, then iv and iw coincide over
dom(iv) ∩ dom(iw), and |dom(iv) ∪ dom(iw)| ≤ 3

2 · n.

For a node w the procedure first sets the values d and R in such a way that the
first invariant is satisfied, and then applies a permutation of C to the whole gw
to ensure the second invariant. Note that applying such a permutation affects
ĝw, but does not violate the first invariant.

Let w′ and w′′ be the previous sibling and the last child of w (if some
of these do not exist, the argument is adjusted easily). For d there are three
cases:

– if valf (w) ∈ D, set d = valf (w);
– if valf (w) = iw′(c) or valf (w) = iw′′(c) for some colour c ∈ C, set d = c;
– otherwise, set d = c for an arbitrary colour c ∈ C−

(
dom(iw′)∪dom(iw′′)

)
,

which exists by the second invariant.

The refresh set R contains each colour c ∈ C currently used in ĝw, that repre-
sents a data value occurring in fw but not in f − fw. After these colours have
been refreshed, all colours C0 ⊆ C used in ĝw represent different data values
shared by fw and f − fw; the bijection iw can be defined by restricting to C0

the union of iw′ , iw′′ , and {(d, valf (w))} if d ∈ C0 −
(
dom(iw′) ∪ dom(iw′′)

)
.

If w has no next sibling or the next sibling has no children, we are done.
Otherwise, let v be the last child of the next sibling u of w. We need a permu-
tation π of C such that iv and the updated bijection iw ◦ (π � C0)−1 satisfy



Reasoning about integrity constraints for tree-structured data 15

...
...

...

Fig. 3 The positioning of fw, fv , and f − (fw ∪ fv) in a forest f , when v is the last child
of the next sibling u of w.

the second invariant. Let W,V,U ⊆ D − D be the sets of data values used,
respectively, in the fragments fw, fv, and f − (fw ∪fv) shown in Figure 3, and
let k = |W ∩U −V |, ` = |V ∩U −W |, m = |W ∩V −U |, and r = |W ∩V ∩U |.
By the definition of data cut applied to w, v, and u, we have

k +m+ r ≤ n , `+m+ r ≤ n , k + `+ r + e ≤ n ,

where e = 1 if the data value in u is used in f−fu and does not belong V ∪W ,
and e = 0 otherwise. In order to represent values in W ∩U , V ∩U , and W ∩V ,
we need exactly k+ `+m+ r colours. By adding the three inequalities above,
we obtain that k + `+m+ r ≤ 3n−r−e

2 . Hence, 3
2 · n colours are sufficient to

accommodate the domains of iv and the updated bijection iw ◦ (π � C0)−1.
As the bounds in the three inequalities above can be attained simultane-

ously, with r = 0 and e = 0, 3
2 · n colours are also necessary. Consequently,

the assumption in the lemma is tight, because if the data value in the node w
does not occur anywhere else, we need one more colour to represent it. ut

Let Σ∼ ∪ Σ� be a set of non-mixing integrity constraints and let A be a
tree automaton. By Lemma 3, it is enough to test satisfiability of Σ∼∪Σ� over
trees of data cut bounded by a number n, singly exponential in the total size
of constraints in Σ∼ ∪Σ�. Let D ⊆ D be the set of data values used explicitly
in Σ∼ ∪Σ�, and let C ⊆ D−D be a fixed set such that |C| =

⌊
3
2 · n

⌋
+ 1. By

Lemma 4, each tree of data cut bounded by n can be encoded as a tree over
Γ × (C ∪D)× P(C) up to a permutation of D−D. Since such permutations
do not affect relations used in Σ∼ ∪Σ�, there exists a data tree accepted by
A and satisfying Σ∼ ∪ Σ� if and only if there exists a tree t such that the
data tree t̂ is accepted by A and satisfies Σ∼ ∪ Σ�. We reduce consistency
of Σ∼ ∪ Σ� to the emptiness problem for tree automata, by constructing an
automaton that recognizes such trees t.

The automaton is obtained by taking the product of two automata, testing
acceptance by A and satisfaction of Σ∼∪Σ�, respectively. The first automaton
is just the automaton A lifted to the product alphabet Γ × (C ∪D) × P(C):
it looks only at the first component of each label. Note that already this
automaton has doubly exponential size, because of the size of the alphabet.
The second automaton is the product over all constraints σ ∈ Σ∼ ∪ Σ� of
automata Bσ recognizing trees t such that t̂ |= σ, which will be constructed in
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the next subsection. Each automaton Bσ is doubly exponential and so is the
whole construction. As the emptiness problem for tree automata is in PTime,
we can conclude that the consistency problem is in 2ExpTime.

3.4 Translating constraints to automata over encodings

To complete the proof of the upper bound of Theorem 1, it remains to construct
an automaton recognizing encodings of trees that satisfy a given constraint.

Let us fix a constraint α(x̄) ⇒ η(x̄) with x̄ = (x1, x2, . . . , x`); for the
present construction, it needs not to be non-mixing. Let D ⊆ D be a finite
set of data values, containing each data value used explicitly in η(x̄), and let
C ⊆ D−D be an arbitrary finite set. We shall construct an automaton B over
the alphabet Γ × (C ∪D)× P(C) recognizing the language{

t
∣∣ t̂ |= α(x̄)⇒ η(x̄)

}
.

It will read a tree t, compute a representation of tuples selected from the
associated data tree t̂ by the selector query α(x̄), and accept if all these tuples
satisfy the assertion η(x̄). The representation of the selected tuples will be
computed based on the maintained information about partial matchings of
the selector query in the forest encoded by the processed part of the tree. This
can be done in the usual way, except that we need to systematically refresh
the colours, as specified in t. To explain the details, we need some auxiliary
notions.

Recall that t and t̂ have the same domain, structure, and labelling with
elements of Γ ; the only difference lies in the way data values are represented:
encoded in t and explicit in t̂. Consequently, as long as we do not care about
data values, we can blur the distinction between the encoded and decoded data
tree. Similarly, tw, t̂w, and

(
t̂
)
w

are the same forest, up to the representation
of data values. A partial valuation of variables x1, x2, . . . , x` is a function

g : {x1, x2, . . . , x`} → domt ∪ {⊥} .

If g(xi) 6= ⊥, we say that xi is matched at g(xi), and if ui = ⊥ we say that
xi is not matched. Two partial valuations of x1, x2, . . . , x` are disjoint, if no
variable is matched by both of them. The union of disjoint partial valuations
g, h of variables x1, x2, . . . , x` is given as

(g ∪ h)(xi) =

{
g(xi) if g(xi) 6= ⊥ ,
h(xi) otherwise .

Recall that α(x̄) is a conjunction of atoms. A partial matching of α(x̄) in
t̂w is a partial valuation g of variables x̄ such that

– variables are matched only in the nodes of tw;
– each atom in α(g(x̄)) that does not contain ⊥ holds true in t̂w; and
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– each atom that contains both a node from tw and ⊥ is of the form

w → ⊥, w′ →+ ⊥, ⊥ ↓ w′, or ⊥ ↓+ v ,

where w′ is a preceding sibling of w or w itself, and v is an arbitrary node
of tw.

The last condition means that each such atom can be made true (independently
of others) by replacing ⊥ with a node from t − tw, unless w has no following
siblings or no ancestors in t.

If t̂ |= α(ū), each partial valuation matching a subset of variables xi at
nodes ui from t̂w is a partial matching of α. Conversely, if a partial matching
g matches all variables x̄, then t̂ |= α(g(x̄)). Note, however, that not every
partial matching can be extended so that it matches all variables: remaining
atoms may be satisfiable on their own, but not together.

The automaton collects information about tuples selected by α(x̄) node
by node: when it is in a node w of the input tree t, it has information corre-
sponding to partial matchings of α(x̄) in t̂w. More precisely, the states of the
automaton B are subsets ∆ of

(C ∪D ∪ {>1,>2, . . . ,>`,⊥})` .

Each such tuple represents a partial matching of α(x̄) in t̂w, and the whole
∆ represents a set of such partial matchings. The intended meaning of the
symbolic values is as follows:

– c ∈ C ∪ D in the coordinate j of the tuple means that the variable xj is

matched in a node of t̂w storing the data value c;
– >i means that the variable xj is matched in a node storing some data value
dj ∈ D−(C∪D), where d1, d2, . . . , d` are distinct and depend on the tuple;

– ⊥ means that variable xj has not been matched yet.

The initial state is {(⊥,⊥, . . . ,⊥)}. The accepting states are the ones whose
each tuple either contains ⊥ or satisfies the assertion η(x̄).

Let us describe the transition relation. Assume that automaton B is about
to determine the state in a node w. Let w′ and w′′ be, respectively, the previous
sibling and the last child of w. The set of partial matchings of α(x̄) in t̂w
depends only on the sets of partial matchings in t̂w′ and t̂w′′ , and the label
of w. Indeed, a partial valuation of x̄ is a partial matching of α(x̄) in t̂w if
it is the union of disjoint partial matchings of α(x̄) in t̂w′ and t̂w′′ possibly
extended by matching some (yet unmatched) variables at node w, respecting
two conditions. For all atoms xi → xj , xi →+ xj in α(x̄), either xi, xj are

both matched in t̂w′′ or none is; and the new matching of variables at w does
not violate the definition of partial matching. The latter can be expressed as
follows:

– if α(x̄) contains xi ↓ xj or xi ↓+ xj , we may match xi at w only if xj is
matched in tw′′ ; for xi ↓ xj , if xj is matched, we must match xi, unless it
is matched in tw′′ already;
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– if α(x̄) contains xi → xj or xi →+ xj , we may match xj at w only if xi is
matched in tw′ ; for xi → xj , if xi is matched, we must match xj , unless it
is matched in tw′ already;

– if α(x̄) contains a(xi), we may match xi at w only if labt(w) = (a, c,R) for
some c,R.

Checking the conditions above requires only information about which variables
are matched in t̂w′ and t̂w′′ ; the used tree nodes are not relevant. Consequently,
one can determine the set of tuples representing partial matchings in t̂w based
on the sets of tuples representing partial matchings in t̂w′ and t̂w′′ , and the
label (a, c,R) of the current node w. Notice that the symbolic values >i rep-
resent different data values in t̂w′ and t̂w′′ , so before combining two tuples we
rename these values to guarantee that none is used in both tuples (` values
are always sufficient for this). The final step is to refresh colours: in each tuple
we replace all occurrences of c ∈ R with some >i not yet used in this tuple.

3.5 Lower bound

Lemma 5 Consistency of non-mixing constraints is 2ExpTime-hard.

Proof Relying on the fact that 2ExpTime = AExpSpace, we will be using
alternating Turing machines. Such machines can be defined in multiple similar
ways, and we use a definition that is most convenient for our encoding. We
do not divide states of our machine into existential and universal; we only
distinguish accepting states. Instead, we use the following notion of a run
tree, requiring that from every configuration two different transitions can be
applied. A run tree of an alternating Turing machine M on input word w is a
tree labelled by configurations of M , where

– the root is labelled by the initial configuration for the input word w;
– every node not labelled by an accepting configuration has exactly two chil-

dren, labelled by successors of this configuration, reached by applying to
it two different transitions;

– every node labelled by an accepting configuration is a leaf.

We say that an input word w is accepted by M if there is a finite run tree of
M for w.

To turn a standard machine with existential and universal states into a
machine of the form above, one simply ensures that in universal states the ma-
chine has exactly two available transitions, and duplicates transitions available
in existential states.

Consider an alternating Turing machine M (of the form described above)
that works in space bounded by 2|w|, where w is the input word. Note that
we limit the space to 2|w| instead of considering any exponential function,
but already among such machines there is one solving an AExpSpace-hard
problem. We show that for every input word w we can construct (in polynomial
time) a tree automaton A and a set Σ of non-mixing constraints such that A
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and Σ are consistent if and only if M accepts w. More precisely, every tree
t ∈ L(A) such that t |= Σ describes a run tree of M on w. Below we specify
how such a tree t encodes a run tree of M on w, simultaneously saying how
these properties are ensured by A or Σ.

Nodes labelled by s form a prefix of t that is a binary tree: the parent of
every s-labelled node (if exists) is s-labelled, and every s-labelled node has zero
or two s-labelled children. This is ensured by the automaton A. This part of t
is called the skeleton, and will have the same shape as the run tree.

Additionally, each node of the skeleton has a c-labelled child (in addition
to the zero or two children from the skeleton). The subtree rooted in this child
forms a path, whose labels match the regular expression

cAQAQ (l + n + r) ($ (h + n) (p + n) c2n+1)+ # ,

where b, l, n, r, h, p are new alphabet symbols, Q and A are the state set and
the tape alphabet of M , and n = |w|, Again, this is ensured by A. Such path,
called a configuration path, describes a configuration of M assigned to the
corresponding node of the skeleton (which is also a node of the run tree).

At the beginning of each configuration path we have the transition used
to reach this configuration: the second node is labelled by the letter present
on the tape under the head in the previous configuration; the third node is
labelled by the previous state; the fourth by the letter written on the tape;
the fifth by the new state; the sixth by the direction in which the head was
moved (left, no move, right). The automaton ensures that this is indeed a
valid transition of M (except for the configuration path directly below the
root, where we only ensure that the fifth node contains the initial state); that
the label of the third node (previous state) is equal to the label of the fifth
node (current state) of the parent configuration; that the transitions assigned
to sibling configurations are different (as required in the definition of a run
tree); that states are accepting in leaf configurations and not accepting in
non-leaf configurations.

The next part of a configuration path consists of multiple blocks of length
2n+4; each of them describes a single letter on the tape. To identify a block, we
use the first n c-labelled nodes for a binary counter encoding the position in the
tape, using data values 0, 1 ∈ D. We assign data values 0, . . . , 0, 0 to these nodes
in the first block, 0, . . . , 0, 1 in the second block, and so on, until 1, . . . , 1, 1
in the last block (we have 2n blocks, which equals to the length of the tape).
The next n nodes of the block also contain such a counter, but going back:
we assign 1, . . . , 1, 1 to these nodes in the first block, and 0, . . . , 0, 0 in the last
block. Notice that when one counter of a block contains bits b1, . . . , bn, then the
other counter contains their inverses 1−b1, . . . , 1−bn. This double encoding of
the position is the key trick that allows using non-mixing integrity constraints
to check correctness of the run between two consecutive configurations. To
enforce this behaviour of counters we use constraints. In the constraints we
shall use queries matching tuples of variables

x̄ = (x$, xh, xp, x1, . . . , xn, x
′
1, . . . , x

′
n, xd)
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to the 2n + 4 consecutive nodes of blocks in configuration paths. It is easy
to write a conjunctive query αfb(x̄) that matches x̄ to the first block in any
configuration path. We include in Σ the constraint

αfb(x̄)⇒ 0(x1) ∧ · · · ∧ 0(xn) ∧ 1(x′1) ∧ · · · ∧ 1(x′n) .

We deal analogously with the last block. Then, using a conjunctive query
αcb(x̄, ȳ) with ȳ defined as x̄ above, that matches two consecutive blocks, we
include the constraint

αcb(x̄, ȳ)⇒ η∼(x̄, ȳ)

ensuring that the counters in these two blocks encode consecutive numbers. It
is a standard task to express this property as a positive Boolean combination
η∼(x̄, ȳ) of atoms over {∼, 0, 1}, of a quadratic size.

The second node of each block is marked by h if the head of M is placed
over this position of the tape, and the third node is marked by p if the head
was placed over this position in the previous configuration. The automaton
ensures that in each configuration path exactly one block is marked by h and
exactly one block is marked by p; that in the initial configuration the head
is over the first letter; that the relation between the p and h markers on a
configuration path is as described by the sixth node of that path (l, n, or r).
To ensure that the position of p corresponds to the position of h in the previous
configuration we use the constraint

αch(x̄, ȳ)⇒ x1 ∼ y1 ∧ · · · ∧ xn ∼ yn ,

where αch(x̄, ȳ) matches x̄ to the h-marked block of a configuration and ȳ to
the p-marked block of a child configuration.

The last node of each block carries the tape letter (from A) in the data
value. To ensure that the initial configuration starts with the input word, we
write a constraint

αini(x1, . . . , xn)⇒ η∼(x1, . . . , xn) ,

where αini(x1, . . . , xn) selects the last node from each of the first n blocks
of the topmost configuration path (to make sure that only the topmost con-
figuration path is selected, we can check for the presence of the initial state,
assuming w.l.o.g. that M cannot reach the initial state in any transition).
Another constraint

αbl(x)⇒ b(x)

ensures that the rest of the initial tape contains blanks b ∈ A, where αbl(x)
matches the last node of a block of the topmost configuration path other than
the first n blocks. Next |A| constraints ensure that the p-marked block contains
the letter written in the fourth node of the configuration path (letter written
under the head), and another |A| constraints that the h-marked block of the
previous configuration contains the letter written in the second node of the
configuration path (letter seen under the head).
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Finally, we have to ensure that the content of the tape is preserved (except
the single letter under the head). Let α2b(x̄, ȳ) be a conjunctive query matching
some blocks on consecutive configuration paths, where the first of them is not
marked by h. For every such pair x̄, ȳ, we want to enforce that either the
two corresponding blocks carry the same letter or they represent two different
positions in the tape. Using the double complementary encoding of the position
in the blocks, this can be enforced using only ∼ in the following constraint:

α2b(x̄, ȳ)⇒ x1 ∼ y′1 ∨ · · · ∨ xn ∼ y′n ∨ xd ∼ yd .

Notice that the property “x̄ and ȳ encode different positions in the tape” seems
to require �, but thanks to the inverted counter stored in each block we may
use ∼ instead, avoiding the illegal mixture of ∼ and � in the assertion of the
constraint.

By construction, witnesses for the obtained automaton A and set of con-
straints Σ correspond to run trees of the machine M , which ensures correctness
of the reduction. ut

We remark that all conjunctive queries used in the above proof could be
written using tree patterns (see Section 4.2 for the definition), and that the
set Σ� was empty. Thus the 2ExpTime-hardness result holds already for
constraints of this form. If we only allow tree patterns as selectors and Σ∼ is
empty, the complexity might be lower. In Section 4.3 we shall see a different
hardness argument, showing that there is no hope for lower complexity without
restricting selectors.

4 Extensions, connections, and applications

4.1 Entailment of non-mixing constraints

A static analysis problem more general than consistency is entailment. Recall
that a set of constraints Σ′ is entailed by a set of constraints Σ modulo a
tree automaton A, written as Σ |=A Σ′, if for each data tree t accepted by
automaton A,

t |= Σ implies t |= Σ′ .

The entailment problem is then defined as follows:

Problem: Entailment problem for non-mixing constraints
Input: Sets Σ, Σ′ of non-mixing constraints, tree automaton A.

Question: Σ |=A Σ′ ?

Entailment is a more general problem than consistency, but for non-mixing
constraints the results on consistency generalize to entailment almost effort-
lessly.

Theorem 2 Entailment of non-mixing constraints is 2ExpTime-complete.
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Proof Inconsistency is a special case of entailment: Σ is inconsistent with
respect to an automaton A if and only if Σ |=A ⊥, where ⊥ is an inconsistent
set of constraints, say

{
a(x) ⇒ 0(x) ∧ 1(x)

∣∣ a ∈ Γ}. Thus, the lower bound
follows.

Lemma 3 shows that witnesses for consistency can have bounded data cut.
The same is true for counter-examples to entailment. Suppose t |= Σ and
t 6|= Σ′. Then, t |= α′(ū) ∧ ¬η′(ū) for some constraint α′(x̄) ⇒ η′(x̄) from Σ′

and some tuple ū of nodes of t. Let D0 be the set of data values used in the
nodes ū. We can repeat the construction of the tree t′ word for word, except
that we replace the set D of values not to be touched by D∪D0. This increases
datacut(t′) by the maximal number of variables in the constraints of Σ′.

The automata construction in Section 3.3 is modified similarly: the set D
contains also the data values used explicitly in Σ′, in the product automaton
we include additionally the automata Bσ for σ ∈ Σ′, and we let it accept if
at least one of these components rejects and all previously described compo-
nents accept. As the automata Bσ are deterministic, this does not involve any
additional cost.

Note that the argument above works also if Σ′ mixes predicates from sig∼
and sig�. ut

4.2 A singly exponential fragment

A closer look at the complexity of our algorithm reveals that it is doubly ex-
ponential only in the maximal number ` of variables in the constraints. This
number appears in three roles: in the exponent in the factors (` + m)`

2

and
2` of the bound on the data cut, and as the length of tuples representing par-
tial matchings of selectors. A slightly more detailed analysis of the proof of
Lemma 3 shows that in the first role, ` could be replaced by the maximal num-
ber `′ of variables actually used in the assertions. Indeed, since data equalities
involve only variables occurring in the atoms of the assertions, everything is in
fact happening in a space of dimension at most `′. While limiting the size of
selector queries to lower the complexity makes little sense, limiting the number
of variables actually used in assertions seems acceptable. But what about the
other two roles of ` ?

Concerning the third role, the need to represent all partial matchings (up
to data equality type) comes from the fact that the automaton is essentially
evaluating conjunctive queries. The standard technique to lower the complex-
ity in such cases is to replace conjunctive queries with tree patterns, which
are essentially tree-structured conjunctive queries. In the most basic form,
with only ↓ and ↓+ axes allowed, a tree pattern is a conjunctive query α over
signature {↓, ↓+} ∪ Γ , such that graph

(Aα, ↓α ∪ ↓+α )

is a directed tree, where

Aα = (Aα, ↓α, ↓+α , {aα}a∈Γ )
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is the canonical relational structure associated to query α in the usual way:
the universe Aα is the set of variables of α, and relations are given by the
respective atoms in α.

Finally, we also have the factor 2` in the bound on the data cut. This factor
appears because in the proof of Lemma 3, we consider separately each partition
of variables into two tuples. As we shall see, the number of partitions can also
be reduced for tree patterns. To this end, we prove the following analogue of
Lemma 2.

Lemma 6 Let α(x̄, ȳ, z̄) be a tree pattern, where x̄, ȳ, and z̄ are pairwise
disjoint, and in ↓α ∪ ↓+α there are no edges from variables in z̄ to variables in
x̄, ȳ. Let w be a node of a data tree t. For all tuples ū, ū′ of nodes from tw,
and tuples v̄, v̄′ of nodes from t− tw, if

t |= ∃z̄ α(ū, v̄, z̄) and t |= ∃z̄ α(ū′, v̄′, z̄) ,

then
t |= ∃z̄ α(ū, v̄′, z̄) and t |= ∃z̄ α(ū′, v̄, z̄) .

Proof We only prove that t |= ∃z̄ α(ū, v̄′, z̄), as the other part is symmetric.
Let w̄ and w̄′ be tuples of nodes from t such that t |= α(ū, v̄, w̄) and t |=
α(ū′, v̄′, w̄′). The claim holds trivially if both x̄ and ȳ are empty. Assume that
at least one of these tuples is nonempty. Then the root of the tree pattern
belongs to x̄ or to ȳ. Let z̄ = (z1, . . . , zk), w̄ = (w1, . . . , wk), w̄′ = (w′1, . . . , w

′
k).

For i ∈ {1, . . . , k} we look at the nearest ancestor of zi that is in x̄ or in ȳ. If it
is in x̄, we take w′′i = wi, otherwise w′′i = w′i, and we define w̄′′ = (w′′1 , . . . , w

′′
k).

We need to check that every atom of α(ū, v̄′, w̄′′) is satisfied in t. This is
clear for unary atoms. Assume a binary atom involves a variable from z̄ that is
valuated as in ū, v̄, w̄. From the definition of w̄′′ it then follows that the other
variable, being its child or its parent in the tree pattern, is also valuated as in
ū, v̄, w̄. It follows that the atom is satisfied, because t |= α(ū, v̄, w̄). We argue
analogously for binary atoms with a variable from z̄ valuated as in ū′, v̄′, w̄′. It
remains to consider binary atoms involving only variables from x̄ and ȳ, and
this can be done as in the proof of Lemma 2. ut

We remark that for non-mixing integrity constraints, restricting selectors
to tree patterns alone does not suffice to lower the complexity: the reduction in
Lemma 5 uses only such constraints (and no assertions over sig�). But together
with the bound on the number of variables in assertions, it does suffice.

Proposition 1 For non-mixing constraints whose selectors are tree patterns
and whose assertions use constantly many variables, consistency and entail-
ment are ExpTime-complete.

Proof We first complete the proof that the data cut can be bounded polyno-
mially. We have already argued that in the factor ` · (` + m)`

2

of the bound
given by Lemma 3 we can replace ` by the maximal number `′ of variables
used in the assertions, which is assumed to be constant. It remains to deal
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with the factor 2`. We show that the number of considered partitions can be
limited by a polynomial.

Fix a tree t, its node w, and a constraint α ⇒ η∼ in Σ∼. We say that a
variable x used in α is important if either x or some descendant of x (in the
sense of ↓α ∪ ↓+α ) is used in η∼; otherwise x is unimportant. We shall partition
only important variables: we write the tree pattern as α(x̄, ȳ, z̄), where x̄, ȳ is
a partition of important variables, and z̄ contains all unimportant variables.
Notice that in ↓α ∪ ↓+α there are no edges from unimportant variables to
important variables, and thus Lemma 6 can be used.

We additionally restrict ourselves to tame partitions, defined as follows: a
partition x̄, ȳ of important variables is tame if in ↓α ∪ ↓+α there are no edges
from variables in x̄ to variables in ȳ. This way we only prune empty cases,
because in the proof of Lemma 3 we only valuate variables from x̄ with nodes
from tw, and variables from ȳ with nodes from t− tw.

We thus have the following statement: t |= α ⇒ η∼ if and only if for
each tame partition x̄, ȳ of important variables in α, for each tuple ū of nodes
from tw, each tuple v̄ of nodes from t − tw, and each tuple w̄ of nodes of t,
if t |= ∃z̄ α(ū, v̄, z̄), then t |= η∼(ū, v̄). This allows us to continue as in the
proof of Lemma 3; the unimportant variables do not appear in η∼, so it is
irrelevant whether they are valuated in tw or in t − tw. Finally, we observe
that the number of tame partitions of important variables is polynomial in
the size of the tree pattern, assuming that the number of variables used in η∼
is constant. Indeed, for each of the constantly many variables used in η∼, we
only have to decide how many of its closest ancestors (including itself) are to
be taken to x̄ (the ancestors being farther are then taken to ȳ).

We have thus proved that the bound on the data cut is polynomial. Hence,
the size of the set of colours C is also polynomial. It remains to optimize the
automaton Bσ verifying a single constraint σ, assuming that the selector of σ
is a tree pattern.

We use the standard method relying on the fact that subtrees of a tree
pattern can be matched independently. By definition, the domain of a partial
matching of a tree pattern is a collection of disjoint full subtrees of the pattern.
Such a collection can be matched, if each of its elements can be matched
independently; the information sufficient to represent all possible matchings
is a set of subtrees that can be matched. For our purposes this is insufficient:
we are interested not in just matching the selector, but in all tuples of data
values that can be associated with the variables used in the assertion. This
information cannot be stored separately for each subtree, as we are interested
in the equalities and inequalities between data values assigned to variables
in different subtrees; this is a property of a set of matched subtrees, and
there can be ways of matching the same set that yield different equalities
and inequalities. The solution is to treat subtrees with variables used in the
assertion in a special way. The automaton remembers in each state a collection
of subtrees without assertion variables and a collection of pairs consisting of

– a set of pairwise disjoint subtrees with assertion variables, and
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– a tuple representing the associated data values (like before).

As the number of assertion variables is constant, the number of such sets and
such tuples is polynomial. Hence, the whole automaton is singly exponential.
This shows that both consistency and entailment are in ExpTime.

The lower bound follows immediately from ExpTime-hardness of consis-
tency of schema mappings with trivially unsatisfiable right hand sides of de-
pendencies [1, Proposition 18.2], which can be also reinterpreted as validity of
unions of tree patterns modulo a given tree automaton. ut

4.3 Static analysis of unions of conjunctive queries

Our results can be reinterpreted in the framework of static analysis of unions
of conjunctive queries (UCQs). Note that

t 6|= α(x̄)⇒ η(x̄) if and only if t |= ∃x̄ α(x̄) ∧ ¬η(x̄) .

It follows immediately that the problem of validity of UCQs over signature sigdt
that never mix predicates from sig∼ and sig�—call them non-mixing UCQs—
reduces in polynomial time to inconsistency of non-mixing constraints. Sim-
ilarly, containment of such queries reduces to entailment of non-mixing con-
straints. The converse reduction is also possible, but it involves exponential
blow-up when arbitrary Boolean combinations in assertions are rewritten in
disjunctive normal form. This correspondence brings our results very close to
the work by Björklund, Martens, and Schwentick on static analysis for UCQs
over signature signav ∪ {∼,�} [6].

On one hand, our results immediately give the following new decidabil-
ity result for the setting considered by Björklund, Martens, and Schwentick
(constraints used in the lower bound of Lemma 5 can be rewritten without
blow-up).

Theorem 3 Over signav∪{∼,�}, both validity of non-mixing UCQs and con-
tainment of UCQs in non-mixing UCQs (with respect to a given tree automa-
ton) are 2ExpTime-complete.

Results of Björklund, Martens, and Schwentick give 2ExpTime upper bound
for containment (with respect to a tree automaton) in UCQs over signav∪{∼}
and UCQs over signav ∪ {�}. The original work is on CQs, but arguments for
UCQs are the same [12]. Essentially, they amount to an observation that in
counter-examples to containment of a query p in a query q, all data values can
be set equal (in the case with �) or different (in the case with ∼), except for
a bounded number of them needed to witness satisfaction of p; such counter-
examples can be easily encoded as trees over a finite alphabet, and recognized
by an automaton evaluating p and q in the usual way. Theorem 3 extends both
these results. Since we have both ∼ and � in query q, we cannot assume that
all data values are equal, nor that all are different; our more involved approach
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seems necessary. The third relevant result of [6] is that containment of p in q
is 2ExpTime-complete under the assumption that p is a CQ over signav∪{∼}
and q is a CQ over signav ∪ {∼,�}. It looks stronger than ours because query
q can mix ∼ and �. In fact, it is much weaker, depending entirely on the fact
that q is a single CQ, not a UCQ. More specifically, the argument is as follows:
if q uses �, the answer is yes if and only if p is not satisfiable with respect
to the tree automaton (otherwise p is satisfiable in a tree with all data values
equal, and no such tree can satisfy q because of its � atoms); if q does not use
�, we are back in the case of UCQs over signav ∪ {∼}.

On the other hand, some results of Björklund, Martens, and Schwentick
give a broader context to our results. They show that validity with respect to
a given automaton is already 2ExpTime-complete for unions of conjunctive
queries over signature signav, that is, for trees without data. Consequently,
restricting only assertions of non-mixing constraints would not lower the com-
plexity. This is complementary to our lower bound of Lemma 5, which shows
2ExpTime-hardness for constraints using tree patterns as selectors. Hence,
the only way to lower the complexity is to restrict both, selectors and as-
sertions. Björklund, Martens, and Schwentick also show that for UCQs over
signav ∪ {∼,�} validity is undecidable; this means that we cannot go beyond
non-mixing assertions.

4.4 XML constraints

Non-mixing constraints form an instance of the general framework of XML-to-
relational (X2R) constraints proposed by Niewerth and Schwentick [27], where
selectors are arbitrary queries defining relations by selecting tuples of nodes
and data values (in separate columns), and assertions are arbitrary relational
constraints over the defined relations; the considered problem is entailment
modulo schema. Our setting corresponds to a fragment in which selectors
are conjunctive queries over signav interpreted as queries selecting tuples of
data values, assertions are positive quantifier-free formulas using constants
and either = or 6=, and schemas are tree automata. Niewerth and Schwentick
investigate two classes of assertions: functional dependencies (FDs) and XML-
key FDs (XKFDs). In an FD

A1A2 . . . Am → B ,

A1, A2, . . . , Am, B are arbitrary columns of the relation defined by the se-
lector (each referring either to nodes or to data values); in an XKFD, B is
required to be a node column. Our setting captures XKFDs, but not gen-
eral FDs. Consider an X2R constraint given by a CQ α(x1, . . . , xn) popu-
lating a table with tuples (x1, . . . , xn,@x1, . . . ,@xn), where @xi stands for
the data value stored in the node represented by variable xi, and an XKFD
x1, . . . , xj ,@xj+1, . . . ,@xn−1 → xn (it makes no sense to use both xi and @xi
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in the same constraint). Such constraint can be rewritten as

α(x1, . . . , xn) ∧ α(x1, . . . , xj , x
′
j+1, . . . , x

′
n) ∧ xn 6= x′n ⇒

⇒ xj+1 � x′j+1 ∨ · · · ∨ xn−1 � x′n−1

which can be turned into a set of five non-mixing constraints by replacing
xn 6= x′n with simple subqueries describing possible ways of arranging two
different nodes in a tree, as explained in Section 2.3. Note that these constraints
do not use ∼. Hence, for XKFDs with UCQs over signav as tuple selectors
decidability of entailment follows already from the results on containment of
UCQs over signav ∪ {∼}, discussed in the previous subsection; the challenge
tackled by Niewerth and Schwentick is to determine the exact complexity and
identify tractable fragments.

If we replace the XKFD above with an FD x1, . . . , xj ,@xj+1, . . . ,@xn−1 →
@xn we have

α(x1, . . . , xn) ∧ α(x1, . . . , xj , x
′
j+1, . . . , x

′
n) ⇒

⇒ xj+1 � x′j+1 ∨ · · · ∨ xn−1 � x′n−1 ∨ xn ∼ x′n ,

which cannot be expressed without mixing ∼ and �. As we have explained,
consistency and entailment is undecidable for such constraints, but one can
investigate fragments with restricted schemas and tuple-selectors. This is what
Niewerth and Schwentick do.

As XKFDs with tree patterns as tuple-selectors can express XML Schema
key and unique constraints [18], XML keys by Arenas, Fan, and Libkin [2], and
XFDs by Arenas and Libkin [3], so can non-mixing constraints. A technical
subtlety is that some of these classes of constraints apply to nodes of a specified
type (playing the role of a state in XML Schemas). As proposed by Niewerth
and Schwentick, we can deal with it by annotating tree nodes with types
(verified by the automaton encoding the schema), and let the patterns refer to
types and labels. This slight extension does not affect our complexity bounds.
Also, XML Schema unique constraints demand that each field path selects at
most one node, and XML Schema key constraints demand exactly one node;
the latter can be checked by the automaton too. In practice, one often wants
at most (or exactly) one data value, not tree node. This may or may not be
equivalent. To express that at most one data value is selected, we can use the
singleton constraints discussed in Section 2.3. Note that this requires assertions
over sig∼.

4.5 Consistency of XML schema mappings

Schema mappings are a formalism used in data exchange scenarios to specify
relations between instances of two database schemas, a source schema and
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a target schema [1,14]. In the basic setting for XML [4], schemas can be ab-
stracted as tree automata, and the relation between source and target instances
can be defined by a set Σ of dependencies of the form

α(x̄)⇒ α′(x̄)

where α, α′ are conjunctive queries over signav, treated as queries selecting
data values, not nodes. That is, a pair of data trees (t, t′) satisfies dependency
σ of the form above, written as (t, t′) |= σ, if{

valt(ū)
∣∣ t |= α(ū)

}
⊆
{
valt′(ū)

∣∣ t′ |= α′(ū)
}
.

The consistency problem for XML schema mappings [4] is to decide for a
given schema mappingM = (A,A′, Σ), whether there exists a tree t accepted
by automaton A and a tree t′ accepted by automaton A′ such that (t, t′) |= Σ.
This problem is known to be decidable: without loss of generality one may
assume that all data values in t and t′ are equal, and use standard automata
techniques ignoring data values. This is not only uninspiring theoretically, but
also not very practical: an instance with all data values equal is not a convinc-
ing witness that the mapping makes sense. What if the source schema includes
constraints, say XML Schema key or unique constraints? We cannot assume
that all data values are equal any more. As we have argued in the previous
subsection, such constraints can be expressed with non-mixing constraints,
which leads us to the problem of consistency with source constraints, a com-
mon generalization of consistency of constraints and schema mappings: given
a schema mapping M = (A,A′, Σ) and a set of non-mixing constraints Σsrc,
decide if there exist a tree t accepted by automaton A and a tree t′ accepted
by automaton A′ such that t |= Σsrc and (t, t′) |= Σ.

The following lemma gives the connection between XML schema mappings
and non-mixing constraints that allows us to apply our decidability result. It
was proved in a slightly different but equivalent form in [13]. A non-mixing con-
straint with free data value predicates uses additional unary predicate symbols
in the assertions. A data tree t satisfies a set Σ of such constraints (possibly
sharing some additional predicate symbols) if it satisfies Σ′ obtained from Σ
by replacing each additional predicate symbol with some d ∈ D. Free data
value predicates are not problematic for the consistency algorithm, as it can
guess the data values to replace them; up to equality type with respect to data
values already used in Σ, there are only exponentially many possibilities.

Lemma 7 For each schema mapping M = (A,A′, Σ) one can compute in
doubly exponential time sets Σ1

∼, Σ
2
∼, . . . , Σ

m
∼ of non-mixing constraints with

free data value predicates, each obtained from Σ by replacing target-side queries
α′(x̄) with assertions η∼(x̄) of exponential size, such that for each data tree t,
t |= Σi

∼ for some i ∈ {1, . . . ,m} if and only (t, t′) |= Σ for some data tree t′

accepted by automaton A′.

Thus, mappingM is consistent with source constraints Σsrc if and only if at
least one of the sets Σi

∼∪Σsrc obtained via Lemma 7 is consistent with respect
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to automaton A. Since the number of variables in each involved constraint is
linear, the latter can be tested in 2ExpTime, as the algorithm from Section 3
is doubly exponential only in the maximal number of variables. As Lemma 7
translates mappings into constraints with assertions over sig∼, even if Σsrc is
just a set of key constraints (expressible with assertions over sig�), we need the
full power of non-mixing constraints, allowing assertions over sig∼ and sig�.

4.6 Data cut and clique-width

A classical measure of simplicity for relational structures is that of clique-
width [11]. As has been noticed before for unordered data trees, clique-width
and data cut are related [7]. We shall now reexamine briefly this relationship
for ordered data trees, and in the following subsection we shall see how it
can be used to extend our decidability results to constraints with much more
expressive selector queries.

Let τ = {R1, . . . , R`} be a relational signature, that is, a set of predicate
symbols with arities ar(Ri). A (finite) τ -structure A is a tuple 〈A,RA1 , . . . , RA` 〉
consisting of a finite universe A and relations RAi ⊆ Aar(Ri) (interpretations
of the predicates). A k-coloured τ -structure is a pair (A, γ), consisting of a τ -
structure A and a mapping γ : A → {1, . . . , k}, assigning colours to elements
of the universe of A.

Clique-width of structures is defined by means of an appropriate notion of
decomposition, traditionally known as k-expression (over τ). It is defined as
a term over the following set of operations (function symbols) Op(τ, k):

– new(i) for 1 ≤ i ≤ k, nullary,
– col(i, j) for 1 ≤ i, j ≤ k, unary,
– R(i1, . . . , ir) for predicates R ∈ τ of arity r and 1 ≤ i1, . . . , ir ≤ k, unary,
– ⊕, binary.

With each k-expression e we associate a k-coloured τ -structure [[e]]:

– [[new(i)]] is a structure with a single element, coloured i, and empty rela-
tions;

– [[col(i, j)(e)]] is obtained from [[e]] by recolouring all elements of colour i to
j;

– [[R(i1, . . . , ir)(e)]] is obtained from [[e]] = (A, γ) by adding to R[[e]] all tuples
(a1, . . . , ar) such that aj ∈ A and γ(aj) = ij for 1 ≤ j ≤ r;

– [[e⊕ e′]] is the disjoint union of [[e]] and [[e′]].

A k-expression for A is any k-expression e such that [[e]] = (A, γ) for some γ.
The clique-width of A is the least k such that there exists a k-expression for A.

Example 2 Consider a data tree tn consisting of a root w and two branches
u1, u2, . . . , un and v1, v2, . . . , vn, in which all nodes have label a and the data
values correspond to the node’s depth in the tree, as shown in Figure 4. Then,
tu1

and t− tu1
share n different data values, and the data cut of tn is n.
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...

...

Fig. 4 A tree of data-cut n and clique width bounded by 7.

Let us see tn as a relational structure over the signature signav∪{∼}, where
∼ is interpreted as the equivalence relation with abstraction classes {w} and
{ui, vi} for i = 1, 2, . . . , n. We claim that the clique width of tn is bounded by
7: if we construct tn top-down, level by level, at any point of the construction it
is enough to distinguish between the root, the internal nodes on two branches,
the two current leaves, and the two new nodes.

To see this, begin with a node of colour root and set its label with a(root),
add two nodes of colours leaf1 and leaf2 with relations specified by

a(leafi), ↓ (root, leafi), ↓+ (root, leafi), → (leaf1, leaf2), →+ (leaf1, leaf2),

∼ (leaf1, leaf2)

for i = 1, 2 and then repeat the following n−1 times: add two nodes of colours
new1 and new2 with relations specified by

a(newi), ↓ (leafi, newi), ↓+ (root, newi), ↓+ (internali, newi), ↓+ (leafi, newi),

∼ (new1, new2)

and recolour using col(leafi, internali), col(newi, leafi) for i = 1, 2. ut

The example shows that trees of bounded clique width can have arbitrary
large data cut. We shall now see that bounded data cut implies bounded clique
width.

For each set D ⊆ D, data trees can be seen as relational structures over the
signature signav ∪ sigD∼ , where sigD∼ = {∼} ∪D; that is, we restrict the unary
predicates in sig∼ to those associated to data values from D.

Proposition 2 For each finite D ⊆ D and each data tree t seen as a relational
structure over signav ∪ sigD∼ ,

cliquewidth(t) ≤ 4 ·
(

3

2
· datacut(t) + 2 + |D|

)
.

Proof Let C = {1, 2, . . . , N} with N =
⌊

3
2 · datacut(t)

⌋
+1. By Lemma 4, there

exists a tree s over the alphabet Γ × (C ∪D) × P(C) such that the encoded
data tree ŝ equals t up to a permutation of D−D. That is, ŝ and t are equal
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when seen as relational structures over signav ∪ sigD∼ . We shall turn s into a
4(|C|+ |D|+ 1)-expression for ŝ, interpreting colours as elements of the set

{last-root, other-root, new-root, not-root} ×
(
C ∪D ∪ {⊥}

)
.

Processing the nodes of s in the usual order (bottom-up and left-to-right), for
each node w we construct a 4(|C|+ |D|+ 1)-expression ew such that

[[ew]] = (ŝw, γ)

and for each node u the colour γ(u) satisfies the following properties:

1. the first coordinate describes the status of the node u in the forest ŝw: the
last root, one of the other roots, or not a root (the value new-root will be
used later);

2. the second coordinate is the data value stored in the node in ŝw if this
value belongs to C ∪D, or ⊥ if it does not.

Let w be a node of s, labelled with (a, c,R). To build ew, we begin by creating
a new node and specifying the unary relations for it (label and data value)
with operations

new
(
(new-root, c)

)
, a
(
(new-root, c)

)
, c
(
(new-root, c)

)
,

where the last operation is included only if c ∈ D (that is, c is in the signature).
If w has children, let w′′ be its last child. Then, the expression ew′′ is already
constructed and we incorporate it into the expression ew as follows:

– combine the expression built so far with ew′′ using the operation ⊕;
– specify structural relations between the two parts using the operations

↓
(
(new-root, c), (last-root, d)

)
, ↓+

(
(new-root, c), (last-root, d)

)
,

↓
(
(new-root, c), (other-root, d)

)
, ↓+

(
(new-root, c), (other-root, d)

)
,

↓+
(
(new-root, c), (not-root, d)

)
for all d ∈ C ∪D ∪ {⊥};

– change last-root and other-root to not-root with the operations

col
(
(last-root, d), (not-root, d)

)
, col

(
(other-root, d), (not-root, d)

)
for all d ∈ C ∪D ∪ {⊥};

Similarly, if w′ is the previous sibling of w, we incorporate the expression ew′

as follows:

– combine the expression build so far with ew′ using the operation ⊕;
– specify structural relations between the two parts using the operations

→
(
(last-root, d), (new-root, c)

)
, →+

(
(last-root, d), (new-root, c)

)
,

→+
(
(other-root, d), (new-root, c)

)
for all d ∈ C ∪D ∪ {⊥};
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– change last-root to other-root with the operations

col
(
(last-root, d), (other-root, d)

)
for all d ∈ C ∪D ∪ {⊥}.

Finally, we take care of data equalities and clean up the colours:

– specify data equalities between the combined parts using the operations

∼
(
(ξ, d), (ζ, d)

)
for all ξ, ζ ∈ {new-root, other-root, not-root} and d ∈ C ∪D;

– change new-root to last-root with the operation

col
(
(new-root, c), (last-root, c)

)
;

– refresh the colours with the operations

col
(
(ξ, d), (ξ,⊥)

)
for all ξ ∈ {last-root, other-root, not-root} and d ∈ R;

By construction, the resulting expression ew satisfies properties 1 and 2. ut

Thus, bounded data cut is a stronger property than bounded clique width.
It can be seen as a strengthening of bounded clique-width for data trees, in
which decompositions must closely follow the structure of data trees.

4.7 MSO constraints

Our decidability results for consistency and entailment of non-mixing con-
straints can be naturally extended by allowing selectors expressed in monadic
second-order logic (MSO), a powerful extension of first order-logic in which
quantification over subsets of the universe is available. However, as is usually
the case when MSO is involved, the complexity will be non-elementary.

The syntax of MSO formulae over signav is

ϕ,ψ ::= ∃X ϕ
∣∣∃xϕ ∣∣ϕ ∧ ψ ∣∣¬ϕ ∣∣x ∈ X ∣∣x ↓ y ∣∣x ↓+ y

∣∣x→ y
∣∣x→+ y

∣∣ a(x)

for a ∈ Γ ; the semantics is the natural one, with the usual distinction be-
tween first-order variables (lower case) referring to elements of the universe
and second-order variables (upper case) referring to subsets of the universe.

We consider MSO constraints of the form

ϕ(x̄)⇒ η∼(x̄) ∧ η�(x̄) ,

where the selector ϕ(x̄) is an MSO formula over signav in which all free variables
are first-order.

As a first step, we reprove the bound on the data cut, shown in Lemma 3.
Instead of using Lemma 2 we rely on the compositionality of MSO. For a forest
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f over Γ , a tuple v̄ = (v1, . . . , vm) of nodes of f , and a tuple V̄ = (V1, . . . , Vn)
of sets of nodes of f , let

〈f ; v̄; V̄ 〉

be the forest over the alphabet Γ × {0, 1}m+n obtained from f by extending
labels with binary vectors encoding v̄ and V̄ : a node w is labelled with

(labf (w), e1, . . . em, E1, . . . , En) ,

where ei = 1 if and only if w = vi, and Ej = 1 if and only if w ∈ Vj . If v̄ or V̄
is empty, we skip it and write, for instance, 〈f ; v̄〉. It is well known that for a
given MSO formula

ϕ(x1, . . . , xm, X1, . . . Xn)

one can effectively construct a deterministic automaton Aϕ (of non-elementary
size) recognizing the tree language{

〈t; v̄; V̄ 〉
∣∣ t |= ϕ(v̄, V̄ )

}
.

The construction follows the syntactic structure of MSO formulas: it begins
with explicit automata for atomic formulas, and then turns logical connectives
into Boolean operations on automata, and existential quantification into pro-
jecting out the corresponding binary coordinate from the alphabet. Defining
the ϕ-type of a forest f over Γ × {0, 1}m+n as the state of the automaton
Aϕ in the root of the last tree of f (in the unique run over f), we obtain the
following analogue of Lemma 2.

Lemma 8 Let ϕ(x̄, ȳ) be an MSO formula over signav, where x̄ and ȳ are
disjoint tuples of first-order variables, and let w be a node of a data tree t. For
all tuples ū, ū′ of nodes from tw and tuples v̄, v̄′ of nodes from t− tw, if

t |= ϕ(ū, v̄) and t |= ϕ(ū′, v̄′) ,

and the ϕ-types of 〈tw; ū〉 and 〈tw; ū′〉 are equal, then

t |= ϕ(ū, v̄′) and t |= ϕ(ū′, v̄) .

Proof As t |= ϕ(ū, v̄) and t |= ϕ(ū′, v̄′), the trees 〈t; ū, v̄〉 and 〈t; ū′, v̄′〉 are
accepted by the deterministic automaton Aϕ. Moreover, the state in the node
w in the unique runs of Aϕ over these trees is the same, because 〈t; ū, v̄〉w =
〈tw; ū〉 and 〈t; ū′, v̄′〉w = 〈tw; ū′〉, and the ϕ-types of 〈tw; ū〉 and 〈tw; ū′〉 are
equal. Hence, swapping 〈t; ū, v̄〉w and 〈t; ū′, v̄′〉w does not affect acceptance
by Aϕ. That is, the resulting trees 〈t; ū′, v̄〉 and 〈t; ū, v̄′〉 are accepted by Aϕ.
Consequently, t |= ϕ(ū′, v̄) and t |= ϕ(ū, v̄′). ut

Now, we can show a bound on the data cut for non-mixing MSO con-
straints. Unlike in Lemma 3, the bound is non-elementary: it is proportional
to the maximal size of the automata for the MSO formulas used in the con-
straints.
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Lemma 9 If a set Σ∼ ∪Σ� of non-mixing MSO constraints is satisfied in a
data tree t, it is also satisfied in some data tree t′ obtained from t by changing
data values, such that

datacut(t′) ≤ S · ` · 2` · (`+m)`
2

· |Σ∼| ,

where ` and m are the maximal numbers of, respectively, free variables and
predicates from D∪Ď in the constraints from Σ∼, and S is the maximal number
of types for the selector formulas in the constraints from Σ∼.

The same is true for counter-examples to entailment, except that the bound
on the data cut needs to be increased by the number of variables in the violated
assertion.

Proof We proceed just like for Lemma 3. Let us take a node w of the data tree
t and an MSO constraint ϕ(x̄, ȳ) ⇒ η∼(x̄, ȳ) from Σ∼ with a fixed partition
x̄, ȳ of the free variables of ϕ. Using Lemma 8, we arrive at the following
condition: for all tuples ū, ū′ of nodes from tw and all tuples v̄, v̄′ of nodes
from t− tw, if t |= ϕ(ū, v̄), t |= ϕ(ū′, v̄′), and the ϕ-types of 〈tw, ū〉 and 〈tw, ū′〉
are equal, then t |= η∼(ū, v̄′). This can be reformulated as follows: for each
tuple ū of nodes from tw such that the ϕ-type of 〈tw; ū〉 is q and t |= ϕ(ū, v̄)
for some tuple v̄ of nodes from t− tw, the tuple valt(ū) of data values belongs
to the set

Zqϕ(x̄,ȳ)⇒η∼(x̄,ȳ) =
⋂
v̄′

{
c̄ ∈ D|x̄|

∣∣ η(c̄, valt(v̄
′))
}
,

where v̄′ ranges over tuples of nodes from t − tw satisfying t |= ϕ(ū′, v̄′) for
some tuple ū′ of nodes from tw such that the ϕ-type of 〈tw; ū′〉 is q.

Like before, we modify the tree t by changing to a fresh one each data value
used in tw, except for those from the set D ⊆ D of data values used in the
definitions of the sets Zqϕ(x̄,ȳ)⇒η∼(x̄,ȳ), with ϕ(x̄, ȳ) ⇒ η∼(x̄, ȳ) ranging over

constraints from Σ∼ with all possible partitions of free variables, and q ranging
over all possible ϕ-types. As the bound on the number of data values used in
the canonical definition of a single set Zqϕ(x̄,ȳ)⇒η∼(x̄,ȳ) remains unchanged, we

have |D| ≤ |Σ∼| · 2` · S ·
(
` · (m+ `)`

2)
. Performing this modification for each

node w, we guarantee the bound on data cut as stated in the lemma.
For the second claim, extend the set D with the data values used in the

tuple of nodes violating the assertion, as described in Section 4.1 for constraints
with CQ selectors. ut

As each set of MSO constraints can be rewritten as a single MSO formula
over the signature signav∪sig∼, by Lemma 9 and Proposition 2 from Section 4.6,
the consistency problem and the entailment problem reduce to satisfiability
of MSO over structures of bounded clique-width (one has to ensure that the
structure is indeed a data tree, but this can be easily expressed in MSO). As
the latter is known to be decidable [10], we immediately obtain decidability of
consistency and entailment. For completeness, we give a direct proof, avoiding
the notion of clique-width.



Reasoning about integrity constraints for tree-structured data 35

Theorem 4 Consistency and entailment of non-mixing MSO constraints is
decidable.

Proof Let Σ∼ ∪ Σ� be a set of non-mixing constraints and let A be a tree
automaton. By Lemma 9, it is enough to test satisfiability of Σ∼ ∪ Σ� over
trees of data cut bounded by a number N , computable from Σ∼ ∪ Σ�. Let
D ⊆ D be the set of data values used explicitly in Σ∼ ∪ Σ�, and let C ⊆
D −D be a fixed set such that |C| =

⌊
3
2 ·N

⌋
+ 1. Like before, by Lemma 4,

the proof boils down to constructing an automaton recognizing the set of
trees t over Γ × (C ∪D)× P(C) such that the data tree t̂ satisfies Σ∼ ∪Σ�.
Each MSO constraint ϕ(x̄) ⇒ η(x̄) is equivalent to a closed MSO formula
∀x̄
(
ϕ(x̄)→ η(x̄)

)
over the signature signav∪ sig∼ (in the presence of negation,

sig� is redundant). Hence, a finite set of MSO constraints is equivalent to
a conjunction of such formulas. Thus, it suffices to construct an automaton
accepting trees t over Γ × (C ∪D) × P(C) such that t̂ satisfies ϕ, where ϕ is
an MSO formula over signav ∪ sig∼, using only predicates associated with data
values from the set D.

We modify the standard construction of the automaton Aϕ for a formula ϕ
of MSO over signav. As the structure of the tree and the labelling with elements
of Γ is the same in t and t̂, we only need to provide explicit constructions for
the atomic formulas over sig∼.

For formulas of the form d(x), we have d ∈ D, so the data value d is
represented explicitly in t. Hence, the automaton simply identifies the node
with value 1 in the corresponding binary coordinate of the label, and accepts
if and only if the non-binary component of this label is (a, d,R) for some a
and R.

For formulas of the form x ∼ x′, the automaton also identifies the nodes x
and x′ in the input tree t, and then accepts if they are labelled with (a, d,R)
and (a′, d, R′) for some a, a′, R, R′, and additionally, if d ∈ C, then it is not
refreshed before reaching the first node w such that tw contains both x and
x′.

For entailment, we use the additional claim of Lemma 9 and include in D
also the data values used explicitly in the second set of constraints, Σ′∼ ∪Σ′�.
As the fact that Σ∼ ∪ Σ� holds and Σ′∼ ∪ Σ′� does not hold can also be ex-
pressed with a single closed MSO formula, we can use directly the construction
described above. ut

Both approaches give non-elementary complexity, as already the bound
of Lemma 9 is non-elementary. This cannot be improved, as the satisfiability
problem for MSO over signav, well known to be non-elementary, easily reduces
to inconsistency of MSO constraints: a closed formula ϕ is satisfiable if and
only if {

ϕ ∧ a(x) ⇒ 0(x) ∧ 1(x)
∣∣ a ∈ Γ}

is inconsistent with respect to the trivial automaton accepting all trees.
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5 Conclusions

We have shown that consistency and entailment of non-mixing constraints are
decidable. Both problems are 2ExpTime-complete, but become ExpTime-
complete when we restrict selector queries to tree patterns and bound the
number of variables in assertions; decidability can be pushed further to con-
straints with selector queries defined in monadic second order logic over the
signature signav, but the complexity becomes non-elementary. We have rein-
terpreted these results in terms of validity and containment of conjunctive
queries, as well as consistency of schema mappings. The latter setting best
illustrates the benefits of combining assertions over sig∼ and sig�. Indeed,
equalities are involved even in the simplest schema mappings, and inequalities
allow to cover key constraints over the source database.

We worked with ordered trees, but all discussed results immediately carry
over to unordered trees: as long as the signature does not contain the horizontal
axes, one can freely move back and forth between ordered and unordered trees
by forgetting the sibling order or introducing it arbitrarily. As both 2ExpTime
lower bounds, the one from Lemma 5 and the one from [6], do not use the
horizontal axes, they also hold for unordered trees. The same is true of the
undecidability for the settings that mix equality and inequality [6]. Similarly,
restricting to ranked trees does not change the picture: the upper bounds carry
over immediately, and the lower bounds only use trees of bounded branching.
The reductions can be also adapted to the case of unlabelled trees: one can
simulate labels with unique small tree gadgets attached to the main nodes of
the tree and use the automaton to ensure that each main node has exactly
one gadget attached. However, referring to the gadgets with selector queries
requires either the next sibling or the following sibling relation. For unordered
unlabelled trees the complexity might drop.

One might also ask how the presence of the schema affects the complex-
ity. The fact that we model schemas as tree automata is inessential: all lower
bounds can be adjusted to the setting where the schema language is restricted
to DTDs [6]. When there is no schema at all, the consistency problem trivial-
izes, because if a tree satisfies a set of constraints, so does any tree obtained by
removing nodes. Hence, it suffices to look for witnesses among trees with a sin-
gle node, which leads to a polynomial-time algorithm. The question is more in-
teresting for the entailment problem, because there the counter-example must
contain enough nodes to falsify the non-entailed constraint. It is plausible that
the complexity is lower than with a schema.
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